151
|
Simon NW, Montgomery KS, Beas BS, Mitchell MR, LaSarge CL, Mendez IA, Bañuelos C, Vokes CM, Taylor AB, Haberman RP, Bizon JL, Setlow B. Dopaminergic modulation of risky decision-making. J Neurosci 2011; 31:17460-70. [PMID: 22131407 PMCID: PMC3307370 DOI: 10.1523/jneurosci.3772-11.2011] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/22/2011] [Accepted: 10/10/2011] [Indexed: 01/08/2023] Open
Abstract
Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a "Risky Decision-making Task" that involves choices between small "safe" rewards and large "risky" rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal cortical-striatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences.
Collapse
Affiliation(s)
- Nicholas W. Simon
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Karienn S. Montgomery
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida College of Medicine, Gainesville, Florida 32610-0229
| | - Blanca S. Beas
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida College of Medicine, Gainesville, Florida 32610-0229
| | - Marci R. Mitchell
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida College of Medicine, Gainesville, Florida 32610-0229
| | - Candi L. LaSarge
- Department of Anesthesia/Research, Cincinnati Children's Hospital, Cincinnati, Ohio 45229-3026
| | - Ian A. Mendez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697
| | - Cristina Bañuelos
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida College of Medicine, Gainesville, Florida 32610-0229
| | - Colin M. Vokes
- Department of Psychology, Texas A&M University, College Station, Texas 77843-4235
| | - Aaron B. Taylor
- Department of Psychology, Texas A&M University, College Station, Texas 77843-4235
| | - Rebecca P. Haberman
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, Maryland 21218-2686, and
| | - Jennifer L. Bizon
- Departments of Psychiatry and Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610-0256
| | - Barry Setlow
- Departments of Psychiatry and Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610-0256
| |
Collapse
|
152
|
The role of neuromodulators in selective attention. Trends Cogn Sci 2011; 15:585-91. [PMID: 22074811 DOI: 10.1016/j.tics.2011.10.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 11/22/2022]
Abstract
Several classes of neurotransmitters exert modulatory effects on a broad and diverse population of neurons throughout the brain. Some of these neuromodulators, especially acetylcholine and dopamine, have long been implicated in the neural control of selective attention. We review recent evidence and evolving ideas about the importance of these neuromodulatory systems in attention, particularly visual selective attention. We conclude that, although our understanding of their role in the neural circuitry of selective attention remains rudimentary, recent research has begun to suggest unique contributions of neuromodulators to different forms of attention, such as bottom-up and top-down attention.
Collapse
|
153
|
Maćkowiak M, Mordalska P, Dudys D, Korostyński M, Bator E, Wedzony K. Cocaine enhances ST8SiaII mRNA expression and neural cell adhesion molecule polysialylation in the rat medial prefrontal cortex. Neuroscience 2011; 186:21-31. [DOI: 10.1016/j.neuroscience.2011.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/31/2011] [Accepted: 04/12/2011] [Indexed: 11/28/2022]
|
154
|
Di Pietro NC, Seamans JK. Dopamine and serotonin interactively modulate prefrontal cortex neurons in vitro. Biol Psychiatry 2011; 69:1204-11. [PMID: 20889141 DOI: 10.1016/j.biopsych.2010.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Dopamine (DA) and serotonin (5-HT) are released in cortex under similar circumstances, and many psychiatric drugs bind to both types of receptors, yet little is known about how they interact. METHODS To characterize the nature of these interactions, the current study used in vitro patch-clamp recordings to measure the effects of DA and/or 5-HT on pyramidal cells in layer V of the medial prefrontal cortex. RESULTS Either DA or 5-HT applied in isolation increased the evoked excitability of prefrontal cortex neurons, as shown previously. Coapplication of DA and 5-HT produced either a larger increase in excitability than when either was given alone or a significant decrease that was never observed when either was given alone. Dopamine or 5-HT also "primed" neurons to respond in an exaggerated manner to the subsequent application of the other monoamine. CONCLUSIONS These data reveal the unappreciated interactive nature of neuromodulation in cortex by showing that the combined effects of DA and 5-HT can be different from their effects recorded in isolation. On the basis of these findings, we present a theory of how DA and 5-HT might synergistically modulate cortical circuits during various tasks.
