151
|
mRNAs and lncRNAs intrinsically form secondary structures with short end-to-end distances. Nat Commun 2018; 9:4328. [PMID: 30337527 PMCID: PMC6193969 DOI: 10.1038/s41467-018-06792-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022] Open
Abstract
The 5' and 3' termini of RNA play important roles in many cellular processes. Using Förster resonance energy transfer (FRET), we show that mRNAs and lncRNAs have an intrinsic propensity to fold in the absence of proteins into structures in which the 5' end and 3' end are ≤7 nm apart irrespective of mRNA length. Computational estimates suggest that the inherent proximity of the ends is a universal property of most mRNA and lncRNA sequences. Only guanosine-depleted RNA sequences with low sequence complexity are unstructured and exhibit end-to-end distances expected for the random coil conformation of RNA. While the biological implications remain to be explored, short end-to-end distances could facilitate the binding of protein factors that regulate translation initiation by bridging mRNA 5' and 3' ends. Furthermore, our studies provide the basis for measuring, computing and manipulating end-to-end distances and secondary structure in RNA in research and biotechnology.
Collapse
|
152
|
Meeske AJ, Marraffini LA. RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems. Mol Cell 2018; 71:791-801.e3. [PMID: 30122537 PMCID: PMC7955661 DOI: 10.1016/j.molcel.2018.07.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022]
Abstract
All immune systems use precise target recognition to interrogate foreign invaders. During CRISPR-Cas immunity, prokaryotes capture short spacer sequences from infecting viruses and insert them into the CRISPR array. Transcription and processing of the CRISPR locus generate small RNAs containing the spacer and repeat sequences that guide Cas nucleases to cleave a complementary protospacer in the invading nucleic acids. In most CRISPR systems, sequences flanking the protospacer drastically affect cleavage. Here, we investigated the target requirements of the recently discovered RNA-targeting type VI-A CRISPR-Cas system in its natural host, Listeria seeligeri. We discovered that target RNAs with extended complementarity between the protospacer flanking sequence and the repeat sequence of the guide RNA are not cleaved by the type VI-A nuclease Cas13, neither in vivo nor in vitro. These findings establish fundamental rules for the design of Cas13-based technologies and provide a mechanism for preventing self-targeting in type VI-A systems.
Collapse
Affiliation(s)
- Alexander J Meeske
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
153
|
A novel insight in favor of structure-function relationship for 16S rRNA. Mol Biol Rep 2018; 45:1569-1573. [PMID: 30047038 DOI: 10.1007/s11033-018-4274-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Sequences in the stem-loop part of 16S ribosomal RNA (rRNA) are considered to be crucial for predicting antibiotic resistance. Mutant sequences have been reported to be helpful in the prediction of spectinomycin resistance. It is expected that such mutations alter the 16S rRNA stem-loop conformation, which affects antibiotic binding. Metagenomic database provides 16S ribosomal DNA sequences isolated from environmental samples. Using in silico tools, we observed that the existence of specific mutation does not alter the stem-loop structure of 16S rRNA along with its three-dimensional conformation. Our observation suggests that the three-dimensional structure is a better guide to understand whether a specific mutation can cause spectinomycin resistance.
Collapse
|
154
|
Abrahams L, Hurst LD. Adenine Enrichment at the Fourth CDS Residue in Bacterial Genes Is Consistent with Error Proofing for +1 Frameshifts. Mol Biol Evol 2018; 34:3064-3080. [PMID: 28961919 PMCID: PMC5850271 DOI: 10.1093/molbev/msx223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Beyond selection for optimal protein functioning, coding sequences (CDSs) are under selection at the RNA and DNA levels. Here, we identify a possible signature of “dual-coding,” namely extensive adenine (A) enrichment at bacterial CDS fourth sites. In 99.07% of studied bacterial genomes, fourth site A use is greater than expected given genomic A-starting codon use. Arguing for nucleotide level selection, A-starting serine and arginine second codons are heavily utilized when compared with their non-A starting synonyms. Several models have the ability to explain some of this trend. In part, A-enrichment likely reduces 5′ mRNA stability, promoting translation initiation. However T/U, which may also reduce stability, is avoided. Further, +1 frameshifts on the initiating ATG encode a stop codon (TGA) provided A is the fourth residue, acting either as a frameshift “catch and destroy” or a frameshift stop and adjust mechanism and hence implicated in translation initiation. Consistent with both, genomes lacking TGA stop codons exhibit weaker fourth site A-enrichment. Sequences lacking a Shine–Dalgarno sequence and those without upstream leader genes, that may be more error prone during initiation, have greater utilization of A, again suggesting a role in initiation. The frameshift correction model is consistent with the notion that many genomic features are error-mitigation factors and provides the first evidence for site-specific out of frame stop codon selection. We conjecture that the NTG universal start codon may have evolved as a consequence of TGA being a stop codon and the ability of NTGA to rapidly terminate or adjust a ribosome.
Collapse
Affiliation(s)
- Liam Abrahams
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
155
|
Yang L, Zhong Z, Tong C, Jia H, Liu Y, Chen G. Single-Molecule Mechanical Folding and Unfolding of RNA Hairpins: Effects of Single A-U to A·C Pair Substitutions and Single Proton Binding and Implications for mRNA Structure-Induced -1 Ribosomal Frameshifting. J Am Chem Soc 2018; 140:8172-8184. [PMID: 29884019 DOI: 10.1021/jacs.8b02970] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A wobble A·C pair can be protonated at near physiological pH to form a more stable wobble A+·C pair. Here, we constructed an RNA hairpin (rHP) and three mutants with one A-U base pair substituted with an A·C mismatch on the top (near the loop, U22C), middle (U25C), and bottom (U29C) positions of the stem, respectively. Our results on single-molecule mechanical (un)folding using optical tweezers reveal the destabilization effect of A-U to A·C pair substitution and protonation-dependent enhancement of mechanical stability facilitated through an increased folding rate, or decreased unfolding rate, or both. Our data show that protonation may occur rapidly upon the formation of an apparent mechanical folding transition state. Furthermore, we measured the bulk -1 ribosomal frameshifting efficiencies of the hairpins by a cell-free translation assay. For the mRNA hairpins studied, -1 frameshifting efficiency correlates with mechanical unfolding force at equilibrium and folding rate at around 15 pN. U29C has a frameshifting efficiency similar to that of rHP (∼2%). Accordingly, the bottom 2-4 base pairs of U29C may not form under a stretching force at pH 7.3, which is consistent with the fact that the bottom base pairs of the hairpins may be disrupted by ribosome at the slippery site. U22C and U25C have a similar frameshifting efficiency (∼1%), indicating that both unfolding and folding rates of an mRNA hairpin in a crowded environment may affect frameshifting. Our data indicate that mechanical (un)folding of RNA hairpins may mimic how mRNAs unfold and fold in the presence of translating ribosomes.
Collapse
Affiliation(s)
- Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371.,School of Physics, and State Key Laboratory of Optoelectronic Materials and Technologies , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Cailing Tong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Huan Jia
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Yiran Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , Singapore 637371
| |
Collapse
|
156
|
Wang Z, Wang Z, Shi X, Wu Q, Tao Y, Guo H, Ji C, Bai Y. Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura. Int J Biol Macromol 2018; 118:31-40. [PMID: 29908270 DOI: 10.1016/j.ijbiomac.2018.06.056] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 10/14/2022]
Abstract
In this study, the complete mitochondrial DNA (mtDNA) sequence of the crab Parasesarma affine is determined, characterized and compared with other decapod crustaceans. The P. affine mitochondrial genome (mitogenome) is 15,638 bp in size, and contains 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and a control region (CR). Then, 23 of the 37 genes are encoded by the heavy (+) strand while 14 are encoded by the light (-) strand. All PCGs are initiated by ATN codons and 4 of the 13 PCGs harbored the incomplete termination codon by T or TA. The CR with a high A + T% (82.33%) spans 678 bp. The nucleotide composition of the P. affine mitogenome is also biased toward A + T nucleotides (74.83%). The gene order of P. affine has a difference that trnI-trnQ turns into trnQ-trnI when compared with ancestor of Brachyura, which can also been seen in other Sesarmidae species. Phylogenetic tree based on nucleotide sequences of mitochondrial 13 PCGs from 49 decapod crustaceans and one outgroup using Bayesian inference (BI) and Maximum Likelihood (ML), which determined that P. affine belongs to Sesarmidae and Parasesarma is monophyletic.
