151
|
Tsuchiya T, Kobayashi K, Sakairi T, Goto K, Okada M, Sano F, Sugimoto J, Morohashi T, Usui T, Mutai M. Skeletal myopathy in transgenic mice carrying human prototype c-Ha-ras gene. Toxicol Pathol 2002; 30:501-6. [PMID: 12187941 DOI: 10.1080/01926230290105677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Skeletal myopathy was found in almost all-transgenic mice carrying the human prototype c-Ha-ras gene (rasH2 mouse). Microscopically, variation of the muscle fiber size, centrally placed nuclei, regenerating fibers, and interstitial fibrosis were evident; hyalinization and necrosis were sometimes observed in the skeletal muscle (femoralis and pectoralis) of the rasH2 mice. Inflammatory changes in the skeletal muscle or abnormality of adjacent peripheral nerve were not observed. The features were essentially similar to those of muscular dystrophy. Although the severity was relatively mild compared to 34-week-old rasH2 mice, the skeletal myopathy was also observed in younger male (10 weeks of age) rasH2 mice. In nontransgenic littermates, skeletal myopathy was not observed. The mRNA of human c-Ha-ras product was detected in femoral muscle from the rasH2 mice by RT-PCR. In conclusion, these data suggest that skeletal myopathy is occurring in almost all rasH2 mice. Integration of c-Ha-ras gene is thought to be crucial to pathogenesis of skeletal myopathy in the rasH2 mice. Further characterization of the muscular lesion and its pathogenesis are needed to explore the possibility of rasH2 mouse becoming a new model for muscular dystrophy.
Collapse
Affiliation(s)
- Takayuki Tsuchiya
- Toxicology Laboratory, Research Center, Mitsubishi-Tokyo Pharmaceuticals, Inc, Chiba-ken, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Nakamura A, Yoshida K, Takeda S, Dohi N, Ikeda SI. Progression of dystrophic features and activation of mitogen-activated protein kinases and calcineurin by physical exercise, in hearts of mdx mice. FEBS Lett 2002; 520:18-24. [PMID: 12044863 DOI: 10.1016/s0014-5793(02)02739-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously demonstrated that calcineurin and p38 mitogen-activated protein kinase (MAPK) are up-regulated in the hearts of mdx mice. However, the degree of up-regulation observed was variable, which may reflect variable levels of daily physical activities among the mice. To investigate whether or not exercise affects dystrophic features and activates intracellular signaling molecules in mdx hearts, we subjected mdx and C57BL/10 mice to treadmill exercise and examined intracellular signaling molecules in cardiac muscles, at the protein level. The heart to body weight ratio was significantly increased in exercised mdx mice. Histopathology in exercised mdx hearts showed extensive infiltration of inflammatory cells, together with increases in interstitial fibrosis and adipose tissues, all of which were not observed either in exercised C57BL/10 or non-exercised mdx hearts. Phosphorylated p38 MAPK, phosphorylated extracellular signal-regulated kinase 1/2 and calcineurin, but not phosphorylated c-Jun N-terminal kinase 1, were up-regulated in exercised mdx hearts compared to exercised C57BL/10 or non-exercised mdx hearts. These data suggest that physical exercise accelerates the dystrophic process through activation of intracellular signaling molecules in dystrophin-deficient hearts.
Collapse
Affiliation(s)
- Akinori Nakamura
- Third Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | |
Collapse
|
153
|
Larochelle N, Oualikene W, Dunant P, Massie B, Karpati G, Nalbantoglu J, Lochmuller H. The short MCK1350 promoter/enhancer allows for sufficient dystrophin expression in skeletal muscles of mdx mice. Biochem Biophys Res Commun 2002; 292:626-31. [PMID: 11922612 DOI: 10.1006/bbrc.2002.6715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
First-generation adenovirus vectors (AdV) have been used successfully to transfer a human dystrophin minigene to skeletal muscle of mdx mice. In most studies, strong viral promoters such as the cytomegalovirus promoter/enhancer (CMV) were used to drive dystrophin expression. More recently, a short version of the muscle creatine kinase promoter (MCK1350) has been shown to provide muscle-specific reporter gene expression after AdV-mediated gene delivery. Therefore, we generated a recombinant AdV where dystrophin expression is controlled by MCK1350 (AdVMCKdys). AdVMCKdys was injected by the intramuscular route into anterior tibialis muscle of mdx mice shortly after birth. Dystrophin expression was assessed at 20, 30, and 60 days after AdV-injection. At 20 days, muscles of AdVMCKdys-injected mdx mice showed a high number of dystrophin-positive fibers (mean: 365). At 60 days, the number of dystrophin-positive fibers was not only maintained, but increased significantly (mean: 600). In conclusion, MCK1350 allows for sustained dystrophin expression after AdV-mediated gene transfer to skeletal muscle of newborn mdx mice. In contrast to previous studies, where strong viral promoters were used, dystrophin expression driven by MCK1350 peaks at later time points. This may have implications for the future use of muscle-specific promoters for gene therapy of Duchenne muscular dystrophy.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/metabolism
- Animals
- Animals, Newborn
- Creatine Kinase/genetics
- Creatine Kinase/metabolism
- Creatine Kinase, MM Form
- Dystrophin/biosynthesis
- Dystrophin/genetics
- Gene Transfer Techniques
- Genes, Reporter
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred mdx
- Mice, SCID
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transgenes
Collapse
|
154
|
Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82:291-329. [PMID: 11917091 DOI: 10.1152/physrev.00028.2001] [Citation(s) in RCA: 846] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The X-linked muscle-wasting disease Duchenne muscular dystrophy is caused by mutations in the gene encoding dystrophin. There is currently no effective treatment for the disease; however, the complex molecular pathology of this disorder is now being unravelled. Dystrophin is located at the muscle sarcolemma in a membrane-spanning protein complex that connects the cytoskeleton to the basal lamina. Mutations in many components of the dystrophin protein complex cause other forms of autosomally inherited muscular dystrophy, indicating the importance of this complex in normal muscle function. Although the precise function of dystrophin is unknown, the lack of protein causes membrane destabilization and the activation of multiple pathophysiological processes, many of which converge on alterations in intracellular calcium handling. Dystrophin is also the prototype of a family of dystrophin-related proteins, many of which are found in muscle. This family includes utrophin and alpha-dystrobrevin, which are involved in the maintenance of the neuromuscular junction architecture and in muscle homeostasis. New insights into the pathophysiology of dystrophic muscle, the identification of compensating proteins, and the discovery of new binding partners are paving the way for novel therapeutic strategies to treat this fatal muscle disease. This review discusses the role of the dystrophin complex and protein family in muscle and describes the physiological processes that are affected in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Derek J Blake
- Medical Research Council, Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
155
|
Hara H, Nolan PM, Scott MO, Bucan M, Wakayama Y, Fischbeck KH. Running endurance abnormality in mdx mice. Muscle Nerve 2002; 25:207-11. [PMID: 11870688 DOI: 10.1002/mus.10023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mdx mouse lacks dystrophin and has histological features of Duchenne muscular dystrophy but little weakness in the first year of life. We report here an early deficit in voluntary wheel running, as assayed with a computerized wheel. All mdx mice showed an intermittent running pattern, in contrast to the continuous running seen in controls. The average continuous running time differed significantly between mdx and control mice at all ages tested (5-21 weeks). This assay is noninvasive, has the advantage of unbiased automatic data collection, and should be useful for quantifying the mdx deficit in therapeutic studies.
Collapse
Affiliation(s)
- Hajime Hara
- Division of Neurology, Department of Medicine, Showa University, Fujigaoka Hospital, 1-30, Fujigaoka, Aobaku, Yokohamashi 227-0043, Japan.
| | | | | | | | | | | |
Collapse
|
156
|
Huh KH, Fuhrer C. Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses. Mol Neurobiol 2002; 25:79-112. [PMID: 11890459 DOI: 10.1385/mn:25:1:079] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. Nicotinic receptors are also expressed across the peripheral and central nervous system (PNS/CNS). These receptors are localized not only at the pre- but also at the postsynaptic sites where they carry out major synaptic transmission. In neurons, they are found as clusters at synaptic or extrasynaptic sites, suggesting that different mechanisms might underlie this specific localization of nicotinic receptors. This review summarizes the current knowledge about formation and stabilization of the postsynaptic apparatus at the neuromuscular junction and extends this to explore the synaptic structures of interneuronal cholinergic synapses.
Collapse
Affiliation(s)
- Kyung-Hye Huh
- Department of Neurochemistry, Brain Research Institute, University of Zürich, Switzerland
| | | |
Collapse
|
157
|
Culligan K, Banville N, Dowling P, Ohlendieck K. Drastic reduction of calsequestrin-like proteins and impaired calcium binding in dystrophic mdx muscle. J Appl Physiol (1985) 2002; 92:435-45. [PMID: 11796649 DOI: 10.1152/japplphysiol.00903.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the reduction in dystrophin-associated glycoproteins is the primary pathophysiological consequence of the deficiency in dystrophin, little is known about the secondary abnormalities leading to x-linked muscular dystrophy. As abnormal Ca(2+) handling may be involved in myonecrosis, we investigated the fate of key Ca(2+) regulatory membrane proteins in dystrophic mdx skeletal muscle membranes. Whereas the expression of the ryanodine receptor, the dihydropyridine receptor, the Ca(2+)-ATPase, and calsequestrin was not affected, a drastic decline in calsequestrin-like proteins of 150-220 kDa was observed in dystrophic microsomes using one-dimensional immunoblotting, two-dimensional immunoblotting with isoelectric focusing, diagonal two-dimensional blotting technique, and immunoprecipitation. In analogy, overall Ca(2+) binding was reduced in the sarcoplasmic reticulum of dystrophic muscle. The reduction in Ca(2+) binding proteins might be directly involved in triggering impaired Ca(2+) sequestration within the lumen of the sarcoplasmic reticulum. Thus disturbed sarcolemmal Ca(2+) fluxes seem to influence overall Ca(2+) homeostasis, resulting in distinct changes in the expression profile of a subset of Ca(2+) handling proteins, which might be an important factor in the progressive functional decline of dystrophic muscle fibers.