Collapse
Affiliation(s)
- Nina C Di Pietro
- Brain Research Center, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
155
|
Abstract
The prefrontal cortex (PFC) is thought to modulate sensory signals in posterior cortices during top-down attention1,2, yet little is known about the underlying neural circuitry. Experimental and clinical evidence suggest that prefrontal dopamine plays an important role in cognitive functions3, acting predominantly through D1 receptors (D1Rs). Here we show that dopamine D1Rs mediate prefrontal control of signals within visual cortex. We pharmacologically altered D1R-mediated activity within the frontal eye field (FEF) of the PFC and measured its effects on the responses of neurons within visual cortex. This manipulation was sufficient to enhance the response magnitude, orientation selectivity and response reliability of neurons in area V4 to an extent comparable with the known effects of top-down attention. The observed enhancement in V4 signals was restricted to neurons with response fields (RFs) overlapping the part of visual space affected by the D1R manipulation. Altering D1R or D2R-mediated FEF activity increased saccadic target selection, but the D2R manipulation did not enhance V4 signals. Our results identify a role of D1Rs in mediating the control of visual cortical signals by the PFC and demonstrate how processing within sensory areas can be altered in mental disorders involving prefrontal dopamine.
Collapse
|
156
|
Simultaneous projections from prefrontal cortex to dopaminergic and serotonergic nuclei. Int J Neuropsychopharmacol 2011; 14:289-302. [PMID: 20374686 DOI: 10.1017/s1461145710000349] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Derangements of the prefrontal cortex (PFC) and of brainstem monoaminergic systems occur in depression and schizophrenia. Anatomical and functional evidence supports a PFC control of the brainstem monoaminergic systems. Similarly, the PFC contains a high density of monoamine receptors for which antipsychotic drugs exhibit high affinity. This raises the possibility that pathological or drug-induced changes in PFC may subsequently alter monoaminergic activity. Recent data indicate that a substantial proportion of PFC pyramidal neurons projecting to the ventral tegmental area (VTA) or the dorsal raphe nucleus (DR) express the 5-HT2A receptor mRNA, which suggests that atypical antipsychotic drugs affect serotonergic and dopaminergic function by targeting PFC 5-HT2A receptors. Using electrophysiological and tract-tracing techniques we examined whether PFC pyramidal neurons projecting to DR are segregated from those projecting to the VTA. Sequential electrical stimulation of these nuclei in anaesthetized rats evoked antidromic potentials from both areas in the same pyramidal neurons of the medial PFC (60%, n=30). A similar percentage of dual DR+VTA projection neurons (50%) was obtained using the reciprocal collision test (n=85). Similarly, tracer application (Fluoro-Gold in VTA and cholera toxin B in DR, or vice versa) retrogradely labelled pyramidal neurons in PFC projecting to VTA (81±18), to DR (52±9) and to both nuclei (31±4, n=5 rats). Overall, these results indicate that the PFC may simultaneously coordinate the activity of dopaminergic and serotonergic systems within a short temporal domain, supporting a concerted modulation of the ascending serotonergic and dopaminergic activity during antipsychotic drug treatment.
Collapse
|
157
|
Gronier B. In vivo electrophysiological effects of methylphenidate in the prefrontal cortex: involvement of dopamine D1 and alpha 2 adrenergic receptors. Eur Neuropsychopharmacol 2011; 21:192-204. [PMID: 21146374 DOI: 10.1016/j.euroneuro.2010.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 10/28/2010] [Accepted: 11/07/2010] [Indexed: 12/17/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most commonly diagnosed psychiatric disorder in children. Psychostimulants such as methylphenidate (MPH) are used as first line treatment. The prefrontal cortex (PFC) has a proven role in the expression of ADHD. Previous studies from our laboratory have demonstrated that MPH activates the firing activity of medial PFC neurones in anaesthetised rats. The aim of the present study was to determine the respective contribution and location of the different types of catecholamine receptors in mediating these excitatory effects and to compare these effects with those induced by other selective dopamine or noradrenaline uptake blockers. Single unit activity of presumed pyramidal PFC neurones was recorded in rats anaesthetised with urethane. The activation of firing elicited by an iv administration of MPH (1 or 3mg/kg) was partially reduced or prevented by the selective D1 receptor antagonist SCH 23390 administered systemically (0.5mg/kg, iv), or locally by passive diffusion through the recording electrode. On the other hand, administration of the alpha 2 receptor antagonist yohimbine (1mg/kg, iv) significantly potentiated the excitatory effect of MPH and activated PFC neurones previously treated with a low inactive dose of MPH (0.3mg/kg, iv). Local administration of MPH (1mM through the recording electrode) significantly increased the firing of PFC neurones in a D1 receptor-dependent manner. In addition, the response of PFC neurones to MPH, administered at a low dose (0.3mg/kg, iv), is greatly potentiated by dopamine (1mM), but not by noradrenaline (1mM), diffusing passively through the recording electrode, and this effect is reversed by D1 receptor blockade. Finally, the selective dopamine uptake inhibitor GBR 12909 (6 mg/kg, iv) and desipramine (6 mg/kg, iv) only activate a subset of PFC neurones. These results demonstrate the involvement of cortical dopamine D1 and noradrenergic alpha 2 receptors in the in vivo electrophysiological effects of MPH on PFC neurones.
