151
|
Pei XH, Xiong Y. Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 2005; 24:2787-95. [PMID: 15838515 DOI: 10.1038/sj.onc.1208611] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p21 and p16, first identified as two small molecular weight proteins in CDK and cyclin immunocomplexes, represent two distinct families constituting a total of seven CDK inhibitors in mammalian cells. The physiological functions of these genes are believed to be broadly involved in connecting various cellular pathways to cell cycle control. Extensive studies over the past 10 years have led to a fairly clear understanding of their biochemical and cellular mechanisms and have also left some unresolved and controversial issues.
Collapse
Affiliation(s)
- Xin-Hai Pei
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
152
|
Damo LA, Snyder PW, Franklin DS. Tumorigenesis in p27/p53- and p18/p53-double null mice: functional collaboration between the pRb and p53 pathways. Mol Carcinog 2005; 42:109-20. [PMID: 15584024 DOI: 10.1002/mc.20068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mice lacking both p18(Ink4c) and p27(Kip1) develop a tumor spectrum similar to pRb(+/-) mice, and loss of p53 function accelerates tumorigenesis in pRb(+/-) mice. We hypothesized that codeletion of either p18 or p27 in conjunction with p53 deletion will also accelerate tumorigenesis. Mice lacking both p18 and p53 develop several tumors not reported in either single null genotype, including hepatocellular carcinoma, testicular choriocarcinoma, hemangiosarcoma, leiomyosarcoma, fibrosarcoma, and osteosarcoma. Mice lacking both p27 and p53 exhibit a decreased lifespan and develop unique tumors, including papillary carcinoma of the colon, hemangiosarcoma, and leiomyosarcoma. In both p18/p53 and p27/p53 double null genotypes, the incidence and spectra of tissues that develop lymphoma are also increased, as compared to the single null genotypes. The development of p27/p53 double null colon tumors correlates with secondary changes in cell-cycle protein expression and CDK (cyclin-dependent kinase) activity, perhaps contributing to the progression of colorectal cancer. We concluded that p18 and p27 can, not only functionally collaborate with one another, but also can independently collaborate with p53 to modulate the cell cycle and suppress tumorigenesis in a tissue-specific manner.
Collapse
Affiliation(s)
- Lorna A Damo
- Department of Biological Sciences, Purdue University, 201 South University Street, West Lafayette, IN 47097-1392, USA
| | | | | |
Collapse
|
153
|
Huang X, Di Liberto M, Cunningham AF, Kang L, Cheng S, Ely S, Liou HC, Maclennan ICM, Chen-Kiang S. Homeostatic cell-cycle control by BLyS: Induction of cell-cycle entry but not G1/S transition in opposition to p18INK4c and p27Kip1. Proc Natl Acad Sci U S A 2004; 101:17789-94. [PMID: 15591344 PMCID: PMC535425 DOI: 10.1073/pnas.0406111101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-cycle entry is critical for homeostatic control in physiologic response of higher organisms but is not well understood. The antibody response begins with induction of naive mature B cells, which are naturally arrested in G(0)/G(1) phase of the cell cycle, to enter the cell cycle in response to antigen and cytokine. BLyS (BAFF), a cytokine essential for mature B cell development and survival, is thought to act mainly by attenuation of apoptosis. Here, we show that BLyS alone induces cell-cycle entry and early G(1) cell-cycle progression, but not S-phase entry, in opposition to the cyclin-dependent kinase inhibitors p18(INK4c). Independent of its survival function, BLyS enhances the synthesis of cyclin D2, in part through activation of NF-kappaB, as well as CDK4 and retinoblastoma protein phosphorylation. By convergent activation of the same cell-cycle regulators in opposition to p18(INK4c), B cell receptor signaling induces cell-cycle entry and G(1) progression in synergy with BLyS, but also DNA replication. The failure of BLyS to induce S-phase cell-cycle entry lies in its inability to increase cyclin E and reduce p27(Kip1) expression. Antagonistic cell-cycle regulation by BLyS and p18(INK4c) is functionally linked to apoptotic control and conserved from B cell activation in vitro to antibody response in vivo, further indicating a physiologic role in homeostasis.
Collapse
Affiliation(s)
- Xiangao Huang
- Department of Pathology and Graduate Program in Immunology and Microbial Pathogenesis, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Matheu A, Pantoja C, Efeyan A, Criado LM, Martín-Caballero J, Flores JM, Klatt P, Serrano M. Increased gene dosage of Ink4a/Arf results in cancer resistance and normal aging. Genes Dev 2004; 18:2736-46. [PMID: 15520276 PMCID: PMC528894 DOI: 10.1101/gad.310304] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mammalian genes frequently present allelic variants that differ in their expression levels and that, in the case of tumor suppressor genes, can be of relevance for cancer susceptibility and aging. We report here the characterization of a novel mouse model with increased activity for the Ink4a and Arf tumor suppressors. We have generated a "super Ink4a/Arf" mouse strain carrying a transgenic copy of the entire Ink4a/Arf locus. Cells derived from super Ink4a/Arf mice have increased resistance to in vitro immortalization and oncogenic transformation. Importantly, super Ink4a/Arf mice manifest higher resistance to cancer compared to normal, nontransgenic, mice. Finally, super Ink4a/Arf mice have normal aging and lifespan. Together, these results indicate that modest increases in the activity of the Ink4a/Arf tumor suppressor result in a beneficial cancer-resistant phenotype without affecting normal viability or aging.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Animals
- Carcinogens/toxicity
- Cell Survival
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Cellular Senescence
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/physiology
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Dosage
- Genes, Tumor Suppressor
- Heterozygote
- Homozygote
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/prevention & control
Collapse
Affiliation(s)
- Ander Matheu
- Spanish National Cancer Center (CNIO), Madrid E-28029, Spain
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
The mammalian INK4a/ARF locus encodes two linked tumor suppressor proteins, p16INK4a and ARF, which respectively regulate the retinoblastoma (RB) and p53 pathways. Genetic data have firmly established that both proteins possess significant in vivo tumor suppressor activity. In addition to their non-overlapping roles in preventing cancer, one or both proteins are induced under certain circumstances in most cultured murine and human cell types, and thereby are critical effectors of senescence. Likewise, data from murine models have suggested that this anti-cancer growth inhibitory activity of the locus can similarly affect permanent growth arrest in vivo. When such in vivo senescence occurs in a cell possessing self-renewal potential (e.g. a tissue stem cell), there is an attendant decline in the regenerative capabilities of the organ maintained by that stem cell. In turn, the concomitant decline of this stem cell reserve is a cardinal feature of mammalian aging. Expression of the INK4a/ARF locus, therefore, appears not only to be a major suppressor of cancer, but also an effector of mammalian aging.
Collapse
Affiliation(s)
- Norman E Sharpless
- Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center, The University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
156
|
Abstract
Emerging data suggest that stem cells may be one of the key elements in normal tissue regeneration and cancer development, although they are not necessarily the same entity in both scenarios. As extensively demonstrated in the hematopoietic system, stem cell repopulation is hierarchically organized and is intrinsically limited by the intracellular cell cycle inhibitors. Their inhibitory effects appear to be highly associated with the differentiation stage in stem/progenitor pools. While this negative regulation is important for maintaining homeostasis, especially at the stem cell level under physiological cues or pathological insults, it constrains the therapeutic use of adult stem cells in vitro and restricts endogenous tissue repair after injury. On the other hand, disruption of cell cycle inhibition may contribute to the formation of the so-called 'tumor stem cells' (TSCs) that are currently hypothesized to be partially responsible for tumorigenesis and recurrence of cancer after conventional therapies. Therefore, understanding how cell cycle inhibitors control stem cells may offer new strategies not only for therapeutic manipulations of normal stem cells but also for novel therapies selectively targeting TSCs.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, PA 15213, USA.
| |
Collapse
|
157
|
Li G, Domenico J, Lucas JJ, Gelfand EW. Identification of multiple cell cycle regulatory functions of p57Kip2 in human T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:2383-91. [PMID: 15294951 DOI: 10.4049/jimmunol.173.4.2383] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The specific functions of p57(Kip2) in lymphocytes have not yet been fully elucidated. In this study, it is shown that p57(Kip2), which is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors, is present in the nuclei of normal resting (G(0)) T cells from peripheral blood and in the nuclei of the T cell-derived Jurkat cell line. Activation through the TCR results in rapid transport of cytoplasmic cyclin-dependent kinase 6 (cdk6) to nuclei, where it associates with cyclin D and p57(Kip2) in active enzyme complexes. Using purified recombinant proteins, it was shown in vitro that addition of p57(Kip2) protein to a mixture of cyclin D2 and cdk6 enhanced the association of the latter two proteins and resulted in phosphorylation of p57(Kip2). To probe further the function of p57(Kip2), Jurkat cells stably transfected with a plasmid encoding p57(Kip2) under control of an inducible (tetracycline) promoter were made. Induction of p57(Kip2) resulted in increased association of cdk6 with cyclin D3, without receptor-mediated T cell stimulation. The overall amounts of cdk6 and cyclin D3, and also of cdk4 and cyclin E, remained unchanged. Most notably, increased p57(Kip2) levels resulted in marked inhibition of both cyclin E- and cyclin A-associated cdk2 kinase activities and a decrease in cyclin A amounts. Therefore, although facilitating activation of cdk6, the ultimate outcome of p57(Kip2) induction was a decrease in DNA synthesis and cell proliferation. The results indicate that p57(Kip2) is involved in the regulation of several aspects of the T cell cycle.