Collapse
Affiliation(s)
- Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China.
| | - Ziqian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Xuejia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Qiong Wu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Yitao Tao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Huayun Guo
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Chenyao Ji
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| | - Yuze Bai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224001, Jiangsu Province, China
| |
Collapse
|
157
|
Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nat Commun 2018; 9:2032. [PMID: 29795225 PMCID: PMC5966403 DOI: 10.1038/s41467-018-04110-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 04/04/2018] [Indexed: 01/04/2023] Open
Abstract
Modification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against spinal muscular atrophy (SMA). However, a target-based approach to identify small-molecule E7 splicing modifiers has not been attempted, which could reveal novel therapies with improved mechanistic insight. Here, we chose as a target the stem-loop RNA structure TSL2, which overlaps with the 5' splicing site of E7. A small-molecule TSL2-binding compound, homocarbonyltopsentin (PK4C9), was identified that increases E7 splicing to therapeutic levels and rescues downstream molecular alterations in SMA cells. High-resolution NMR combined with molecular modelling revealed that PK4C9 binds to pentaloop conformations of TSL2 and promotes a shift to triloop conformations that display enhanced E7 splicing. Collectively, our study validates TSL2 as a target for small-molecule drug discovery in SMA, identifies a novel mechanism of action for an E7 splicing modifier, and sets a precedent for other splicing-mediated diseases where RNA structure could be similarly targeted.
Collapse
|
158
|
Functional metagenomic approach to identify overlooked antibiotic resistance mutations in bacterial rRNA. Sci Rep 2018; 8:5179. [PMID: 29615654 PMCID: PMC5882664 DOI: 10.1038/s41598-018-23474-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Our knowledge as to how bacteria acquire antibiotic resistance is still fragmented, especially for the ribosome-targeting drugs. In this study, with the aim of finding novel mechanisms that render bacteria resistant to the ribosome-targeting antibiotics, we developed a general method to systematically screen for antibiotic resistant 16 S ribosomal RNAs (rRNAs), which are the major target for multiple antibiotics (e.g. spectinomycin, tetracycline, and aminoglycosides), and identify point mutations therein. We used Escherichia coli ∆7, a null mutant of the rrn (ribosomal RNA) operons, as a surrogate host organism to construct a metagenomic library of 16 S rRNA genes from the natural (non-clinical) environment. The library was screened for spectinomycin resistance to obtain four resistant 16 S rRNA genes from non-E. coli bacterial species. Bioinformatic analysis and site-directed mutagenesis identified three novel mutations - U1183C (the first mutation discovered in a region other than helix 34), and C1063U and U1189C in helix 34 - as well as three well-described mutations (C1066U, C1192G, and G1193A). These results strongly suggest that uncharacterized antibiotic resistance mutations still exist, even for traditional antibiotics.
Collapse
|
159
|
Sachdeva G, Myhrvold C, Yin P, Silver PA. Synthetic RNA Scaffolds for Spatial Engineering in Cells. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gairik Sachdeva
- Harvard John A. Paulson School of Engineering and Applied Sciences, 29 Oxford Street; Cambridge MA 02138 USA
- Harvard University; Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle; Boston MA 02115 USA
- Harvard Medical School; Department of Systems Biology, 200 Longwood Avenue; Boston MA 02115 USA
| | - Cameron Myhrvold
- Harvard University; Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle; Boston MA 02115 USA
- Harvard Medical School; Department of Systems Biology, 200 Longwood Avenue; Boston MA 02115 USA
| | - Peng Yin
- Harvard University; Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle; Boston MA 02115 USA
| | - Pamela A. Silver
- Harvard University; Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle; Boston MA 02115 USA
- Harvard Medical School; Department of Systems Biology, 200 Longwood Avenue; Boston MA 02115 USA
| |
Collapse
|
160
|
Hu Y, Zhu X, Zhao R, Wang J, Song Y, Nie G, Tang H, Wang Y. Doxorubicin and paclitaxel carried by methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) is superior than traditional drug-delivery methods. Nanomedicine (Lond) 2018. [PMID: 29527969 DOI: 10.2217/nnm-2017-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To evaluate the advantages of nanomaterial methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA) encapsulated doxorubicin (D/DOX) and paclitaxel (T/TAX; mPEG-PLGA-DT) over free form of DOX and TAX (DOX/TAX). MATERIALS & METHODS Metabonomics was conducted to characterize the systemic metabolic response of allograft breast cancer model mice to mPEG-PLGA-DT and DOX/TAX treatments. RESULTS Breast tumor growth induced metabolic reprogram in serum and multiple organs. DOX/TAX treatment could ameliorate the elevated energy and nucleotides demands in some organs while mPEG-PLGA-DT treatment showed outstanding therapeutic outcomes in restoring the metabolic phenotypes of serum and kidney from tumor-bearing mice to the healthy state. CONCLUSION This investigation proved the biological advantages of mPEG-PLGA-DT over DOX/TAX in molecular level through the comparison between their metabolic responses in vivo.
Collapse
Affiliation(s)
- Yili Hu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xiaoyang Zhu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology, Beijing 100190, PR China
| | - Jin Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yipeng Song
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology, Beijing 100190, PR China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, Metabolomics & Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China.,Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
161
|
Gentsch GE, Spruce T, Monteiro RS, Owens NDL, Martin SR, Smith JC. Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus. Dev Cell 2018; 44:597-610.e10. [PMID: 29478923 PMCID: PMC5861998 DOI: 10.1016/j.devcel.2018.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/21/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects.
Collapse
Affiliation(s)
- George E Gentsch
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| | - Thomas Spruce
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Rita S Monteiro
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Nick D L Owens
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK
| | - Stephen R Martin
- The Francis Crick Institute, Structural Biology Science Technology Platform, 1 Midland Road, London NW1 1AT, UK
| | - James C Smith
- The Francis Crick Institute, Developmental Biology Laboratory, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
162
|
Kumar VA. Evolution of specific 3'-5'-linkages in RNA in pre-biotic soup: a new hypothesis. Org Biomol Chem 2018; 14:10123-10133. [PMID: 27714238 DOI: 10.1039/c6ob01796g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This article reviews the different possibilities towards progression of the formation of DNA/RNA in the chemical world, before life, in enzyme-free conditions. The advent of deoxyribo- and ribopentose-sugars, nucleosides, nucleotides and oligonucleotides in the prebiotic soup is briefly discussed. Further, the formation of early single stranded oligomers, base-pairing possibilities and information transfer based on the stability parameters of the derived duplexes is reviewed. Each theory has its own merits and demerits which we have elaborated upon. Lastly, using clues from this literature, a possible explanation for the specific 3'-5'-linkages in RNA is proposed.
Collapse
Affiliation(s)
- Vaijayanti A Kumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
163
|
Garg A, Heinemann U. A novel form of RNA double helix based on G·U and C·A + wobble base pairing. RNA (NEW YORK, N.Y.) 2018; 24:209-218. [PMID: 29122970 PMCID: PMC5769748 DOI: 10.1261/rna.064048.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/05/2017] [Indexed: 05/27/2023]
Abstract
Wobble base pairs are critical in various physiological functions and have been linked to local structural perturbations in double-helical structures of nucleic acids. We report a 1.38-Å resolution crystal structure of an antiparallel octadecamer RNA double helix in overall A conformation, which includes a unique, central stretch of six consecutive wobble base pairs (W helix) with two G·U and four rare C·A+ wobble pairs. Four adenines within the W helix are N1-protonated and wobble-base-paired with the opposing cytosine through two regular hydrogen bonds. Combined with the two G·U pairs, the C·A+ base pairs facilitate formation of a half turn of W-helical RNA flanked by six regular Watson-Crick base pairs in standard A conformation on either side. RNA melting experiments monitored by differential scanning calorimetry, UV and circular dichroism spectroscopy demonstrate that the RNA octadecamer undergoes a pH-induced structural transition which is consistent with the presence of a duplex with C·A+ base pairs at acidic pH. Our crystal structure provides a first glimpse of an RNA double helix based entirely on wobble base pairs with possible applications in RNA or DNA nanotechnology and pH biosensors.