Collapse
Affiliation(s)
- Benjamin Gronier
- Leicester School of Pharmacy, De Monfort University, The Gateway, Leicester, UK.
| |
Collapse
|
158
|
Abstract
Various data from scientific research studies conducted over the past three decades suggest that central neurotransmitters play a key role in the modulation of aggression in all mammalian species, including humans. Specific neurotransmitter systems involved in mammalian aggression include serotonin, dopamine, norepinephrine, GABA, and neuropeptides such as vasopressin and oxytocin. Neurotransmitters not only help to execute basic behavioral components but also serve to modulate these preexisting behavioral states by amplifying or reducing their effects. This chapter reviews the currently available data to present a contemporary view of how central neurotransmitters influence the vulnerability for aggressive behavior and/or initiation of aggressive behavior in social situations. Data reviewed in this chapter include emoiric information from neurochemical, pharmaco-challenge, molecular genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Rachel Yanowitch
- Clinical Neuroscience Research Unit, Department of Psychiatry, The University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
159
|
Kamiyama H, Matsumoto M, Otani S, Kimura SI, Shimamura KI, Ishikawa S, Yanagawa Y, Togashi H. Mechanisms underlying ketamine-induced synaptic depression in rat hippocampus-medial prefrontal cortex pathway. Neuroscience 2010; 177:159-69. [PMID: 21163337 DOI: 10.1016/j.neuroscience.2010.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 02/02/2023]
Abstract
The non-competitive N-methyl-D-aspartate NMDA receptor antagonist ketamine, a dissociative anesthetic capable of inducing analgesia, is known to have psychotomimetic actions, but the detailed mechanisms remain unclear because of its complex properties. The present study elucidated neural mechanisms of the effect of ketamine, at doses that exert psychotomimetic effects without anesthetic and analgesic effects, by evaluating cortical synaptic responses in vivo. Systemic administration (i.p.) of low (1 and 5 mg/kg), subanesthetic (25 mg/kg) and anesthetic (100 mg/kg) doses of ketamine dose-dependently decreased hippocampal stimulation-evoked potential in the medial prefrontal cortex (mPFC) in freely moving rats. The behavioral analysis assessed by prepulse inhibition (PPI) of acoustic startle response showed that ketamine (5 and 25 mg/kg, i.p.) produced PPI deficit. Thus, the psychotomimetic effects observed in ketamine-treated groups (5 and 25 mg/kg, i.p.) are associated with the induction of synaptic depression in the hippocampus-mPFC neural pathway. Based on these results, we further examined the underlying mechanisms of the ketamine-induced synaptic depression under anesthesia. Ketamine (5 and 25 mg/kg, i.p.) caused increases in dialysate dopamine in the mPFC in anesthetized rats. Moreover, the ketamine-induced decreases in the evoked potential, at the dose 5 mg/kg which has no anesthetic and analgesic effects, were indeed absent in dopamine-lesioned rats pretreated with 6-hydroxydopamine (6-OHDA; 150 μg/rat, i.c.v.). Ketamine (5 mg/kg, i.p.)-induced synaptic depression was blocked by pretreatment with dopamine D1 receptor antagonist SCH 23390 (10 μg/rat, i.c.v.) but not dopamine D2 receptor antagonist haloperidol (1.5 mg/kg, i.p.), suggesting that dopaminergic modulation mediated via D1 receptors are involved in the synaptic effects of ketamine. Furthermore, ketamine (5 mg/kg, i.p.)-induced synaptic depression was prevented also by GABAA receptor antagonist bicuculline (0.2 or 2 μg/rat, i.c.v.). These findings suggest that ketamine at the dose that exerts psychotomimetic symptoms depresses hippocampus-mPFC synaptic transmission through mechanisms involving dopaminergic modulation mediated via D1 receptors, which may lead to a net augmentation of synaptic inhibition mediated via GABAA receptors.