Collapse
Affiliation(s)
- Guiming Li
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
158
|
Wolfraim LA, Walz TM, James Z, Fernandez T, Letterio JJ. p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-beta-mediated G1 arrest through modulation of IL-2 responsiveness. THE JOURNAL OF IMMUNOLOGY 2004; 173:3093-102. [PMID: 15322169 DOI: 10.4049/jimmunol.173.5.3093] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Induction of G(1) arrest by TGF-beta correlates with the regulation of p21(Cip1) and p27(Kip1), members of the Cip/Kip family of cyclin-dependent kinase inhibitors (cki). However, no definitive evidence exists that these proteins play a causal role in TGF-beta(1)-induced growth arrest in lymphocytes. In this report we show the suppression of cell cycle progression by TGF-beta is diminished in T cells from mice deficient for both p21(Cip1) and p27(Kip1) (double-knockout (DKO)) only when activated under conditions of optimal costimulation. Although there is an IL-2-dependent enhanced proliferation of CD8(+) T cells from DKO mice, TGF-beta is able to maximally suppress the proliferation of DKO T cells when activated under conditions of low costimulatory strength. We also show that the induction of p15(Ink4b) in T cells stimulated in the presence of TGF-beta is not essential, as TGF-beta also efficiently suppressed proliferation of T cells from p15(Ink4b-/-) mice. Finally, although these cki are dispensable for the suppression of T cell proliferation by TGF-beta, we now describe a Smad3-dependent down-regulation of cdk4, suggesting a potential mechanism underlying to resistance of Smad3(-/-) T cells to the induction of growth arrest by TGF-beta. In summary, the growth suppressive effects of TGF-beta in naive T cells are a function of the strength of costimulation, and alterations in the expression of cki modify the sensitivity to TGF-beta by lowering thresholds for a maximal mitogenic response.
Collapse
Affiliation(s)
- Lawrence A Wolfraim
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
159
|
Morishita A, Masaki T, Yoshiji H, Nakai S, Ogi T, Miyauchi Y, Yoshida S, Funaki T, Uchida N, Kita Y, Funakoshi F, Usuki H, Okada S, Izuishi K, Watanabe S, Kurokohchi K, Kuriyama S. Reduced expression of cell cycle regulator p18(INK4C) in human hepatocellular carcinoma. Hepatology 2004; 40:677-86. [PMID: 15349907 DOI: 10.1002/hep.20337] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclins, cyclin-dependent kinases (Cdks), and Cdk inhibitors (CdkIs) are frequently altered in human cancer. p18INK4C, a member of the INK4 family of CdkIs, is a potential tumor-suppressor gene product. However, the expression of p18INK4C in hepatocellular carcinoma (HCC) remains unknown. The aim of this study was to examine the expression of p18INK4C in various liver diseases including HCC and to assess its clinical significance in HCC. To that end, we examined the expression of p18INK4C by immunohistochemistry in various liver diseases, including 51 HCCs, and also studied the relationship between p18INK4C expression, the phosphorylation of retinoblastoma protein (pRb), and the activity level of Cdk4 and Cdk6. Immunohistochemical analysis revealed the frequent loss of p18INK4C expression in HCC, especially in poorly differentiated HCC. The loss of p18INK4C expression was shown to be associated with a poor prognosis compared with that associated with p18INK4C- positivity. Further, the kinase activity of Cdk4 was found to be higher in p18INK4C-negative HCCs than in p18INK4C- positive HCCs. However, the level of Cdk6 activity was similar in the 2 groups of HCCs. In p18INK4C- positive HCCs, p18INK4C dominantly interacted with Cdk4 rather than with Cdk6. pRb phosphorylated at serine(Ser) 780 was detected more frequently in p18INK4C - negative than in p18INK4C - positive HCCs. In conclusion, the loss of p18INK4C expression may play a role in the differentiation and development of HCC through the up-regulation of Cdk4 activity.
Collapse
Affiliation(s)
- Asahiro Morishita
- Third Department of Internal Medicine, Kagawa Medical University, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Jiménez M, Pérez de Castro I, Benet M, García JF, Inghirami G, Pellicer A. TheRgrOncogene Induces Tumorigenesis in Transgenic Mice. Cancer Res 2004; 64:6041-9. [PMID: 15342385 DOI: 10.1158/0008-5472.can-03-3389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the oncogenic potential of Rgr in vivo, we have generated several transgenic Rgr mouse lines, which express the oncogene under the control of different promoters. These studies revealed that Rgr expression leads to the generation of various pathological alterations, including fibrosarcomas, when its transgenic expression is restricted to nonlymphoid tissues. Moreover, the overall incidence and latency of fibrosarcomas were substantially increased and shortened, respectively, in a p15INK4b-defective background. More importantly, we also have demonstrated that Rgr expression in thymocytes of transgenic mice induces severe alterations in the development of the thymocytes, which eventually lead to a high incidence of thymic lymphomas. This study demonstrates that oncogenic Rgr can induce expression of p15INK4b and, more importantly, that both Rgr and p15INK4b cooperate in the malignant phenotype in vivo. These findings provide new insights into the tumorigenic role of Rgr as a potent oncogene and show that p15INK4b can act as a tumor suppressor gene.
Collapse
Affiliation(s)
- María Jiménez
- Department of Pathology and New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
161
|
Carnero A, Beach DH. Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation. Oncogene 2004; 23:6006-11. [PMID: 15195145 DOI: 10.1038/sj.onc.1207839] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The absence of p21waf1 combined with an ectopic expression of c-myc prevents ras-induced senescence in mouse embryo fibroblasts. Extension of lifespan after c-myc transduction into p21-null cells was followed at later passages by apoptosis of a large fraction of c-myc-overexpressing p21-null cells. This apoptotic effect could be overridden by inactivation of the p53 tumor suppressor or oncogenic ras expression. Ras-induced inhibition of apoptosis is mediated by PI3K activation. These results suggest a functional relationship between ras and myc that may explain their oncogenic cooperation. The number of foci formed by myc+ras increased cooperatively in the absence of p21waf1. Thus, the reciprocal cooperation between myc and ras in a p21-null background during cellular immortalization lead to increased oncogenic cooperation between ras and myc.
Collapse
Affiliation(s)
- Amancio Carnero
- Experimental Therapeutics Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| | | |
Collapse
|
162
|
Pei XH, Bai F, Tsutsui T, Kiyokawa H, Xiong Y. Genetic evidence for functional dependency of p18Ink4c on Cdk4. Mol Cell Biol 2004; 24:6653-64. [PMID: 15254233 PMCID: PMC444851 DOI: 10.1128/mcb.24.15.6653-6664.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The INK4 family of cyclin-dependent kinase (CDK) inhibitors negatively regulates cyclin D-dependent CDK4 and CDK6 and induces the growth-suppressive function of Rb family proteins. Mutations in the Cdk4 gene conferring INK4 resistance are associated with familial and sporadic melanoma in humans and result in a wide spectrum of tumors in mice, suggesting that INK4 is a major regulator of CDK4. Mice lacking the Cdk4 gene exhibit various defects in many organs associated with hypocellularity, whereas loss of the p18(Ink4c) gene results in widespread hyperplasia and organomegaly. To genetically test the notion that the function of INK4 is dependent on CDK4, we generated p18; Cdk4 double-mutant mice and examined the organs and tissues which developed abnormalities when either gene is deleted. We show here that, in all organs we have examined, including pituitary, testis, pancreas, kidney, and adrenal gland, hyperproliferative phenotypes associated with p18 loss were canceled. The double-mutant mice exhibited phenotypes very close to or indistinguishable from that of Cdk4 single-mutant mice. Mice lacking p27(Kip1) develop widespread hyperplasia and organomegaly similar to those developed by p18-deficient mice. The p27; Cdk4 double-mutant mice, however, displayed phenotypes intermediate between those of p27 and Cdk4 single-mutant mice. These results provide genetic evidence that in mice p18(Ink4c) and p27(Kip1) mediate the transduction of different cell growth and proliferation signals to CDK4 and that p18(Ink4c) is functionally dependent on CDK4.
Collapse
Affiliation(s)
- Xin-Hai Pei
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | |
Collapse
|
163
|
Matsuzaki Y, Takaoka Y, Hitomi T, Nishino H, Sakai T. Activation of protein kinase C promotes human cancer cell growth through downregulation of p18INK4c. Oncogene 2004; 23:5409-14. [PMID: 15107819 DOI: 10.1038/sj.onc.1207702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
p18(INK4c), a member of INK4 family of cyclin-dependent kinase inhibitors, negatively regulates the cyclin D-cyclin-dependent kinase 4/6 complexes which promote G1/S transition by phosphorylating the retinoblastoma tumor-suppressor gene product. Several recent studies using p18(INK4c)-null mice revealed that the p18(INK4c) plays an important role in cell proliferation and tumor development. We report here that 12-O-tetradecanoylphorbol-13-acetate (TPA), widely used as a protein kinase C (PKC) activator, suppresses the expression of p18(INK4c) through its promoter, accompanied by the induction of human cancer cell growth. Reduction of p18(INK4c) using small interfering RNA (siRNA) also enhanced cell growth, suggesting that p18(INK4c) is a critical target of TPA. Ro 31-8425, a potent and highly specific PKC inhibitor abrogated the suppressive effect of TPA on p18(INK4c) gene expression. However, the expression of dominant-negative c-Jun (TAM-67) did not inhibit the action of TPA on p18(INK4c). These findings suggest that activation of PKC promotes human cancer cell growth through downregulation of p18(INK4c) in an AP-1 activation-independent manner. These results suggest that the accelerated cellular proliferation of some human tumors caused by enhanced PKC activity at least partially involves the suppression of p18(INK4c), which is a ubiquitously expressed cyclin-dependent kinase inhibitor.