Collapse
Affiliation(s)
- Ankur Garg
- Crystallography, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie University Berlin, 14195 Berlin, Germany
| | - Udo Heinemann
- Crystallography, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie University Berlin, 14195 Berlin, Germany
| |
Collapse
|
164
|
Liu W, Hu C, Xie W, Chen P, Zhang Y, Yao R, Li K, Chang Q. The mitochondrial genome of red-necked phalarope Phalaropus lobatus (Charadriiformes: Scolopacidae) and phylogeny analysis among Scolopacidae. Genes Genomics 2018; 40:455-463. [PMID: 29892953 DOI: 10.1007/s13258-017-0632-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 11/30/2022]
Abstract
The red-necked phalarope is a wonderful species with specific morphological characters and lifestyles. Mitochondrial genomes, encoding necessary proteins involved in the system of energy metabolism, are important for the evolution and adaption of species. In this study, we determined the complete mitogenome sequence of Phalaropus lobatus (Charadriiformes: Scolopacidae). The circular genome is 16714 bp in size, containing 13 PCGs, two ribosomal RNAs and 22 tRNAs and a high AT-rich control region. The AT skew and GC skew of major strand is positive and negative respectively. Most of PCGs are biased towards A-rich except ND1. A codon usage analysis shows that 3 start codons (ATG, GTG and ATA), 4 stop codons (TAA, TAG, AGG, AGA) and two incomplete terminate codons (T-). Twenty two transfer RNAs have the typical cloverleaf structure, and a total of ten base pairs are mismatched throughout the nine tRNA genes. The phylogenetic tree based on 13 PCGs and 2 rRNA genes indicates that monophyly of the family and genus Phalaropus is close to genus Xenus plus Tringa. The analysis of selective pressure shows 13 protein-coding genes are evolving under the purifying selection and P. lobatus is different from other Scolopacidae species on the selective pressure of gene ND4. This study helps us know the inherent mechanism of mitochondrial structure and natural selection.
Collapse
Affiliation(s)
- Wei Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Chaochao Hu
- Analytical and Testing Center, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Wenli Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Yi Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ran Yao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Kexin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qing Chang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1# Wenyuan Road, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
165
|
Abstract
Noncoding RNAs are pervasive in cells and contribute to diseases such as cancer. A question in biomedical research is whether noncoding RNAs are targets of medicines. Bleomycin is a natural product that cleaves DNA; however, it is known to cleave RNA in vitro. Herein, an in-depth analysis of the RNA cleavage preferences of bleomycin A5 is presented. Bleomycin A5 prefers to cleave RNAs with stretches of AU base pairs. Based on these preferences and bioinformatic analysis, the microRNA-10b hairpin precursor was identified as a potential substrate for bleomycin A5. Both in vitro and cellular experiments demonstrated cleavage. Importantly, chemical cleavage by bleomycin A5 in the microRNA-10b hairpin precursors occurred near the Drosha and Dicer enzymatic processing sites and led to destruction of the microRNA. Evidently, oncogenic noncoding RNAs can be considered targets of cancer medicines and might elicit their pharmacological effects by targeting noncoding RNA.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL, 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 110 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
166
|
Naruse K, Matsuura-Suzuki E, Watanabe M, Iwasaki S, Tomari Y. In vitro reconstitution of chaperone-mediated human RISC assembly. RNA (NEW YORK, N.Y.) 2018; 24:6-11. [PMID: 28971854 PMCID: PMC5733571 DOI: 10.1261/rna.063891.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/24/2017] [Indexed: 05/03/2023]
Abstract
To silence target mRNAs, small RNAs and Argonaute (Ago) proteins need to be assembled into RNA-induced silencing complexes (RISCs). Although the assembly of Drosophila melanogaster RISC was recently reconstituted by Ago2, the Dicer-2/R2D2 heterodimer, and five chaperone proteins, the absence of a reconstitution system for mammalian RISC assembly has posed analytical challenges. Here we describe reconstitution of human RISC assembly using Ago2 and five recombinant chaperone proteins: Hsp90β, Hsc70, Hop, Dnaja2, and p23. Our data show that ATP hydrolysis by both Hsp90β and Hsc70 is required for RISC assembly of small RNA duplexes but not for that of single-stranded RNAs. The reconstitution system lays the groundwork for further studies of small RNA-mediated gene silencing in mammals.
Collapse
Affiliation(s)
- Ken Naruse
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Eriko Matsuura-Suzuki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mariko Watanabe
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shintaro Iwasaki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Wako, Saitama 351-0198, Japan
- RNA Systems Biochemistry Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
167
|
Sonawane KD, Kamble AS, Fandilolu PM. Preferences of AAA/AAG codon recognition by modified nucleosides, τm 5s 2U 34 and t 6A 37 present in tRNA Lys. J Biomol Struct Dyn 2017; 36:4182-4196. [PMID: 29243556 DOI: 10.1080/07391102.2017.1417911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Deficiency of 5-taurinomethyl-2-thiouridine, τm5s2U at the 34th 'wobble' position in tRNALys causes MERRF (Myoclonic Epilepsy with Ragged Red Fibers), a neuromuscular disease. This modified nucleoside of mt tRNALys, recognizes AAA/AAG codons during protein biosynthesis process. Its preference to identify cognate codons has not been studied at the atomic level. Hence, multiple MD simulations of various molecular models of anticodon stem loop (ASL) of mt tRNALys in presence and absence of τm5s2U34 and N6-threonylcarbamoyl adenosine (t6A37) along with AAA and AAG codons have been accomplished. Additional four MD simulations of multiple ASL mt tRNALys models in the context of ribosomal A-site residues have also been performed to investigate the role of A-site in recognition of AAA/AAG codons. MD simulation results show that, ASL models in presence of τm5s2U34 and t6A37 with codons AAA/AAG are more stable than the ASL lacking these modified bases. MD trajectories suggest that τm5s2U recognizes the codons initially by 'wobble' hydrogen bonding interactions, and then tRNALys might leave the explicit codon by a novel 'single' hydrogen bonding interaction in order to run the protein biosynthesis process smoothly. We propose this model as the 'Foot-Step Model' for codon recognition, in which the single hydrogen bond plays a crucial role. MD simulation results suggest that, tRNALys with τm5s2U and t6A recognizes AAA codon more preferably than AAG. Thus, these results reveal the consequences of τm5s2U and t6A in recognition of AAA/AAG codons in mitochondrial disease, MERRF.
Collapse
Affiliation(s)
- Kailas D Sonawane
- a Structural Bioinformatics Unit, Department of Biochemistry , Shivaji University , Kolhapur 416 004 (M.S.) , India.,b Department of Microbiology , Shivaji University , Kolhapur 416 004 (M.S.) , India
| | - Asmita S Kamble
- a Structural Bioinformatics Unit, Department of Biochemistry , Shivaji University , Kolhapur 416 004 (M.S.) , India
| | - Prayagraj M Fandilolu
- a Structural Bioinformatics Unit, Department of Biochemistry , Shivaji University , Kolhapur 416 004 (M.S.) , India
| |
Collapse
|
168
|
Pre-clinical Safety and Off-Target Studies to Support Translation of AAV-Mediated RNAi Therapy for FSHD. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:121-130. [PMID: 29387734 PMCID: PMC5787672 DOI: 10.1016/j.omtm.2017.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022]
Abstract
RNAi emerged as a prospective molecular therapy nearly 15 years ago. Since then, two major RNAi platforms have been under development: oligonucleotides and gene therapy. Oligonucleotide-based approaches have seen more advancement, with some promising therapies that may soon reach market. In contrast, vector-based approaches for RNAi therapy have remained largely in the pre-clinical realm, with limited clinical safety and efficacy data to date. We are developing a gene therapy approach to treat the autosomal-dominant disorder facioscapulohumeral muscular dystrophy. Our strategy involves silencing the myotoxic gene DUX4 using adeno-associated viral vectors to deliver targeted microRNA expression cassettes (miDUX4s). We previously demonstrated proof of concept for this approach in mice, and we are now taking additional steps here to assess safety issues related to miDUX4 overexpression and sequence-specific off-target silencing. In this study, we describe improvements in vector design and expansion of our miDUX4 sequence repertoire and report differential toxicity elicited by two miDUX4 sequences, of which one was toxic and the other was not. This study provides important data to help advance our goal of translating RNAi gene therapy for facioscapulohumeral muscular dystrophy.