Collapse
Affiliation(s)
- H Kamiyama
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Moore AR, Zhou WL, Potapenko ES, Kim EJ, Antic SD. Brief dopaminergic stimulations produce transient physiological changes in prefrontal pyramidal neurons. Brain Res 2010; 1370:1-15. [PMID: 21059342 DOI: 10.1016/j.brainres.2010.10.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/24/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2s) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5 min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an "inverted U curve" (Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF (2007) Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10:376-384), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5s of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40s.
Collapse
Affiliation(s)
- Anna R Moore
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
161
|
Altered dopamine modulation of inhibition in the prefrontal cortex of cocaine-sensitized rats. Neuropsychopharmacology 2010; 35:2292-304. [PMID: 20664581 PMCID: PMC2939941 DOI: 10.1038/npp.2010.107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A functionally hypoactive prefrontal cortex (PFC) is thought to contribute to decreased cognitive inhibitory control over drug-seeking behavior in cocaine addicts. Alterations in PFC dopamine (DA) and γ-aminobutyric acid (GABA) transmission are involved in the development of behavioral sensitization to cocaine, and repeated exposure to cocaine decreases DA D2 receptor (D2R) function in the PFC. We used recordings in PFC slices from adult rats to investigate how repeated cocaine treatment followed by 2 weeks of withdrawal affects DA modulation of GABA transmission and interneuron firing. In agreement with previous results in drug-naïve animals we found that in saline-treated control animals DA (20 μM) modulated evoked inhibitory post-synaptic currents (eIPSCs) in a biphasic, time- and receptor-dependent manner. Activation of D2Rs transiently reduced, whereas D1 receptor activation persistently increased the amplitude of eIPSCs. In cocaine-sensitized animals the D2R-dependent modulation of eIPSCs was abolished and the time course of DA effects was altered. In both saline- and cocaine-treated animals the effects of DA on eIPSCs were paralleled by distinct changes in spontaneous IPSCs (sIPSCs). In cocaine-treated animals the alterations in DA modulation of eIPSCs and sIPSCs correlated with a lack of D2R-specific reduction in action potential-independent GABA release, which might normally oppose D1-dependent increases in GABA transmission. Recordings from interneurons furthermore show that D2R activation can increase current-evoked spike firing in saline, but not in cocaine-treated animals. Altered DA regulation of inhibition during cocaine withdrawal could disturb normal cortical processing and contribute to a hypoactive PFC.
Collapse
|
162
|
Schwartzer JJ, Melloni RH. Dopamine activity in the lateral anterior hypothalamus modulates AAS-induced aggression through D2 but not D5 receptors. Behav Neurosci 2010; 124:645-55. [PMID: 20939664 PMCID: PMC3131052 DOI: 10.1037/a0020899] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment with anabolic-androgenic steroids (AAS) throughout adolescence facilitates offensive aggression in Syrian hamsters. In the anterior hypothalamus (AH), the dopaminergic neural system undergoes alterations after repeated exposure to AAS, producing elevated aggression. Previously, systemic administration of selective dopamine receptor antagonists has been shown to reduce aggression in various species and animal models. However, these reductions in aggression occur with concomitant alterations in general arousal and mobility. Therefore, to control for these systemic effects, the current studies utilized microinjection techniques to determine the effects of local antagonism of D2 and D5 receptors in the AH on adolescent AAS-induced aggression. Male Syrian hamsters were treated with AAS throughout adolescence and tested for aggression after local infusion of the D2 antagonist eticlopride, or the D5 antagonist SCH-23390, into the AH. Treatment with eticlopride showed dose-dependent suppression of aggressive behavior in the absence of changes in mobility. Conversely, while injection of SCH-23390 suppressed aggressive behavior, these reductions were met with alterations in social interest and locomotor behavior. To elucidate a plausible mechanism for the observed D5 receptor mediation of AAS-induced aggression, brains of AAS and sesame oil-treated animals were processed for double-label immunofluorescence of GAD₆₇ (a marker for GABA production) and D5 receptors in the lateral subdivision of the AH (LAH). Results indicate a sparse distribution of GAD₆₇ neurons colocalized with D5 receptors in the LAH. Together, these results indicate that D5 receptors in the LAH modulate non-GABAergic pathways that indirectly influence aggression control, while D2 receptors have a direct influence on AAS-induced aggression.