Collapse
Affiliation(s)
- Youichirou Matsuzaki
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | |
Collapse
|
164
|
Hu MG, Hu GF, Kim Y, Tsuji T, McBride J, Hinds P, Wong DTW. Role of p12(CDK2-AP1) in transforming growth factor-beta1-mediated growth suppression. Cancer Res 2004; 64:490-9. [PMID: 14744761 DOI: 10.1158/0008-5472.can-03-2284] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p12(CDK2-AP1) (p12) is a growth suppressor isolated from normal keratinocytes. Ectopic expression of p12 in squamous carcinoma cells reversed the malignant phenotype of these cells, in part due an ability of p12 to bind to both DNA polymerase alpha/primase and to cyclin-dependent kinase 2 (CDK2), thereby inhibiting their activities. We report in this article that in normal epithelial cells, transforming growth factor beta1 (TGF-beta1) induces p12 expression transcriptionally, which, in turn, mediates the growth inhibitory activity of TGF-beta1. We created inducible p12 antisense HaCaT cell lines [ip12 (-) HaCaT] and showed that selective reduction of cellular p12 resulted in an increase in: (a) CDK2-associated kinase activity; (b) protein retinoblastoma (pRB) phosphorylation; and (c) [(3)H]thymidine incorporation, and partially reversed TGF-beta1-mediated inhibition of CDK2 kinase activity, pRB phosphorylation, and cell proliferation. Furthermore, we generated p12-deficient mouse oral keratinocytes (MOK(p12-/-)) and compared their growth characteristics and response to TGF-beta1 with that of wild-type mouse oral keratinocytes (MOK(WT)). Under normal culture conditions, the number of MOK(p12-/-) in S phase is 2-fold greater than that of MOK(WT). Concomitantly, fewer cells are in G(2) phase in MOK(p12-/-) than that in MOK(WT). Moreover, response to TGF-beta1-mediated growth suppression is compromised in MOK(p12-/-) cells. Mechanistic studies showed that MOK(p12-/-) have increased CDK2 activity and reduced sensitivity to inhibition by TGF-beta1. Collectively our data suggest that p12 plays a role in TGF-beta1-mediated growth suppression by modulating CDK2 activities and pRB phosphorylation.
Collapse
Affiliation(s)
- Miaofen G Hu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Sánchez-Aguilera A, Delgado J, Camacho FI, Sánchez-Beato M, Sánchez L, Montalbán C, Fresno MF, Martín C, Piris MA, García JF. Silencing of the p18INK4c gene by promoter hypermethylation in Reed-Sternberg cells in Hodgkin lymphomas. Blood 2004; 103:2351-7. [PMID: 14645011 DOI: 10.1182/blood-2003-07-2356] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
p18INK4c is a cyclin-dependent kinase (CDK) inhibitor that interferes with the Rb-kinase activity of CDK6/CDK4. Disruption of p18INK4c in mice impairs B-cell terminal differentiation and confers increased susceptibility to tumor development; however, alterations of p18INK4c in human tumors have rarely been described. We used a tissue-microarray approach to analyze p18INK4c expression in 316 Hodgkin lymphomas (HLs). Nearly half of the HL cases showed absence of p18INK4c protein expression by Reed-Sternberg (RS) cells, in contrast with the regular expression of p18INK4c in normal germinal center cells. To investigate the cause of p18INK4c repression in RS cells, the methylation status of the p18INK4c promoter was analyzed by methylation-specific polymerase chain reaction (PCR) and bisulfite sequencing. Hypermethylation of the p18INK4c promoter was detected in 2 of 4 HL-derived cell lines, but in none of 7 non-Hodgkin lymphoma (NHL)–derived cell lines. We also detected p18INK4c hypermethylation, associated with absence of protein expression, in 5 of 26 HL tumors. The correlation of p18INK4c immunostaining with the follow-up of the patients showed shorter overall survival in negative cases, independent of the International Prognostic Score. These findings suggest that p18INK4c may function as a tumor suppressor gene in HL, and its inactivation may contribute to the cell cycle deregulation and defective terminal differentiation characteristic of the RS cells.
Collapse
Affiliation(s)
- Abel Sánchez-Aguilera
- Lymphoma Group, Molecular Pathology Program, and the Immunohistochemistry and Histology Unit, Centro Nacional de Investigaciones Oncológicas, E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Schmidt M, Bies J, Tamura T, Ozato K, Wolff L. The interferon regulatory factor ICSBP/IRF-8 in combination with PU.1 up-regulates expression of tumor suppressor p15(Ink4b) in murine myeloid cells. Blood 2004; 103:4142-9. [PMID: 14976051 DOI: 10.1182/blood-2003-01-0285] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CDKN2B (INK4B), which encodes the cyclin-dependent kinase inhibitor p15(INK4b), is up-regulated by many cytokines found in hematopoietic environments in vivo. In human acute myeloid leukemias (AMLs), it is inactivated with high frequency. To gain insight into the regulatory pathways leading to the normal activation of p15(Ink4b) expression, we examined interferon beta (IFNbeta)-induced transcription. Using reporter gene assays in murine myeloid cells M1, we determined that a 328-bp fragment, located 117 to 443 bp upstream of the translation initiation site, was sufficient to activate transcription. Both the interferon consensus sequence-binding protein/interferon regulatory factor 8 (ICSBP/IRF-8) and PU.1 were able to increase transcription from this region. It was determined that both ICSBP and PU.1 must bind to DNA to form a stable PU.1/ICSBP binding complex. Interestingly, introduction of the ICSBP into ICSBP-null Tot2 cells led to a significant increase in p15(Ink4b) RNA expression. This regulation of the Ink4b promoter is apparently myeloid specific because both ICSBP and PU.1 are myeloid commitment factors. Importantly, this provides a mechanism to explain in part the tumor suppressor activity of ICSBP, since ICSBP-deficient mice develop a chronic myelogenous leukemia (CML)-like disease and a high percentage of human AML and CML lack ICSBP transcripts.
Collapse
Affiliation(s)
- Martina Schmidt
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | | | | | | | | |
Collapse
|
167
|
Malumbres M, Hunt SL, Sotillo R, Martín J, Odajima J, Martín A, Dubus P, Ortega S, Barbacid M. Driving the cell cycle to cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 532:1-11. [PMID: 12908544 DOI: 10.1007/978-1-4615-0081-0_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell cycle progression requires the co-ordinated activation of several kinases, some of which are activated upon the binding of a cyclin subunit. At least four of these so-called cyclin-dependent kinases, namely Cdk4, Cdk6, Cdk2 and Cdk1, have specific roles at particular stages of the cell cycle, including passage through the various cell cycle transitions and the response to specific checkpoints. Not surprisingly, most human tumors carry mutations that deregulate at least one of these kinases. To analyze their specific role in vivo, we are generating strains of gene-targeted mice carrying either activated or defective alleles of these Cdks. As an example, Cdk4 expression appears to be expendable in most cell types since mice lacking Cdk4 are viable. Yet, Cdk4 mutant mice are smaller in size and infertile (only partial infertility in males). In addition, Cdk4 defective mice develop insulin dependent diabetes early in life. However, the importance of these Cdks in tumor cell cycles is underscored by the phenotype of knock in mice where the normal Cdk4 gene has been replaced by a Cdk4 R24C (insensitive to INK inhibitors) mutant. These animals develop a wide spectrum of spontaneous tumors and are highly susceptible to specific carcinogenic treatments. These models are being used now to understand how deregulation of these Cdks leads to cancer development and will be a valuable tool to design and validate new therapeutic strategies against tumour development.
Collapse
Affiliation(s)
- Marcos Malumbres
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Wolff L, Garin MT, Koller R, Bies J, Liao W, Malumbres M, Tessarollo L, Powell D, Perella C. Hypermethylation of the Ink4b locus in murine myeloid leukemia and increased susceptibility to leukemia in p15(Ink4b)-deficient mice. Oncogene 2004; 22:9265-74. [PMID: 14681685 DOI: 10.1038/sj.onc.1207092] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Ink4b gene (Cdkn2b) encodes p15(Ink4b), a cyclin-dependent kinase inhibitor. It has been implicated in playing a role in the development of acute myeloid leukemia (AML) in man, since it is hypermethylated with high frequency. We provide evidence that the gene is a tumor suppressor for myeloid leukemia in mice. The evidence is twofold: (1) retrovirus-induced myeloid leukemias of the myelomonocytic phenotype were found to have hypermethylation of the 5' CpG island of the Ink4b gene, and this could be correlated with reduced mRNA expression, as demonstrated by TaqMan real-time PCR. p15(Ink4b) mRNA expression in a leukemia cell line, with hypermethylation at the locus, was induced following treatment with 5-aza-2'-deoxycytidine. (2) Targeted deletion of one allele in mice by removal of exon 2 increases their susceptibility to retrovirus-induced myeloid leukemia. Mice deficient in both alleles were not more susceptible to myeloid disease than those deficient in one allele, raising the possibility that there are opposing forces related to the development of myeloid leukemia in Ink4b null mice.