Collapse
Affiliation(s)
- Kevin Culligan
- Department of Pharmacology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
158
|
Abstract
Duchenne muscular dystrophy (DMD) is the second most commonly occurring genetically inherited disease in humans. It is an X-linked condition that affects approximately one in 3300 live male births. It is caused by the absence or disruption of the protein dystrophin, which is found in a variety of tissues, most notably skeletal muscle and neurones in particular regions of the CNS. Clinically DMD is characterized by a severe pathology of the skeletal musculature that results in the premature death of the individual. An important aspect of DMD that has received less attention is the role played by the absence or disruption of dystrophin on CNS function. In this review we concentrate on insights into this role gained from investigation of boys with DMD and the genetically most relevant animal model of DMD, the dystrophin-deficient mdx mouse. Behavioural studies have shown that DMD boys have a cognitive impairment and a lower IQ (average 85), whilst the mdx mice display an impairment in passive avoidance reflex and in short-term memory. In DMD boys, there is evidence of disordered CNS architecture, abnormalities in dendrites and loss of neurones, all associated with neurones that normally express dystrophin. In the mdx mouse, there have been reports of a 50% decrease in neurone number and neural shrinkage in regions of the cerebral cortex and brainstem. Histological evidence shows that the density of GABA(A) channel clusters is reduced in mdx Purkinje cells and hippocampal CA1 neurones. At the biochemical level, in DMD boys the bioenergetics of the CNS is abnormal and there is an increase in the levels of choline-containing compounds, indicative of CNS pathology. The mdx mice also display abnormal bioenergetics, with an increased level of inorganic phosphate and increased levels of choline-containing compounds. Functionally, DMD boys have EEG abnormalities and there is some preliminary evidence that synaptic function is affected adversely by the absence of dystrophin. Electrophysiological studies of mdx mice have shown that hippocampal neurones have an increased susceptibility to hypoxia. These recent findings on the role of dystrophin in the CNS have implications for the clinical management of boys with DMD.
Collapse
Affiliation(s)
- J L Anderson
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
159
|
Hartigan-O'Connor D, Kirk CJ, Crawford R, Mulé JJ, Chamberlain JS. Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol Ther 2001; 4:525-33. [PMID: 11735336 DOI: 10.1006/mthe.2001.0496] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle tissue from Duchenne muscular dystrophy patients and the Dmd(mdx/mdx) (hereafter referred to as mdx) mouse is characterized by an abundance of necrotic myofibers and infiltrating macrophages. Both features may provide additional stimulus to the immune response directed against novel antigens, such as those delivered by gene therapy vectors. It has previously been shown that the immune evasion achieved by adeno-associated virus in healthy muscle fails in one model of muscular dystrophy. Here, we examined the immune response to adenoviral vectors and their transgenes in normal and mdx mice. We found that mdx mouse muscles contain 20 times more macrophages and 7 times more dendritic cells than healthy muscles. This higher professional antigen-presenting cell content results in a stronger immune response to antigens that can be directly presented by those cells, including viral antigens and constitutively expressed transgene products. However, we did not detect a significant immune response to beta-galactosidase expressed specifically in muscle, even at high expression levels. This result suggests that cross-presentation is not more effective in mdx mouse muscle, and that targeted vectors and tissue-specific promoters may be useful tools for evasion of the immune response in dystrophic muscle.
Collapse
Affiliation(s)
- D Hartigan-O'Connor
- Department of Neurology, University of Washington School of Medicine, HSB Room K243, Seattle, Washington 98195-7720, USA
| | | | | | | | | |
Collapse
|
160
|
Fisher R, Tinsley JM, Phelps SR, Squire SE, Townsend ER, Martin JE, Davies KE. Non-toxic ubiquitous over-expression of utrophin in the mdx mouse. Neuromuscul Disord 2001; 11:713-21. [PMID: 11595513 DOI: 10.1016/s0960-8966(01)00220-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an inherited, severe muscle wasting disease caused by the loss of the cytoskeletal protein, dystrophin. Patients usually die in their late teens or early twenties of cardiac or respiratory failure. We have previously demonstrated that the dystrophin related protein, utrophin is able to compensate for the loss of dystrophin in the mdx mouse, the mouse model of the disease. Expression of a utrophin transgene under the control of an HSA promoter results in localization of utrophin to the sarcolemma and prevents the muscle pathology. Here we show that the over-expression of full-length utrophin in a broad range of tissues is not detrimental in the mdx mouse. These findings have important implications for the feasibility of the up-regulation of utrophin in therapy for DMD since they suggest that tissue specific up-regulation may not be necessary.
Collapse
MESH Headings
- Aging
- Animals
- Blotting, Western
- Body Weight
- Creatinine/urine
- Cytoskeletal Proteins/biosynthesis
- Cytoskeletal Proteins/genetics
- Disease Models, Animal
- Disease Progression
- Feasibility Studies
- Gene Expression
- Genetic Therapy
- Homozygote
- Immunohistochemistry
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Organ Specificity
- Promoter Regions, Genetic
- Tissue Distribution/genetics
- Transgenes
- Up-Regulation/genetics
- Utrophin
Collapse
Affiliation(s)
- R Fisher
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | | | | | | | | | | | | |
Collapse
|
161
|
Danialou G, Comtois AS, Dudley R, Karpati G, Vincent G, Des Rosiers C, Petrof BJ. Dystrophin-deficient cardiomyocytes are abnormally vulnerable to mechanical stress-induced contractile failure and injury. FASEB J 2001; 15:1655-7. [PMID: 11427517 DOI: 10.1096/fj.01-0030fje] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- G Danialou
- Respiratory Division, McGill University Health Centre, and Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
162
|
Agbulut O, Li Z, Périé S, Ludosky MA, Paulin D, Cartaud J, Butler-Browne G. Lack of desmin results in abortive muscle regeneration and modifications in synaptic structure. CELL MOTILITY AND THE CYTOSKELETON 2001; 49:51-66. [PMID: 11443736 DOI: 10.1002/cm.1020] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Desmin, a muscle-specific intermediate filament protein, is expressed in all muscle tissues. Its absence leads to a multisystemic disorder involving cardiac, skeletal, and smooth muscles. In skeletal muscle, structural abnormalities include lack of alignment of myofibrils, Z disk streaming, and focal muscle degeneration. In this study, we have examined the consequences of an absence of desmin on the mechanisms of regeneration and the integrity of the neuromuscular junction. The muscles of desmin knock-out and wild-type mice were made to regenerate by injecting cardiotoxin and were examined 7 to 42 days following the injection. The absence of desmin resulted in a delayed and modified regeneration and an accumulation of adipocytes. This was associated with a persistence of small diameter muscle fibers containing both N-CAM and developmental myosin isoforms. The amount of the slow myosin was increased, whereas there was a decrease in the fast isoform in the regenerated muscles of desmin knock-out mice. Both regeneration and aging led to the appearance of elongated neuromuscular junctions with diffuse acetylcholinesterase staining and a decrease in the overall acetylcholinesterase activity in the muscles of these mice. The neuromuscular junctions were markedly disorganised and in some cases postjunctional folds were absent. We conclude that desmin is essential for terminal muscle regeneration, maturation of muscle fibers, and maintaining the complex folded structure of the postsynaptic apparatus of the neuromuscular junctions.
Collapse
Affiliation(s)
- O Agbulut
- Cytosquelette et Développement, UMR 7000, CNRS, Paris, France
| | | | | | | | | | | | | |
Collapse
|
163
|
Nakamura A, Harrod GV, Davies KE. Activation of calcineurin and stress activated protein kinase/p38-mitogen activated protein kinase in hearts of utrophin-dystrophin knockout mice. Neuromuscul Disord 2001; 11:251-9. [PMID: 11297940 DOI: 10.1016/s0960-8966(00)00201-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dilated cardiomyopathy is a common complication of Duchenne and Becker muscular dystrophies, which are caused by mutations in the dystrophin gene. The mdx mouse is an animal model for Duchenne muscular dystrophy (DMD) and shows mildly dystrophic changes in the heart. By contrast, the utrophin-dystrophin knockout (dko) mouse shows severe dystrophic changes in cardiac muscle, that more closely resembles DMD cardiomyopathy than mdx mouse. However the pathogenesis of development has not been fully understood. Recently many reports have revealed that calcineurin and stress activated protein kinase (SAPK)/p38-mitogen activated protein kinase (MAPK) hypertrophic signalling pathways are associated with the development of some forms of hypertrophic and dilated cardiomyopathies. These signalling pathways may have some roles in the development of dystrophin-deficient cardiomyopathy. Here we report that calcineurin and SAPK/p38-MAPK signalling pathways were constantly activated in dko hearts, but the activation varied in mdx hearts. The pathogenesis of the development of dystrophin-deficient cardiomyopathy may be associated with the activation of these signalling pathways.