Collapse
Affiliation(s)
- Jared J. Schwartzer
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Richard H. Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
163
|
de Almeida J, Mengod G. D2 and D4 dopamine receptor mRNA distribution in pyramidal neurons and GABAergic subpopulations in monkey prefrontal cortex: implications for schizophrenia treatment. Neuroscience 2010; 170:1133-9. [PMID: 20727949 DOI: 10.1016/j.neuroscience.2010.08.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
D2 and D4 dopamine receptors play an important role in cognitive functions in the prefrontal cortex and they are involved in the pathophysiology of neuropsychiatric disorders such as schizophrenia. The eventual effect of dopamine upon pyramidal neurons in the prefrontal cortex depends on which receptors are expressed in the different neuronal populations. Parvalbumin and calbindin mark two subpopulations of cortical GABAergic interneurons that differently innervate pyramidal cells. Recent hypotheses about schizophrenia hold that the root of the illness is a dysfunction of parvalbumin chandelier cells that produces disinhibition of pyramidal cells. In the present work we report double in situ hybridization histochemistry experiments to determine the prevalence of D2 receptor mRNA and D4 receptor mRNA in glutamatergic neurons, GABAergic interneurons and both parvalbumin and calbindin GABAergic subpopulations in monkey prefrontal cortex layer V. We found that around 54% of glutamatergic neurons express D2 mRNA and 75% express D4 mRNA, while GAD-positive interneurons express around 34% and 47% respectively. Parvalbumin cells mainly expressed D4 mRNA (65%) and less D2 mRNA (15-20%). Finally, calbindin cells expressed both receptors in similar proportions (37%). We hypothesized that D4 receptor could be a complementary target in designing new antipsychotics, mainly because of its predominance in parvalbumin interneurons.
Collapse
Affiliation(s)
- J de Almeida
- Departament de Neuroquimica i Neurofarmacologia, Institut d’Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | | |
Collapse
|
164
|
Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Tóth K, Likó I, Molnár B, Tihanyi K, Liposits Z. Estradiol replacement alters expression of genes related to neurotransmission and immune surveillance in the frontal cortex of middle-aged, ovariectomized rats. Endocrinology 2010; 151:3847-62. [PMID: 20534718 DOI: 10.1210/en.2010-0375] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estradiol (E2) modulates a wide range of functions of the frontal cerebral cortex. From the onset of menopause, declining levels of E2 can cause cognitive disturbances and changes in behavior that can be counterbalanced by hormone replacement. To study the effect of E2 replacement on the cortical transcriptome in a rodent model with low serum E2 level, we treated middle-aged, ovariectomized rats with E2 or vehicle using osmotic minipumps for 4 wk. Six animals for each group were selected, and samples of their frontal cortex were subjected to expression profiling using oligonucleotide microarrays. The explored E2-regulated genes were related to neurotransmission (Adora2a, Cartpt, Drd1a, Drd2, Gjb2, Nts, and Tac1), immunity (C3, C4b, Cd74, Fcgr2b, Mpeg1, and RT1-Aw2), signal transduction (Igf2, Igfbp2, Igfbp6, Rgs9, and Sncg), transport (Abca1, Hba-a2, Slc13a3, and Slc22a8), extracellular matrix (Col1a2, Col3a1, Fmod, and Lum), and transcription (Irf7 and Nupr1). Seventy-four percent of the transcriptional changes identified by microarray were confirmed by quantitative real-time PCR. The genes identified by expression profiling indicated that chronic E2 replacement significantly altered the transcriptome of the frontal cortex. The genomic effects of E2 influenced dopaminergic and peptidergic neurotransmission, immune surveillance, adenosine and insulin-like growth factor signaling and transport processes, among other functions. Identification of these novel E2-regulated mechanisms highlights the wide range of genomic responses of the aging female frontal cerebral cortex subjected to hormone replacement. Some of the genomic effects identified in this study may underlie the beneficial effects of E2 on cognition, behavior, and neuroprotection.