Collapse
Affiliation(s)
- Linda Wolff
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 2003; 109:80-8. [PMID: 14585279 DOI: 10.1016/s1521-6616(03)00208-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cancer is also an epigenetic disease. The main epigenetic modification in humans is DNA methylation. Transformed cells undergo a dramatic change in their DNA methylation patterns: certain CpG islands located in the promoter regions of tumor-suppressor genes become hypermethylated and the contiguous gene rests silenced and this phenomenon occurs in an overall genomic environment of DNA hypomethylation. The profile of CpG island hypermethylation in hematologic malignancies is an epigenetic signature unique for each subtype of leukemia or lymphoma. Although the most widely studied genes are the cell-cycle inhibitors p15INK4b and p16INK4a (specially in AML and ALL), the list of methylation-repressed genes in these neoplasms is expanding very rapidly, including MGMT, RARB2, CRBP1, SOCS-1, CDH1, DAPK1, and others. A necessary cross-talk between genetic alterations and DNA methylation exists: certain chromosomal translocations may induce hypermethylation, such as the PML-RARa, or attract methylation, such as BCR-ABL, but DNA hypomethylation can be the culprit behind the genesis of certain abnormal recombination events. From a translational standpoint, hypermethylation can be used as a marker of recurrent disease or progression, for example, in MDS, or response to chemotherapy, such as MGMT methylation in B-cell non-Hodgkin's lymphoma. Furthermore, promising studies using DNA demethylating agents and histone deacetylase inhibitors are underway to awake these dormant tumor-suppressor genes for a better treatment of the patient with a hematologic malignancy.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Laboratory, Spanish National Cancer Center (CNIO), Melchor Fernandez Almagro 3,28029 Madrid, Spain.
| |
Collapse
|
170
|
Langa F, Codony X, Tovar V, Lavado A, Giménez E, Cozar P, Cantero M, Dordal A, Hernández E, Pérez R, Monroy X, Zamanillo D, Guitart X, Montoliu L. Generation and phenotypic analysis of sigma receptor type I (sigma 1) knockout mice. Eur J Neurosci 2003; 18:2188-96. [PMID: 14622179 DOI: 10.1046/j.1460-9568.2003.02950.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sigma (sigma) sites are a type of nonopiate receptor whose role has been associated with several behaviours, including anxiety, depression, analgesia, learning processes and psychosis. Although there are several known sigma receptor types, only the type I receptor (sigma 1) has been cloned. To uncover the in vivo relevance of sigma-receptors, we have generated knockout mice for sigma 1. Despite the broad expression pattern found for the sigma 1-gene, homozygous mutant mice are viable, fertile and do not display any overt phenotype, compared with their wild-type litter-mates, in mixed genetic backgrounds. However, a significant decrease in the hypermotility response has been measured in knockout mice upon challenge with (+)SKF-10 047, in agreement with the involvement of sigma 1-receptors in the induction of psychostimulant actions. The activity of sigma 2-receptors seems to be unaffected in sigma 1-mutant mice. These knockout mice could contribute to better understand the in vivo role of sigma-receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antidepressive Agents/pharmacology
- Antipsychotic Agents/pharmacology
- Behavior, Animal
- Binding, Competitive
- Blotting, Northern/methods
- Blotting, Southern/methods
- Blotting, Western/methods
- Body Weight
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Endorphins/pharmacology
- Heterozygote
- Hyperkinesis/chemically induced
- Hyperkinesis/metabolism
- In Situ Hybridization/methods
- Mice
- Mice, Knockout
- Narcotic Antagonists/metabolism
- Oligonucleotides, Antisense/metabolism
- Pentazocine/metabolism
- Peptide Fragments/pharmacology
- Phenazocine/analogs & derivatives
- Phenazocine/pharmacology
- Phenotype
- Radioligand Assay/methods
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- Time Factors
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Francina Langa
- Centro Nacional de Biotechnología (CNB-CSIC), Department of Molecular and Cellular Biology, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Lübbert M. Gene silencing of the p15/INK4B cell-cycle inhibitor by hypermethylation: an early or later epigenetic alteration in myelodysplastic syndromes? Leukemia 2003; 17:1762-4. [PMID: 12970776 DOI: 10.1038/sj.leu.2403045] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- M Lübbert
- Department Internal Medicine I, Division of Hematology/Oncology, University of Freiburg Medical Center, Freiburg, Germany.
| |
Collapse
|
172
|
Ortega S, Prieto I, Odajima J, Martín A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 2003; 35:25-31. [PMID: 12923533 DOI: 10.1038/ng1232] [Citation(s) in RCA: 616] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 08/04/2003] [Indexed: 01/19/2023]
Abstract
We targeted the locus encoding the cyclin-dependent kinase 2 (CDK2) by homologous recombination in mouse embryonic stem (ES) cells. Embryonic fibroblasts lacking CDK2 proliferate normally and become immortal after continuous passage in culture. Elimination of a conditional Cdk2 allele in immortal cells does not have a significant effect on proliferation. Cdk2-/- mice are viable and survive for up to two years, indicating that CDK2 is also dispensable for proliferation and survival of most cell types. But CDK2 is essential for completion of prophase I during meiotic cell division in male and female germ cells, an unforeseen role for this cell cycle kinase.
Collapse
Affiliation(s)
- Sagrario Ortega
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Cell-cycle control is a major determinant of homeostasis during B-cell development, differentiation, and tumorigenesis. The generation of an antibody response requires activation and expansion of antigen-specific B cells and terminal differentiation of these cells into plasma cells. Plasma cells arrest in the G1 phase of the cell cycle, but the mechanism that underlies timely cell-cycle entry and exit in the humoral immune response is not known. The mammalian cell-cycle is regulated primarily at the G1 to S transition by the balance between positive regulators, the cyclin-dependent kinases (CDK) together with cyclins, and negative regulators, the CDK inhibitors. One such inhibitor, p18INK4c, has been shown to be required for cell-cycle termination and final differentiation of non-secreting plasmacytoid cells to antibody-secreting plasma cells. This finding provides the first direct evidence for cell-cycle control of B-cell immunity. It also raises important questions regarding cell-cycle control of cellular differentiation, apoptosis, and earlier steps of B-cell terminal differentiation. This article discusses the biochemical mechanism of cell-cycle control in the context of antibody response and plasma cell differentiation along with the role of cell-cycle dysregulation in the pathogenesis of multiple myeloma, the plasma cell cancer.
Collapse
Affiliation(s)
- Selina Chen-Kiang
- Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
174
|
Abstract
Therapeutic resistance and proclivity for metastasis are hallmarks of malignant melanoma. Genetic, epidemiological and genomic investigations are uncovering the spectrum of stereotypical mutations that are associated with melanoma and how these mutations relate to risk factors such as ultraviolet exposure. The ability to validate the pathogenetic relevance of these mutations in the mouse, coupled with advances in rational drug design, has generated optimism for the development of effective prevention programmes, diagnostic measures and targeted therapeutics in the near future.
Collapse
Affiliation(s)
- Lynda Chin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
175
|
Mitchell PJ, Perez-Nadales E, Malcolm DS, Lloyd AC. Dissecting the contribution of p16(INK4A) and the Rb family to the Ras transformed phenotype. Mol Cell Biol 2003; 23:2530-42. [PMID: 12640134 PMCID: PMC150721 DOI: 10.1128/mcb.23.7.2530-2542.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2002] [Revised: 09/11/2002] [Accepted: 12/19/2002] [Indexed: 12/26/2022] Open
Abstract
Although oncogenic Ras commonly contributes to the development of cancer, in normal primary cells it induces cell cycle arrest rather than transformation. Here we analyze the additional genetic changes required for Ras to promote cell cycle progression rather than arrest. We show that loss of p53 is sufficient for oncogenic Ras to stimulate proliferation in the absence of extrinsic mitogens in attached cells. However, surprisingly, we find that p53 loss is not sufficient for Ras to overcome anchorage dependence or contact inhibition. In contrast, expression of simian virus 40 (SV40) large T antigen (LT) allows Ras to overcome these additional cell cycle controls. Mutational analysis of SV40 LT shows that this action of SV40 LT depends on its ability to inactivate the retinoblastoma (Rb) family of proteins, in concert with the loss of p53. Importantly, we show that inactivation of the Rb family of proteins can be mimicked by loss of the cyclin-dependent kinase inhibitor p16(INK4A). p16(INK4A) is commonly lost in human tumors, but its contribution to the transformed phenotype is unknown. We demonstrate here a role for p16(INK4A) in the loss of cell cycle controls required for tumorigenesis and show how accumulating genetic changes cooperate and contribute to the transformed phenotype.
Collapse
Affiliation(s)
- Philip J Mitchell
- MRC Laboratory for Molecular Cell Biology and Department of Biochemistry, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
176
|
Wen-Sheng W. ERK signaling pathway is involved in p15INK4b/p16INK4a expression and HepG2 growth inhibition triggered by TPA and Saikosaponin a. Oncogene 2003; 22:955-63. [PMID: 12592382 DOI: 10.1038/sj.onc.1206237] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signal pathway mediating induction of p15(INK4b) and p16(INK4a) during HepG2 growth inhibition triggered by the phorbol ester tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) and the Chinese herb Saikosaponin a was investigated. Western blot of three activated forms of mitogen-activated protein kinase (MAPK) (p-ERK, p-JNK and p-p38) demonstrated that phosphorylation of ERK is dramatically induced (11.6-fold ) by TPA during 15 min to 1 h and significantly induced (2.5-fold) by Saikosaponin alpha at 30 min, whereas phosphorylation of JNK was induced only by TPA during 30 min to 1 h. Phosphorylation of p38 was not induced by either drug. During this period, phosphorylation of one of the downstream transcriptional factors of MAPK cascade, ATF2, was 3.2- and 2.0-fold induced by TPA and Saikosaponin a, respectively, whereas that of another transcriptional factor, c-jun, was induced by TPA only. On the other hand, expressions of proto-oncogene c-jun, junB and c-fos were induced by TPA and Saikosaponin a during 30 min to 6 h of treatment. Pretreatment of 20 microg/ml PD98059, an inhibitor of MEK which is the upstream kinase of ERK, prevents the TPA- and Saikosaponin a-triggered HepG2 growth inhibition by 50 and 30%, respectively, accompanied by a 50 - 85% decrease of the p15(INK4b)/p16(INK4a) RNAs and proteins induced by both drugs. Inductions of c-fos RNA by both drugs and c-jun phosphorylation by TPA were also significantly reduced by PD98059 pretreatment. In addition, AP-1 DNA-binding assay using nonisotopic capillary electrophoresis and laser-induced fluorescence (CE/LIF) demonstrated that the AP-1-related DNA-binding activity was significantly induced by TPA and Saikosaponin a, which can be reduced by PD98059 pretreatment. These results suggested that activation of ERK together with its downstream transcriptional machinery mediated p15(INK4b) and p16(INK4a) expression that led to HepG2 growth inhibition.