Collapse
MESH Headings
- Age Factors
- Animals
- Atrial Natriuretic Factor/genetics
- Calcineurin/genetics
- Calcineurin/metabolism
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/physiopathology
- Cytoskeletal Proteins/deficiency
- Cytoskeletal Proteins/genetics
- Dystrophin/deficiency
- Dystrophin/genetics
- Glyceraldehyde-3-Phosphate Dehydrogenases/genetics
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 8
- Mitogen-Activated Protein Kinases/metabolism
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Myocardium/enzymology
- Myocardium/pathology
- Natriuretic Peptide, Brain
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Signal Transduction/genetics
- Utrophin
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- A Nakamura
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
| | | | | |
Collapse
|
164
|
Minatel E, Santo Neto H, Marques MJ. Acetylcholine receptors and neuronal nitric oxide synthase distribution at the neuromuscular junction of regenerated muscle fibers. Muscle Nerve 2001; 24:410-6. [PMID: 11353428 DOI: 10.1002/1097-4598(200103)24:3<410::aid-mus1014>3.0.co;2-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated whether the changes in acetylcholine receptor (AChR) distribution and neuronal nitric oxide synthase (nNOS) expression reported for the skeletal muscle of mdx mice were a consequence of muscle fiber regeneration rather than of the absence of dystrophin. Degenerative-regenerative changes in muscle fibers of the sternomastoid muscle of normal mice were induced by injecting lidocaine hydrochloride. Twenty-one days later, AChRs were labeled with alpha-bungarotoxin and nNOS with anti-nNOS antibody, and observed under a confocal microscope. AChRs were distributed in continuous branches in normal fibers. Regenerated fibers showed disruption of AChRs distribution similar to that seen in muscle of mdx mice. This suggests that changes in AChRs distribution seen in mdx mice were probably a consequence of muscle fiber degeneration and regeneration, rather than a symptom of dystrophin deficiency. Conversely, there were no changes in nNOS distribution and expression in normal regenerated fibers, suggesting that the decrease in nNOS expression reported for mdx mice might be attributed to the absence of dystrophin.
Collapse
Affiliation(s)
- E Minatel
- Department of Anatomy, Institute of Biology, State University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | | | | |
Collapse
|
165
|
Crawford GE, Faulkner JA, Crosbie RH, Campbell KP, Froehner SC, Chamberlain JS. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 2000; 150:1399-410. [PMID: 10995444 PMCID: PMC2150715 DOI: 10.1083/jcb.150.6.1399] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2000] [Accepted: 08/02/2000] [Indexed: 11/22/2022] Open
Abstract
Dystrophin is a multidomain protein that links the actin cytoskeleton to laminin in the extracellular matrix through the dystrophin associated protein (DAP) complex. The COOH-terminal domain of dystrophin binds to two components of the DAP complex, syntrophin and dystrobrevin. To understand the role of syntrophin and dystrobrevin, we previously generated a series of transgenic mouse lines expressing dystrophins with deletions throughout the COOH-terminal domain. Each of these mice had normal muscle function and displayed normal localization of syntrophin and dystrobrevin. Since syntrophin and dystrobrevin bind to each other as well as to dystrophin, we have now generated a transgenic mouse deleted for the entire dystrophin COOH-terminal domain. Unexpectedly, this truncated dystrophin supported normal muscle function and assembly of the DAP complex. These results demonstrate that syntrophin and dystrobrevin functionally associate with the DAP complex in the absence of a direct link to dystrophin. We also observed that the DAP complexes in these different transgenic mouse strains were not identical. Instead, the DAP complexes contained varying ratios of syntrophin and dystrobrevin isoforms. These results suggest that alternative splicing of the dystrophin gene, which naturally generates COOH-terminal deletions in dystrophin, may function to regulate the isoform composition of the DAP complex.
Collapse
Affiliation(s)
- G E Crawford
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | | | | | |
Collapse
|
166
|
Abstract
Since the identification of dystrophin as the causitive factor in Duchenne muscular dystrophy, there has been substantial progress in understanding the functions and interactions of this protein. Dystrophin has been shown to interact with a group of peripheral- and trans-membrane proteins known as the dystrophin-associated protein complex (DAPC) and mutations in some of the members of this complex have been shown to account for other forms of muscular dystrophy. This review summarizes the experiments using transgenic and knockout mouse models that have defined the roles of dystrophin, and the dystrophin-related protein utrophin at the skeletal muscle membrane and at the neuromuscular junction. These studies are presented in the context of other known interactions at the muscle membrane. Studies of the dystrophin-deficient mdx mouse have lead to a greater understanding of the human disease. Knockouts and transgenics of utrophin have shown this protein to be sufficient to functionally compensate for dystrophin. Dystrophin transgenic mice combined with the mdx mouse have been used to study the function of specific domains of the dystrophin protein. Together these animal models have led to a delineation of protein functions and localization patterns that will be useful for the generation of potential therapies for DMD.
Collapse
Affiliation(s)
- J A Rafael
- Department of Medical Biochemistry, The Ohio State University, College of Medicine, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
167
|
Abstract
Dystrophin is a cytoplasmic protein underlying the plasma membrane in normal skeletal muscle. Its absence leads to muscle degeneration as seen in Duchenne muscular dystrophy (DMD) and in mdx mice. One puzzling question in the study of dystrophinopathies is that in mdx muscles the neuromuscular junctions (NMJs) show little, if any, developmental defect, but morphological and functional abnormalities of NMJs are obvious after muscle damage and regeneration begin. This phenomenon leads us to hypothesize that dystrophin may be required for endplate maintenance and/or endplate remodeling in regenerating fibers. Here we show that the absence of dystrophin causes NMJ fragmentation in adult muscle fibers, and greatly reduces both spontaneous and agrin-induced acetylcholine receptor (AChR) clustering activities on cultured myotubes derived from satellite cells. The lower AChR clustering in mdx myotubes originates in the smaller size of each cluster and from a 72% reduction in the occurrence of large (> 10 micron 2) AChR clusters. Our results suggest dystrophin is involved in organizing small AChR clusters into large AChR aggregates during muscle regeneration, although it is not required for initiating the original AChR clustering activity.
Collapse
MESH Headings
- Age Factors
- Agrin/genetics
- Agrin/immunology
- Agrin/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- CHO Cells
- Cricetinae
- Dystrophin/physiology
- Gene Expression/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Neuromuscular Junction/chemistry
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/pathology
- Receptors, Cholinergic/analysis
- Receptors, Cholinergic/metabolism
- Regeneration/physiology
- Transfection
Collapse
Affiliation(s)
- J Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
168
|
Grady RM, Grange RW, Lau KS, Maimone MM, Nichol MC, Stull JT, Sanes JR. Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat Cell Biol 1999; 1:215-20. [PMID: 10559919 DOI: 10.1038/12034] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A dystrophin-containing glycoprotein complex (DGC) links the basal lamina surrounding each muscle fibre to the fibre's cytoskeleton, providing both structural support and a scaffold for signalling molecules. Mutations in genes encoding several DGC components disrupt the complex and lead to muscular dystrophy. Here we show that mice deficient in alpha-dystrobrevin, a cytoplasmic protein of the DGC, exhibit skeletal and cardiac myopathies. Analysis of double and triple mutants indicates that alpha-dystrobrevin acts largely through the DGC. Structural components of the DGC are retained in the absence of alpha-dystrobrevin, but a DGC-associated signalling protein, nitric oxide synthase, is displaced from the membrane and nitric-oxide-mediated signalling is impaired. These results indicate that both signalling and structural functions of the DGC are required for muscle stability, and implicate alpha-dystrobrevin in the former.
Collapse
Affiliation(s)
- R M Grady
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | | | | | | | |
Collapse
|
169
|
Vaillend C, Ungerer A, Billard JM. Facilitated NMDA receptor-mediated synaptic plasticity in the hippocampal CA1 area of dystrophin-deficient mice. Synapse 1999; 33:59-70. [PMID: 10380851 DOI: 10.1002/(sici)1098-2396(199907)33:1<59::aid-syn6>3.0.co;2-k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contribution of the cytoskeletal membrane-associated protein dystrophin in glutamatergic transmission and related plasticity was investigated in the hippocampal CA1 area of wild-type and dystrophin-deficient (mdx) mice, using extracellular recordings in the ex vivo slice preparation. Presynaptic fiber volleys and field excitatory postsynaptic potentials (fEPSPs) mediated through N-methyl-D-Aspartate receptors (NMDAr) or non-NMDAr were compared in both strains. Comparable synaptic responses were observed in wild-type and mdx mice, suggesting that basal glutamatergic transmission is not altered in the mutants. By contrast, the synaptic strengthening induced by a conditioning stimulation of either 10, 30, or 100 Hz was significantly greater in mdx mice during the first minutes posttetanus. Because the posttetanic potentiation induced in the presence of the NMDAr antagonist D-APV was not affected in the mutants, a critical role of NMDAr in this increase was suggested. The magnitude of the potentiation induced by a 30 Hz stimulation in mdx mice was normalized as compared to wild-type mice by increasing the extracellular magnesium concentration from 1.5 to 3 mM. Moreover, the transitory depression of fEPSPs induced by bath-applied NMDA (50 microM for 30s) was more sensitive to an increased extracellular magnesium concentration in wild-type than in mdx mice. Our results suggest that the absence of dystrophin may facilitate NMDAr activation in the CA1 hippocampal subfield of mdx mice, which may be partly due to a reduction of the voltage-dependent block of this receptor by magnesium.
