151
|
Fang KM, Yang CS, Sun SH, Tzeng SF. Microglial phagocytosis attenuated by short-term exposure to exogenous ATP through P2X receptor action. J Neurochem 2009; 111:1225-37. [PMID: 19860838 DOI: 10.1111/j.1471-4159.2009.06409.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microglia, the CNS resident macrophages responsible for the clearance of degenerating cellular fragments, are essential to tissue remodeling and repair after CNS injury. ATP can be released in large amounts after CNS injury and may mediate microglial activity through the ionotropic P2X and the metabotropic P2Y receptors. This study indicates that exposure to a high concentration of ATP for 30 min rapidly induces changes of the microglial cytoskeleton, and significantly attenuates microglial phagocytosis. A pharmacological approach showed that ATP-induced inhibition of microglial phagocytotic activity was due to P2X(7)R activation, rather than that of P2YR. Activation of P2X(7)R by its agonist, 2'-3'-O-(4-benzoyl)benzoyl-ATP (BzATP), produced a Ca(2+)-independent reduction in microglial phagocytotic activity. In addition, the knockdown of P2X(7)R expression by lentiviral-mediated shRNA interference or the blockade of P2X(7)R activation by the specific antagonists, oxidized ATP (oxATP) and brilliant blue G, has efficiently restored the phagocytotic activity of ATP and BzATP-treated microglia. Our results reveal that P2X(7)R activation may induce the formation of a Ca(2+)-independent signaling complex, which results in the reduction of microglial phagocytosis. This suggests that exposure to ATP for a short-term period may cause insufficient clearance of tissue debris by microglia through P2X(7)R activation after CNS injury, and that blockade of this receptor may preserve the phagocytosis of microglia and facilitate CNS tissue repair.
Collapse
Affiliation(s)
- Kuan-Min Fang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
152
|
Abstract
P2X receptors are membrane cation channels gated by extracellular ATP. Seven P2X receptor subunits (P2X(1-7)) are widely distributed in excitable and nonexcitable cells of vertebrates. They play key roles in inter alia afferent signaling (including pain), regulation of renal blood flow, vascular endothelium, and inflammatory responses. We summarize the evidence for these and other roles, emphasizing experimental work with selective receptor antagonists or with knockout mice. The receptors are trimeric membrane proteins: Studies of the biophysical properties of mutated subunits expressed in heterologous cells have indicated parts of the subunits involved in ATP binding, ion permeation (including calcium permeability), and membrane trafficking. We review our current understanding of the molecular properties of P2X receptors, including how this understanding is informed by the identification of distantly related P2X receptors in simple eukaryotes.
Collapse
Affiliation(s)
- Annmarie Surprenant
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | |
Collapse
|
153
|
Gómez-Villafuertes R, del Puerto A, Díaz-Hernández M, Bustillo D, Díaz-Hernández JI, Huerta PG, Artalejo AR, Garrido JJ, Miras-Portugal MT. Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS J 2009; 276:5307-25. [PMID: 19682070 DOI: 10.1111/j.1742-4658.2009.07228.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ATP, via purinergic P2X receptors, acts as a neurotransmitter and modulator in both the central and peripheral nervous systems, and is also involved in many biological processes, including cell proliferation, differentiation and apoptosis. Previously, we have reported that P2X7 receptor inhibition promotes axonal growth and branching in cultured hippocampal neurons. In this article, we demonstrate that the P2X7 receptor negatively regulates neurite formation in mouse Neuro-2a neuroblastoma cells through a Ca2+/calmodulin-dependent kinase II-related mechanism. Using both molecular and immunocytochemical techniques, we characterized the presence of endogenous P2X1, P2X3, P2X4 and P2X7 subunits in these cells. Of these, the P2X7 receptor was the only functional receptor, as its activation induced intracellular calcium increments similar to those observed in primary neuronal cultures, exhibiting pharmacological properties characteristic of homomeric P2X7 receptors. Patch-clamp experiments were also conducted to fully demonstrate that ionotropic P2X7 receptors mediate nonselective cation currents in this cell line. Pharmacological inhibition of the P2X7 receptor and its knockdown by small hairpin RNA interference resulted in increased neuritogenesis in cells cultured in low serum-containing medium, whereas P2X7 overexpression significantly reduced the formation of neurites. Interestingly, P2X7 receptor inhibition also modified the phosphorylation state of focal adhesion kinase, Akt and glycogen synthase kinase 3, protein kinases that participate in the Ca2+/calmodulin-dependent kinase II signalling cascade and that have been related to neuronal differentiation and axonal growth. Taken together, our results provide the first mechanistic insight into P2X7 receptor-triggered signalling pathways that regulate neurite formation in neuroblastoma cells.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, Bruckner P, Pfeilschifter J, Schaefer RM, Gröne HJ, Schaefer L. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 2009; 284:24035-48. [PMID: 19605353 DOI: 10.1074/jbc.m109.014266] [Citation(s) in RCA: 348] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The role of endogenous inducers of inflammation is poorly understood. To produce the proinflammatory master cytokine interleukin (IL)-1beta, macrophages need double stimulation with ligands to both Toll-like receptors (TLRs) for IL-1beta gene transcription and nucleotide-binding oligomerization domain-like receptors for activation of the inflammasome. It is particularly intriguing to define how this complex regulation is mediated in the absence of an infectious trigger. Biglycan, a ubiquitous leucine-rich repeat proteoglycan of the extracellular matrix, interacts with TLR2/4 on macrophages. The objective of this study was to define the role of biglycan in the synthesis and activation of IL-1beta. Here we show that in macrophages, soluble biglycan induces the NLRP3/ASC inflammasome, activating caspase-1 and releasing mature IL-1beta without the need for additional costimulatory factors. This is brought about by the interaction of biglycan with TLR2/4 and purinergic P2X(4)/P2X(7) receptors, which induces receptor cooperativity. Furthermore, reactive oxygen species formation is involved in biglycan-mediated activation of the inflammasome. By signaling through TLR2/4, biglycan stimulates the expression of NLRP3 and pro-IL-1beta mRNA. Both in a model of non-infectious inflammatory renal injury (unilateral ureteral obstruction) and in lipopolysaccharide-induced sepsis, biglycan-deficient mice displayed lower levels of active caspase-1 and mature IL-1beta in the kidney, lung, and circulation. Our results provide evidence for direct activation of the NLRP3 inflammasome by biglycan and describe a fundamental paradigm of how tissue stress or injury is monitored by innate immune receptors detecting the release of the extracellular matrix components and turning such a signal into a robust inflammatory response.
Collapse
Affiliation(s)
- Andrea Babelova
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Donnelly-Roberts DL, Namovic MT, Han P, Jarvis MF. Mammalian P2X7 receptor pharmacology: comparison of recombinant mouse, rat and human P2X7 receptors. Br J Pharmacol 2009; 157:1203-14. [PMID: 19558545 DOI: 10.1111/j.1476-5381.2009.00233.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute activation of P2X7 receptors rapidly opens a non-selective cation channel. Sustained P2X7 receptor activation leads to the formation of cytolytic pores, mediated by downstream recruitment of hemichannels to the cell surface. Species- and single-nucleotide polymorphism-mediated differences in P2X7 receptor activation have been reported that complicate understanding of the physiological role of P2X7 receptors. Studies were conducted to determine pharmacological differences between human, rat and mouse P2X7 receptors. EXPERIMENTAL APPROACH Receptor-mediated changes in calcium influx and Yo-Pro uptake were compared between recombinant mouse, rat and human P2X7 receptors. For mouse P2X7 receptors, wild-type (BALB/c) and a reported loss of function (C57BL/6) P2X7 receptor were also compared. KEY RESULTS BzATP [2,3-O-(4-benzoylbenzoyl)-ATP] was more potent than ATP in stimulating calcium influx and Yo-Pro uptake at rat, human, BALB/c and C57BL/6 mouse P2X7 receptors. Two selective P2X7 receptor antagonists, A-740003 and A-438079, potently blocked P2X7 receptor activation across mammalian species. Several reported P2X1 receptor antagonists [e.g. MRS 2159 (4-[(4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl}-2-pyridinyl)azo]-benzoic acid), PPNDS and NF279] blocked P2X7 receptors. NF279 fully blocked human P2X7 receptors, but only partially blocked BALB/c P2X7 receptors and was inactive at C57BL/6 P2X7 receptors. CONCLUSIONS AND IMPLICATIONS These data provide new insights into P2X7 receptor antagonist pharmacology across mammalian species. P2X7 receptor pharmacology in a widely used knockout background mouse strain (C57BL/6) was similar to wild-type mouse P2X7 receptors. Several structurally novel, selective and competitive P2X7 receptor antagonists show less species differences compared with earlier non-selective antagonists.
Collapse
Affiliation(s)
- Diana L Donnelly-Roberts
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60024, USA
| | | | | | | |
Collapse
|
156
|
Free RB, Hazelwood LA, Sibley DR. Identifying novel protein-protein interactions using co-immunoprecipitation and mass spectroscopy. ACTA ACUST UNITED AC 2009; Chapter 5:Unit 5.28. [PMID: 19170023 DOI: 10.1002/0471142301.ns0528s46] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteomics has evolved from genomic science due to the convergence of advances in protein chemistry, separations, mass spectroscopy, and peptide and protein databases. Where identifying protein-protein interactions was once limited to yeast two-hybrid analyses or empirical data, protein-protein interactions can now be examined in both cells and native tissues by precipitation of the protein complex of interest. Coupling this field to receptor pharmacology has recently allowed for the identification of proteins that differentially and selectively interact with receptors and are integral to their biological effects. It is becoming increasingly apparent that receptors in neurons do not exist as singular independent units, but rather are part of large macromolecular complexes of interacting proteins. It is a primary quest of neuroscience to piece together these interactions and to characterize the regulatory signalplexes of all proteins. This unit presents co-immunoprecipitation-coupled mass spectroscopy as one way of identifying signalplex partners.