Collapse
MESH Headings
- Activating Transcription Factor 2
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Division/drug effects
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclin-Dependent Kinase Inhibitor p15
- Cyclin-Dependent Kinase Inhibitor p16/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Depression, Chemical
- Electrophoresis, Capillary
- Enzyme Induction/drug effects
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, fos/drug effects
- Genes, jun/drug effects
- Genes, p16/drug effects
- Humans
- JNK Mitogen-Activated Protein Kinases
- Liver Neoplasms/pathology
- MAP Kinase Kinase 1
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/biosynthesis
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/physiology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oleanolic Acid/analogs & derivatives
- Oleanolic Acid/pharmacology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-fos/biosynthesis
- Proto-Oncogene Proteins c-jun/biosynthesis
- Proto-Oncogene Proteins c-jun/genetics
- Saponins/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Time Factors
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Suppressor Proteins
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- Wu Wen-Sheng
- Department of Medical Technology, TZU CHI University, Hualien, Taiwan.
| |
Collapse
|
177
|
Bai F, Pei XH, Godfrey VL, Xiong Y. Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol 2003; 23:1269-77. [PMID: 12556487 PMCID: PMC141153 DOI: 10.1128/mcb.23.4.1269-1277.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Revised: 11/05/2002] [Accepted: 11/18/2002] [Indexed: 11/20/2022] Open
Abstract
The INK4 family of cyclin-dependent kinase (CDK) inhibitors negatively regulates cyclin D-dependent CDK4 and CDK6 and thereby retains the growth-suppressive function of Rb family proteins. Mutations in the CDK4 gene conferring INK4 resistance are associated with familial and sporadic melanoma in humans and result in a wide spectrum of tumors in mice. Whereas loss of function of other INK4 genes in mice leads to little or no tumor development, targeted deletion of p18(INK4c) causes spontaneous pituitary tumors and lymphoma late in life. Here we show that treatment of p18 null and heterozygous mice with a chemical carcinogen resulted in tumor development at an accelerated rate. The remaining wild-type allele of p18 was neither mutated nor silenced in tumors derived from heterozygotes. Hence, p18 is a haploinsufficient tumor suppressor in mice.
Collapse
Affiliation(s)
- Feng Bai
- Lineberger Comprehensive Cancer Center. Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | |
Collapse
|
178
|
Abstract
Apart from their coordinated inactivation by DNA tumor viral oncoproteins, the pRB and p53 tumor suppressor pathways were not known to be connected ten years ago. Within the last decade, our appreciation of how these pathways are interconnected has grown substantially. The checks and balances that exist between pRB and p53 involve the regulation of the G1/S transition and its checkpoints, and much of this is under the control of the E2F transcription factor family. Following DNA damage, the p53-dependent induction of p21CIP1 regulates cyclin E/Cdk2 and cyclin A/Cdk2 complexes both of which phosphorylate pRB, leading to E2F-mediated activation. Similarly, E2F1-dependent induction of p19ARF antagonizes the ability of mdm2 to degrade p53, leading to p53 stabilization and potentially p53-mediated apoptosis or cell cycle arrest. From the existing mouse models discussed above, we also know that proliferation, cell death and differentiation of distinct tissues are also intimately linked through entrance and exit from the cell cycle, and thus through pRB and p53 pathways. Virtually all human tumors deregulate either the pRB or p53 pathway, and often times both pathways simultaneously, which is critical for crippling cellular defense against neoplasia. The next decade of cancer research will likely see these two tumor suppressor pathways only merge even more.
Collapse
|
179
|
Blais A, Monté D, Pouliot F, Labrie C. Regulation of the human cyclin-dependent kinase inhibitor p18INK4c by the transcription factors E2F1 and Sp1. J Biol Chem 2002; 277:31679-93. [PMID: 12077144 DOI: 10.1074/jbc.m204554200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p18(INK4c) cyclin-dependent kinase inhibitor is an important regulator of cell cycle progression and cellular differentiation. We and others found that overexpressed E2F proteins up-regulate p18 expression. To better understand this phenomenon, we performed a functional analysis of the human p18 promoter. Deletion studies revealed that the E2F-responsive elements of the promoter are located within 131 bp upstream of the transcription start site. This region contains putative Sp1- and E2F-binding sites. Mutational inactivation of these elements revealed that the Sp1 sites were important for the basal activity of the promoter but could also mediate the effects of E2F1 on the p18 promoter. Moreover, we found that E2F1 and Sp1 can synergistically enhance the activity of the proximal p18 promoter. Gel shift analyses using p18 promoter-derived probes led to the identification of several multiprotein complexes that were found to contain different combinations of E2F proteins and/or Sp1. Recombinant E2F1 was also capable of binding to the E2F-binding sites. Chromatin immunoprecipitation experiments demonstrated that E2F1 and E2F4 associate with the p18 promoter in unperturbed cells. Based on these findings, we conclude that E2F proteins and Sp1 play an important role in the control of p18 expression.
Collapse
Affiliation(s)
- Alexandre Blais
- Molecular Endocrinology and Oncology Research Center, Centre Hospitalier de l'Université Laval Research Center, Centre Hospitalier Universitaire de Quebec, Sainte-Foy, G1V 4G2 Quebec, Canada
| | | | | | | |
Collapse
|
180
|
Tourigny MR, Ursini-Siegel J, Lee H, Toellner KM, Cunningham AF, Franklin DS, Ely S, Chen M, Qin XF, Xiong Y, MacLennan ICM, Chen-Kiang S. CDK inhibitor p18(INK4c) is required for the generation of functional plasma cells. Immunity 2002; 17:179-89. [PMID: 12196289 DOI: 10.1016/s1074-7613(02)00364-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B cell terminal differentiation is associated with the onset of high-level antibody secretion and cell cycle arrest. Here the cyclin-dependent kinase (CDK) inhibitor p18(INK4c) is shown to be required within B cells for both terminating cell proliferation and differentiation of functional plasma cells. In its absence, B cells hyperproliferate in germinal centers and extrafollicular foci in response to T-dependent antigens but serum antibody titers are severely reduced, despite unimpaired germinal center formation, class switch recombination, variable region-directed hypermutation, and differentiation to antibody-containing plasmacytoid cells. The novel link between cell cycle control and plasma cell differentiation may, at least in part, relate to p18(INK4c) inhibition of CDK6. Cell cycle arrest mediated by p18(INK4C) is therefore requisite for the generation of functional plasma cells.
Collapse
Affiliation(s)
- Michelle R Tourigny
- Department of Pathology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Moons DS, Jirawatnotai S, Parlow AF, Gibori G, Kineman RD, Kiyokawa H. Pituitary hypoplasia and lactotroph dysfunction in mice deficient for cyclin-dependent kinase-4. Endocrinology 2002; 143:3001-8. [PMID: 12130566 DOI: 10.1210/endo.143.8.8956] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lactotroph undergoes dynamic regulation of cell cycle progression during pregnancy, as well as throughout the development of the pituitary. We recently reported that female mice with targeted disruption of Cdk4, one of the G(1)-regulatory cyclin-dependent kinases, are unable to support embryo implantation because of defective progesterone secretion from the corpus luteum. In this study, we demonstrate that this phenotype is not attributable to a primary defect in the corpus luteum but is a consequence of defective prolactin (PRL) production caused by inappropriate development of the pituitary lactotroph population. Specifically, the pituitary of Cdk4-deficient mice is extremely hypoplastic. Lactotrophs and somatotrophs of prepubertal Cdk4-deficient mice were 80% decreased in number, relative to those in wild-type mice, whereas gonadotrophs were unaffected. Lactotrophs of Cdk4-deficient mice did not proliferate in response to estrogen administration, whereas estrogen could induce the expression of galanin, an estrogen-responsive factor required for lactotroph proliferation. The reduction in lactotroph numbers was reflected by markedly diminished serum PRL levels in both prepubertal and postcoital Cdk4-deficient mice. Administration of PRL, after mating, significantly increased serum progesterone levels and restored implantation in Cdk4-deficient female mice. These observations demonstrate that Cdk4 is required for normal proliferation of the lactotroph population.
Collapse
Affiliation(s)
- David S Moons
- Department of Molecular Genetics, University of Illinois College of Medicine, 900 S Ashland Avenue, Chicago, IL 60607-7170, USA
| | | | | | | | | | | |
Collapse
|
182
|
Abstract
Forty years after its discovery, replicative senescence remains a rich source of information about cell-cycle regulation and the progression from a normal to a transformed phenotype. Effectors of this growth-arrested state are being discovered at a great pace. This review discusses the latest findings on the players responsible for establishing replicative senescence, as well as the associated telomere shortening.