Collapse
Affiliation(s)
- Miklós Sárvári
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Dang YH, Zhao Y, Xing B, Zhao XJ, Huo FQ, Tang JS, Qu CL, Chen T. The role of dopamine receptors in ventrolateral orbital cortex-evoked anti-nociception in a rat model of neuropathic pain. Neuroscience 2010; 169:1872-80. [PMID: 20599592 DOI: 10.1016/j.neuroscience.2010.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 11/18/2022]
Abstract
The present study examined the role of dopamine and D(1)-and D(2)-like dopamine receptors in ventrolateral orbital cortex (VLO)-evoked anti-hypersensitivity in a rat model of neuropathic pain, as well as the possible underlying mechanisms. Results showed that microinjection of apomorphine [(R(-)-apomorphine hydrochloride)], a non-selective dopamine receptor agonist, into the VLO attenuated spared nerve injury (SNI)-induced mechanical allodynia in a dose-dependent manner. This effect was completely blocked by the D(2)-like dopamine receptor antagonist S(-)-raclopride(+)-tartrate salt (1.5 microg), but was enhanced by the D(1)-like dopamine receptor antagonist SCH23390 (R(+)-SCH-23390 hydrochloride, 5.0 microg). The attenuating effect of apomorphine on mechanical allodynia was mimicked by application of the D(2)-like dopamine receptor agonist quinpirole [((-)-quinpirole hydrochloride, 0.5, 1.0, and 2.0 microg)]. In addition, microinjection of larger doses (10 and 20 microg) of SCH23390 into the VLO significantly attenuated allodynia. Furthermore, microinjections of GABA(A) receptor antagonists, bicuculline [(+)-bicuculline,(S), 9(R)] and picrotoxin (200 and 300 ng for both drugs), into the VLO attenuated mechanical allodynia. A small dose of bicuculline or picrotoxin (100 ng) resulted in increased quinpirole (0.5 microg)-induced anti-allodynia. In contrast, GABA(A) receptor agonists, muscimol hydrochloride (250 ng) or THIP [(2,5,6,7-retrahydroisoxazolo(5,4-c)pyridine-3-ol hydrochloride, 1.0 microg)], blocked quinpirole (2.0 microg)-induced attenuation. These results suggest that the dopaminergic system is involved in mediating VLO-induced anti-hypersensitivity, activation of D(2)-like dopamine receptors, and inhibition of D(1)-like receptors resulting in anti-hypersensitivity. In addition, the mechanisms of GABAergic disinhibition might be involved in D(2)-like receptor mediating effects in neuropathic pain.
Collapse
Affiliation(s)
- Y H Dang
- Department of Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University School of Medicine, Yanta Road West 76#, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Lupinsky D, Moquin L, Gratton A. Interhemispheric regulation of the medial prefrontal cortical glutamate stress response in rats. J Neurosci 2010; 30:7624-33. [PMID: 20519537 PMCID: PMC6632388 DOI: 10.1523/jneurosci.1187-10.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 11/21/2022] Open
Abstract
While stressors are known to increase medial prefrontal cortex (PFC) glutamate (GLU) levels, the mechanism(s) subserving this response remain to be elucidated. We used microdialysis and local drug applications to investigate, in male Long-Evans rats, whether the PFC GLU stress response might reflect increased interhemispheric communication by callosal projection neurons. We report here that tail-pinch stress (20 min) elicited comparable increases in GLU in the left and right PFC that were sodium and calcium dependent and insensitive to local glial cystine-GLU exchanger blockade. Unilateral ibotenate-induced PFC lesions abolished the GLU stress response in the opposite hemisphere, as did contralateral mGlu(2/3) receptor activation. Local dopamine (DA) D(1) receptor blockade in the left PFC potently enhanced the right PFC GLU stress response, whereas the same treatment applied to the right PFC had a much weaker effect on the left PFC GLU response. Finally, the PFC GLU stress response was attenuated and potentiated, respectively, following alpha(1)-adrenoreceptor blockade and GABA(B) receptor activation in the opposite hemisphere. These findings indicate that the PFC GLU stress response reflects, at least in part, activation of callosal neurons located in the opposite hemisphere and that stress-induced activation of these neurons is regulated by GLU-, DA-, norepinephrine-, and GABA-sensitive mechanisms. In the case of DA, this control is asymmetrical, with a marked regulatory bias of the left PFC DA input over the right PFC GLU stress response. Together, these findings suggest that callosal neurons and their afferentation play an important role in the hemispheric specialization of PFC-mediated responses to stressors.