Collapse
Affiliation(s)
- R Benjamin Free
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
157
|
D'Arco M, Giniatullin R, Leone V, Carloni P, Birsa N, Nair A, Nistri A, Fabbretti E. The C-terminal Src inhibitory kinase (Csk)-mediated tyrosine phosphorylation is a novel molecular mechanism to limit P2X3 receptor function in mouse sensory neurons. J Biol Chem 2009; 284:21393-401. [PMID: 19509283 DOI: 10.1074/jbc.m109.023051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
On sensory neurons, sensitization of P2X(3) receptors gated by extracellular ATP contributes to chronic pain. We explored the possibility that receptor sensitization may arise from down-regulation of an intracellular signal negatively controlling receptor function. In view of the structural modeling between the Src region phosphorylated by the C-terminal Src inhibitory kinase (Csk) and the intracellular C terminus domain of the P2X(3) receptor, we investigated how Csk might regulate receptor activity. Using HEK cells and the in vitro kinase assay, we observed that Csk directly phosphorylated the tyrosine 393 residue of the P2X(3) receptor and strongly inhibited receptor currents. On mouse trigeminal sensory neurons, the role of Csk was tightly controlled by the extracellular level of nerve growth factor, a known algogen. Furthermore, silencing endogenous Csk in HEK or trigeminal cells potentiated P2X(3) receptor responses, confirming constitutive Csk-mediated inhibition. The present study provides the first demonstration of an original molecular mechanism responsible for negative control over P2X(3) receptor function and outlines a potential new target for trigeminal pain suppression.
Collapse
Affiliation(s)
- Marianna D'Arco
- Neurobiology Sector and Italian Institute of Technology Unit, International School for Advanced Studies (SISSA), 34014 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Díaz-Hernandez M, del Puerto A, Díaz-Hernandez JI, Diez-Zaera M, Lucas JJ, Garrido JJ, Miras-Portugal MT. Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. J Cell Sci 2009; 121:3717-28. [PMID: 18987356 DOI: 10.1242/jcs.034082] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During the establishment of neural circuits, the axons of neurons grow towards their target regions in response to both positive and negative stimuli. Because recent reports show that Ca2+ transients in growth cones negatively regulate axonal growth, we studied how ionotropic ATP receptors (P2X) might participate in this process. Our results show that exposing cultured hippocampal neurons to ATP induces Ca2+ transients in the distal domain of the axon and the concomitant inhibition of axonal growth. This effect is mediated by the P2X7 receptor, which is present in the growth cone of the axon. Pharmacological inhibition of P2X7 or its silencing by shRNA interference induces longer and more-branched axons, coupled with morphological changes to the growth cone. Our data suggest that these morphological changes are induced by a signalling cascade in which CaMKII and FAK activity activates PI3-kinase and modifies the activity of its downstream targets. Thus, in the absence or inactivation of P2X7 receptor, axons grow more rapidly and form more branches in cultured hippocampal neurons, indicative that ATP exerts a negative influence on axonal growth. These data suggest that P2X7 antagonists have therapeutic potential to promote axonal regeneration.
Collapse
Affiliation(s)
- Miguel Díaz-Hernandez
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, UCM, 28040-Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
159
|
Gu BJ, Rathsam C, Stokes L, McGeachie AB, Wiley JS. Extracellular ATP dissociates nonmuscle myosin from P2X(7) complex: this dissociation regulates P2X(7) pore formation. Am J Physiol Cell Physiol 2009; 297:C430-9. [PMID: 19494237 DOI: 10.1152/ajpcell.00079.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The P2X(7) receptor is a ligand-gated cation channel that is highly expressed on monocyte-macrophages and that mediates the pro-inflammatory effects of extracellular ATP. Dilation of the P2X(7) channel and massive K(+) efflux follows initial channel opening, but the mechanism of secondary pore formation is unclear. The proteins associated with P2X(7) were isolated by using anti-P2X(7) monoclonal antibody-coated Dynabeads from both interferon-gamma plus LPS-stimulated monocytic THP-1 cells and P2X(7)-transfected HEK-293 cells. Two nonmuscle myosins, NMMHC-IIA and myosin Va, were found to associate with P2X(7) in THP-1 cells and HEK-293 cells, respectively. Activation of the P2X(7) receptor by ATP caused dissociation of P2X(7) from nonmuscle myosin in both cell types. The interaction of P2X(7) and NMMHC-IIA molecules was confirmed by fluorescent life time measurements and fluorescent resonance of energy transfer-based time-resolved flow cytometry assay. Reducing the expression of NMMHC-IIA or myosin Va by small interfering RNA or short hairpin RNA led to a significant increase of P2X(7) pore function without any increase in surface expression or ion channel function of P2X(7) receptors. S-l-blebbistatin, a specific inhibitor of NMMHC-IIA ATPase, inhibited both ATP-induced ethidium uptake and ATP-induced dissociation of P2X(7)-NMMHC-IIA complex. In both cell types nonmuscle myosin closely interacts with P2X(7) and is dissociated from the complex by extracellular ATP. Dissociation of this anchoring protein may be required for the transition of P2X(7) channel to a pore.
Collapse
Affiliation(s)
- Ben J Gu
- Department of Medicine, Nepean Clinical School, Penrith, NSW, Australia
| | | | | | | | | |
Collapse
|
160
|
Balla T. Regulation of Ca2+ entry by inositol lipids in mammalian cells by multiple mechanisms. Cell Calcium 2009; 45:527-34. [PMID: 19395084 PMCID: PMC2695834 DOI: 10.1016/j.ceca.2009.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/18/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
Abstract
Increased phosphoinositide turnover was first identified as an early signal transduction event initiated by cell surface receptors that were linked to calcium signaling. Subsequently, the generation of inositol 1,4,5-trisphosphate by phosphoinositide-specific phospholipase C enzymes was defined as the major link between inositide turnover and the cytosolic Ca(2+) rise in response to external stimulation. However, in the last decades, phosphoinositides have been emerging as major regulatory lipids involved in virtually every membrane-associated signaling process. Phosphoinositides regulate both the activity and the trafficking of almost all ion channels and transporters contributing to the maintenance of the ionic gradients that are essential for the proper functioning of all eukaryotic cells. Here we summarize the various means by which phosphoinositides affect ion channel functions with special emphasis on Ca(2+) signaling and outline the principles that govern the highly compartmentalized roles of these regulatory lipids.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
161
|
Zhang X, Meng L, He B, Chen J, Liu P, Zhao J, Zhang Y, Li M, An D. The role of P2X7 receptor in ATP-mediated human leukemia cell death: calcium influx-independent. Acta Biochim Biophys Sin (Shanghai) 2009; 41:362-9. [PMID: 19430700 DOI: 10.1093/abbs/gmp016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of the P2X7 receptor leads to a rapid, bidirectional flux of cations, causing broad range of biological responses including cytotoxicity. However, the mechanism of P2X7-mediated cytotoxicity remains largely unexplored. In our previous study, the lack of P2X7-mediated calcium response under normal conditions was found in P2X7(+) hematopoietic cell lines. In this study, the P2X7-mediated cytotoxicity in different type of cells (P2X7(-), P2X7(+) with calcium response, and P2X7(+) without calcium response) was investigated. Our results showed that P2X7 agonists, adenosine 5'-triphosphate (ATP) or 2',3'-O-(4 benzoylbenzoyl)-ATP, dose-dependently reduced the cell viability in all P2X7(+) cells tested, including J6-1, LCL, and Namalva cells which are negative for P2X7-mediated calcium response, although these effects were lower than those observed in KG1a cells which has normal P2X7 functions. The cytotoxic effect could be blocked by P2X7 antagonists, oxidized ATP and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine. In addition, externalization of phosphatidylserine could be detected in a time-dependent manner and apoptotic morphological changes could be observed after the activation of P2X7 receptor in J6-1 cells. Furthermore, P2X7-mediated pore formation could be detected in KG1a and J6-1 cells under low-ionic conditions, but not under low-divalent conditions. These effects could not be observed in P2X7(-) Ramos cells. These results suggested that P2X7 receptor-mediated cytotoxic effects may occur independent of calcium response.
Collapse
Affiliation(s)
- Xiujun Zhang
- Department of Life Sciences, North China Coal Medical University, Tangshan, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Li J, Meyer R, Duncan RL, Turner CH. P2X7 nucleotide receptor plays an important role in callus remodeling during fracture repair. Calcif Tissue Int 2009; 84:405-12. [PMID: 19308630 DOI: 10.1007/s00223-009-9237-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
The P2X7 nucleotide receptor (P2X7R) is an ATP-gated ion channel expressed in bone cells. Homozygous null P2X7R (P2X7R(-/-)) mice have reduced bone formation, so we hypothesized that P2X7R(-/-) mice have impaired fracture healing compared to P2X7R(+/+) control mice. To test the hypothesis, adult P2X7R(-/-) mice and P2X7R(+/+) mice were studied. Osteotomy of the right femur was performed and a stainless-steel pin was inserted into the medullary cavity to stabilize the fracture site. No differences in callus development were seen in the radiograph, micro computed tomography, or dual-energy x-ray absorptiometry measurements. Mechanical testing showed that the recovery of ultimate force, stiffness, and energy to failure were slightly decreased in P2X7R(-/-) mice compared with the control. Histomorphometric measurements of the callus revealed that mineralizing surface and bone formation were significantly decreased, by 22% (p < 0.001) and 29% (p < 0.05), respectively, in P2X7R(-/-) mice in comparison with the wild-type control. These data show that a null mutation of the P2X7R does not affect the amount of callus formed in our osteotomy fracture model. However, callus remodeling was significantly delayed. Our data suggest the different role of the P2X7R in woven bone and lamellar bone formation.