Collapse
Affiliation(s)
- C Vaillend
- Laboratoire d'Ethologie et Neurobiologie, Strasbourg, France
| | | | | |
Collapse
|
170
|
De la Porte S, Morin S, Koenig J. Characteristics of skeletal muscle in mdx mutant mice. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:99-148. [PMID: 10343393 DOI: 10.1016/s0074-7696(08)60158-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We review the extensive research conducted on the mdx mouse since 1987, when demonstration of the absence of dystrophin in mdx muscle led to X-chromosome-linked muscular dystrophy (mdx) being considered as a homolog of Duchenne muscular dystrophy. Certain results are contradictory. We consider most aspects of mdx skeletal muscle: (i) the distribution and roles of dystrophin, utrophin, and associated proteins; (ii) morphological characteristics of the skeletal muscle and hypotheses put forward to explain the regeneration characteristic of the mdx mouse; (iii) special features of the diaphragm; (iv) changes in basic fibroblast growth factor, ion flux, innervation, cytoskeleton, adhesive proteins, mastocytes, and metabolism; and (v) different lines of therapeutic research.
Collapse
Affiliation(s)
- S De la Porte
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Gif sur Yvette, France
| | | | | |
Collapse
|
171
|
Williams MW, Bloch RJ. Differential distribution of dystrophin and beta-spectrin at the sarcolemma of fast twitch skeletal muscle fibers. J Muscle Res Cell Motil 1999; 20:383-93. [PMID: 10531619 DOI: 10.1023/a:1005512217552] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used double label immunofluorescence and confocal microscopy to examine the organization of beta-spectrin and dystrophin at the sarcolemma of fast twitch myofibers in the Extensor Digitorum Longus (EDL) of the rat. Both beta-spectrin and dystrophin are concentrated in costameres, a rectilinear sarcolemmal array composed of longitudinal strands and transverse elements overlying Z and M lines. In contrast, intercostameric regions, lying between these linear structures, contain significant levels of dystrophin but little detectable beta-spectrin. The dystrophin-associated proteins, syntrophin and beta-dystroglycan, are also concentrated at costameres but, like dystrophin, are present in intercostameric regions as well. Dystrophin is present at costameres and intercostameric regions in fast twitch muscles of the mouse but is absent from all regions of the sarcolemma in the mdx mouse, which lacks dystrophin. Areas of the sarcolemma near myonuclei also contain dystrophin without beta-spectrin, consistent with the idea that the distribution of dystrophin at the sarcolemma is not dependent on beta-spectrin. We conclude that dystrophin is present under all areas of the sarcolemma. The increased fragility of the sarcolemma in patients with Duchennes muscular dystrophy may be explained in part by the absence of dystrophin not only from costameres, but also from intercostameric regions.
Collapse
Affiliation(s)
- M W Williams
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, USA
| | | |
Collapse
|
172
|
Pagel CN, Partridge TA. Covert persistence of mdx mouse myopathy is revealed by acute and chronic effects of irradiation. J Neurol Sci 1999; 164:103-16. [PMID: 10402020 DOI: 10.1016/s0022-510x(99)00061-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To compare muscle fiber loss in young and old mdx mice, we have blocked regeneration in one leg with a high dose (18 Gy) of X-rays administered at two ages; 16 days, just prior to the onset of the myopathy, and 15 weeks, when the myopathy is considered to be quiescent. Mice were examined 4 days after irradiation to look for acute effects, or after 6 weeks to look for cumulative effects. Tibial length, muscle weight, muscle fiber size, fiber number and histological changes were recorded. Signs of acute damage to muscle fibers, leakage of Procion Orange dye into fibers and loss of creatine kinase from the fibers were also examined. Irradiation caused no acute or chronic damage to muscle fibers; on the contrary, in the youngest mdx mice, irradiation delayed the onset of the disease. However, in mdx but not in normal mice, there was a loss of muscle mass and fiber number in irradiated by comparison with the non-irradiated contra-lateral muscles. This loss, attributed to fiber necrosis in the absence of regeneration, was as great in animals irradiated at 15 weeks as in those irradiated at 16 days. Such persistence of muscle fiber necrosis contradicts the standard view of the mdx mouse and establishes it as a closer model of Duchenne muscular dystrophy than is generally appreciated.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Creatine Kinase/blood
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx/anatomy & histology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/radiation effects
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/radiation effects
- Muscular Dystrophy, Animal/blood
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Organ Size/radiation effects
- Reference Values
- Regeneration/radiation effects
- Staining and Labeling
- Tibia/pathology
- Tibia/radiation effects
- Time Factors
Collapse
Affiliation(s)
- C N Pagel
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | |
Collapse
|
173
|
Williams MW, Bloch RJ. Extensive but coordinated reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice. J Cell Biol 1999; 144:1259-70. [PMID: 10087268 PMCID: PMC2150591 DOI: 10.1083/jcb.144.6.1259] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1998] [Revised: 02/09/1999] [Indexed: 11/22/2022] Open
Abstract
We used immunofluorescence techniques and confocal imaging to study the organization of the membrane skeleton of skeletal muscle fibers of mdx mice, which lack dystrophin. beta-Spectrin is normally found at the sarcolemma in costameres, a rectilinear array of longitudinal strands and elements overlying Z and M lines. However, in the skeletal muscle of mdx mice, beta-spectrin tends to be absent from the sarcolemma over M lines and the longitudinal strands may be disrupted or missing. Other proteins of the membrane and associated cytoskeleton, including syntrophin, beta-dystroglycan, vinculin, and Na,K-ATPase are also concentrated in costameres, in control myofibers, and mdx muscle. They also distribute into the same altered sarcolemmal arrays that contain beta-spectrin. Utrophin, which is expressed in mdx muscle, also codistributes with beta-spectrin at the mutant sarcolemma. By contrast, the distribution of structural and intracellular membrane proteins, including alpha-actinin, the Ca-ATPase and dihydropyridine receptors, is not affected, even at sites close to the sarcolemma. Our results suggest that in myofibers of the mdx mouse, the membrane- associated cytoskeleton, but not the nearby myoplasm, undergoes widespread coordinated changes in organization. These changes may contribute to the fragility of the sarcolemma of dystrophic muscle.
Collapse
Affiliation(s)
- M W Williams
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
174
|
Mokhtarian A, Lefaucheur JP, Even PC, Sebille A. Hindlimb immobilization applied to 21-day-old mdx mice prevents the occurrence of muscle degeneration. J Appl Physiol (1985) 1999; 86:924-31. [PMID: 10066706 DOI: 10.1152/jappl.1999.86.3.924] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dystrophin-deficient skeletal muscles of mdx mice undergo their first rounds of degeneration-regeneration at the age of 14-28 days. This feature is thought to result from an increase in motor activity at weaning. In this study, we hypothesize that if the muscle is prevented from contracting, it will avoid the degenerative changes that normally occur. For this purpose, we developed a procedure of mechanical hindlimb immobilization in 3-wk-old mice to restrain soleus (Sol) and extensor digitorum longus (EDL) muscles in the stretched or shortened position. After a 14-day period of immobilization, the striking feature was the low percentage of regenerated (centronucleated) myofibers in Sol and EDL muscles, regardless of the length at which they were fixed, compared with those on the contralateral side (stretched Sol: 8.4 +/- 6.5 vs. 46.6 +/- 10.3%, P = 0.0008; shortened Sol: 1.2 +/- 1.6 vs. 50.4 +/- 16.4%, P = 0.0008; stretched EDL: 05 +/- 0.5 vs. 32.9 +/- 17.5%, P = 0. 002; shortened EDL: 3.3 +/- 3.1 vs. 34.7 +/- 11.1%, P = 0.002). Total numbers of myofibers did not change with immobilization. This study shows that limb immobilization prevents the occurrence of the first round of myofiber necrosis in mdx mice and suggests that muscle contractions play a role in the skeletal muscle degeneration of dystrophin-deficient mdx mouse muscles.
Collapse
Affiliation(s)
- A Mokhtarian
- Atelier de Régénération Neuromusculaire, Laboratoire de Physiologie, Faculté de Médecine Saint-Antoine, Institut National de la Santé et de la Recherche Médicale, Unité 153, 75571 Paris Cedex 12, France
| | | | | | | |
Collapse
|
175
|
Megeney LA, Kablar B, Perry RL, Ying C, May L, Rudnicki MA. Severe cardiomyopathy in mice lacking dystrophin and MyoD. Proc Natl Acad Sci U S A 1999; 96:220-5. [PMID: 9874799 PMCID: PMC15120 DOI: 10.1073/pnas.96.1.220] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mdx mouse, a mouse model of Duchenne muscular dystrophy, carries a loss-of-function mutation in dystrophin, a component of the membrane-associated dystrophin-glycoprotein complex. Unlike humans, mdx mice rarely display cardiac abnormalities and exhibit dystrophic changes only in a small number of heavily used skeletal muscle groups. By contrast, mdx:MyoD-/- mice lacking dystrophin and the skeletal muscle-specific bHLH transcription factor MyoD display a severe skeletal myopathy leading to widespread dystrophic changes in skeletal muscle and premature death around 1 year of age. The severely increased phenotype of mdx:MyoD-/- muscle is a consequence of impaired muscle regeneration caused by enhanced satellite cell self-renewal. Here we report that mdx:MyoD-/- mice developed a severe cardiac myopathy with areas of necrosis associated with hypertrophied myocytes. Moreover, heart tissue from mdx:MyoD-/- mice exhibited constitutive activation of stress-activated signaling components, similar to in vitro models of cardiac myocyte adaptation. Taken together, these results support the hypothesis that the progression of skeletal muscle damage is a significant contributing factor leading to development of cardiomyopathy.