Collapse
|
169
|
Queen RA, Steyn JS, Lord P, Elson JL. Mitochondrial DNA sequence context in the penetrance of mitochondrial t-RNA mutations: A study across multiple lineages with diagnostic implications. PLoS One 2017; 12:e0187862. [PMID: 29161289 PMCID: PMC5697862 DOI: 10.1371/journal.pone.0187862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are well recognized as an important cause of inherited disease. Diseases caused by mtDNA mutations exhibit a high degree of clinical heterogeneity with a complex genotype-phenotype relationship, with many such mutations exhibiting incomplete penetrance. There is evidence that the spectrum of mutations causing mitochondrial disease might differ between different mitochondrial lineages (haplogroups) seen in different global populations. This would point to the importance of sequence context in the expression of mutations. To explore this possibility, we looked for mutations which are known to cause disease in humans, in animals of other species unaffected by mtDNA disease. The mt-tRNA genes are the location of many pathogenic mutations, with the m.3243A>G mutation on the mt-tRNA-Leu(UUR) being the most frequently seen mutation in humans. This study looked for the presence of m.3243A>G in 2784 sequences from 33 species, as well as any of the other mutations reported in association with disease located on mt-tRNA-Leu(UUR). We report a number of disease associated variations found on mt-tRNA-Leu(UUR) in other chordates, as the major population variant, with m.3243A>G being seen in 6 species. In these, we also found a number of mutations which appear compensatory and which could prevent the pathogenicity associated with this change in humans. This work has important implications for the discovery and diagnosis of mtDNA mutations in non-European populations. In addition, it might provide a partial explanation for the conflicting results in the literature that examines the role of mtDNA variants in complex traits.
Collapse
Affiliation(s)
- Rachel A. Queen
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jannetta S. Steyn
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Phillip Lord
- School of Computing Science, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Joanna L. Elson
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
- * E-mail:
| |
Collapse
|
170
|
von der Dunk SHA, Colizzi ES, Hogeweg P. Evolutionary Conflict Leads to Innovation: Symmetry Breaking in a Spatial Model of RNA-Like Replicators. Life (Basel) 2017; 7:life7040043. [PMID: 29099079 PMCID: PMC5745556 DOI: 10.3390/life7040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
Molecules that replicate in trans are vulnerable to evolutionary extinction because they decrease the catalysis of replication to become more available as a template for replication. This problem can be alleviated with higher-level selection that clusters molecules of the same phenotype, favouring those groups that contain more catalysis. Here, we study a simple replicator model with implicit higher-level selection through space. We ask whether the functionality of such system can be enhanced when molecules reproduce through complementary replication, representing RNA-like replicators. For high diffusion, symmetry breaking between complementary strands occurs: one strand becomes a specialised catalyst and the other a specialised template. In ensemble, such replicators can modulate their catalytic activity depending on their environment, thereby mitigating the conflict between levels of selection. In addition, these replicators are more evolvable, facilitating survival in extreme conditions (i.e., for higher diffusion rates). Our model highlights that evolution with implicit higher-level selection—i.e., as a result of local interactions and spatial patterning—is very flexible. For different diffusion rates, different solutions to the selective conflict arise. Our results support an RNA World by showing that complementary replicators may have various ways to evolve more complexity.
Collapse
Affiliation(s)
- Samuel H A von der Dunk
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - Enrico Sandro Colizzi
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - Paulien Hogeweg
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
171
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
172
|
Amroun A, Priet S, Querat G. Toscana virus cap-snatching and initiation of transcription. J Gen Virol 2017; 98:2676-2688. [PMID: 29022865 DOI: 10.1099/jgv.0.000941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne phlebovirus within the family Phenuiviridae in the order Bunyavirales. It seems to be an important agent of human meningoencephalitis in the warm season in the Mediterranean area. Because the polymerase of Bunyavirales lacks a capping activity, it cleaves short-capped RNA leaders derived from the host cell, and uses them to initiate viral mRNA synthesis. To determine the size and nucleotide composition of the host-derived RNA leaders, and to elucidate the first steps of TOSV transcription initiation, we performed a high-throughput sequencing of the 5' end of TOSV mRNAs in infected cells at different times post-infection. Our results indicated that the viral polymerase cleaved the host-capped RNA leaders within a window of 11-16 nucleotides. A single population of cellular mRNAs could be cleaved at different sites to prime the synthesis of several viral mRNA species. The majority of the mRNA resulted from direct priming, but we observed mRNAs resulting from several rounds of prime-and-realign events. Our data suggest that the different rounds of the prime-and-realign mechanism result from the blocking of the template strand in a static position in the active site, leading to the slippage of the nascent strand by two nucleotides when the growing duplex is sorted out from the active site. To minimize this rate-limiting step, TOSV polymerase cleaves preferentially capped RNA leaders after GC, so as to greatly reduce the number of cycles of priming and realignment, and facilitate the separation of the growing duplex.
Collapse
Affiliation(s)
- Abdennour Amroun
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Stéphane Priet
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Gilles Querat
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
173
|
Lee N, Le Sage V, Nanni AV, Snyder DJ, Cooper VS, Lakdawala SS. Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res 2017; 45:8968-8977. [PMID: 28911100 PMCID: PMC5587783 DOI: 10.1093/nar/gkx584] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments that are coated by viral nucleoprotein (NP) molecules. Classically, the interaction between NP and viral RNA (vRNA) is depicted as a uniform pattern of ‘beads on a string’. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP), we identified the vRNA binding profiles of NP for two H1N1 IAV strains in virions. Contrary to the prevailing model for vRNA packaging, NP does not bind vRNA uniformly in the A/WSN/1933 and A/California/07/2009 strains, but instead each vRNA segment exhibits a unique binding profile, containing sites that are enriched or poor in NP association. Intriguingly, both H1N1 strains have similar yet distinct NP binding profiles despite extensive sequence conservation. Peaks identified by HITS-CLIP were verified as true NP binding sites based on insensitivity to DNA antisense oligonucleotide-mediated RNase H digestion. Moreover, nucleotide content analysis of NP peaks revealed that these sites are relatively G-rich and U-poor compared to the genome-wide nucleotide content, indicating an as-yet unidentified sequence bias for NP association in vivo. Taken together, our genome-wide study of NP–vRNA interaction has implications for the understanding of influenza vRNA architecture and genome packaging.
Collapse
Affiliation(s)
- Nara Lee
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Valerie Le Sage
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Adalena V Nanni
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Dan J Snyder
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Vaughn S Cooper
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Seema S Lakdawala
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
174
|
Abi-Ghanem J, Rabin C, Porrini M, Dausse E, Toulmé JJ, Gabelica V. Electrostatics Explains the Position-Dependent Effect of G⋅U Wobble Base Pairs on the Affinity of RNA Kissing Complexes. Chemphyschem 2017; 18:2782-2790. [PMID: 28762245 DOI: 10.1002/cphc.201700337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Indexed: 01/03/2023]
Abstract
In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications.
Collapse
Affiliation(s)
- Josephine Abi-Ghanem
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Clémence Rabin
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Massimiliano Porrini
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Eric Dausse
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Jean-Jacques Toulmé
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Valérie Gabelica
- Univ. Bordeaux, INSERM, CNRS, Laboratoire Acides Nucléiques, Régulations Naturelle et Artificielle, ARNA, U1212, UMR5320, IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| |
Collapse
|
175
|
Zheng Y, Addy PS, Mukherjee R, Chatterjee A. Defining the current scope and limitations of dual noncanonical amino acid mutagenesis in mammalian cells. Chem Sci 2017; 8:7211-7217. [PMID: 29081953 PMCID: PMC5633785 DOI: 10.1039/c7sc02560b] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/24/2017] [Indexed: 11/29/2022] Open
Abstract
We systematically evaluate potential platforms for site-specifically incorporating two distinct noncanonical amino acids into proteins expressed in mammalian cells with optimal fidelity and efficiency – a technology that will have many enabling applications.
The ability to site-specifically incorporate two distinct noncanonical amino acids (ncAAs) into the proteome of a mammalian cell with high fidelity and efficiency will have many enabling applications. It would require the use of two different engineered aminoacyl-tRNA synthetase (aaRS)/tRNA pairs, each suppressing a distinct nonsense codon, and which cross-react neither with each other, nor with their counterparts from the host cell. Three different aaRS/tRNA pairs have been developed so far to expand the genetic code of mammalian cells, which can be potentially combined in three unique ways to drive site-specific incorporation of two distinct ncAAs. To explore the suitability of using these combinations for suppressing two distinct nonsense codons with high fidelity and efficiency, here we systematically investigate: (1) how efficiently the three available aaRS/tRNA pairs suppress the three different nonsense codons, (2) preexisting cross-reactivities among these pairs that would compromise their simultaneous use, and (3) whether different nonsense-suppressor tRNAs exhibit unwanted suppression of non-cognate stop codons in mammalian cells. From these comprehensive analyses, two unique combinations of aaRS/tRNA pairs emerged as being suitable for high-fidelity dual nonsense suppression. We developed expression systems to validate the use of both combinations for the site-specific incorporation of two different ncAAs into proteins expressed in mammalian cells. Our work lays the foundation for developing powerful applications of dual-ncAA incorporation technology in mammalian cells, and highlights aspects of this nascent technology that need to be addressed to realize its full potential.