Collapse
Affiliation(s)
- Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
163
|
Casas-Pruneda G, Reyes JP, Pérez-Flores G, Pérez-Cornejo P, Arreola J. Functional interactions between P2X4 and P2X7 receptors from mouse salivary epithelia. J Physiol 2009; 587:2887-901. [PMID: 19403602 DOI: 10.1113/jphysiol.2008.167395] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse parotid acinar cells express P2X4 and P2X7 receptors (mP2X4R and mP2X7R) whose physiological function remains undetermined. Here we show that mP2X4R expressed in HEK-293 cells do not allow the passage of tetraethylammonium (TEA+) and promote little, if any, ethidium bromide (EtBr) uptake when stimulated with ATP or BzATP. In contrast, mP2X7R generates slowly decaying TEA+ current, sustained Na+ current and promotes robust EtBr uptake. However, ATP-activated TEA+ current from acinar cells was unlike that generated by mP2X7R or mP2X4R. Functional interactions between mP2X4R and mP2X7R were investigated in HEK cells co-transfected with different mP2X4 : mP2X7 cDNA ratios and using solutions containing either TEA+ or Na+ ions. Co-expressed channels generated a TEA+ current that displayed faster decay during ATP stimulation than mP2X7R alone. Moreover, cells transfected with a 2 : 1 cDNA ratio displayed decaying kinetics similar to those observed in acinar cells. Concentration-response curves in Na+-containing solutions were constructed for heterologously expressed mP2X4R, mP2X7R and mP2X4R:mP2X7R co-expressions as well as acinar cells. The EC50 values determined were 11, 220, 434 and 442 microM, respectively. Na+ currents generated by expressing mP2X4R or mP2X7R alone were potentiated by ivermectin (IVM). In contrast, IVM potentiation in acinar cells and HEK cells co-expressing P2X4 and P2X7 (1 : 1 or 2 : 1 cDNA ratios) was seen only when the ATP concentration was lowered from 5 to 0.03 mM. Taken together our observations indicate a functional interaction between murine P2X7 and P2X4 receptors. Such interaction might occur in acinar cells to shape the response to extracellular ATP in salivary epithelia.
Collapse
Affiliation(s)
- Griselda Casas-Pruneda
- School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | | | | | | | | |
Collapse
|
164
|
Teixeira PCN, de Souza CAM, de Freitas MS, Foguel D, Caffarena ER, Alves LA. Predictions suggesting a participation of beta-sheet configuration in the M2 domain of the P2X(7) receptor: a novel conformation? Biophys J 2009; 96:951-63. [PMID: 19186133 DOI: 10.1016/j.bpj.2008.10.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/15/2008] [Indexed: 11/18/2022] Open
Abstract
Scanning experiments have shown that the putative TM2 domain of the P2X(7) receptor (P2X(7)R) lines the ionic pore. However, none has identified an alpha-helix structure, the paradigmatic secondary structure of ion channels in mammalian cells. In addition, some researchers have suggested a beta-sheet conformation in the TM2 domain of P2X(2). These data led us to investigate a new architecture within the P2X receptor family. P2X(7)R is considered an intriguing receptor because its activation induces nonselective large pore formation, in contrast to the majority of other ionic channel proteins in mammals. This receptor has two states: a low-conductance channel (approximately 10 pS) and a large pore (> 400 pS). To our knowledge, one fundamental question remains unanswered: Are the P2X(7)R channel and the pore itself the same entity or are they different structures? There are no structural data to help solve this question. Thus, we investigated the hydrophobic M2 domain with the aim of predicting the fitted position and the secondary structure of the TM2 segment from human P2X(7)R (hP2X(7)R). We provide evidence for a beta-sheet conformation, using bioinformatics algorithms and molecular-dynamics simulation in conjunction with circular dichroism in different environments and Fourier transform infrared spectroscopy. In summary, our study suggests the possibility that a segment composed of residues from part of the M2 domain and part of the putative TM2 segment of P2X(7)R is partially folded in a beta-sheet conformation, and may play an important role in channel/pore formation associated with P2X(7)R activation. It is important to note that most nonselective large pores have a transmembrane beta-sheet conformation. Thus, this study may lead to a paradigmatic change in the P2X(7)R field and/or raise new questions about this issue.
Collapse
|
165
|
Schwarz N, Fliegert R, Adriouch S, Seman M, Guse AH, Haag F, Koch-Nolte F. Activation of the P2X7 ion channel by soluble and covalently bound ligands. Purinergic Signal 2009; 5:139-49. [PMID: 19255877 PMCID: PMC2686825 DOI: 10.1007/s11302-009-9135-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 09/16/2008] [Indexed: 12/12/2022] Open
Abstract
The homotrimeric P2X7 purinergic receptor has sparked interest because of its capacity to sense adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD) released from cells and to induce calcium signaling and cell death. Here, we examine the response of arginine mutants of P2X7 to soluble and covalently bound ligands. High concentrations of ecto-ATP gate P2X7 by acting as a soluble ligand and low concentrations of ecto-NAD gate P2X7 following ADP-ribosylation at R125 catalyzed by toxin-related ecto-ADP-ribosyltransferase ART2.2. R125 lies on a prominent cysteine-rich finger at the interface of adjacent receptor subunits, and ADP-ribosylation at this site likely places the common adenine nucleotide moiety into the ligand-binding pocket of P2X7.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Immunology, Campus-Forschung 02.059, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
166
|
Alqallaf SM, Evans BAJ, Kidd EJ. Atypical P2X receptor pharmacology in two human osteoblast-like cell lines. Br J Pharmacol 2009; 156:1124-35. [PMID: 19226284 DOI: 10.1111/j.1476-5381.2009.00119.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The expression and function of P2X(7) receptors in osteoclasts is well established, but less is known about their role in osteoblast-like cells. A study in P2X(7) receptor knockout mice suggested the involvement of these receptors in bone formation. We have investigated the expression and pharmacology of several P2X receptors in two human osteosarcoma cell lines to see if they could be involved in bone turnover in man. EXPERIMENTAL APPROACH Reverse transcriptase-polymerase chain reaction and Western blotting were used to study P2X(2), P2X(4) and P2X(7) receptor expression at mRNA and protein levels, respectively, in human osteoblast-like cells. P2X(7) receptor pharmacology was studied by measuring pore formation in the presence of different agonists and antagonists using the YO-PRO 1 uptake method. KEY RESULTS P2X(4) and P2X(7) receptor mRNA and protein were found to be expressed by these cell lines. No evidence was found for P2X(4)/P2X(7) receptor heteropolymerization. 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (DBzATP) was equipotent to ATP and the antagonists used were either ineffective or weakly blocked pore formation. CONCLUSIONS AND IMPLICATIONS This study demonstrates that P2X(4) and P2X(7) receptors are expressed by human osteoblast-like cells. The affinities of the different agonists suggest that the P2X(7) receptor is mainly responsible for pore formation although P2X(4) receptors may also be involved. The low affinity of DBzATP and the weak action of the antagonists support the previously described atypical pharmacology of the P2X(7) receptor in osteoblasts. Targeting the P2X(7) receptor in osteoblasts could represent a promising new treatment for bone diseases such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- S M Alqallaf
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, UK
| | | | | |
Collapse
|
167
|
Wewers MD, Sarkar A. P2X(7) receptor and macrophage function. Purinergic Signal 2009; 5:189-95. [PMID: 19214778 DOI: 10.1007/s11302-009-9131-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 10/16/2008] [Indexed: 01/07/2023] Open
Abstract
Macrophages are unique innate immune cells that play an integral role in the defense of the host by virtue of their ability to recognize, engulf, and kill pathogens while sending out danger signals via cytokines to recruit and activate inflammatory cells. It is becoming increasingly clear that purinergic signaling events are essential components of the macrophage response to pathogen challenges and disorders such as sepsis may be, at least in part, regulated by these important sensors. The activation of the P2X(7) receptor is a powerful event in the regulation of the caspase-1 inflammasome. We provide evidence that the inflammasome activation requires "priming" of macrophages prior to ATP activation of the P2X(7)R. Inhibition of the inflammasome activation by the tyrosine kinase inhibitor, AG126, suggests regulation by phosphorylation. Finally, the P2X(7)R may also be activated by other elements of the host response such as the antimicrobial peptide LL-37, which adds a new, physiologically relevant agonist to the P2X(7)R pathway. Therapeutic approaches to inflammation and sepsis will certainly be enhanced by an increased understanding of how purinergic receptors modulate the inflammasomes.