Collapse
Affiliation(s)
- Richard Marcotte
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Department of Medicine, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
183
|
Matsuzaki Y, Miyazawa K, Yokota T, Hitomi T, Yamagishi H, Sakai T. Molecular cloning and characterization of the human p19(INK4d) gene promoter. FEBS Lett 2002; 517:272-6. [PMID: 12062451 DOI: 10.1016/s0014-5793(02)02647-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
p19(INK4d), a member of the INK4 family of cyclin-dependent kinase (CDK) inhibitors, negatively regulates the cyclin D-CDK4/6 complexes, which promote G1/S transition by phosphorylating the retinoblastoma tumor-suppressor gene product. To investigate the mechanism of transcriptional regulation of the p19(INK4d) gene, we characterized the 5'-flanking region of the human p19(INK4d) gene. The cap-site hunting method revealed that the transcription starts at -16 nucleotide (nt) upstream of the initiation codon. The 5'-flanking region of the human p19(INK4d) gene was ligated to a luciferase reporter gene and possessed functional promoter activity. Luciferase assay with a series of truncated 5'-flanking regions indicated that the region from -81 to -2 nt could drive the transcription of the p19(INK4d) gene. Several Sp1 and activating protein 2 binding sites are located within the region from -81 to -2 nt. Mutation of the second Sp1 binding site from -33 to -25 nt decreased the promoter activity. Collectively, it was demonstrated that the human p19(INK4d) gene is under the control of TATA-less promoter and the Sp1 binding site is involved in the transcription.
Collapse
Affiliation(s)
- Youichirou Matsuzaki
- Department of Preventive Medicine, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
184
|
Abstract
Despite intensive research, the mechanisms by which deregulation of myc gene expression contributes to tumorigenesis are still not fully resolved and many aspects are still enigmatic. Several recent reviews, including one published in this series a few months ago, have summarized recent progress in our understanding of the biochemistry of Myc proteins [Eisenmann, Genes Dev. (2001) in press; Amati et al., Biochim. Biophys. Acta 1471 (2001) 135-145]. Also, the evidence documenting a central role of Myc proteins in human tumorigenesis has been extensively reviewed [Henriksson and Lüscher, Cancer Res. 68 (1996) 109-182]. In this article, we will argue that current progress allows us to present testable hypotheses on how Myc affects specific properties of transformed cells.
Collapse
Affiliation(s)
- Werner Lutz
- Institute for Molecular Biology and Tumor Research, University of Marburg, IMT, Mannkopff Str. 2, 35033, Marburg, Germany
| | | | | |
Collapse
|
185
|
Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1602:73-87. [PMID: 11960696 DOI: 10.1016/s0304-419x(02)00037-9] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Cyclin D-Cdk4,6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The components of this pathway are gene families with a high level of structural and functional redundancy and are expressed in an overlapping fashion in most tissues and cell types. Using classical transgenic technology as well as gene-targeting in ES cells, a series of mouse models have been developed to study the in vivo function of individual components of this pathway in both normal homeostasis and tumor development. These models have proven to be useful to define specific as well as redundant roles among members of these cell cycle regulatory gene families. This pathway is deregulated in the vast majority of human tumors by genetic and epigenetic alterations that target at least some of its key members such as Cyclin D1, Cdk4, INK4a and INK4b, pRb etc. As a consequence, some of these molecules are currently being considered as targets for cancer therapy, and several novel molecules, such as Cdk inhibitors, are under development as potential anti-cancer drugs.
Collapse
Affiliation(s)
- Sagrario Ortega
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | | | | |
Collapse
|
186
|
You MJ, Castrillon DH, Bastian BC, O'Hagan RC, Bosenberg MW, Parsons R, Chin L, DePinho RA. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci U S A 2002; 99:1455-60. [PMID: 11818530 PMCID: PMC122212 DOI: 10.1073/pnas.022632099] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dual inactivation of PTEN and INK4a/ARF tumor suppressor genes is a common feature observed in a broad spectrum of human cancer types. To validate functional collaboration between these genes in tumor suppression, we examined the biological consequences of Pten and/or Ink4a/Arf deficiency in cells and mice. Relative to single mutant controls, Ink4a/Arf-/-Pten+/- mouse embryonic fibroblast cultures exhibited faster rates of growth in reduced serum, grew to higher saturation densities, produced more colonies upon low density seeding, and showed increased susceptibility to transformation by oncogenic H-Ras. Ink4a/Arf deficiency reduced tumor-free survival and shortened the latency of neoplasias associated with Pten heterozygosity, specifically pheochromocytoma, prostatic intraepithelial neoplasia, and endometrial hyperplasia. Compound mutant mice also exhibited an expanded spectrum of tumor types including melanoma and squamous cell carcinoma. Functional synergy between Ink4a/Arf and Pten manifested most prominently in the development of pheochromocytoma, prompting an analysis of genes and loci implicated in this rare human neoplasm. The classical pheochromocytoma genes Ret, Vhl, and Nf-1 remained intact, a finding consistent with the intersection of these genes with pathways engaged by Pten and Ink4a/Arf. Notably, conventional and array-comparative genomic hybridization revealed frequent loss of distal mouse chromosome 4 in a region syntenic to human chromosome 1p that is implicated in human pheochromocytoma. This study provides genetic evidence of collaboration between Pten and Ink4a/Arf in constraining the growth and oncogenic transformation of cultured cells and in suppressing a wide spectrum of tumors in vivo.
Collapse
Affiliation(s)
- Mingjian James You
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
The development of cancer requires multiple genetic alterations perturbing distinct cellular pathways. In human cancers, these alterations often arise owing to mutations in tumor-suppressor genes whose normal function is to either inhibit the proliferation, apoptosis, or differentiation of cells, or maintain their genomic integrity. Mouse models for tumor suppressors frequently provide definitive evidence for the antitumorigenic functions of these genes. In addition, animal models permit the identification of previously unsuspected roles of these genes in development and differentiation. The availability of null and tissue-specific mouse mutants for tumor-suppressor genes has greatly facilitated our understanding of the mechanisms leading to cancer. In this review, we describe mouse models for tumor-suppressor genes.
Collapse
Affiliation(s)
- R Hakem
- Amgen Institute, Ontario Cancer Institute and the University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | | |
Collapse
|
188
|
Sotillo R, Dubus P, Martín J, Cueva EDL, Ortega S, Malumbres M, Barbacid M. Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J 2001; 20:6637-47. [PMID: 11726500 PMCID: PMC125323 DOI: 10.1093/emboj/20.23.6637] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have introduced a point mutation in the first coding exon of the locus encoding the cyclin-dependent kinase 4 (Cdk4) by homologous recombination in embryonic stem cells. This mutation (replacement of Arg24 by Cys) was first found in patients with hereditary melanoma and renders Cdk4 insensitive to INK4 inhibitors. Here, we report that primary embryonic fibroblasts expressing the mutant Cdk4R24C kinase are immortal and susceptible to transformation by Ras oncogenes. Moreover, homozygous Cdk4(R24C/R24C) mutant mice develop multiple tumors with almost complete penetrance. The most common neoplasia (endocrine tumors and hemangiosarcomas) are similar to those found in pRb(+/-) and p53(-/-) mice. This Cdk4 mutation cooperates with p53 and p27(Kip1) deficiencies in decreasing tumor latency and favoring development of specific tumor types. These results provide experimental evidence for a central role of Cdk4 regulation in cancer and provide a valuable model for testing the potential anti-tumor effect of Cdk4 inhibitors in vivo.
Collapse
Affiliation(s)
| | - Pierre Dubus
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3 E-28029 Madrid and Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, E-28049, Madrid, Spain and
Laboratoire d’Histologie Embryologie, E.A. 2406, Université de Bordeaux 2, Bordeaux, France Corresponding author e-mail: R.Sotillo and P.Dubus contributed equally to this work
| | | | | | | | | | - Mariano Barbacid
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3 E-28029 Madrid and Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, E-28049, Madrid, Spain and
Laboratoire d’Histologie Embryologie, E.A. 2406, Université de Bordeaux 2, Bordeaux, France Corresponding author e-mail: R.Sotillo and P.Dubus contributed equally to this work
| |
Collapse
|
189
|
Zhu JW, Field SJ, Gore L, Thompson M, Yang H, Fujiwara Y, Cardiff RD, Greenberg M, Orkin SH, DeGregori J. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol Cell Biol 2001; 21:8547-64. [PMID: 11713289 PMCID: PMC100017 DOI: 10.1128/mcb.21.24.8547-8564.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
E2F activity is critical for the control of the G(1) to S phase transition. We show that the combined loss of E2F1 and E2F2 results in profound effects on hematopoietic cell proliferation and differentiation, as well as increased tumorigenesis and decreased lymphocyte tolerance. The loss of E2F1 and E2F2 impedes B-cell differentiation, and hematopoietic progenitor cells in the bone marrow of mice lacking E2F1 and E2F2 exhibit increased cell cycling. Importantly, we show that E2F1 and E2F2 double-knockout T cells exhibit more rapid entry into S phase following antigenic stimulation. Furthermore, T cells lacking E2F1 and E2F2 proliferate much more extensively in response to subthreshold antigenic stimulation. Consistent with these observations, E2F1/E2F2 mutant mice are highly predisposed to the development of tumors, and some mice exhibit signs of autoimmunity.
Collapse
Affiliation(s)
- J W Zhu
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, 4200 E. Ninth Ave., Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Tumour cells undergo uncontrolled proliferation, yet tumours most often originate from adult tissues, in which most cells are quiescent. So, the proliferative advantage of tumour cells arises from their ability to bypass quiescence. This can be due to increased mitogenic signalling and/or alterations that lower the threshold required for cell-cycle commitment. Understanding the molecular mechanisms that underlie this commitment should provide important insights into how normal cells become tumorigenic and how new anticancer strategies can be devised.