Collapse
Affiliation(s)
- L A Megeney
- Institute for Molecular Biology and Biotechnology, 1280 Main Street West, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
176
|
Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdière-Sahuqué M, Fardeau M, Alameddine HS. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol 1999; 205:158-70. [PMID: 9882504 DOI: 10.1006/dbio.1998.9107] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Matrix metalloproteinases (MMPs) cooperatively degrade all components of the extracellular matrix (ECM). Remodeling of ECM during skeletal muscle degeneration and regeneration suggests a tight regulation of matrix-degrading activity during muscle regeneration. In this study, we investigated the expression of MMP-2 and MMP-9, in normal muscles and their regulation during regeneration process. We further investigated their secretion by C2C12 myogenic cell line. Two models of muscle degeneration-regeneration were used: (1) normal muscles in which necrosis was experimentally induced by cardiotoxin injection; (2) mdx muscles which exhibit recurrent signs of focal myofiber necrosis followed by successful regeneration. MMPs were studied by zymography; their free activity was quantified using 3H-labeled gelatin substrate and mRNA expression was followed by Northern hybridization. Muscle degeneration-regeneration was analyzed by conventional morphological methods and in situ hybridization was performed on muscle sections to identify the cells expressing these MMPs. Results show that MMP-2, but not MMP-9 expression, is constitutive in normal muscles. Upon injury, the active form of MMP-2 is transiently increased, whereas MMP-9 is induced within 24 h and remains present for several days. Quantitative assays of free gelatinolytic activity show a progressive and steady increase that culminates at 7 days postinjury and slowly returns to normal levels. In adult mdx mice, both pro and active forms of MMP-2 and MMP-9 are expressed. Northern blot results support these findings. Zymography of C2C12-conditioned medium shows that myogenic cells produce MMP-2. By in situ hybridization we localized MMP-9 mRNA in inflammatory cells and putative activated satellite cells in injured muscles. Our data allow the correlation of the differential expression of pro and/or active forms of MMP-2 and MMP-9 with different stages of the degeneration-regeneration process: MMP-9 expression is related to the inflammatory response and probably to the activation of satellite cells, whereas MMP-2 activation is concomitant with the regeneration of new myofibers.
Collapse
Affiliation(s)
- S Kherif
- Développement, Pathologie, Régénération du Système Neuromusculaire Institut de Myologie, INSERM U 153, Rue du Mur des Fermiers Généraux, 47, bd de l'Hôpital, Paris Cedex 13, FR-75651, France
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Abnormal expression of the cytoskeletal protein dystrophin has deleterious consequences for skeletal muscle, cardiac muscle, and the central nervous system. A complete failure to express the protein produces Duchenne muscular dystrophy (DMD), in which there is extensive and progressive skeletal muscle necrosis, the development of a life-threatening dilated cardiomyopathy, and mild mental retardation. Dystrophin binds the F-actin cytoskeleton and is normally expressed in a complex of transmembrane proteins (the "dystrophin protein complex") that interact with external components of the basal lamina. One pathogenic model for DMD (the "structural hypothesis") suggests that this complex forms a structural bridge between the external basal lamina and the internal cytoskeleton and that the absence of dystrophin produces a defect in membrane structural support that renders skeletal muscle susceptible to plasmalemmal ruptures (or "tears") during the course of contractile activity. This review attempts to critically evaluate the structural hypothesis for DMD and presents an opposing model (the "channel aggregation model") that highlights the role of dystrophin in organizing the membrane cytoskeleton and the role of the cytoskeleton in aggregating ion channels and neurotransmitter receptors. Since ion channel aggregation is a process that is common across organ systems, the idea that channel function can be altered when aggregated ion channels interact with a dystrophic cytoskeleton has immediate implications for the expression of the dystrophinopathies in skeletal muscle, cardiac muscle, and the central nervous system.
Collapse
Affiliation(s)
- C G Carlson
- Department of Physiology, Kirksville College of Osteopathic Medicine, Missouri 63501, USA
| |
Collapse
|
178
|
Ted Abresch R, Walsh SA, Wineinger MA. Animal Models of Neuromuscular Diseases: Pathophysiology and Implications for Rehabilitation. Phys Med Rehabil Clin N Am 1998. [DOI: 10.1016/s1047-9651(18)30811-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
179
|
Wineinger MA, Abresch RT, Walsh SA, Carter GT. Effects of aging and voluntary exercise on the function of dystrophic muscle from mdx mice. Am J Phys Med Rehabil 1998; 77:20-7. [PMID: 9482375 DOI: 10.1097/00002060-199801000-00004] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To understand how exercise affects the contractile function of dystrophic muscle, we examined the effect of long-term voluntary exercise on mdx mice and related these effects to our findings in sedentary aging mice. Although the mdx mouse is the genetic homolog for Duchenne muscular dystrophy, it does not demonstrate the same progression in limb muscle dysfunction as Duchenne muscular dystrophy as it ages. We postulated that the sedentary lifestyle of this animal plays an important role in its minimal phenotypic expression. To examine the effect of exercise, eight C57BL/10 (C57) and eight mdx mice were allowed to run ad libitum for one year. Forty sedentary mdx mice and 40 sedentary C57 from one month to 18 months of age were used as controls. Contractile characteristics of the extensor digitorum longus and soleus muscles and morphometric characteristics of the mice were examined. The mdx mice ran approximately 45% fewer kilometers per day than C57 mice. Long-term voluntary running had beneficial training effects on both the old mdx mice and their C57 controls. The exercise ameliorated the age-associated loss in tension production that was observed in the soleus of sedentary mdx and sedentary C57 mice. There was a 9% reduction in the fatigability of the extensor digitorum longus muscle of the old mdx mice after the exercise. Despite these improvements, the old mdx mice exhibited significant functional deficits compared with their C57 controls. Our hypothesis, that long-term voluntary exercise would have a beneficial training effect on control mice and a deleterious effect on mdx mice as they aged, was not supported by this study. This study shows that dystrophin-less muscles from sedentary mice display significant signs of muscle damage, yet can respond beneficially to low-level voluntary running in a manner similar to that of the C57 control.
Collapse
Affiliation(s)
- M A Wineinger
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, USA
| | | | | | | |
Collapse
|
180
|
Torres LF, Jacob GV, de Noronha L, Sampaio GA, Antoniuk S, Bruck I. [Electron microscopy study in neurodegenerative diseases in childhood]. ARQUIVOS DE NEURO-PSIQUIATRIA 1997; 55:788-94. [PMID: 9629339 DOI: 10.1590/s0004-282x1997000500016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a group of disorders in which there is storage of abnormal material in cells throughout the body due to an enzyme defect. The authors present the experience in the diagnosis of the neurodegenerative diseases in infancy by electron microscopical study of skin, conjunctival and rectum material of 89 patients and 2 necropsy cases. The age of the patients ranged from 49 days to 13 years with speak age of incidence in first year of life (n = 28). Fifty patients were female and 39 were male. The most frequent sites of biopsy were the skin and conjunctival. Of the total 89 patients, 15 had a definitive diagnosis (16.8%) including 4 cases of gangliosidosis, 3 cases of mucopolysaccharidosis, a case of Gaucher's disease, a case of Niemann-Pick disease, 3 cases of neuronal ceroid lipofuscinosis and 3 cases of storage disease which could not be specified. The authors studied all these patients within clinic and ultrastructural aspects and concluded that electron microscopy is an important method in diagnosis of storage diseases but with a low sensitivity as a single "screening" test for patients with progressive encephalopathy.
Collapse
Affiliation(s)
- L F Torres
- Serviço de Anatomia Patológica, Hospital de Clínicas, Universidade Federal do Paraná (HC/UFPR) Curitiba, Brasil
| | | | | | | | | | | |
Collapse
|
181
|
Abstract
Acetylcholine receptors (AChRs) are present at the top of the postsynaptic membrane of the neuromuscular junction (NMJ) at very high density, possibly anchored to cytoskeletal elements. The present study investigated whether AChR degradation is affected in animals lacking dystrophin, a protein that is an integral part of the cytoskeletal complex and is missing in Duchenne muscular dystrophy. The animal model for Duchenne muscular dystrophy, the mutant mdx mouse, was used to determine whether disruption of the cytoskeleton, caused by the absence of dystrophin, affects AChR degradation. Of the two populations of junctional AChRs, Rs (expressed in innervated adult muscles) and Rr (expressed in embryonic or denervated muscles), only Rs are affected in mdx animals. In innervated mdx soleus, diaphragm, and sternomastoid muscles, the AChRs have an accelerated degradation rate (t1/2 of approximately 3-5 d), similar to that acquired by Rs in control muscles after denervation. The Rs in mdx NMJs do not accelerate further when the muscles are denervated. The absence of dystrophin does not affect the degradation rate of the Rr AChRs (t1/2 of 1 d), which are expressed after denervation in mdx as in control muscles. These results suggest that dystrophin or an intact cytoskeletal complex may be required for neuronal stabilization of Rs receptors at the adult neuromuscular junctions.