Collapse
Affiliation(s)
- Mark D Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA,
| | | |
Collapse
|
168
|
Kuehnel MP, Reiss M, Anand PK, Treede I, Holzer D, Hoffmann E, Klapperstueck M, Steinberg TH, Markwardt F, Griffiths G. Sphingosine-1-phosphate receptors stimulate macrophage plasma-membrane actin assembly via ADP release, ATP synthesis and P2X7R activation. J Cell Sci 2009; 122:505-12. [PMID: 19174470 DOI: 10.1242/jcs.034207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic plasma membranes assemble actin filaments within seconds of activation of many receptors, especially during chemotaxis. Here, serum or sphingosine-1-phosphate stimulation of J774 and RAW macrophages released ADP within seconds into the extracellular medium, along with an adenylate kinase activity that converted ADP to ATP. ATP then activated the P2X7 receptor (P2X7R) that was necessary for a peak of plasma-membrane actin assembly within 5 to 10 seconds in P2X7R-expressing J774, RAW and primary macrophages. Neither actin assembly nor characteristic P2X7R channel activity was seen in response to ATP in P2X7R-knockout macrophages, as detected by patch-clamp analysis. Since P2X7R has been shown previously to form a macromolecular complex with actin we propose that it is involved in the membrane assembly of actin. Our data reveal a surprisingly rapid and complex relay of signaling and externalization events that precede and control actin assembly induced by sphingosine-1-phosphate. The overall model we present is strongly supported by the data presented in the accompanying paper that focuses on latex bead phagosomes.
Collapse
|
169
|
Kuehnel MP, Rybin V, Anand PK, Anes E, Griffiths G. Lipids regulate P2X7-receptor-dependent actin assembly by phagosomes via ADP translocation and ATP synthesis in the phagosome lumen. J Cell Sci 2009; 122:499-504. [PMID: 19174471 DOI: 10.1242/jcs.034199] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latex bead phagosomes isolated from J774 macrophages polymerize actin. We show here that five lipids--phosphatidylinositol-4-phosphate, phosphatidylinositol-(4,5)-bisphosphate, sphingosine-1-phosphate (S1P), ceramide-1-phosphate and phosphatidic acid--stimulate both actin assembly and transport of ADP across the phagosomal membrane into the lumen. Once there, this ADP is converted to ATP by adenylate kinase activity. High luminal ATP concentrations correlated well with phagosome actin assembly under different conditions. The ATP-binding P2X7 receptor (P2X7R) was detected in phagosomes. Although S1P stimulated actin assembly by phagosomes from P2X7R-containing bone marrow macrophages, S1P-stimulated actin assembly was inhibited in phagosomes from cells lacking P2X7R. We propose that luminal ATP accumulates in response to selected lipids and activates the P2X7R that signals across the phagosomal membrane to trigger actin assembly on the cytoplasmic membrane surface. In the accompanying paper by Kuehnel et al. (doi:10.1242/jcs.034207), more evidence is provided in support of this model from the analysis of actin assembly at the plasma membrane of intact macrophages.
Collapse
|
170
|
Abstract
Receptors represent an abundant class of integral membrane proteins that transmit information on various types of signals within the cell. Assemblages of receptors and their interacting proteins (receptor complexes) have emerged as important units of signal transduction for various types of receptors including G protein coupled, ligand-gated ion channel, and receptor tyrosine kinase. This review aims to summarize the major approaches and findings of receptor proteomics. Isolation and characterization of receptor complexes from cells has become common using the methods of immunoaffinity-, ligand-, and tag-based chromatography followed by MS for the analysis of enriched receptor preparations. In addition, tools such as stable isotope labeling have contributed to understanding quantitative properties and PTMs to receptors and their interacting proteins. As data from studies on receptor-protein interactions considerably expands, complementary approaches such as bioinformatics and computational biology will undoubtedly play a significant role in defining cellular and network functions for various types of receptor complexes. Findings from receptor proteomics may also shed light on the mechanism of action for pharmacological drugs and can be of value in understanding molecular pathologies of disease states.
Collapse
Affiliation(s)
- Nadine Kabbani
- Institut Jacques Monod, CNRS/Universités Paris 6, Paris, France.
| |
Collapse
|
171
|
Garcia-Marcos M, Dehaye JP, Marino A. Membrane compartments and purinergic signalling: the role of plasma membrane microdomains in the modulation of P2XR-mediated signalling. FEBS J 2008; 276:330-40. [DOI: 10.1111/j.1742-4658.2008.06794.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
172
|
Nicke A. Homotrimeric complexes are the dominant assembly state of native P2X7 subunits. Biochem Biophys Res Commun 2008; 377:803-8. [DOI: 10.1016/j.bbrc.2008.10.042] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/10/2008] [Indexed: 11/29/2022]
|
173
|
Schnizler MK, Schnizler K, Zha XM, Hall DD, Wemmie JA, Hell JW, Welsh MJ. The cytoskeletal protein alpha-actinin regulates acid-sensing ion channel 1a through a C-terminal interaction. J Biol Chem 2008; 284:2697-2705. [PMID: 19028690 PMCID: PMC2631967 DOI: 10.1074/jbc.m805110200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The acid-sensing ion channel 1a (ASIC1a) is widely expressed in central and
peripheral neurons where it generates transient cation currents when
extracellular pH falls. ASIC1a confers pH-dependent modulation on postsynaptic
dendritic spines and has critical effects in neurological diseases associated
with a reduced pH. However, knowledge of the proteins that interact with
ASIC1a and influence its function is limited. Here, we show that
α-actinin, which links membrane proteins to the actin cytoskeleton,
associates with ASIC1a in brain and in cultured cells. The interaction
depended on an α-actinin-binding site in the ASIC1a C terminus that was
specific for ASIC1a versus other ASICs and for α-actinin-1 and
-4. Co-expressing α-actinin-4 altered ASIC1a current density, pH
sensitivity, desensitization rate, and recovery from desensitization.
Moreover, reducing α-actinin expression altered acid-activated currents
in hippocampal neurons. These findings suggest that α-actinins may link
ASIC1a to a macromolecular complex in the postsynaptic membrane where it
regulates ASIC1a activity.
Collapse
Affiliation(s)
- Mikael K Schnizler
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Katrin Schnizler
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Xiang-Ming Zha
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Duane D Hall
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - John A Wemmie
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242; Department of Veterans Affairs Medical Center, Iowa City, Iowa 52242
| | - Johannes W Hell
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Michael J Welsh
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242; Departments of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
174
|
Costa-Junior HM, Mendes AN, Davis GHNG, da Cruz CM, Ventura ALM, Serezani CH, Faccioli LH, Nomizo A, Freire-de-Lima CG, Bisaggio RDC, Persechini PM. ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat 2008; 88:51-61. [PMID: 18984060 DOI: 10.1016/j.prostaglandins.2008.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 09/16/2008] [Accepted: 09/29/2008] [Indexed: 01/10/2023]
Abstract
Macrophages express P2X(7) and other nucleotide (P2) receptors, and display the phenomena of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization and cell death by apoptosis and necrosis. P2X(7) receptors also cooperate with toll-like receptors (TLRs) to induce inflammasome activation and IL-1beta secretion. We investigated signaling pathways involved in the induction of cell death by ATP(e) in intraperitoneal murine macrophages. Apoptosis (hypodiploid nuclei) and necrosis (LDH release) were detected 6h after an induction period of 20 min in the presence of ATP. Apoptosis was blocked by caspase 3 and caspase 9 inhibitors and by cyclosporin A. The MAPK inhibitors PD-98059, SB-203580 and SB-202190 provoked no significant effect on apoptosis, but SB-203580 blocked LDH release. Neither apoptosis nor necrosis was inhibited when both intra- and extracellular Ca(2+) were chelated during the induction period. Mepacrine, a generic PLA(2) inhibitor and BEL, an inhibitor of Ca(2+)-independent PLA(2) (iPLA(2)) blocked apoptosis, while pBPB and AACOOPF(3), inhibitors of secretory and Ca(2+)-dependent PLA(2) respectively, had no significant effect. Cycloxygenase inhibitors had no effect on apoptosis, while the inhibitors of lipoxygenase (LOX) and leukotriene biosynthesis nordihydroguaiaretic acid (NDGA), zileuton, AA-861, and MK-886 significantly decreased apoptosis. Neither NDGA nor MK-886 blocked apoptosis of 5-LOX(-/-) macrophages. CP-105696 and MK-571, antagonists of leukotriene receptors, had no significant effect on apoptosis. None of the inhibitors of PLA(2) and LOX/leukotriene pathway had a significant inhibitory effect on LDH release. Our results indicate that a Ca(2+)-independent step involving an iPLA(2) and 5-LOX are involved in the triggering of apoptosis but not necrosis by P2X(7) in macrophages.
Collapse
Affiliation(s)
- Helio Miranda Costa-Junior
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Schachter J, Motta AP, de Souza Zamorano A, da Silva-Souza HA, Guimarães MZP, Persechini PM. ATP-induced P2X7-associated uptake of large molecules involves distinct mechanisms for cations and anions in macrophages. J Cell Sci 2008; 121:3261-70. [PMID: 18782864 DOI: 10.1242/jcs.029991] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macrophages express the P2X(7) receptor and other nucleotide (P2) receptors, and display the phenomenon of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization, which occurs through a poorly understood mechanism. We used patch-clamp recordings, cytoplasmic Ca(2+) measurements and fluorescent dye uptake assays to compare P2X(7)-associated transport phenomena of macrophages and HEK-293 cells transfected with P2X(7) receptors (HEK-P2X(7) cells). Both cell types showed inward currents, increase of free cytoplasmic Ca(2+) concentration and the uptake of cationic dyes upon exposure to ATP(e), as previously described. However, in contrast to the macrophages, HEK-P2X(7) cells did not take up anionic dyes and did not display the 440 pS channels (Z pores) under cell-attached patch-clamping conditions. In addition, the transport mechanism of anionic dyes displayed by macrophages was also able to support dye efflux and, once activated at 37 degrees C, it remained active at 4 degrees C, whereas uptake of cationic dyes was temperature-dependent and unidirectional. Our results indicate that the mechanism of ATP(e)-induced dye uptake, usually called a ;permeabilization phenomenon' and associated with a ;permeabilization pore' can be ascribed to at least two distinct mechanisms in macrophages: a diffusional pathway, possibly associated with the 440 pS Z pores, and a cation uptake mechanism that is not diffusional and should be ascribed to an, as yet, unidentified transport mechanism.