Collapse
Affiliation(s)
- M Malumbres
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.
| | | |
Collapse
|
191
|
Kumar R, Smeds J, Berggren P, Straume O, Rozell BL, Akslen LA, Hemminki K. A single nucleotide polymorphism in the 3'untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare. Int J Cancer 2001; 95:388-93. [PMID: 11668523 DOI: 10.1002/1097-0215(20011120)95:6<388::aid-ijc1069>3.0.co;2-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this report we present the results of mutational analysis of the CDKN2B, CDKN2C, CDK4, p53 genes and 5'UTR of the CDKN2A gene in a set of 44 sporadic primary melanomas, which had been earlier analysed for mutations in the CDKN2A (p16/p14(ARF)) gene. No tumour-associated mutations were detected except in 1 melanoma where we found a CC>T* deletion-mutation in the codon 151-152 (exon 5) of the p53 gene. On the basis of our preliminary results, we did extended genotyping of the 500 C>G and 540 C>T polymorphisms in the 3'UTR of the CDKN2A gene in 229 melanoma cases and 235 controls. The T-allele frequency (for 540 C>T polymorphism) in melanomas was significantly higher than in controls (0.14 vs. 0.08; chi(2) = 5.95, p = 0.01; OR = 1.71, 95%CI = 1.11-2.66). The heterozygote frequency for this polymorphism was 0.26 (59/229) in melanomas compared to 0.13 (30/235) in healthy controls (chi(2) = 11.4; p = 0.0007; OR = 2.34, 95% CI = 1.40-3.92). The frequency of the 500 C>G polymorphism in the 3'UTR in the CDKN2A gene was not significantly higher in melanomas compared to healthy controls. The 500 C>G polymorphism, however, was in linkage disequilibrium with approximately 50 kb apart the C>A intronic polymorphism in the CDKN2B gene (determined in 44 melanomas and 90 controls; Fisher exact test, p<0.0001). Finally, the sequence analysis of genomic DNA isolated from T cell lymphocytes of healthy individuals exhibited that the codon reported as last of exon 2 of the CDKN2C gene is rather the first codon of exon 3.
Collapse
Affiliation(s)
- R Kumar
- Department of Biosciences, Center for Nutrition and Toxicology, Karolinska Institute, Novum, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
192
|
Sotillo R, García JF, Ortega S, Martin J, Dubus P, Barbacid M, Malumbres M. Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci U S A 2001; 98:13312-7. [PMID: 11606789 PMCID: PMC60867 DOI: 10.1073/pnas.241338598] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2001] [Indexed: 11/18/2022] Open
Abstract
Many human tumors harbor mutations that result in deregulation of Cdk4 activity. Most of these mutations involve overexpression of D-type cyclins and inactivation of INK4 inhibitors. In addition, a mutation in the Cdk4 protein has been described in patients with familial melanoma (Wolfel, T., Hauer, M., Schneider, J., Serrano, M., Wolfel, C., et al. (1995) Science 269, 1281-1284; Zuo, L., Weger, J., Yang, Q., Goldstein, A. M., Tucker, M. A., et al. (1996) Nat. Genet. 12, 97-99). This mutation, R24C, renders the Cdk4 protein insensitive to inhibition by INK4 proteins including p16(INK4a), a major candidate for the melanoma susceptibility locus. Here we show that knock-in mice expressing a Cdk4 R24C allele are highly susceptible to melanoma development after specific carcinogenic treatments. These tumors do not have mutations in the p19(ARF)/p53 pathway, suggesting a specific involvement of the p16(INK4a)/Cdk4/Rb pathway in melanoma development. Moreover, by using targeted mice deficient for other INK4 inhibitors, we show that deletion of p18(INK4c) but not of p15(INK4b) confers proliferative advantage to melanocytic tumor growth. These results provide an experimental scenario to study the role of Cdk4 regulation in melanoma and to develop novel therapeutic approaches to control melanoma progression.
Collapse
Affiliation(s)
- R Sotillo
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas and Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, 28029 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
193
|
Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001; 276:38121-38. [PMID: 11457855 DOI: 10.1074/jbc.m105408200] [Citation(s) in RCA: 826] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Caveolin-1 is the principal structural protein of caveolae membranes in fibroblasts and endothelia. Recently, we have shown that the human CAV-1 gene is localized to a suspected tumor suppressor locus, and mutations in Cav-1 have been implicated in human cancer. Here, we created a caveolin-1 null (CAV-1 -/-) mouse model, using standard homologous recombination techniques, to assess the role of caveolin-1 in caveolae biogenesis, endocytosis, cell proliferation, and endothelial nitric-oxide synthase (eNOS) signaling. Surprisingly, Cav-1 null mice are viable. We show that these mice lack caveolin-1 protein expression and plasmalemmal caveolae. In addition, analysis of cultured fibroblasts from Cav-1 null embryos reveals the following: (i) a loss of caveolin-2 protein expression; (ii) defects in the endocytosis of a known caveolar ligand, i.e. fluorescein isothiocyanate-albumin; and (iii) a hyperproliferative phenotype. Importantly, these phenotypic changes are reversed by recombinant expression of the caveolin-1 cDNA. Furthermore, examination of the lung parenchyma (an endothelial-rich tissue) shows hypercellularity with thickened alveolar septa and an increase in the number of vascular endothelial growth factor receptor (Flk-1)-positive endothelial cells. As predicted, endothelial cells from Cav-1 null mice lack caveolae membranes. Finally, we examined eNOS signaling by measuring the physiological response of aortic rings to various stimuli. Our results indicate that eNOS activity is up-regulated in Cav-1 null animals, and this activity can be blunted by using a specific NOS inhibitor, nitro-l-arginine methyl ester. These findings are in accordance with previous in vitro studies showing that caveolin-1 is an endogenous inhibitor of eNOS. Thus, caveolin-1 expression is required to stabilize the caveolin-2 protein product, to mediate the caveolar endocytosis of specific ligands, to negatively regulate the proliferation of certain cell types, and to provide tonic inhibition of eNOS activity in endothelial cells.
Collapse
Affiliation(s)
- B Razani
- Department of Molecular Pharmacology and The Albert Einstein Cancer Center, The Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Legrier ME, Ducray A, Propper A, Kastner A. Region-specific expression of cell cycle inhibitors in the adult brain. Neuroreport 2001; 12:3127-31. [PMID: 11568650 DOI: 10.1097/00001756-200110080-00029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the adult brain, neural proliferation is almost absent and neurons are generally not renewed. By contrast, in the olfactory organ, olfactory neurons are produced continuously throughout life. To investigate whether specific cell cycle inhibitors are involved in the control of neural quiescence in adulthood, we compared their expression either in different regions of the adult brain weakly or non neurogenic or, for comparison, in the olfactory mucosa. We show that numerous cell cycle inhibitors are expressed in the adult brain either in an ubiquitous fashion (as p19Ink4d) or in specific brain regions (p15Ink4b in the forebrain, p27Kip1 and p21Cip1 in the cerebellum). By contrast p18Ink4c was expressed detectably only in the highly neurogenic olfactory epithelium. The present data suggest that various CDK inhibitors may be involved in a region-specific fashion in the maintenance of nerve cell quiescence in adults.
Collapse
Affiliation(s)
- M E Legrier
- Laboratoire de neurosciences, EA481, Université de Franche-Comté, 25030 Besançon Cedex, France
| | | | | | | |
Collapse
|
195
|
Chaussade L, Eymin B, Brambilla E, Gazzeri S. Expression of p15 and p15.5 products in neuroendocrine lung tumours: relationship with p15(INK4b) methylation status. Oncogene 2001; 20:6587-96. [PMID: 11641784 DOI: 10.1038/sj.onc.1204798] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2001] [Revised: 06/26/2001] [Accepted: 07/05/2001] [Indexed: 01/07/2023]
Abstract
The cell cycle inhibitor p15(INK4B) is frequently inactivated by homozygous deletions together with p16(INK4a)/p14(ARF) in many tumour types. Although it is now well established that p16(INK4a) and p14(ARF) act as tumour suppressor genes, the role of p15(INK4b) remains to be well defined. In order to explore the possibility of a selective deregulation of p15(INK4b) in human lung carcinogenesis, we studied p15(INK4b) status in neuroendocrine (NE) lung tumours where homozygous deletions of the p16(INK4a)/p14(ARF) locus are rarely observed. Expressions of p15 and p15.5 protein isoforms were analysed in a series of eight control normal lung, 12 tumour-associated normal lung, five low grade and 15 high grade neuroendocrine (NE) lung tumours and relationship with a specific p15(INK4b) methylation status was studied. Using Western blot analysis, we showed that p15 and p15.5 isoforms displayed a high heterogeneous pattern of expression in both normal and tumour tissues. P15 and p15.5 expressions were correlated in control normal lung (P<0.04) whereas they were not in tumours and associated normal lung. The level of p15.5 was significantly higher in associated normal lung and in tumours (P<0.02 respectively), specially in low grade tumours (P<0.01), than in control normal lung. Furthermore, p15.5 expression was more variable in tumours than in normal lung (P<0.01) and in low grade than in high grade NE lung tumours (P<0.02). Levels of p15 and p15.5 were distinct (up- or downregulated) from those observed in paired normal lung in 4/12 (33%) and 10/12 (83%) tumours respectively. Aberrant methylation at the 5' end of p15(INK4b) gene was observed in 15% of NE lung tumours using PCR-based assay, in a region proximal to the translation start where methylation did not occur in control and associated normal lung. However, no correlation could be assessed with protein status. MSP analysis of CpG islands proximal to the transcription start revealed methylation in all normal and tumour samples. No correlation was found between p15(INK4b) and p16(INK4a) or p14(ARF) status. These data suggest that complex deregulation of p15.5 is implicated in the carcinogenesis of human NE lung tumours independently of p16(INK4a) and p14(ARF) status.