Collapse
Affiliation(s)
- Yunan Zheng
- Department of Chemistry , Boston College , 2609 Beacon Street, Chestnut Hill , MA 02467 , USA .
| | - Partha Sarathi Addy
- Department of Chemistry , Boston College , 2609 Beacon Street, Chestnut Hill , MA 02467 , USA .
| | - Raja Mukherjee
- Department of Chemistry , Boston College , 2609 Beacon Street, Chestnut Hill , MA 02467 , USA .
| | - Abhishek Chatterjee
- Department of Chemistry , Boston College , 2609 Beacon Street, Chestnut Hill , MA 02467 , USA .
| |
Collapse
|
176
|
Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit M. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 2017; 45:3615-3626. [PMID: 28334756 PMCID: PMC5397182 DOI: 10.1093/nar/gkx070] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Our understanding of translation underpins our capacity to engineer living systems. The canonical start codon (AUG) and a few near-cognates (GUG, UUG) are considered as the ‘start codons’ for translation initiation in Escherichia coli. Translation is typically not thought to initiate from the 61 remaining codons. Here, we quantified translation initiation of green fluorescent protein and nanoluciferase in E. coli from all 64 triplet codons and across a range of DNA copy number. We detected initiation of protein synthesis above measurement background for 47 codons. Translation from non-canonical start codons ranged from 0.007 to 3% relative to translation from AUG. Translation from 17 non-AUG codons exceeded the highest reported rates of non-cognate codon recognition. Translation initiation from non-canonical start codons may contribute to the synthesis of peptides in both natural and synthetic biological systems.
Collapse
Affiliation(s)
- Ariel Hecht
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jeff Glasgow
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Paul R Jaschke
- Department of Bioengineering, Stanford, CA 94305, USA.,Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lukmaan A Bawazer
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Matthew S Munson
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Jennifer R Cochran
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Drew Endy
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, Stanford, CA 94305, USA.,Genome-scale Measurements Group, National Institute of Standards and Technology, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford, CA 94305, USA
| |
Collapse
|
177
|
Martinez-Zapien D, Legrand P, McEwen AG, Proux F, Cragnolini T, Pasquali S, Dock-Bregeon AC. The crystal structure of the 5΄ functional domain of the transcription riboregulator 7SK. Nucleic Acids Res 2017; 45:3568-3579. [PMID: 28082395 PMCID: PMC5389472 DOI: 10.1093/nar/gkw1351] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022] Open
Abstract
In vertebrates, the 7SK RNA forms the scaffold of a complex, which regulates transcription pausing of RNA-polymerase II. By binding to the HEXIM protein, the complex comprising proteins LARP7 and MePCE captures the positive transcription elongation factor P-TEFb and prevents phosphorylation of pausing factors. The HEXIM-binding site embedded in the 5΄-hairpin of 7SK (HP1) encompasses a short signature sequence, a GAUC repeat framed by single-stranded uridines. The present crystal structure of HP1 shows a remarkably straight helical stack involving several unexpected triples formed at a central region. Surprisingly, two uridines of the signature sequence make triple interactions in the major groove of the (GAUC)2. The third uridine is turned outwards or inward, wedging between the other uridines, thus filling the major groove. A molecular dynamics simulation indicates that these two conformations of the signature sequence represent stable alternatives. Analyses of the interaction with the HEXIM protein confirm the importance of the triple interactions at the signature sequence. Altogether, the present structural analysis of 7SK HP1 highlights an original mechanism of swapping bases, which could represent a possible ‘7SK signature’ and provides new insight into the functional importance of the plasticity of RNA.
Collapse
Affiliation(s)
- Denise Martinez-Zapien
- Biotechnologie et signalisation cellulaire, CNRS UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, F-91190 Gif-sur-Yvette, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Florence Proux
- Department of functional genomics, CNRS UMR 8197, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Department of functional genomics, INSERM-U1024, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France
| | | | - Samuela Pasquali
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR 9080, Université Sorbonne Paris Cite, Paris Diderot, 75005 Paris, France
| | - Anne-Catherine Dock-Bregeon
- Department of functional genomics, CNRS UMR 8197, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Department of functional genomics, INSERM-U1024, Institut de Biologie de l΄Ecole Normale Supérieure F-75005 Paris, France.,Sorbonne Universités UPMC, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France.,CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
| |
Collapse
|
178
|
Santos-Cancel M, White RJ. Collagen Membranes with Ribonuclease Inhibitors for Long-Term Stability of Electrochemical Aptamer-Based Sensors Employing RNA. Anal Chem 2017; 89:5598-5604. [PMID: 28440619 PMCID: PMC5653965 DOI: 10.1021/acs.analchem.7b00766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electrochemical aptamer-based (E-AB) sensors offer advantageous analytical detection abilities due to their rapid response time (seconds to minutes), specificity to a target, and selectivity to function in complex media. Ribonucleic acid (RNA) aptamers employed in this class of sensor offer favorable binding characteristics resulting from the ability of RNA to form stable tertiary folds aided by long-range intermolecular interactions. As a result, RNA aptamers can fold into three-dimensional structures more complex than those of their DNA counterparts and consequently exhibit better binding ability to target analytes. Unfortunately, RNA aptamers are susceptible to degradation by nucleases, and for this reason, RNA-based sensors are scarce or require significant sample pretreatment before use in clinically relevant media. Here, we combine the usefulness of a collagen I hydrogel membrane with entrapped ribonuclease inhibitors (RI) to protect small molecule RNA E-AB sensors from endogenous nucleases in complex media. More specifically, the biocompatibility of the naturally polymerized hydrogel with encapsulated RI promotes the protection of an aminoglycoside-binding RNA E-AB sensor up to 6 h, enabling full sensor function in nuclease-rich environments (undiluted serum) without the need for prior sample preparation or oligonucleotide modification. The use of collagen as a biocompatible membrane represents a general approach to compatibly interface E-AB sensors with complex biological samples.
Collapse
Affiliation(s)
- Mirelis Santos-Cancel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Ryan J. White
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250
| |
Collapse
|
179
|
Warden MS, Tonelli M, Cornilescu G, Liu D, Hopersberger LJ, Ponniah K, Pascal SM. Structure of RNA Stem Loop B from the Picornavirus Replication Platform. Biochemistry 2017; 56:2549-2557. [PMID: 28459542 DOI: 10.1021/acs.biochem.7b00141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The presumptive RNA cloverleaf at the start of the 5'-untranslated region of the picornavirus genome is an essential element in replication. Stem loop B (SLB) of the cloverleaf is a recognition site for the host polyC-binding protein, which initiates a switch from translation to replication. Here we present the solution structure of human rhinovirus isotype 14 SLB using nuclear magnetic resonance spectroscopy. SLB adopts a predominantly A-form helical structure. The stem contains five Watson-Crick base pairs and one wobble base pair and is capped by an eight-nucleotide loop. The wobble base pair introduces perturbations into the helical parameters but does not appear to introduce flexibility. However, the helix major groove appears to be accessible. Flexibility is seen throughout the loop and in the terminal nucleotides. The pyrimidine-rich region of the loop, the apparent recognition site for the polyC-binding protein, is the most disordered region of the structure.