Collapse
Affiliation(s)
- Julieta Schachter
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
176
|
Patch-clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels. Proc Natl Acad Sci U S A 2008; 105:12063-8. [PMID: 18689682 DOI: 10.1073/pnas.0803008105] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-gated P2X receptors display ion permeability increases within seconds of receptor activation as the channels enter the I(2) state, which is permeable to organic cations and dye molecules. The mechanisms underlying this important behavior are not completely understood. In one model, the I(2) state is thought to be due to opening of Pannexin-1 (Panx-1) channels, and, in the second, it is thought to be an intrinsic P2X property. We tested both models by measuring ion and dye permeability and used a patch-clamp coordinated spectroscopy approach to measure conformational changes. Our data show that Panx-1 channels make no detectable contribution to the P2X(2) receptor I(2) state. However, P2X(2) receptors display permeability dynamics, which are correlated with conformational changes in the cytosolic domain remote from the selectivity filter itself. Finally, the data illustrate the utility of a new approach, using tetracysteine tags and biarsenical fluorophores to measure site-specific conformational changes in membrane proteins.
Collapse
|
177
|
Volonté C, D'Ambrosi N, Amadio S. Protein cooperation: from neurons to networks. Prog Neurobiol 2008; 86:61-71. [PMID: 18722498 DOI: 10.1016/j.pneurobio.2008.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/28/2008] [Indexed: 12/30/2022]
Abstract
A constant pattern through the development of cellular life is that not only cells but also subcellular components such as proteins, either being enzymes, receptors, signaling or structural proteins, strictly cooperate. Discerning how protein cooperation originated and propagates over evolutionary time, how proteins work together to a shared outcome far beyond mere interaction, thus represents a theoretical and experimental challenge for evolutionary, molecular, and computational biology, and a timely fruition also for biotechnology. In this review, we describe some basic principles sustaining not only cellular but especially protein cooperative behavior, with particular emphasis on neurobiological systems. We illustrate experimental results and numerical models substantiating that bench research, as well as computer analysis, indeed concurs in recognizing the natural propensity of proteins to cooperate. At the cellular level, we exemplify network connectivity in the thalamus, hippocampus and basal ganglia. At the protein level, we depict numerical models about the receptosome, the protein machinery connecting neurotransmitters or growth factors to specific, unique downstream effector proteins. We primarily focus on the purinergic P2/P1 receptor systems for extracellular purine and pyrimidine nucleotides/nucleosides. By spanning concepts such as single-molecule biology to membrane computing, we seek to stimulate a scientific debate on the implications of protein cooperation in neurobiological systems.
Collapse
Affiliation(s)
- Cinzia Volonté
- Santa Lucia Foundation/CNR, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | | | | |
Collapse
|
178
|
Young MT, Fisher JA, Fountain SJ, Ford RC, North RA, Khakh BS. Molecular shape, architecture, and size of P2X4 receptors determined using fluorescence resonance energy transfer and electron microscopy. J Biol Chem 2008; 283:26241-51. [PMID: 18635539 PMCID: PMC2533801 DOI: 10.1074/jbc.m804458200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
P2X receptors are ATP-gated nonselective cation channels with important
physiological roles. However, their structures are poorly understood. Here, we
analyzed the architecture of P2X receptors using fluorescence resonance energy
transfer (FRET) microscopy and direct structure determination using electron
microscopy. FRET efficiency measurements indicated that the distance between
the C-terminal tails of P2X4 receptors was 5.6 nm. Single particle
analysis of purified P2X4 receptors was used to determine the
three-dimensional structure at a resolution of 21Å; the
orientation of the particle with respect to the membrane was assigned by
labeling the intracellular C termini with 1.8-nm gold particles and the
carbohydrate-rich ectodomain with lectin. We found that human P2X4
is a globular torpedo-like molecule with an approximate volume of 270
nm3 and a compact propeller-shaped ectodomain. In this structure,
the distance between the centers of the gold particles was 6.1 nm, which
closely matches FRET data. Thus, our data provide the first views of the
architecture, shape, and size of single P2X receptors, furthering our
understanding of this important family of ligand-gated ion channels.
Collapse
Affiliation(s)
- Mark T Young
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, United Kingdom
| | | | | | | | | | | |
Collapse
|
179
|
Becker D, Woltersdorf R, Boldt W, Schmitz S, Braam U, Schmalzing G, Markwardt F. The P2X7 carboxyl tail is a regulatory module of P2X7 receptor channel activity. J Biol Chem 2008; 283:25725-25734. [PMID: 18617511 DOI: 10.1074/jbc.m803855200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2X(7) receptors are ATP-gated cation channels composed of three identical subunits, each having intracellular amino and carboxyl termini and two transmembrane segments connected by a large ectodomain. Within the P2X family, P2X(7) subunits are unique in possessing an extended carboxyl tail. We expressed the human P2X(7) subunit as two complementary fragments, a carboxyl tail-truncated receptor channel core (residues 1-436 or 1-505) and a tail extension (residues 434-595) in Xenopus laevis oocytes. P2X(7) channel core subunits efficiently assembled as homotrimers that appeared abundantly at the oocyte surface, yet produced only approximately 5% of the full-length P2X(7) receptor current. Co-assembly of channel core subunits with full-length P2X(7) subunits inhibited channel current, indicating that the lack of a single carboxyl tail domain is dominant-negative for P2X(7) receptor activity. Co-expression of the tail extension as a discrete protein increased ATP-gated current amplitudes of P2X(7) channel cores 10-20-fold, fully reconstituting the wild type electrophysiological phenotype of the P2X(7) receptor. Chemical cross-linking revealed that the discrete tail extension bound with unity stoichiometry to the carboxyl tail of the P2X(7) channel core. We conclude that a non-covalent association of crucial functional importance exists between the carboxyl tail of the channel core and the tail extension. Using a slightly shorter P2X(7) subunit core and subfragments of the tail extension, this association could be narrowed down to include residues 409-436 and 434-494 of the split receptor. Together, these results identify the tail extension as a regulatory gating module, potentially making P2X(7) channel gating sensitive to intracellular regulation.
Collapse
Affiliation(s)
- Daniel Becker
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale and the
| | - Ronja Woltersdorf
- Department of Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule Aachen (RWTH), Aachen University, Wendlingweg 2, D-52074 Aachen, Germany
| | - Wolfgang Boldt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale and the
| | - Stephan Schmitz
- Department of Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule Aachen (RWTH), Aachen University, Wendlingweg 2, D-52074 Aachen, Germany
| | - Ursula Braam
- Department of Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule Aachen (RWTH), Aachen University, Wendlingweg 2, D-52074 Aachen, Germany
| | - Günther Schmalzing
- Department of Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule Aachen (RWTH), Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale and the.
| |
Collapse
|
180
|
Murrell-Lagnado RD, Qureshi OS. Assembly and trafficking of P2X purinergic receptors (Review). Mol Membr Biol 2008; 25:321-31. [PMID: 18446618 DOI: 10.1080/09687680802050385] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
P2X receptors are cation selective ion channels gated by the binding of extracellular ATP. Seven subtypes have been identified and they have widespread and overlapping distributions throughout the body. They form homo- and heterotrimeric complexes that differ in their functional properties and subcellular localization. They form part of larger signalling complexes, interacting with unrelated ion channels and other membrane and cytosolic proteins. Up- or down-regulation of their expression is associated with several disease states. This review aims to summarize recent work on the assembly and trafficking of this family of receptors.
Collapse
|
181
|
Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E. P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 2008; 295:C752-60. [PMID: 18596211 DOI: 10.1152/ajpcell.00228.2008] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pannexin 1 (Panx1), an ortholog to invertebrate innexin gap junctions, has recently been proposed to be the pore induced by P2X(7) receptor (P2X(7)R) activation. We explored the pharmacological action of compounds known to block gap junctions on Panx1 channels activated by the P2X(7)R and the mechanisms involved in the interaction between these two proteins. Whole cell recordings revealed distinct P2X(7)R and Panx1 currents in response to agonists. Activation of Panx1 currents following P2X(7)R stimulation or by membrane depolarization was blocked by Panx1 small-interfering RNA (siRNA) and with mefloquine > carbenoxolone > flufenamic acid. Incubation of cells with KN-62, a P2X(7)R antagonist, prevented current activation by 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP). Membrane permeabilization to dye induced by BzATP was also prevented by Panx1 siRNA and by carbenoxolone and mefloquine. Membrane permeant (TAT-P2X(7)) peptides, provided evidence that the Src homology 3 death domain of the COOH-terminus of the P2X(7)R is involved in the initial steps of the signal transduction events leading to Panx1 activation and that a Src tyrosine kinase is likely involved in this process. Competition assays indicated that 20 microM TAT-P2X(7) peptide caused 50% reduction in Src binding to the P2X(7)R complex. Src tyrosine phosphorylation following BzATP stimulation was reduced by KN-62, TAT-P2X(7) peptide, and by the Src tyrosine inhibitor PP2 and these compounds prevented both large-conductance Panx1 currents and membrane permeabilization. These results together with the lack Panx1 tyrosine phosphorylation in response to P2X(7)R stimulation indicate the involvement of an additional molecule in the tyrosine kinase signal transduction pathway mediating Panx1 activation through the P2X(7)R.