Collapse
Affiliation(s)
- L Chaussade
- Groupe de Recherche sur le Cancer du poumon, INSERM EMI 9924, Institut Albert Bonniot, 38706 La Tronche Cedex, France
| | | | | | | |
Collapse
|
196
|
Abstract
The retinoblastoma protein (RB) and p53 transcription factor are regulated by two distinct proteins that are encoded by the INK4a/ARF locus. Genes encoding these four tumour suppressors are disabled, either in whole or in part, in most human cancers. A complex signalling network that interconnects the activities of RB and p53 monitors oncogenic stimuli to provide a cell-autonomous mode of tumour surveillance.
Collapse
Affiliation(s)
- C J Sherr
- Department of Tumor Cell Biology, Howard Hughes Medical Institute, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, Tennessee 38105, USA.
| |
Collapse
|
197
|
Schmidt M, Koller R, Haviernik P, Bies J, Maciag K, Wolff L. Deregulated c-Myb expression in murine myeloid leukemias prevents the up-regulation of p15(INK4b) normally associated with differentiation. Oncogene 2001; 20:6205-14. [PMID: 11593429 DOI: 10.1038/sj.onc.1204821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2000] [Revised: 07/05/2001] [Accepted: 07/09/2001] [Indexed: 12/29/2022]
Abstract
Deregulated expression of the proto-oncogene c-myb, which results from provirus integration, is thought to be responsible for transformation in a set of murine leukemia virus (MuLV)-induced myeloid leukemias (MML). We reported recently that this transcription factor promotes proliferation by directly transactivating c-myc and inhibits cell death through its up-regulation of Bcl-2 (Schmidt et al., 2000). To understand more about how these cells become transformed we looked at how they deal with cellular pathways inducing growth arrest. Specifically, we were interested in the expression of the tumor suppressor gene Cdkn2b (p15(INK4b)) in MML because this gene is expressed during myeloid differentiation and its inactivation by methylation has been shown to be important for the development of human acute myeloid leukemia. mRNA levels for p15(INK4b) and another INK4 gene p16(INK4a) were examined in monocytic Myb tumors and were compared with expression of the same genes in c-myc transformed monocytic tumors that do not express c-Myb. The Cdkn2a (p16(INK4a)) gene was generally not expressed in either tumor type, an observation explained by methylation or deletion in the promoter region. Although Cdkn2b (p15(INK4b)) mRNA was expressed in the Myc tumors, many transcripts were aberrant in size and contained only exon 1. Surprisingly, in the majority of the Myb tumors there was no p15(INK4b) transcription and neither deletion nor methylation could explain this result. Additional experiments demonstrated that, in the presence of constitutive c-Myb expression, the induction of p15(INK4b) mRNA that accompanies differentiation of M1 cells to monocytes does not occur. Therefore, the transcriptional regulator c-Myb appears to prevent activation of a growth arrest pathway that normally accompanies monocyte maturation.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/metabolism
- Cell Cycle Proteins
- Cell Differentiation
- CpG Islands
- Cyclin-Dependent Kinase Inhibitor p15
- Cyclin-Dependent Kinase Inhibitor p16
- DNA, Complementary/metabolism
- Exons
- Gene Expression Regulation, Neoplastic
- Genes, myc/genetics
- Interleukin-6/metabolism
- Leukemia, Myeloid/metabolism
- Mice
- Mice, Inbred BALB C
- Models, Genetic
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-myb/metabolism
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
- Tumor Suppressor Proteins
- Up-Regulation
Collapse
Affiliation(s)
- M Schmidt
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
198
|
Kovalev GI, Franklin DS, Coffield VM, Xiong Y, Su L. An important role of CDK inhibitor p18(INK4c) in modulating antigen receptor-mediated T cell proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3285-92. [PMID: 11544316 PMCID: PMC4435948 DOI: 10.4049/jimmunol.167.6.3285] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The inhibitors of cyclin-dependent kinase (CDK) 4 (INK4) bind CDK4/6 to prevent their association with D-cyclins and G(1) cell cycle initiation and progression. We report here that among the seven CDK inhibitors, p18(INK4c) played an important role in modulating TCR-mediated T cell proliferation. Loss of p18(INK4c) in T cells led to hyperproliferation in response to CD3 stimulation. p18(INK4c)-null mice developed lymphoproliferative disorder and T cell lymphomas. Expression of IL-2, IL-2R-alpha, and the major G(1) cell cycle regulatory proteins was not altered in p18-null T cells. Both FK506 and rapamycin efficiently inhibited proliferation of p18-null T cells. In activated T cells, p18(INK4c) remained constant, and preferentially associated with and inhibited CDK6 but not CDK4. We propose that p18(INK4c) sets an inhibitory threshold in T cells and one function of CD28 costimulation is to counteract the p18(INK4c) inhibitory activity on CDK6-cyclin D complexes. The p18(INK4c) protein may provide a novel target to modulate T cell immunity.
Collapse
Affiliation(s)
- Grigoriy I. Kovalev
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - David S. Franklin
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - V. McNeil Coffield
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599
- Address correspondence and reprint requests to Dr. Lishan Su, Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599.
| |
Collapse
|
199
|
Zhang F, Taipale M, Heiskanen A, Laiho M. Ectopic expression of Cdk6 circumvents transforming growth factor-beta mediated growth inhibition. Oncogene 2001; 20:5888-96. [PMID: 11593394 DOI: 10.1038/sj.onc.1204745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Revised: 05/31/2001] [Accepted: 06/18/2001] [Indexed: 01/07/2023]
Abstract
Transforming growth factor-beta (TGF-beta) induced growth arrest of cells involves regulation of the activities of both D- and E-type cyclin kinase complexes thought to be mediated primarily by the regulation of p15(Ink4b) and p27(Kip1) cyclin kinase inhibitors. We show here that TGF-beta downregulates Cdk6 and that transient and stable expression of Cdk6 in Mv1Lu mink epithelial cells overrides TGF-beta mediated arrest. The main effect of the ectopic Cdk6 expression was to sequester TGF-beta induced p15(Ink4b) and to maintain more p27(Kip1) in cyclin D-complexes preventing the complete shift of p27(Kip1) to Cdk2 invoked by TGF-beta. This led to the presence of an active cyclinD-Cdk6-p27(Kip1) complex and partially active cyclin E-Cdk2 complex and resulted in the failure of TGF-beta to fully arrest Mv1Lu cell growth. Though dominant negative Cdk6, expressed similarly in the cells, sequestered both p15(Ink4b) and p27(Kip1), it lacks kinase activity and was unable to override the TGF-beta arrest. The results demonstrate that downregulation of Cdk6 kinase is required for the enforcement of the G(1)-phase arrest by TGF-beta and results in changes in association of the p15(Ink4b) and p27(Kip1) inhibitors with D- and E-type cyclin kinase complexes.
Collapse
Affiliation(s)
- F Zhang
- Haartman Institute, Department of Virology, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
200
|
Zindy F, den Besten W, Chen B, Rehg JE, Latres E, Barbacid M, Pollard JW, Sherr CJ, Cohen PE, Roussel MF. Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18(Ink4c) and p19(Ink4d). Mol Cell Biol 2001; 21:3244-55. [PMID: 11287627 PMCID: PMC86968 DOI: 10.1128/mcb.21.9.3244-3255.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2000] [Accepted: 02/13/2001] [Indexed: 12/31/2022] Open
Abstract
Male mice lacking both the Ink4c and Ink4d genes, which encode two inhibitors of D-type cyclin-dependent kinases (Cdks), are infertile, whereas female fecundity is unaffected. Both p18(Ink4c) and p19(Ink4d) are expressed in the seminiferous tubules of postnatal wild-type mice, being largely confined to postmitotic spermatocytes undergoing meiosis. Their combined loss is associated with the delayed exit of spermatogonia from the mitotic cell cycle, leading to the retarded appearance of meiotic cells that do not properly differentiate and instead undergo apoptosis at an increased frequency. As a result, mice lacking both Ink4c and Ink4d produce few mature sperm, and the residual spermatozoa have reduced motility and decreased viability. Whether or not Ink4d is present, animals lacking Ink4c develop hyperplasia of interstitial testicular Leydig cells, which produce reduced levels of testosterone. The anterior pituitary of fertile mice lacking Ink4c or infertile mice doubly deficient for Ink4c and Ink4d produces normal levels of luteinizing hormone (LH). Therefore, the failure of Leydig cells to produce testosterone is not secondary to defects in LH production, and reduced testosterone levels do not account for infertility in the doubly deficient strain. By contrast, Ink4d-null or double-null mice produce elevated levels of follicle-stimulating hormone (FSH). Because Ink4d-null mice are fertile, increased FSH production by the anterior pituitary is also unlikely to contribute to the sterility observed in Ink4c/Ink4d double-null males. Our data indicate that p18(Ink4c) and p19(Ink4d) are essential for male fertility. These two Cdk inhibitors collaborate in regulating spermatogenesis, helping to ensure mitotic exit and the normal meiotic maturation of spermatocytes.
Collapse
Affiliation(s)
- F Zindy
- Departments of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|