Collapse
|
182
|
Abstract
We present an in vitro model in which mouse skeletal muscle fibers undergo degeneration by increasing the current strength of tetanic stimulation. To understand the mechanisms of muscle fiber necrosis in Duchenne muscular dystrophy patients, the process of fiber degeneration was compared between mdx and control mice. The process consisted of four steps, beginning with muscle fiber contraction and extending to onset of myofibril disruption. The four processes were not observed in fibers in Krebs-HEPES (-Ca2+) buffer, nor in the presence of L-type Ca2+ channel blockers. These results suggest that this degenerative phenomenon is regulated by intracellular Ca2+, which moved into fibers mainly through voltage-dependent L-type Ca2+ channels. With the exception of myofibril disruption, mdx mice also exhibited the three other steps, but at a significantly lower current strength than in the fibers in the control mice. We postulate that excess Ca2+ flux occurs in fibers, mainly through abnormal L-type Ca2+ channels, and that the excessively accumulated calcium results in premature degeneration of the fibers by tetanic contraction. This study would provide a clue to investigate and prevent the degeneration processes in Duchenne muscular dystrophy.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium/pharmacology
- Calcium Channel Blockers/pharmacology
- Electric Stimulation
- Extracellular Space/metabolism
- Iontophoresis
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx/physiology
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
Collapse
Affiliation(s)
- M Yoshida
- Department of Degenerative Neurological Disease, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | | | | |
Collapse
|
183
|
Araki E, Nakamura K, Nakao K, Kameya S, Kobayashi O, Nonaka I, Kobayashi T, Katsuki M. Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in Duchenne muscular dystrophy. Biochem Biophys Res Commun 1997; 238:492-7. [PMID: 9299538 DOI: 10.1006/bbrc.1997.7328] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative disorder of the skeletal muscle in human and is caused by mutations in the dystrophin gene. The mdx mouse is a spontaneous mutant and an animal model for DMD. It has a point mutation in exon 23 of the dystrophin gene that eliminates the expression of dystrophin. However, this mutation does not disrupt the expression of four other shorter isoforms that are also expressed from the dystrophin gene through differential promoter usage. We generated another mutant mouse by gene targeting. Exon 52 of the dystrophin gene was disrupted, because the deletion of this exon is known to result in the DMD phenotype in human. In this mouse (mdx52), Dp140 and Dp260, shorter dystrophin isoforms, were absent in addition to dystrophin. The skeletal muscles were hypertrophic and the histology exhibited variations in the fiber size with a necrotic and regenerating process. This mouse is thus considered to represent another model for DMD.
Collapse
Affiliation(s)
- E Araki
- Neurological Institute, Kyushu University, Fukuoka, 812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Ragusa RJ, Chow CK, Porter JD. Oxidative stress as a potential pathogenic mechanism in an animal model of Duchenne muscular dystrophy. Neuromuscul Disord 1997; 7:379-86. [PMID: 9327402 DOI: 10.1016/s0960-8966(97)00096-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dystrophin-deficiency results in degeneration of most, but not all, skeletal muscles. The mechanisms responsible for degeneration of limb muscle and sparing of extraocular muscle are not known. To address the notion that muscle pathology may be free radical-mediated, we evaluated antioxidant enzyme activities and lipid peroxidation products (TBARS) content in mdx and control mice. TBARS content and the activities of total superoxide dismutase, selenium dependent glutathione peroxidase, glucose-6-phosphate dehydrogenase and catalase were consistently higher in both affected and spared muscles of mdx mice. These data suggest that oxidative stress may be constitutively present in mdx muscle, but may not be the principal pathogenic mechanism. To further test the hypothesis of oxidative stress involvement in dystrophinopathies, control strain and mdx mice were subjected to chronic hyperoxia. The pattern of antioxidant enzyme activities and TBARS content from hyperoxic control strain mice was similar to that of normoxic mdx mice, suggesting that a similar level of oxidative stress was induced. In conclusion, this study has provided indirect evidence for oxidative stress in dystrophin-deficient muscle.
Collapse
Affiliation(s)
- R J Ragusa
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0084, USA
| | | | | |
Collapse
|
185
|
Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 1997; 90:729-38. [PMID: 9288752 DOI: 10.1016/s0092-8674(00)80533-4] [Citation(s) in RCA: 505] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dystrophin is a cytoskeletal protein of muscle fibers; its loss in humans leads to Duchenne muscular dystrophy, an inevitably fatal wasting of skeletal and cardiac muscle. mdx mice also lack dystrophin, but are only mildly dystrophic. Utrophin, a homolog of dystrophin, is confined to the postsynaptic membrane at skeletal neuromuscular junctions and has been implicated in synaptic development. However, mice lacking utrophin show only subtle neuromuscular defects. Here, we asked whether the mild phenotypes of the two single mutants reflect compensation between the two proteins. Synaptic development was qualitatively normal in double mutants, but dystrophy was severe and closely resembled that seen in Duchenne. Thus, utrophin attenuates the effects of dystrophin deficiency, and the double mutant may provide a useful model for studies of pathogenesis and therapy.
Collapse
Affiliation(s)
- R M Grady
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
186
|
Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, Watt DJ, Dickson JG, Tinsley JM, Davies KE. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 1997; 90:717-27. [PMID: 9288751 DOI: 10.1016/s0092-8674(00)80532-2] [Citation(s) in RCA: 576] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The absence of dystrophin at the muscle membrane leads to Duchenne muscular dystrophy (DMD), a severe muscle-wasting disease that is inevitably fatal in early adulthood. In contrast, dystrophin-deficient mdx mice appear physically normal despite their underlying muscle pathology. We describe mice deficient for both dystrophin and the dystrophin-related protein utrophin. These mice show many signs typical of DMD in humans: they show severe progressive muscular dystrophy that results in premature death, they have ultrastructural neuromuscular and myotendinous junction abnormalities, and they aberrantly coexpress myosin heavy chain isoforms within a fiber. The data suggest that utrophin and dystrophin have complementing roles in normal functional or developmental pathways in muscle. Detailed study of these mice should provide novel insights into the pathogenesis of DMD and provide an improved model for rapid evaluation of gene therapy strategies.
Collapse
Affiliation(s)
- A E Deconinck
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Quinlan JG, Cambier D, Lyden S, Dalvi A, Upputuri RK, Gartside P, Michaels SE, Denman D. Regeneration-blocked mdx muscle: in vivo model for testing treatments. Muscle Nerve 1997; 20:1016-23. [PMID: 9236793 DOI: 10.1002/(sici)1097-4598(199708)20:8<1016::aid-mus12>3.0.co;2-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have refined the mdx mouse as a clinical model for Duchenne dystrophy. Our power estimates, primary measures, regular sacrifice intervals, and quality checks constitute a high-speed, low-cost system for preclinically testing therapies designed to slow muscle destruction in Duchenne dystrophy. Irradiated (18 Gy) and contralateral shielded anterior tibial muscles were studied in 21-day-old mdx and normal mice at the time of irradiation and 4, 8, 12, 16, and 20 weeks thereafter. Regeneration-blocked mdx (irradiated) muscle expressed muscular dystrophy as progressive wasting after a brief (4 week) period of growth. Regeneration-blocked normal muscle showed stunted growth but neither progressive wasting nor microscopic pathological changes.
Collapse
MESH Headings
- Animals
- Atrophy
- Disease Models, Animal
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression/physiology
- Hindlimb
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/radiation effects
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Muscle, Skeletal/radiation effects
- Muscular Dystrophies/therapy
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/physiopathology
- Phenotype
- Regeneration/radiation effects
Collapse
Affiliation(s)
- J G Quinlan
- Department of Neurology, University of Cincinnati, Ohio 45237-0525, USA
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Spencer MJ, Walsh CM, Dorshkind KA, Rodriguez EM, Tidball JG. Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest 1997; 99:2745-51. [PMID: 9169505 PMCID: PMC508121 DOI: 10.1172/jci119464] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Myonuclear apoptosis is an early event in the pathology of dystrophin-deficient muscular dystrophy in the mdx mouse. However, events that initiate apoptosis in muscular dystrophy are unknown, and whether elimination of apoptosis can ameliorate subsequent muscle wasting remains a major question. We have tested the hypothesis that cytotoxic T-lymphocytes initiate myonuclear apoptosis in dystrophic muscle, and examined whether perforin-mediated cytotoxicity plays a role in the pathophysiology of muscular dystrophy. Mdx mice showed muscle invasion by cytotoxic T cells and helper T cells at the onset of histologically detectable muscle fiber pathology. At this time, perforin-expressing cells were also present at elevated concentration. Mdx mice depleted of CD8(+) cells showed a significant reduction of apoptotic myonuclei concentration and a reduction in necrosis, judged by macrophage invasion of muscle fibers. Double-mutant mice, deficient in dystrophin and perforin, showed nearly complete absence of myonuclear apoptosis, and a significant reduction in the concentration of macrophages in the connective tissue surrounding muscle fibers. However, muscle fiber invasion by macrophages was not reduced significantly in double mutant mice. Thus, cytotoxic T-lymphocytes contribute significantly to apoptosis and necrosis in mdx dystrophy, and perforin-mediated killing is primarily responsible for myonuclear apoptosis.