Collapse
Affiliation(s)
- R Iglesias
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Na+ modulates anion permeation and block of P2X7 receptors from mouse parotid glands. J Membr Biol 2008; 223:73-85. [PMID: 18592294 DOI: 10.1007/s00232-008-9115-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
Abstract
We previously reported that mouse parotid acinar cells display anion conductance (I(ATPCl)) when stimulated by external ATP in Na+-free extracellular solutions. It has been suggested that the P2X7 receptor channel (P2X7R) might underlie I(ATPCl). In this work we show that I (ATPCl) can be activated by ATP, ADP, AMP-PNP, ATPgammaS and CTP. This is consistent with the nucleotide sensitivity of P2X7R. Accordingly, acinar cells isolated from P2X7R( -/- ) mice lacked I(ATPCl). Experiments with P2X7R heterologously expressed resulted in ATP-activated currents (I(ATP-P2X7)) partially carried by anions. In Na(+)-free solutions, I (ATP-P2X7) had an apparent anion permeability sequence of SCN(-) > I(-) congruent with NO3(-) > Br(-) > Cl(-) > acetate, comparable to that reported for I(ATPCl) under the same conditions. However, in the presence of physiologically relevant concentrations of external Na+, the Cl(-) permeability of I(ATP-P2X7) was negligible, although permeation of Br(-) or SCN(-) was clearly resolved. Relative anion permeabilities were not modified by addition of 1 mM: carbenoxolone, a blocker of Pannexin-1. Moreover, cibacron blue 3GA, which blocks the Na(+) current activated by ATP in acinar cells but not I(ATPCl), blocked I(ATP-P2X7) in a dose-dependent manner when Na+ was present but failed to do so in tetraethylammonium containing solutions. Thus, our data indicate that P2X7R is fundamental for I(ATPCl) generation in acinar cells and that external Na+ modulates ion permeability and conductivity, as well as drug affinity, in P2X7R.
Collapse
|
183
|
Deli T, Csernoch L. Extracellular ATP and cancer: an overview with special reference to P2 purinergic receptors. Pathol Oncol Res 2008; 14:219-31. [PMID: 18575829 DOI: 10.1007/s12253-008-9071-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/22/2008] [Indexed: 12/12/2022]
Abstract
Purinergic signal transduction mechanisms have been appreciated as a complex intercellular signalling network that plays an important regulatory role in both short- and long-term processes in practically every living cell. One of the most intriguing aspects of the field is the participation of ATP and other purine nucleotides in the determination of cell fate and the way they direct cells towards proliferation, differentiation or apoptosis, thereby possibly taking part in promoting or preventing malignant transformation. In this review, following a very brief introduction to the historical aspects of purinergic signalling and a concise overview of the structure of and signal transduction pathways coupled to P2 purinergic receptors, the current theories concerning the possible ways how extracellular ATP can alter the function of tumour cells and the effectiveness of anticancer therapies are discussed, including pharmacological, nutritional, vasoactive and 'anti-antioxidant' actions of the nucleotide. The effects of ATP on animals inoculated with human tumours and on patients with cancer are looked over next, and then an overview of the literature regarding the expression and presumed functions of P2 purinoceptors on tumour cells in vitro is presented, sorted out according to the relevant special clinical fields. The article is closed by reviewing the latest developments in the diagnostic use of P2 purinergic receptors as tumour markers and prognostic factors, while discussing some of the difficulties and pitfalls of the therapeutic use of ATP analogues.
Collapse
Affiliation(s)
- Tamás Deli
- Department of Physiology, Research Centre for Molecular Medicine, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
184
|
Roger S, Pelegrin P, Surprenant A. Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J Neurosci 2008; 28:6393-401. [PMID: 18562610 PMCID: PMC6670894 DOI: 10.1523/jneurosci.0696-08.2008] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 01/17/2023] Open
Abstract
The ATP-gated P2X(7) receptor (P2X(7)R) is a highly unusual calcium-permeable cationic channel in that within seconds of its activation, dramatic and reversible cytoskeletal rearrangements with prominent membrane blebbing occurs. Agonist-induced membrane currents at hyperpolarized potentials show pronounced facilitation during the initial 30-100 s of receptor activation but mechanisms responsible have not been elucidated. We measured facilitation of ATP-gated currents in HEK cells expressing rat P2X(7)R and delineated distinct calcium-dependent and independent processes. The calcium-dependent facilitation was composed of an instantaneous (millisecond time domain) and slowly developing (time constant, 20 s with maximum agonist stimulation) component. Both components were prevented when recording with a highly specific calmodulin (CaM) inhibitory peptide but only the instantaneous component was reduced by expression of the dominant-negative EF-handless CaM mutant. Coimmunoprecipitation assays detected low levels of CaM binding to unstimulated P2X(7)R, and this increased by 50% during 45 s stimulation of the receptor. We identified a novel 1-5-16 Ca(2+)-dependent CaM binding motif in the intracellular C terminus of P2X(7)R; mutations in this domain resulted in the absence of calcium-dependent facilitation and binding of CaM to unstimulated or stimulated receptor. Blockade of CaM binding also delayed membrane blebbing by threefold. Our results demonstrate that CaM binds constitutively to closed P2X(7)R channels and dynamically during channel activation to significantly enhance and prolong calcium entry. This is the first example of CaM deregulating, rather than tightly controlling, calcium entry through an ion channel.
Collapse
Affiliation(s)
- Sébastien Roger
- Faculty of Life Science, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Pablo Pelegrin
- Faculty of Life Science, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Annmarie Surprenant
- Faculty of Life Science, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
185
|
Dutot M, Liang H, Pauloin T, Brignole-Baudouin F, Baudouin C, Warnet JM, Rat P. Effects of toxic cellular stresses and divalent cations on the human P2X7 cell death receptor. Mol Vis 2008; 14:889-97. [PMID: 18490962 PMCID: PMC2386509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 05/07/2008] [Indexed: 12/02/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate responses to toxic cellular stresses in different human ocular epithelia. METHODS Reactivity with a specific anti-P2X7 antibody was studied using confocal fluorescence microscopy on conjunctival, corneal, lens, and retinal cell lines as well as using impression cytology on human ocular cells. Activation of the P2X7 receptor by selective agonists (ATP and benzoylbenzoyl-ATP) and inhibition by antagonists (oATP, KN-62, and PPADS) were evaluated using the quinolinium,4-[(3-methyl-2-(3H)-benzoxazolylidene) methyl]-1-[3-(triethylammonio)propyl]di-iodide (YO-PRO-1) test in cytofluorometry. Different specific stresses were then induced by a chemical toxin (benzalkonium chloride) and a chemical oxidant (tert-butyl hydroperoxide) to assess the role of the P2X7 receptor. Modulation of P2X7 receptor activation was performed with several ionic solutions. RESULTS Our data show that four cell lines express the P2X7 cell death purinergic receptor as judged by reactivity with a specific anti-P2X7 antibody, activation by the selective P2X7 agonist benzoylbenzoyl-ATP and to a lesser extent by ATP (YO-PRO-1 dye uptake), and inhibition by three antagonists (oATP, KN-62, and PPADS). Benzalkonium chloride, a widely used preservative, induced dramatic membrane permeabilization through P2X7 pore opening on conjunctival and corneal epithelia. Reactive oxygen species, induced by tert-butyl hydroperoxide, lead to P2X7 receptor activation on retinal pigment epithelium. Modulation of P2X7 receptor activation was obtained with extracellular Ca(2+) and Mg(2+) and with a controlled ionization marine solution rich in different divalent cations. This marine solution could be proposed as a new ophthalmic solution. CONCLUSIONS Our observations reveal a novel pathway for epithelial cells apoptosis/cytolysis by inducing different toxic stresses and their modulation by using ionic solutions.
Collapse
Affiliation(s)
- Mélody Dutot
- Laboratoire de Toxicologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Hong Liang
- INSERM UMRS 872, Institut Biomédical des Cordeliers, Paris, France,Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
| | - Thierry Pauloin
- Laboratoire de Toxicologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Françoise Brignole-Baudouin
- Laboratoire de Toxicologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France,INSERM UMRS 872, Institut Biomédical des Cordeliers, Paris, France,Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
| | - Christophe Baudouin
- INSERM UMRS 872, Institut Biomédical des Cordeliers, Paris, France,Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France,Université de Versailles, Versailles, France
| | - Jean-Michel Warnet
- Laboratoire de Toxicologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France,INSERM UMRS 872, Institut Biomédical des Cordeliers, Paris, France,Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
| | - Patrice Rat
- Laboratoire de Toxicologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France,INSERM UMRS 872, Institut Biomédical des Cordeliers, Paris, France,Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
186
|
Eukaryotic elongation factor 1A2 cooperates with phosphatidylinositol-4 kinase III beta to stimulate production of filopodia through increased phosphatidylinositol-4,5 bisphosphate generation. Mol Cell Biol 2008; 28:4549-61. [PMID: 18474610 DOI: 10.1128/mcb.00150-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a transforming gene product that is highly expressed in human tumors of the ovary, lung, and breast. eEF1A2 also stimulates actin remodeling, and the expression of this factor is sufficient to induce the formation of filopodia, long cellular processes composed of bundles of parallel actin filaments. Here, we find that eEF1A2 stimulates formation of filopodia by increasing the cellular abundance of cytosolic and plasma membrane-bound phosphatidylinositol-4,5 bisphosphate [PI(4,5)P(2)]. We have previously reported that the eEF1A2 protein binds and activates phosphatidylinositol-4 kinase III beta (PI4KIIIbeta), and we find that production of eEF1A2-dependent PI(4,5)P(2) and generation of filopodia require PI4KIIIbeta. Furthermore, PI4KIIIbeta is itself capable of activating both the production of PI(4,5)P(2) and the creation of filopodia. We propose a model for extrusion of filopodia in which eEF1A2 activates PI4KIIIbeta, and activated PI4KIIIbeta stimulates production of PI(4,5)P(2) and filopodia by increasing PI4P abundance. Our work suggests an important role for both eEF1A2 and PI4KIIIbeta in the control of PI(4,5)P(2) signaling and actin remodeling.