Collapse
Affiliation(s)
- Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dong Liu
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Lorelei J Hopersberger
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| |
Collapse
|
180
|
Kamble AS, Fandilolu PM, Sambhare SB, Sonawane KD. Idiosyncratic recognition of UUG/UUA codons by modified nucleoside 5-taurinomethyluridine, τm5U present at 'wobble' position in anticodon loop of tRNALeu: A molecular modeling approach. PLoS One 2017; 12:e0176756. [PMID: 28453549 PMCID: PMC5409519 DOI: 10.1371/journal.pone.0176756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 04/11/2017] [Indexed: 11/18/2022] Open
Abstract
Lack of naturally occurring modified nucleoside 5-taurinomethyluridine (τm5U) at the 'wobble' 34th position in tRNALeu causes mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). The τm5U34 specifically recognizes UUG and UUA codons. Structural consequences of τm5U34 to read cognate codons have not been studied so far in detail at the atomic level. Hence, 50ns multiple molecular dynamics (MD) simulations of various anticodon stem loop (ASL) models of tRNALeu in presence and absence of τm5U34 along with UUG and UUA codons were performed to explore the dynamic behaviour of τm5U34 during codon recognition process. The MD simulation results revealed that τm5U34 recognizes G/A ending codons by 'wobble' as well as a novel 'single' hydrogen bonding interactions. RMSD and RMSF values indicate the comparative stability of the ASL models containing τm5U34 modification over the other models, lacking τm5U34. Another MD simulation study of 55S mammalian mitochondrial rRNA with tRNALeu showed crucial interactions between the A-site residues, A918, A919, G256 and codon-anticodon bases. Thus, these results could improve our understanding about the decoding efficiency of human mt tRNALeu with τm5U34 to recognize UUG and UUA codons.
Collapse
Affiliation(s)
- Asmita S. Kamble
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, (M.S.), India
| | - Prayagraj M. Fandilolu
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, (M.S.), India
| | - Susmit B. Sambhare
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, (M.S.), India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, (M.S.), India
- Department of Microbiology, Shivaji University, Kolhapur, (M.S.), India
- * E-mail:
| |
Collapse
|
181
|
Rodionov AV, Gnutikov AA, Kotsinyan AR, Kotseruba VV, Nosov NN, Punina EO, Rayko MP, Tyupa NB, Kim ES. ITS1–5.8S rDNA–ITS2 sequence in 35S rRNA genes as marker for reconstruction of phylogeny of grasses (Poaceae family). ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079086417020062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
182
|
Cross-Talk between Dnmt2-Dependent tRNA Methylation and Queuosine Modification. Biomolecules 2017; 7:biom7010014. [PMID: 28208632 PMCID: PMC5372726 DOI: 10.3390/biom7010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Enzymes of the Dnmt2 family of methyltransferases have yielded a number of unexpected discoveries. The first surprise came more than ten years ago when it was realized that, rather than being DNA methyltransferases, Dnmt2 enzymes actually are transfer RNA (tRNA) methyltransferases for cytosine-5 methylation, foremost C38 (m5C38) of tRNAAsp. The second unanticipated finding was our recent discovery of a nutritional regulation of Dnmt2 in the fission yeast Schizosaccharomyces pombe. Significantly, the presence of the nucleotide queuosine in tRNAAsp strongly stimulates Dnmt2 activity both in vivo and in vitro in S. pombe. Queuine, the respective base, is a hypermodified guanine analog that is synthesized from guanosine-5’-triphosphate (GTP) by bacteria. Interestingly, most eukaryotes have queuosine in their tRNA. However, they cannot synthesize it themselves, but rather salvage it from food or from gut microbes. The queuine obtained from these sources comes from the breakdown of tRNAs, where the queuine ultimately was synthesized by bacteria. Queuine thus has been termed a micronutrient. This review summarizes the current knowledge of Dnmt2 methylation and queuosine modification with respect to translation as well as the organismal consequences of the absence of these modifications. Models for the functional cooperation between these modifications and its wider implications are discussed.
Collapse
|
183
|
DNA and RNA profiling of excavated human remains with varying postmortem intervals. Int J Legal Med 2016; 130:1471-1480. [PMID: 27627902 DOI: 10.1007/s00414-016-1438-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/09/2016] [Indexed: 01/03/2023]
Abstract
When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.
Collapse
|
184
|
Tengs T, Jonassen CM. Distribution and Evolutionary History of the Mobile Genetic Element s2m in Coronaviruses. Diseases 2016; 4:diseases4030027. [PMID: 28933407 PMCID: PMC5456283 DOI: 10.3390/diseases4030027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/23/2022] Open
Abstract
The mobile genetic element s2m has been described in several families of single-stranded RNA viruses. The function remains elusive, but an increasing number of s2m-containing sequences are being deposited in publicly available databases. Currently, more than 700 coronavirus sequences containing s2m can be found in GenBank, including the severe acute respiratory syndrome (SARS) coronavirus genome. This is an updated review of the pattern of s2m in coronaviruses, the possible functional implications and the evolutionary history.
Collapse
Affiliation(s)
- Torstein Tengs
- Norwegian Veterinary Institute, Ullevaalsveien 68, 0454 Oslo, Norway.
| | - Christine M Jonassen
- Centre for Laboratory Medicine, Østfold Hospital Trust, Kalnesveien 300, 1714 Grålum, Norway.
| |
Collapse
|
185
|
Luo QC, Hao YJ, Meng F, Li TJ, Ding YR, Hua YQ, Chen B. The mitochondrial genomes of Culex tritaeniorhynchus and Culex pipiens pallens (Diptera: Culicidae) and comparison analysis with two other Culex species. Parasit Vectors 2016; 9:406. [PMID: 27444629 PMCID: PMC4957372 DOI: 10.1186/s13071-016-1694-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/11/2016] [Indexed: 11/24/2022] Open
Abstract
Background Culex tritaeniorhynchus and Culex pipiens pallens are the major vectors of the Japanese encephalitis virus and Wuchereria bancrofti, the causative agent of filariasis. The knowledge of mitochondrial genomes has been widely useful for the studies on molecular evolution, phylogenetics and population genetics. Methods In this study, we sequenced and annotated the mitochondrial (mt) genomes of Cx. tritaeniorhynchus and Cx. p. pallens, and performed a comparative analysis including four known mt genomes of species of the subgenus Culex (Culex). The phylogenetic relationships of Cx. tritaeniorhynchus, Cx. p. pallens and four known Culex mt genome sequences were reconstructed by maximum likelihood based on concatenated protein-coding gene sequences. Results Culex tritaeniorhynchus and Cx. p. pallens mt genomes are 14,844 bp and 15,617 bp long, both consists of 13 PCGs, 22 tRNAs, 2 rRNAs and 1 CR (not sequenced for Cx. tritaeniorhynchus). The initiation and termination codons of PCGs are ATN and TAA, respectively, except for COI starting with TCG, and COI and COII terminated with T. tRNAs have the typical clover-leaf secondary structures except for trnS(AGN) that is lacking the DHU stem. 16S rRNA and 12S rRNA secondary structures were drawn for the first time for mosquito mt genomes. The control region of Cx. p. pallens mt genome is 747 bp long and with four tandem repeat structures. Phylogenetic analyses demonstrated that the mt genome of Cx. tritaeniorhynchus was significantly separated from the remaining five mt genomes of Culex spp. Culex p. pipiens, Cx. p. pallens and Cx. p. quinquefasciatus formed a monophyletic clade with Cx. p. quinquefasciatus linked in the middle of the clade, and Cx. p. pallens should have the same taxonomic level as Culex p. pipiens and Cx. p. quinquefasciatus. Conclusions The mt genomes of Cx. tritaeniorhynchus and Cx. p. pallens share the same gene composition and order with those of two other Culex species. Culex p. pallens of the Pipiens complex should have the same taxonomic level as Culex p. pipiens and Cx. p. quinquefasciatus investigated. We enriched the Culex mt genome data and provided a reference basis for further Culex mt genome sequencing and analyses. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1694-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian-Chun Luo
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - You-Jin Hao
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Fengxia Meng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Ting-Jing Li
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Yi-Ran Ding
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Ya-Qiong Hua
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Bin Chen
- Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
186
|
Katz MJ, Gándara L, De Lella Ezcurra AL, Wappner P. Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Cell Mol Life Sci 2016; 73:1881-93. [PMID: 26874685 PMCID: PMC11108485 DOI: 10.1007/s00018-016-2160-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/08/2023]
Abstract
Regulation of protein synthesis contributes to maintenance of homeostasis and adaptation to environmental changes. mRNA translation is controlled at various levels including initiation, elongation and termination, through post-transcriptional/translational modifications of components of the protein synthesis machinery. Recently, protein and RNA hydroxylation have emerged as important enzymatic modifications of tRNAs, elongation and termination factors, as well as ribosomal proteins. These modifications enable a correct STOP codon recognition, ensuring translational fidelity. Recent studies are starting to show that STOP codon read-through is related to the ability of the cell to cope with different types of stress, such as oxidative and chemical insults, while correlations between defects in hydroxylation of protein synthesis components and STOP codon read-through are beginning to emerge. In this review we will discuss our current knowledge of protein synthesis regulation through hydroxylation of components of the translation machinery, with special focus on STOP codon recognition. We speculate on the possibility that programmed STOP codon read-through, modulated by hydroxylation of components of the protein synthesis machinery, is part of a concerted cellular response to stress.