Collapse
Affiliation(s)
- Derek Lupinsky
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Luc Moquin
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Alain Gratton
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| |
Collapse
|
167
|
Melloni RH, Ricci LA. Adolescent exposure to anabolic/androgenic steroids and the neurobiology of offensive aggression: a hypothalamic neural model based on findings in pubertal Syrian hamsters. Horm Behav 2010; 58:177-91. [PMID: 19914254 DOI: 10.1016/j.yhbeh.2009.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/12/2023]
Abstract
Considerable public attention has been focused on the issue of youth violence, particularly that associated with drug use. It is documented that anabolic steroid use by teenagers is associated with a higher incidence of aggressive behavior and serious violence, yet little is known about how these drugs produce the aggressive phenotype. Here we discuss work from our laboratory on the relationship between the development and activity of select neurotransmitter systems in the anterior hypothalamus and anabolic steroid-induced offensive aggression using pubertal male Syrian hamsters (Mesocricetus auratus) as an adolescent animal model, with the express goal of synthesizing these data into an cogent neural model of the developmental adaptations that may underlie anabolic steroid-induced aggressive behavior. Notably, alterations in each of the neural systems identified as important components of the anabolic steroid-induced aggressive response occurred in a sub-division of the anterior hypothalamic brain region we identified as the hamster equivalent of the latero-anterior hypothalamus, indicating that this sub-region of the hypothalamus is an important site of convergence for anabolic steroid-induced neural adaptations that precipitate offensive aggression. Based on these findings we present in this review a neural model to explain the neurochemical regulation of anabolic steroid-induced offensive aggression showing the hypothetical interaction between the arginine vasopressin, serotonin, dopamine, gamma-aminobutyric acid, and glutamate neural systems in the anterior hypothalamic brain region.
Collapse
Affiliation(s)
- Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
168
|
Jucaite A, Forssberg H, Karlsson P, Halldin C, Farde L. Age-related reduction in dopamine D1 receptors in the human brain: from late childhood to adulthood, a positron emission tomography study. Neuroscience 2010; 167:104-10. [DOI: 10.1016/j.neuroscience.2010.01.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 12/01/2022]
|
169
|
Staging perspectives in neurodevelopmental aspects of neuropsychiatry: agents, phases and ages at expression. Neurotox Res 2010; 18:287-305. [PMID: 20237881 DOI: 10.1007/s12640-010-9162-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental risk factors have assumed a critical role in prevailing notions concerning the etiopathogenesis of neuropsychiatric disorders. Staging, diagnostic elements at which phase of disease is determined, provides a means of conceptualizing the degree and extent of factors affecting brain development trajectories, but is concurrently specified through the particular interactions of genes and environment unique to each individual case. For present purposes, staging perspectives in neurodevelopmental aspects of the disease processes are considered from conditions giving rise to neurodevelopmental staging in affective states, adolescence, dopamine disease states, and autism spectrum disorders. Three major aspects influencing the eventual course of individual developmental trajectories appear to possess an essential determinant influence upon outcome: (i) the type of agent that interferes with brain development, whether chemical, immune system activating or absent (anoxia/hypoxia), (ii) the phase of brain development at which the agent exerts disruption, whether prenatal, postnatal, or adolescent, and (iii) the age of expression of structural and functional abnormalities. Clinical staging may be assumed at any or each developmental phase. The present perspective offers both a challenge to bring further order to diagnosis, intervention, and prognosis and a statement regarding the extreme complexities and interwoven intricacies of epigenetic factors, biomarkers, and neurobehavioral entities that aggravate currents notions of the neuropsychiatric disorders.
Collapse
|
170
|
Specificity of prenatal cocaine exposure effects on cortical interneurons is independent from dopamine D1 receptor co-localization. J Chem Neuroanat 2010; 39:228-34. [PMID: 20080176 DOI: 10.1016/j.jchemneu.2010.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/21/2009] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
Abstract
Gestational cocaine exposure in a rabbit model leads to a persistent increase in parvalbumin immunoreactive cells and processes, reduces dopamine D1 receptor coupling to Gsalpha by means of improper trafficking of the receptor, changes pyramidal neuron morphology, and disrupts cognitive function. Here, experiments investigated whether changes in parvalbumin neurons were specific, or extended to other subpopulations of interneurons. Additionally, we examined dopamine D1 receptor expression patterns and its overlap with specific interneuron populations in the rabbit prefrontal cortex as a possible correlate for alterations in interneuron development following prenatal cocaine exposure. Analysis of calbindin and calretinin interneuron subtypes revealed that they did not exhibit any differences in cell number or process development. Thus, specific consequences of prenatal cocaine in the rabbit appear to be limited to parvalbumin-positive interneurons. Dopamine D1 receptor expression did not correlate with the selective effects of cocaine exposure, however, as both parvalbumin and calbindin cell types expressed the receptor. The findings suggest that additional, unique properties of parvalbumin neurons contribute to their developmental sensitivity to in utero cocaine exposure.