Collapse
|
187
|
Inhibition of P2X7 receptors by divalent cations: old action and new insight. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:339-46. [DOI: 10.1007/s00249-008-0315-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
188
|
Köles L, Gerevich Z, Oliveira JF, Zadori ZS, Wirkner K, Illes P. Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:1-33. [DOI: 10.1007/s00210-007-0222-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/12/2007] [Indexed: 02/04/2023]
|
189
|
Intracellular complexes of the beta2 subunit of the nicotinic acetylcholine receptor in brain identified by proteomics. Proc Natl Acad Sci U S A 2007; 104:20570-5. [PMID: 18077321 DOI: 10.1073/pnas.0710314104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nicotine acetylcholine receptors (nAChRs) comprise a family of ligand-gated channels widely expressed in the mammalian brain. The beta2 subunit is an abundant protein subunit critically involved in the cognitive and behavioral properties of nicotine as well as in the mechanisms of nicotine addiction. In this work, we used matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS/MS) to uncover protein interactions of the intracellular loop of the beta2 subunit and components of immunoprecipitated beta2-nAChR complexes from mouse brain. Using the beta2-knockout mouse to exclude nonspecific binding to the beta2 antibody, we identify 21 nAChR-interacting proteins (NIPs) expressed in brain. Western blot analysis confirmed the association between the beta2 subunit and candidate NIPs. Based on their functional profiles, the hypothesis is suggested that the identified NIPs can regulate the trafficking and signaling of the beta2-nAChR. Interactions of the beta2 subunit with NIPs such as G protein alpha, G protein-regulated inducer of neurite outgrowth 1, and G protein-activated K(+) channel 1 suggest a link between nAChRs and cellular G protein pathways. These findings reveal intracellular interactions of the beta2 subunit and may contribute to the understanding of the mechanisms of nAChR signaling and trafficking in neurons.
Collapse
|
190
|
Synthesis and structure-activity relationship studies of tyrosine-based antagonists at the human P2X7 receptor. Bioorg Med Chem Lett 2007; 18:571-5. [PMID: 18078749 DOI: 10.1016/j.bmcl.2007.11.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/18/2007] [Accepted: 11/20/2007] [Indexed: 11/21/2022]
Abstract
Analogues of the P2X(7) receptor antagonist KN-62, modified at the piperazine and arylsulfonyl groups, were synthesized and assayed at the human P2X(7) receptor for inhibition of BzATP-induced effects, that is, uptake of a fluorescent dye (ethidium bromide) in stably transfected HEK293 cells and IL-1beta release in differentiated THP-1 cells. Substitution of the arylsulfonyl moiety with a nitro group increased antagonistic potency relative to methyl substitution, such that compound 21 was slightly more potent than KN-62. Substitution with D-tyrosine in 36 and sterically bulky tyrosyl 2,6-dimethyl groups [corrected] in 9 enhanced antagonistic potency.
Collapse
|
191
|
Shemon AN, Sluyter R, Stokes L, Manley PW, Wiley JS. Inhibition of the human P2X7 receptor by a novel protein tyrosine kinase antagonist. Biochem Biophys Res Commun 2007; 365:515-20. [PMID: 17999916 DOI: 10.1016/j.bbrc.2007.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
A panel of 18 protein tyrosine kinase antagonists were tested for their inhibitory effect on human P2X(7) receptor-mediated (86)Rb(+) (K(+)) efflux. The most potent compound (compound P), a phthalazinamine derivative and an inhibitor of vascular endothelial growth factor receptor kinase, blocked ATP-induced (86)Rb(+)-efflux in human B-lymphocytes and erythrocytes by 76% and 66%, respectively. This inhibition was dose-dependent in both cell types with an IC(50) of approximately 5muM. Kinetic analysis showed compound P was a non-competitive inhibitor of P2X(7). This compound also inhibited ATP-induced ethidium(+) influx into B-lymphocytes and P2X(7)-transfected-HEK-293 cells, as well as ATP-induced (86)Rb(+)-efflux from canine erythrocytes. Externally, but not internally, applied compound P impaired ATP-induced inward currents in P2X(7)-transfected-HEK-293 cells. This study demonstrates that a novel protein tyrosine kinase antagonist directly impairs native and recombinant human P2X(7) receptors. The data suggests that antagonists which target ATP-binding sites of kinases may potentially block the P2X(7) receptor.
Collapse
Affiliation(s)
- Anne N Shemon
- Department of Medicine, Nepean Clinical School, University of Sydney, Penrith, NSW, Australia
| | | | | | | | | |
Collapse
|
192
|
Takizawa N, Ikebe R, Ikebe M, Luna EJ. Supervillin slows cell spreading by facilitating myosin II activation at the cell periphery. J Cell Sci 2007; 120:3792-803. [DOI: 10.1242/jcs.008219] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During cell migration, myosin II modulates adhesion, cell protrusion and actin organization at the leading edge. We show that an F-actin- and membrane-associated scaffolding protein, called supervillin (SV, p205), binds directly to the subfragment 2 domains of nonmuscle myosin IIA and myosin IIB and to the N-terminus of the long form of myosin light chain kinase (L-MLCK). SV inhibits cell spreading via an MLCK- and myosin II-dependent mechanism. Overexpression of SV reduces the rate of cell spreading, and RNAi-mediated knockdown of endogenous SV increases it. Endogenous and EGFP-tagged SV colocalize with, and enhance the formation of, cortical bundles of F-actin and activated myosin II during early cell spreading. The effects of SV are reversed by inhibition of myosin heavy chain (MHC) ATPase (blebbistatin), MLCK (ML-7) or MEK (U0126), but not by inhibiting Rho-kinase with Y-27632. Flag-tagged L-MLCK co-localizes in cortical bundles with EGFP-SV, and kinase-dead L-MLCK disorganizes these bundles. The L-MLCK- and myosin-binding site in SV, SV1-171, rearranges and co-localizes with mono- and di-phosphorylated myosin light chain and with L-MLCK, but not with the short form of MLCK (S-MLCK) or with myosin phosphatase. Thus, the membrane protein SV apparently contributes to myosin II assembly during cell spreading by modulating myosin II regulation by L-MLCK.
Collapse
Affiliation(s)
- Norio Takizawa
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reiko Ikebe
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mitsuo Ikebe
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Elizabeth J. Luna
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cell Dynamics Program, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
193
|
Marone R, Cmiljanovic V, Giese B, Wymann MP. Targeting phosphoinositide 3-kinase: moving towards therapy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:159-85. [PMID: 17997386 DOI: 10.1016/j.bbapap.2007.10.003] [Citation(s) in RCA: 451] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/28/2007] [Accepted: 10/05/2007] [Indexed: 01/08/2023]
Abstract
Phosphoinositide 3-kinases (PI3K) orchestrate cell responses including mitogenic signaling, cell survival and growth, metabolic control, vesicular trafficking, degranulation, cytoskeletal rearrangement and migration. Deregulation of the PI3K pathway occurs by activating mutations in growth factor receptors or the PIK3CA locus coding for PI3Kalpha, by loss of function of the lipid phosphatase and tensin homolog deleted in chromosome ten (PTEN/MMAC/TEP1), by the up-regulation of protein kinase B (PKB/Akt), or the impairment of the tuberous sclerosis complex (TSC1/2). All these events are linked to growth and proliferation, and have thus prompted a significant interest in the pharmaceutical targeting of the PI3K pathway in cancer. Genetic targeting of PI3Kgamma (p110gamma) and PI3Kdelta (p110delta) in mice has underlined a central role of these PI3K isoforms in inflammation and allergy, as they modulate chemotaxis of leukocytes and degranulation in mast cells. Proof-of-concept molecules selective for PI3Kgamma have already successfully alleviated disease progress in murine models of rheumatoid arthritis and lupus erythematosus. As targeting PI3K moves forward to therapy of chronic, non-fatal disease, safety concerns for PI3K inhibitors increase. Many of the present inhibitor series interfere with target of rapamycin (TOR), DNA-dependent protein kinase (DNA-PK(cs)) and activity of the ataxia telangiectasia mutated gene product (ATM). Here we review the current disease-relevant knowledge for isoform-specific PI3K function in the above mentioned diseases, and review the progress of >400 recent patents covering pharmaceutical targeting of PI3K. Currently, several drugs targeting the PI3K pathway have entered clinical trials (phase I) for solid tumors and suppression of tissue damage after myocardial infarction (phases I,II).