Collapse
Affiliation(s)
- M J Katz
- Instituto Leloir, Buenos Aires, Argentina
| | - L Gándara
- Instituto Leloir, Buenos Aires, Argentina
| | | | - P Wappner
- Instituto Leloir, Buenos Aires, Argentina.
- Departamento de Fisiología, Biología Molecular, y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
187
|
Roßmanith J, Narberhaus F. Exploring the modular nature of riboswitches and RNA thermometers. Nucleic Acids Res 2016; 44:5410-23. [PMID: 27060146 PMCID: PMC4914106 DOI: 10.1093/nar/gkw232] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/28/2016] [Indexed: 01/20/2023] Open
Abstract
Natural regulatory RNAs like riboswitches and RNA thermometers (RNAT) have considerable potential in synthetic biology. They are located in the 5′ untranslated region (UTR) of bacterial mRNAs and sense small molecules or changes in temperature, respectively. While riboswitches act on the level of transcription, translation or mRNA stability, all currently known RNATs regulate translation initiation. In this study, we explored the modularity of riboswitches and RNATs and obtained regulatory devices with novel functionalities. In a first approach, we established three riboswitch-RNAT systems conferring dual regulation of transcription and translation depending on the two triggers ligand binding and temperature sensing. These consecutive fusions control gene expression in vivo and can even orchestrate complex cellular behavior. In another approach, we designed two temperature-controlled riboswitches by the integration of an RNAT into a riboswitch aptamer domain. These ‘thermoswitches’ respond to the cognate ligand at low temperatures and are turned into a continuous on-state by a temperature upshift. They represent the first RNATs taking control of transcription. Overall, this study demonstrates that riboswitches and RNATs are ideal for engineering synthetic RNA regulators due to their modular behavior.
Collapse
Affiliation(s)
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
188
|
Zhang L, Yang CS, Varelas X, Monti S. Altered RNA editing in 3' UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors. Sci Rep 2016; 6:23226. [PMID: 26980570 PMCID: PMC4793219 DOI: 10.1038/srep23226] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/02/2016] [Indexed: 12/22/2022] Open
Abstract
RNA editing is a molecular event that alters specific nucleotides in RNA post-transcriptionally. RNA editing has the potential to impact a variety of cellular processes and is implicated in diseases such as cancer. Yet, the precise mechanisms by which RNA editing controls cellular processes are poorly understood. Here, we characterize sequences altered by RNA editing in patient samples from lymphoma, neuroblastoma and head and neck cancers. We show that A-to-I RNA editing sites are highly conserved across samples of the same tissue type and that most editing sites identified in tumors are also detectable in normal tissues. Next, we identify the significant changes in editing levels of known sites between tumor and paired "normal" tissues across 14 cancer types (627 pairs) from The Cancer Genome Atlas project and show that the complexity of RNA editing regulation cannot be captured by the activity of ADAR family genes alone. Our pan-cancer analysis confirms previous results on individual tumor types and suggests that changes of RNA editing levels in coding and 3'UTR regions could be a general mechanism to promote tumor growth. We also propose a model explaining how altered RNA editing levels affect microRNA-mediated post-transcriptional regulation of oncogenes and tumor-suppressors.
Collapse
Affiliation(s)
- Liye Zhang
- Computational Biomedicine, Boston University School of Medicine, Boston, 02118, MA, US
| | - Chih-Sheng Yang
- Department of Biochemistry, Boston University School of Medicine, Boston, 02118, MA, US
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, 02118, MA, US
| | - Stefano Monti
- Computational Biomedicine, Boston University School of Medicine, Boston, 02118, MA, US
| |
Collapse
|
189
|
Pai J, Hyun S, Hyun JY, Park SH, Kim WJ, Bae SH, Kim NK, Yu J, Shin I. Screening of Pre-miRNA-155 Binding Peptides for Apoptosis Inducing Activity Using Peptide Microarrays. J Am Chem Soc 2016; 138:857-67. [PMID: 26771315 DOI: 10.1021/jacs.5b09216] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNA-155, one of the most potent miRNAs that suppress apoptosis in human cancer, is overexpressed in numerous cancers, and it displays oncogenic activity. Peptide microarrays, constructed by immobilizing 185 peptides containing the C-terminal hydrazide onto epoxide-derivatized glass slides, were employed to evaluate peptide binding properties of pre-miRNA-155 and to identify its binding peptides. Two peptides, which were identified based on the results of peptide microarray and in vitro Dicer inhibition studies, were found to inhibit generation of mature miRNA-155 catalyzed by Dicer and to enhance expression of miRNA-155 target genes in cells. In addition, the results of cell experiments indicate that peptide inhibitors promote apoptotic cell death via a caspase-dependent pathway. Finally, observations made in NMR and molecular modeling studies suggest that a peptide inhibitor preferentially binds to the upper bulge and apical stem-loop region of pre-miRNA-155, thereby suppressing Dicer-mediated miRNA-155 processing.
Collapse
Affiliation(s)
- Jaeyoung Pai
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Soonsil Hyun
- Department of Chemistry and Education, Seoul National University , Seoul 08826, Korea
| | - Ji Young Hyun
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Seong-Hyun Park
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Won-Je Kim
- Advanced Analysis Center, Korea Institute of Science and Technology , Seoul 02792, Korea
| | - Sung-Hun Bae
- CKD Research Institute , 315-20, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17006, Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology , Seoul 02792, Korea
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University , Seoul 08826, Korea
| | - Injae Shin
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
190
|
Li G, Shen H, Zhang D, Li Y, Wang H. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials. J Chem Theory Comput 2016; 12:676-93. [PMID: 26717419 DOI: 10.1021/acs.jctc.5b00903] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this work, we attempt to apply a coarse-grained (CG) model, which is based on anisotropic Gay-Berne and electric multipole (EMP) potentials, to the modeling of nucleic acids. First, a comparison has been made between the CG and atomistic models (AMBER point-charge model) in the modeling of DNA and RNA hairpin structures. The CG results have demonstrated a good quality in maintaining the nucleic acid hairpin structures, in reproducing the dynamics of backbone atoms of nucleic acids, and in describing the hydrogen-bonding interactions between nucleic acid base pairs. Second, the CG and atomistic AMBER models yield comparable results in modeling double-stranded DNA and RNA molecules. It is encouraging that our CG model is capable of reproducing many elastic features of nucleic acid base pairs in terms of the distributions of the interbase pair step parameters (such as shift, slide, tilt, and twist) and the intrabase pair parameters (such as buckle, propeller, shear, and stretch). Finally, The GBEMP model has shown a promising ability to predict the melting temperatures of DNA duplexes with different lengths.
Collapse
Affiliation(s)
- Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, Liaoning Province, People's Republic of China
| | - Hujun Shen
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, Liaoning Province, People's Republic of China
| | - Dinglin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, Liaoning Province, People's Republic of China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, Liaoning Province, People's Republic of China
| | - Honglei Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, Liaoning Province, People's Republic of China
| |
Collapse
|
191
|
Batey RT, Kieft JS. Soaking Hexammine Cations into RNA Crystals to Obtain Derivatives for Phasing Diffraction Data. Methods Mol Biol 2016; 1320:219-32. [PMID: 26227046 DOI: 10.1007/978-1-4939-2763-0_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solving a novel RNA structure by x-ray crystallography requires a means to obtain initial phase estimates. This is a challenge because many of the tools available for solving protein structures are not available for RNA. We have developed a reliable means to use hexammine cations to address this challenge. The process involves engineering the RNA to introduce a reliable hexammine binding site into the structure, then soaking crystals of these RNAs with an iridium (III) or cobalt (III) compound in a "directed soaking" strategy. Diffraction data obtained from these crystals then can be used in SAD or MAD phasing. In many cases, suitable derivatives can be obtained by soaking the hexammine into RNA crystals that have not been engineered. Considerations for using this method and example protocols are presented.