Collapse
Affiliation(s)
- M J Spencer
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, California 90095-1527, USA
| | | | | | | | | |
Collapse
|
189
|
Deconinck AE, Potter AC, Tinsley JM, Wood SJ, Vater R, Young C, Metzinger L, Vincent A, Slater CR, Davies KE. Postsynaptic abnormalities at the neuromuscular junctions of utrophin-deficient mice. J Cell Biol 1997; 136:883-94. [PMID: 9049253 PMCID: PMC2132499 DOI: 10.1083/jcb.136.4.883] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/1996] [Revised: 12/06/1996] [Indexed: 02/03/2023] Open
Abstract
Utrophin is a dystrophin-related cytoskeletal protein expressed in many tissues. It is thought to link F-actin in the internal cytoskeleton to a transmembrane protein complex similar to the dystrophin protein complex (DPC). At the adult neuromuscular junction (NMJ), utrophin is precisely colocalized with acetylcholine receptors (AChRs) and recent studies have suggested a role for utrophin in AChR cluster formation or maintenance during NMJ differentiation. We have disrupted utrophin expression by gene targeting in the mouse. Such mice have no utrophin detectable by Western blotting or immunocytochemistry. Utrophin-deficient mice are healthy and show no signs of weakness. However, their NMJs have reduced numbers of AChRs (alpha-bungarotoxin [alpha-BgTx] binding reduced to approximately 60% normal) and decreased postsynaptic folding, though only minimal electrophysiological changes. Utrophin is thus not essential for AChR clustering at the NMJ but may act as a component of the postsynaptic cytoskeleton, contributing to the development or maintenance of the postsynaptic folds. Defects of utrophin could underlie some forms of congenital myasthenic syndrome in which a reduction of postsynaptic folds is observed.
Collapse
Affiliation(s)
- A E Deconinck
- Department of Biochemistry, University of Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Utrophin is a large cytoskeletal protein that is homologous to dystrophin, the protein mutated in Duchenne and Becker muscular dystrophy. In skeletal muscle, dystrophin is broadly distributed along the sarcolemma whereas utrophin is concentrated at the neuromuscular junction. This differential localization, along with studies on cultured cells, led to the suggestion that utrophin is required for synaptic differentiation. In addition, utrophin is present in numerous nonmuscle cells, suggesting that it may have a more generalized role in the maintenance of cellular integrity. To test these hypotheses we generated and characterized utrophin-deficient mutant mice. These mutant mice were normal in appearance and behavior and showed no obvious defects in muscle or nonmuscle tissue. Detailed analysis, however, revealed that the density of acetylcholine receptors and the number of junctional folds were reduced at the neuromuscular junctions in utrophin-deficient skeletal muscle. Despite these subtle derangements, the overall structure of the mutant synapse was qualitatively normal, and the specialized characteristics of the dystrophin-associated protein complex were preserved at the mutant neuromuscular junction. These results point to a predominant role for other molecules in the differentiation and maintenance of the postsynaptic membrane.
Collapse
Affiliation(s)
- R M Grady
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
191
|
Amalfitano A, Chamberlain JS. The mdx-amplification-resistant mutation system assay, a simple and rapid polymerase chain reaction-based detection of the mdx allele. Muscle Nerve 1996; 19:1549-53. [PMID: 8941268 DOI: 10.1002/(sici)1097-4598(199612)19:12<1549::aid-mus4>3.0.co;2-a] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mdx mouse is a murine genetic equivalent of the human X-linked lethal disorder, Duchenne muscular dystrophy (DMD). A number of studies utilizing the mdx mouse have demonstrated the feasibility of gene therapy for this disorder. Many such studies require the ability to determine rapidly the mdx genotype of experimental animals. Previous methods described to identify the mdx allele require multiple manipulations which are technically demanding. We now describe a simple and rapid method to detect the mdx and wild-type alleles in crude mouse DNA samples, by the mdx-amplification-resistant mutation system (ARMS) assay. With this system we correctly identified the mdx status of various transgene-containing animals in a rapid and simple fashion. We discuss the utility of this system for many other studies utilizing the mdx mouse as a model system.
Collapse
Affiliation(s)
- A Amalfitano
- Department of Pediatrics, University of Michigan, Ann Arbor 48109-0618, USA
| | | |
Collapse
|
192
|
Sapp JL, Bobet J, Howlett SE. Contractile properties of myocardium are altered in dystrophin-deficient mdx mice. J Neurol Sci 1996; 142:17-24. [PMID: 8902714 DOI: 10.1016/0022-510x(96)00167-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to determine whether cardiac contractile force is altered in the dystrophin-deficient mdx mouse model of muscular dystrophy. Left atria from 12-14-week-old control and mdx mice were paced at 1 Hz in 1.25 mM external Ca2+ buffer. Twitch properties and effects of interposing intervals of 0.3 to 600 s on the force of subsequent beats (force-interval curves) were examined. Peak force and time-to-peak force were similar in both groups, but half-relaxation time was significantly prolonged in mdx heart. In control hearts, force-interval curves increased to an inflection point at about 1 s, then rose to a second peak near 60 s. In mdx heart, curves reached the early inflection more quickly, the second peak was diminished in magnitude and force was greatly depressed at long intervals. Curves were fitted to a four-parameter equation to quantify differences in shape. The parameter a, which reflects rate of rise to the first inflection, was significantly increased in mdx atria, while the parameter B, which reflects amplitude of the late peak, was significantly reduced. These differences in force production were more marked when external Ca2+ was raised to 2.5 mM. Results show contractile properties are markedly altered in atria from dystrophin-deficient mdx mice. These findings are consistent with the hypothesis that dystrophin deficiency affects cardiac contractile function, possibly through effects on SR function.
Collapse
Affiliation(s)
- J L Sapp
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
193
|
Hübner C, Lehr HA, Bodlaj R, Finckh B, Oexle K, Marklund SL, Freudenberg K, Kontush A, Speer A, Terwolbeck K, Voit T, Kohlschütter A. Wheat kernel ingestion protects from progression of muscle weakness in mdx mice, an animal model of Duchenne muscular dystrophy. Pediatr Res 1996; 40:444-9. [PMID: 8865282 DOI: 10.1203/00006450-199609000-00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A simple, reproducible test was used to quantify muscle weakness in mdx mice, an animal model of Duchenne muscular dystrophy. The effect of bedding on wheat kernels and of dietary supplementation of alpha-tocopherol on the progression of muscle weakness was investigated in mdx mice. When measured during the first 200 d of life, mdx mice developed muscle weakness, irrespective of bedding and diet. When kept on wood shavings and fed a conventional rodent diet, mdx mice showed progressive muscle weakness over the consecutive 200 d, and eventually showed a significant weight loss during the next 200-d observation period. Progression of muscle weakness and weight loss were almost completely prevented in mdx mice that were kept on wheat kernel bedding. In contrast, only incomplete maintenance of muscle strength and body weight was observed in mdx mice kept on wood shavings and fed the alpha-tocopherol-supplemented diet. It is concluded from these experiments that a component of wheat kernels other than alpha-tocopherol is essential to prevent the progression of muscle weakness in mdx mice.
Collapse
Affiliation(s)
- C Hübner
- Department of Neuropediatrics, Virchow Medical Center, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Carlson CG, Officer T. Single channel evidence for a cytoskeletal defect involving acetylcholine receptors and calcium influx in cultured dystrophic (mdx) myotubes. Muscle Nerve 1996; 19:1116-26. [PMID: 8761267 DOI: 10.1002/(sici)1097-4598(199609)19:9<1116::aid-mus6>3.0.co;2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Single channel events that exhibited the conductance, event duration, and ion selectivity characteristics of calcium leakage activity (CLA) were recorded in association with acetylcholine receptor (AChR) activity in cultured nondystrophic myotubes. The CLA was observed in the presence or absence of acetylcholine (ACh), and at normal or elevated concentrations of calcium. In contrast to results from nondystrophic myotubes, cell-attached patches from several cultured dystrophic (mdx) myotubes exhibited 100% CLA with no AChR activity, even though ACh was present in the pipette solution. Acquisition of an inside-out patch from these membrane areas produced a profound decrease in CLA and the appearance of AChR events exhibiting typical conductance and event duration characteristics. These results suggest that CLA in dystrophic muscle is produced, in part, by unusual physical interactions between AChRs and the dystrophic cytoskeleton that are mediated by the action of intracellular modulators responsible for aggregating and stabilizing AChRs.