Collapse
|
171
|
Abstract
OBJECTIVE At therapeutic doses, classical antipsychotic drugs occupy a large proportion of subcortical dopamine D2 receptors, whereas atypical antipsychotics preferentially occupy cortical 5-HT(2) receptors. However, the exact cellular and network basis of their therapeutic action is not fully understood. METHOD To review the mechanism of action of antipsychotic drugs with a particular emphasis on their action in the prefrontal cortex (PFC). RESULTS The PFC controls a large number of higher brain functions altered in schizophrenia. Histological studies indicate the presence of a large proportion of PFC neurons expressing monoaminergic receptors sensitive to the action of atypical- and to a lesser extentclassical antipsychotic drugs. Functional studies also indicate that both drug families act at PFC level. CONCLUSION Atypical antipsychotic drugs likely exert their therapeutic activity by a preferential action on PFC neurons, thus modulating the PFC output to basal ganglia circuits. Classical antipsychotics also interact with these PFC targets in addition to blocking massively striatal D2 receptors.
Collapse
Affiliation(s)
- F Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d' Investigacions Biomèdiques de Barcelona (CSIC), IDIBAPS,08036 Barcelona, Spain.
| |
Collapse
|
172
|
Loss of dendrite stabilization by the Abl-related gene (Arg) kinase regulates behavioral flexibility and sensitivity to cocaine. Proc Natl Acad Sci U S A 2009; 106:16859-64. [PMID: 19805386 DOI: 10.1073/pnas.0902286106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adolescence is characterized by increased vulnerability to developing neuropsychiatric disorders and involves a period of prefrontal cortical dendritic refinement and synaptic pruning that culminates in cytoskeletal stabilization in adulthood. The Abl-related gene (Arg) acts through p190RhoGAP to inhibit the RhoA GTPase and stabilize cortical dendritic arbors beginning in adolescence. Cortical axons, dendrites, and synapses develop normally in Arg-deficient (arg(-/-)) mice, but adult dendrites destabilize and regress; thus, arg(-/-) mice present a model of adolescent-onset dendritic simplification. We show that arg(-/-) mice are impaired in a reversal task and that deficits are grossly exacerbated by low-dose cocaine administration. Although ventral prefrontal dopamine D2 receptor levels predict "perseverative" error counts in wild-type mice, no such relationship is found in arg(-/-) mice. Moreover, arg(-/-) mice are insensitive to the disruptive effects of the D2/D3 antagonist haloperidol in reversal but show normal sensitivity to its locomotor-depressant actions. Arg deficiency and orbitofrontal cortical Arg inhibition via STI-571 infusion also enhance the psychomotor stimulant actions of cocaine. These findings provide evidence that stabilization of dendritic structure beginning in adolescence is critical for the development of adaptive and flexible behavior after cocaine exposure.
Collapse
|
173
|
Schwartzer JJ, Ricci LA, Melloni RH. Interactions between the dopaminergic and GABAergic neural systems in the lateral anterior hypothalamus of aggressive AAS-treated hamsters. Behav Brain Res 2009; 203:15-22. [PMID: 19376158 DOI: 10.1016/j.bbr.2009.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/06/2009] [Accepted: 04/08/2009] [Indexed: 12/21/2022]
Abstract
Adolescent exposure to anabolic-androgenic steroids (AAS) produces alterations to various neurochemical systems resulting in an elevated aggressive response. Both the GABAergic and dopaminergic neural systems are implicated in aggression control and are altered in the presence of AAS. The present studies provide a detailed report of the interaction between D2 receptors and GABAergic neurons in the lateral subdivision of the anterior hypothalamus (LAH), a brain region at the center of aggression control. Male Syrian hamsters were administered AAS throughout adolescence and their brains were processed for double-label immunofluorescence of GAD67 and D2 receptors. Results indicate an increase in the number of D2-ir and GAD67-ir cells in the LAH of AAS-treated animals. Although there were several cells in the LAH colocalized with both GAD67 and D2 receptors, there were no significant increases in the number of double-labeled GAD67/D2-ir neurons. Together, the data suggest the possibility of multiple GABAergic systems in the LAH allowing for differential inhibition of various neural systems. Given these changes in the number of GABAergic cells, it is likely that adolescent AAS exposure also alters the expression of GABAA receptors in brain areas innervated by the LAH. Thus, hamster brains were processed for immunohistochemistry and quantified for changes in GABAA-ir. Interestingly, adolescent exposure to AAS produced a significant decrease in the number of GABAA-ir elements in the LAH of aggressive hamsters. Taken together, results from the current studies provide a putative mechanism whereby dopamine stimulates aggression through removal of GABA inhibition in the LAH of AAS-treated animals.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | | | | |
Collapse
|