Collapse
Affiliation(s)
- Robert T Batey
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 596 UCB, Boulder, CO, 80309, USA,
| | | |
Collapse
|
192
|
Amarante TD, Weber G. Evaluating Hydrogen Bonds and Base Stacking of Single, Tandem and Terminal GU Mismatches in RNA with a Mesoscopic Model. J Chem Inf Model 2015; 56:101-9. [DOI: 10.1021/acs.jcim.5b00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tauanne D. Amarante
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte-MG, Brazil
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo
Horizonte-MG, Brazil
| |
Collapse
|
193
|
Jain N, Morgan CE, Rife BD, Salemi M, Tolbert BS. Solution Structure of the HIV-1 Intron Splicing Silencer and Its Interactions with the UP1 Domain of Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A1. J Biol Chem 2015; 291:2331-44. [PMID: 26607354 DOI: 10.1074/jbc.m115.674564] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 12/11/2022] Open
Abstract
Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3' acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.
Collapse
Affiliation(s)
- Niyati Jain
- From the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078 and
| | - Christopher E Morgan
- From the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078 and
| | - Brittany D Rife
- Department of Pathology, Immunology, and Laboratory of Medicine, College of Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610-3633
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory of Medicine, College of Medicine and Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32610-3633
| | - Blanton S Tolbert
- From the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078 and
| |
Collapse
|
194
|
Sripathi KN, Banáš P, Réblová K, Šponer J, Otyepka M, Walter NG. Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Phys Chem Chem Phys 2015; 17:5887-900. [PMID: 25631765 DOI: 10.1039/c4cp05083e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.
Collapse
Affiliation(s)
- Kamali N Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | | | | | |
Collapse
|
195
|
Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ, Guo P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY 2015; 10:631-655. [PMID: 26770259 PMCID: PMC4707685 DOI: 10.1016/j.nantod.2015.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.
Collapse
Affiliation(s)
- Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Taek Lee
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fengmei Pi
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Xu
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chan Li
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
196
|
Androsavich JR, Sobczynski DJ, Liu X, Pandya S, Kaimal V, Owen T, Liu K, MacKenna DA, Chau BN. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs. Nucleic Acids Res 2015; 44:e13. [PMID: 26384419 PMCID: PMC4737174 DOI: 10.1093/nar/gkv893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/25/2015] [Indexed: 11/15/2022] Open
Abstract
Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method--miRNA Polysome Shift Assay (miPSA)--for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used 'RT-interference' approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences.
Collapse
Affiliation(s)
- John R Androsavich
- Regulus Therapeutics Inc., 3545 John Hopkins Ct, San Diego, CA 92121, USA
| | - Daniel J Sobczynski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xueqing Liu
- Regulus Therapeutics Inc., 3545 John Hopkins Ct, San Diego, CA 92121, USA
| | - Shweta Pandya
- Regulus Therapeutics Inc., 3545 John Hopkins Ct, San Diego, CA 92121, USA
| | - Vivek Kaimal
- Regulus Therapeutics Inc., 3545 John Hopkins Ct, San Diego, CA 92121, USA
| | - Tate Owen
- Regulus Therapeutics Inc., 3545 John Hopkins Ct, San Diego, CA 92121, USA
| | - Kai Liu
- Regulus Therapeutics Inc., 3545 John Hopkins Ct, San Diego, CA 92121, USA
| | - Deidre A MacKenna
- Regulus Therapeutics Inc., 3545 John Hopkins Ct, San Diego, CA 92121, USA
| | - B Nelson Chau
- Regulus Therapeutics Inc., 3545 John Hopkins Ct, San Diego, CA 92121, USA
| |
Collapse
|
197
|
Maggi N, Ruggiero C, Arrigo P. Prediction of potential barcoding sites on ITS1 by wavelet transform. J Biomol Struct Dyn 2015; 34:814-23. [PMID: 26183584 DOI: 10.1080/07391102.2015.1056550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
For sustainable development, biodiversity conservation and life-quality improvement must be simultaneously considered. Molecular techniques have greatly impacted biotechnology. These methods have, in particular, improved the capability to investigate the fine differences among organisms and, as a consequence, to better investigate the effects on environmental factors on them. We propose an approach to support the optimal selection of molecular probes for barcoding application in many biotechnological fields. The aim of our work is specificity maximization. To this purpose, we have integrated a filter system based on wavelet transforms with biological knowledge about the sequence proneness to mutation and post-translational modification. Specifically, we have tested the proposed method on ITS1 sequences that are a region of the rRNA locus. Our analysis has shown the presence of other local relative stable conformations in addition to known cleavage site. Their characteristics differ within the group of mammals selected for our analysis. These variations could be used to design new species-specific barcoding probes or other quick molecular screening tools.
Collapse
Affiliation(s)
| | | | - Patrizio Arrigo
- b ISMAC - National Research Council (CNR) , via de Marini, 6, Genoa , Italy
| |
Collapse
|
198
|
Yoon KB, Cho CU, Park YC. The mitochondrial genome of the Saunders's gull Chroicocephalus saundersi (Charadriiformes: Laridae) and a higher phylogeny of shorebirds (Charadriiformes). Gene 2015; 572:227-36. [PMID: 26165451 DOI: 10.1016/j.gene.2015.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 06/20/2015] [Accepted: 07/07/2015] [Indexed: 01/22/2023]
Abstract
The complete mitogenome of Chroicocephalus saundersi was characterized and compared with the 6 published Charadriiformes mitogenomes. The mitogenome of C. saundersi is a closed circular molecule 16,739 bp in size, and contains 37 genes and a control region. The AT and GC skews are positive and negative, respectively, and in agreement with those of the other Charadriiformes mitogenomes. The mitogenome of C. saundersi contains 3 start codons (ATG, GTG, and ATT), 4 stop codons (TAA, TAG, AGG, and AGA), and an incomplete stop codon (T-) in 13 PCGs. A codon usage analysis of all available Charadriiformes mitogenomes showed that the ATG (78%) and TAA (50.5%) were the most common start codon and stop codon, respectively. An unusual start codon, ATT, is commonly found in the ND3s of Charadriiformes mitogenomes, whereas the more common start codons, ATC and ATA, are rarely found. In all the Laridae species, one extra cytosine was inserted at position 174 in ND3. The control region of C. saundersi is 1180-bp long, with a nucleotide composition of 30.2% A, 28.6% T, 27.3% C, and 14.0% G. Variable numbers of tandem repeats (VNTRs) with nine copies of the 10 bp repeat sequence (AACAACAAAC) are found within the CSB domain of the control region. The ML/BI analyses, based on the amino acids of the 13 mitochondrial PCGs, strongly support the monophyly of the order Charadriiformes, with the suborder Lari considered sister to the Scolopaci, which is in turn a sister group to the suborder Charadrii.
Collapse
Affiliation(s)
- Kwang Bae Yoon
- Division of Forest Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Chea Un Cho
- Species Restoration Technology Institute, Korea National Park Service, Inje 252-829, Republic of Korea
| | - Yung Chul Park
- Division of Forest Science, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
199
|
Abstract
RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this Review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate the study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics.
Collapse
Affiliation(s)
- Viachaslau Bernat
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
200
|
Scott LG, Hennig M. ¹⁹F-Site-Specific-Labeled Nucleotides for Nucleic Acid Structural Analysis by NMR. Methods Enzymol 2015; 566:59-87. [PMID: 26791976 DOI: 10.1016/bs.mie.2015.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Naturally occurring RNA lacks fluorine-19 ((19)F), thus, their specifically fluorinated counterparts are particularly well suited to noninvasively monitoring the dynamic conformational properties and ligand-binding interactions of the RNA. For nuclear magnetic resonance (NMR) spectroscopy, (19)F-NMR of fluorine-substituted RNA provides an attractive, site-specific probe for structure determination in solution. Advantages of (19)F include high NMR sensitivity (83% of (1)H), high natural abundance (100%), and the extreme sensitivity of (19)F to the chemical environment leading to a large range of chemical shifts. The preparation of base-substituted 2-fluoropurine and 5-fluoropyrimidine 5'-triphosphates (2F-ATP/5F-CTP/5F-UTP) can be carried out using efficient enzymatic synthesis methods. Both pyrimidine analogs, 5-fluorouridine and 5-fluorocytidine, as well as, 2-fluoroadenosine are readily incorporated into RNA transcribed in vitro using T7 RNA polymerase.
Collapse
Affiliation(s)
| | - Mirko Hennig
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.
| |
Collapse
|