Collapse
Affiliation(s)
- C G Carlson
- Department of Physiology, Kirksville College of Osteopathic Medicine, Missouri 63501, USA
| | | |
Collapse
|
195
|
Corrado K, Rafael JA, Mills PL, Cole NM, Faulkner JA, Wang K, Chamberlain JS. Transgenic mdx mice expressing dystrophin with a deletion in the actin-binding domain display a "mild Becker" phenotype. J Cell Biol 1996; 134:873-84. [PMID: 8769413 PMCID: PMC2120962 DOI: 10.1083/jcb.134.4.873] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The functional significance of the actin-binding domain of dystrophin, the protein lacking in patients with Duchenne muscular dystrophy, has remained elusive. Patients with deletions of this domain (domain I) typically express low levels of the truncated protein. Whether the moderate to severe phenotypes associated with such deletions result from loss of an essential function, or from reduced levels of a functional protein, is unclear. To address this question, we have generated transgenic mice that express wild-type levels of a dystrophin deleted for the majority of the actin-binding domain. The transgene derived protein lacks amino acids 45-273, removing 2 of 3 in vitro identified actin interacting sites and part of hinge 1. Examination of the effect of this deletion in mice lacking wild-type dystrophin (mdx) suggests that a functional domain I is not essential for prevention of a dystrophic phenotype. However, in contrast to deletions in the central rod domain and to full-length dystrophin, both of which are functional at only 20% of wild-type levels, proteins with a deletion in domain I must be expressed at high levels to prevent a severe dystrophy. These results are also in contrast to the severe dystrophy resulting from truncation of the COOH-terminal domain that links dystrophin to the extracellular matrix. The mild phenotype observed in mice with domain I-deletions indicates that an intact actin-binding domain is not essential, although it does contribute to an important function of dystrophin. These studies also suggest the link between dystrophin and the subsarcolemmal cytoskeleton involves more than a simple attachment of domain I to actin filaments.
Collapse
Affiliation(s)
- K Corrado
- Department of Chemistry and Biochemistry, University of Texas at Austin 78712-1167, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Mayeux V, Pons F, Baldy-Moulinier M, Valmier J. Early postnatal muscle contractile activity regulates the carbonic anhydrase phenotype of proprioceptive neurons in young and mature mice: evidence for a critical period in development. Neuroscience 1996; 71:787-95. [PMID: 8867050 DOI: 10.1016/0306-4522(95)00504-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Carbonic anhydrase activity, a marker of mouse proprioceptive neurons in adult dorsal root ganglia, is first detectable in the perinatal period, increases until postnatal day 60 and remains stable in adulthood. The onset of carbonic anhydrase staining begins after the neurons have made connections with their targets suggesting that neuron-target interactions regulate carbonic anhydrase phenotype development. To examine this possibility, we first analysed carbonic anhydrase expression in mdx mice which are characterized by a massive but reversible degeneration of skeletal muscle concomitant with the carbonic anhydrase ontogenesis. Neuronal carbonic anhydrase expression in mdx mice stopped developing when the period of muscular degeneration-regeneration began. Furthermore this alteration persisted during adulthood. We then analysed carbonic anhydrase expression in fifth lumbar dorsal root ganglion of developing control mice before and after surgical procedures that might interfere with central and peripheral target influences on dorsal root ganglion neurons. Central disconnection (dorsal rhizotomy) did not affect the development of carbonic anhydrase activity. Disrupting neuron-peripheral target interactions by sciatic nerve transection or blocking muscle contraction by tenotomy stopped the development of neuronal carbonic anhydrase content. Finally, recovery was monitored following sciatic nerve crush. In adults, recovery of carbonic anhydrase activity was obtained after functional recuperation; similar manipulations during the first month of life induced irreversible alteration of the carbonic anhydrase phenotype. These results show that the development of carbonic anhydrase activity in proprioceptive neurons is regulated by neuron-muscle interactions (i.e. muscle contraction). They also provide evidence for a critical period in the development of the carbonic anhydrase phenotype. We suggest that these two mechanisms are responsible for the altered carbonic anhydrase phenotype of the dorsal root ganglion neurons in mdx mice, a model of human muscular dystrophy.
Collapse
Affiliation(s)
- V Mayeux
- Laboratoire de Médecine Expérimentale, INSERM U249, Institut de Biologie, Montpellier, France
| | | | | | | |
Collapse
|
197
|
Abstract
The mdx mouse has a mutated dystrophin gene and is used as a model for the study of Duchenne muscular dystrophy (DMD). We investigated whether regenerating mdx skeletal muscle contains the extracellular matrix protein tenascin-C (TN-C), which is expressed in wound healing and nerve regeneration. Prior to the initiation of muscle degeneration, both normal and mdx mice displayed similar weak staining for TN-C in skeletal muscle, but by 3 weeks of age the mice differed substantially. TN-C was undetectable in normal muscle except at the myotendinous junction, while in dystrophic muscle, TN-C was prominent in degenerating/regenerating areas, but absent from undegenerated muscle. With increasing age, TN-C staining declined around stable regenerated mdx myofibers. TN-C was also observed in muscle from dogs with muscular dystrophy and in human boys with DMD. Therefore, in dystrophic muscle, TN-C expression may be stimulated by the degenerative process and remain upregulated unless the tissue undergoes successful regeneration.
Collapse
Affiliation(s)
- D L Settles
- Department of Cell Biology, Duke University, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
198
|
Mokhtarian A, Decrouy A, Chinet A, Even PC. Components of energy expenditure in the mdx mouse model of Duchenne muscular dystrophy. Pflugers Arch 1996; 431:527-32. [PMID: 8596695 DOI: 10.1007/bf02191899] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous observations showing that basal heat production rates and glucose metabolism were reduced in mdx mouse skeletal muscles incubated in vitro led us to study the components of total energy expenditure by open-circuit indirect calorimetry in the intact, free-moving mdx mouse. Our purpose was to verify if the mdx mouse exhibited whole-body alterations in energy metabolism. The results revealed that total and basal energy expenditure, as well as spontaneous activity, energetic cost of activity, and, therefore, energy expended in relation to activity were not significantly different in C57B1/10 (control) and in dystrophic (mdx) mice. In contrast, the thermic effect of food was 32% larger in mdx than in control mice and was accompanied by significant differences in post-prandial glucose and lipid oxidation. The present in vivo study could not show a direct demonstration that impaired glucose metabolism by skeletal muscles participated in this phenomenon. However, since post-prandial glucose metabolism by skeletal muscles contributes a significant part of the thermic effect of food, the present data are in line with previous studies in vitro that show that mdx mouse skeletal muscles probably suffer an impaired control of their energy metabolism.
Collapse
Affiliation(s)
- A Mokhtarian
- Laboratoire de Neurobiologie des Régulations, CNRS URA 1860, Collège de France, Paris
| | | | | | | |
Collapse
|
199
|
Verzè L, Buffo A, Rossi F, Oestreicher AB, Gispen WH, Strata P. Increase of B-50/GAP-43 immunoreactivity in uninjured muscle nerves of MDX mice. Neuroscience 1996; 70:807-15. [PMID: 9045090 DOI: 10.1016/s0306-4522(96)83017-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lack of dystrophin in mdx mice leads to muscle fibre degeneration followed by the formation of new myofibres. This degeneration-regeneration event occurs in clusters. It is accompanied by inflammation and remodelling of the intramuscular terminal nerve fibres. Since the growth-associated protein B-50/GAP-43 has been shown to be involved in axonal outgrowth and synaptic remodelling following neuronal injury, we have investigated the presence of B-50 in gastrocnemius and quadriceps muscles of mdx mice. Using immunocytochemistry we demonstrate increased presence of B-50 in terminal nerve branches at motor endplates of mdx mice, particularly in the clusters of de- and regenerating myofibres. In comparison, the control mice displayed no B-50 immunoreactivity in nerve fibres contacting motor endplates. Our findings indicate that during axonal remodelling and collateral sprouting the B-50 level in the terminal axon arbours is increased although there is no direct injury to the motoneurons. We suggest that the degenerating target and/or the inflammatory reaction induces the increased B-50 level in the motoaxons. The increased B-50 may be important for sprouting of the nerve fibres and re-establishment of synaptic contacts, and in addition, for maturation and survival of the newly formed myofibres.
Collapse
Affiliation(s)
- L Verzè
- Department of Human Anatomy and Physiology, University of Turin, Torino, Italy
| | | | | | | | | | | |
Collapse
|
200
|
Mitchell CA, McGeachie JK, Grounds MD. The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration. Growth Factors 1996; 13:37-55. [PMID: 8962719 DOI: 10.3109/08977199609034565] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects, in vivo, of the exogenous administration of bFGF on myogenesis of regenerating skeletal muscle was assessed either morphometrically or autoradiographically in three separate models of muscle injury in mice: crush-injured, denervated, and dystrophic (mdx) muscles. The bFGF was administered at various doses and different time schedules, sometimes in combination with heparin, into injured tibialis anterior muscles of mice. Delivery of the bFGF was either by direct intramuscular injection or by the sustained release from 888polymers (Hydron or Elvax) implanted into the muscles. The bioactivity of bFGF was confirmed in vitro by measuring its ability to stimulate the proliferation of BALB/c-3T3 fibroblasts and muscle precursor cell lines. The ability of bFGF to stimulate angiogenesis in vivo was confirmed by the implantation of controlled-release polymers containing bFGF into the normally avascular cornea of rats. No measurable effect of bFGF was seen in any of the models of skeletal muscle injury under these experimental conditions, indicating that the availability of biologically active bFGF is not a limiting factor in the regeneration of skeletal muscle following injury.
Collapse
Affiliation(s)
- C A Mitchell
- Department of Pathology, University of Western Australia, Nedlands, Australia.
| | | | | |
Collapse
|