Collapse
Affiliation(s)
- Romina Marone
- Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | | | | | | |
Collapse
|
194
|
Adriouch S, Bannas P, Schwarz N, Fliegert R, Guse AH, Seman M, Haag F, Koch-Nolte F. ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site. FASEB J 2007; 22:861-9. [PMID: 17928361 DOI: 10.1096/fj.07-9294com] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ADP-ribosylation is a post-translational modification regulating protein function in which amino acid-specific ADP-ribosyltransferases (ARTs) transfer ADP-ribose from NAD onto specific target proteins. Attachment of the bulky ADP-ribose usually inactivates the target by sterically blocking its interaction with other proteins. P2X7, an ATP-gated ion channel with important roles in inflammation and cell death, in contrast, is activated by ADP-ribosylation. Here, we report the structural basis for this gating and present the first molecular model for the activation of a target protein by ADP-ribosylation. We demonstrate that the ecto-enzyme ART2.2 ADP-ribosylates P2X7 at arginine 125 in a prominent, cysteine-rich region at the interface of 2 receptor subunits. ADP-ribose shares an adenine-ribonucleotide moiety with ATP. Our results indicate that ADP-ribosylation of R125 positions this common chemical framework to fit into the nucleotide-binding site of P2X7 and thereby gates the channel.
Collapse
Affiliation(s)
- Sahil Adriouch
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Bettini NL, Moores TS, Baxter B, Deuchars J, Parson SH. Dynamic remodelling of synapses can occur in the absence of the parent cell body. BMC Neurosci 2007; 8:79. [PMID: 17897464 PMCID: PMC2048966 DOI: 10.1186/1471-2202-8-79] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 09/26/2007] [Indexed: 02/03/2023] Open
Abstract
Background Retraction of nerve terminals is a characteristic feature of development, injury and insult and may herald many neurodegenerative diseases. Although morphological events have been well characterized, we know relatively little about the nature of the underlying cellular machinery. Evidence suggests a strong local component in determining which neuronal branches and synapses are lost, but a greater understanding of this basic neurological process is required. Here we test the hypothesis that nerve terminals are semi-autonomous and able to rapidly respond to local stimuli in the absence of communication with their parent cell body. Results We used an isolated preparation consisting of distal peripheral nerve stumps, associated nerve terminals and post-synaptic muscle fibres, maintained in-vitro for up to 3 hrs. In this system synapses are intact but the presynaptic nerve terminal is disconnected from its cell soma. In control preparations synapses were stable for extended periods and did not undergo Wallerian degneration. In contrast, addition of purines triggers rapid changes at synapses. Using fluorescence and electron microscopy we observe ultrastructural and gross morphological events consistent with nerve terminal retraction. We find no evidence of Wallerian or Wallerian-like degeneration in these preparations. Pharmacological experiments implicate pre-synaptic P2X7 receptor subunits as key mediators of these events. Conclusion The data presented suggest; first that isolated nerve terminals are able to regulate connectivity independent of signals from the cell body, second that synapses exist in a dynamic state, poised to shift from stability to loss by activating intrinsic mechanisms and molecules, and third that local purines acting at purinergic receptors can trigger these events. A role for ATP receptors in this is not surprising since they are frequently activated during cellular injury, when adenosine tri-phosphate is released from damaged cells. Local control demands that the elements necessary to drive retraction are constitutively present. We hypothesize that pre-existing scaffolds of molecular motors and cytoskeletal proteins could provide the dynamism required to drive such structural changes in nerve terminals in the absence of the cell body.
Collapse
Affiliation(s)
- Natalia L Bettini
- University of Leeds, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Garstang Building, LS2 9JT, UK
- University of Sussex, Sussex Centre for Neuroscience, School of Life Sciences, Falmer, Brighton, BN1 9QG
| | - Thomas S Moores
- University of Leeds, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Garstang Building, LS2 9JT, UK
| | - Becki Baxter
- University of Leeds, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Garstang Building, LS2 9JT, UK
- University of Edinburgh, Section of Anatomy, Centre for Integrative Physiology, Old Medical School, Edinburgh, EH8 9AG, UK
| | - Jim Deuchars
- University of Leeds, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Garstang Building, LS2 9JT, UK
| | - Simon H Parson
- University of Leeds, Institute of Membrane and Systems Biology, Faculty of Biological Sciences, Garstang Building, LS2 9JT, UK
- University of Edinburgh, Section of Anatomy, Centre for Integrative Physiology, Old Medical School, Edinburgh, EH8 9AG, UK
| |
Collapse
|
196
|
Dubyak GR. Go it alone no more--P2X7 joins the society of heteromeric ATP-gated receptor channels. Mol Pharmacol 2007; 72:1402-5. [PMID: 17895406 DOI: 10.1124/mol.107.042077] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P2X receptors (P2XR) function as ATP-gated nonselective ion channels permeable to Na+, K+, and Ca2+, and they are expressed in a wide range of excitable, epithelial/endothelial, and immune effector cell types. The channels are trimeric complexes composed of protein subunits encoded by seven different P2XR genes expressed in mammalian and other vertebrate genomes. Current genetic, biochemical, and/or physiological evidence indicates that the extended family of functional P2X receptors includes six homomeric channels composed of P2X1, P2X2, P2X3, P2X4, P2X5, or P2X7 subunits and six heteromeric channels that involve subunit pairings of P2X1/P2X2, P2X1/P2X4, P2X1/P2X5, P2X2/P2X3, P2X2/P2X6, or P2X4/P2X6. Thus, all P2XR subtypes--with the salient exception of P2X7R--have previously been implicated in the assembly of heteromeric ATP-gated ion channels that can comprise unique pharmacological targets in different tissues. The assumed "go-it alone" function of the P2X7R has important implications because agents that target this particular receptor have been proposed as useful therapeutics in various autoinflammatory diseases or amelioration of inflammatory pain. However, this assumption and the interpretations based on it now require reevaluation in light of a new report in this issue of Molecular Pharmacology (p. 1447) that provides convincing biochemical and electrophysiological evidence for the existence of P2X4/P2X7 heteromeric receptors.
Collapse
Affiliation(s)
- George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
197
|
Majumder P, Trujillo CA, Lopes CG, Resende RR, Gomes KN, Yuahasi KK, Britto LRG, Ulrich H. New insights into purinergic receptor signaling in neuronal differentiation, neuroprotection, and brain disorders. Purinergic Signal 2007; 3:317-31. [PMID: 18404445 PMCID: PMC2072925 DOI: 10.1007/s11302-007-9074-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 08/09/2007] [Indexed: 05/07/2023] Open
Abstract
Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system and participate in the synaptic process particularly associated with acetylcholine, GABA, and glutamate neurotransmission. As a result of activation, the P2 receptors promote the elevation of free intracellular calcium concentration as the main signaling pathway. Purinergic signaling is present in early stages of embryogenesis and is involved in processes of cell proliferation, migration, and differentiation. The use of new techniques such as knockout animals, in vitro models of neuronal differentiation, antisense oligonucleotides to induce downregulation of purinergic receptor gene expression, and the development of selective inhibitors for purinergic receptor subtypes contribute to the comprehension of the role of purinergic signaling during neurogenesis. In this review, we shall discuss the participation of purinergic receptors in developmental processes and in brain physiology, including neuron-glia interactions and pathophysiology.
Collapse
Affiliation(s)
- Paromita Majumder
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Sluyter R, Shemon AN, Hughes WE, Stevenson RO, Georgiou JG, Eslick GD, Taylor RM, Wiley JS. Canine erythrocytes express the P2X7 receptor: greatly increased function compared with human erythrocytes. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2090-8. [PMID: 17761513 DOI: 10.1152/ajpregu.00166.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over three decades ago, Parker and Snow (Am J Physiol 223: 888-893, 1972) demonstrated that canine erythrocytes undergo an increase in cation permeability when incubated with extracellular ATP. In this study we examined the expression and function of the channel/pore-forming P2X(7) receptor on canine erythrocytes. P2X(7) receptors were detected on canine erythrocytes by immunocytochemistry and immunoblotting. Extracellular ATP induced (86)Rb(+) (K(+)) efflux from canine erythrocytes that was 20 times greater than that from human erythrocytes. The P2X(7) agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-trisphosphate (BzATP) was more potent than ATP, and both stimulated (86)Rb(+) efflux from erythrocytes in a dose-dependent fashion with EC(50) values of approximately 7 and approximately 309 microM, respectively. 2-Methylthioadenosine 5'-triphosphate and adenosine 5'-O-(3-thiotriphosphate) induced a smaller (86)Rb(+) efflux from erythrocytes, whereas ADP, AMP, UTP, or adenosine had no effect. ATP-induced (86)Rb(+) efflux from erythrocytes was inhibited by oxidized ATP, KN-62, and Brilliant blue G, known P2X(7) antagonists. ATP also induced uptake of choline(+) into canine erythrocytes that was 60 times greater than that into human erythrocytes. Overnight incubation of canine erythrocytes with ATP and BzATP induced phosphatidylserine exposure in >80% of cells and caused up to 20% hemolysis. In contrast, <30% of human erythrocytes showed phosphatidylserine exposure after overnight incubation with ATP and BzATP, and hemolysis was negligible. Flow cytometric measurements of ATP-induced ethidium(+) uptake showed that P2X(7) function was three times lower in canine monocytes than in human monocytes. These data show that the massive cation permeability increase induced by extracellular ATP in canine erythrocytes results from activation and opening of the P2X(7) receptor channel/pore.
Collapse
Affiliation(s)
- Ronald Sluyter
- Dept. of Medicine, University of Sydney, Nepean Clinical School, Penrith, New South Wales, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
It is now apparent that multiprotein signalling complexes or "signalling machines" are responsible for orchestrating many complex signalling pathways in the cell. The synapse is a sub-cellular specialisation which transmits and converts patterns of electrical activity into cellular memory. This processing of electrical information is mediated by the protein components of the synapse. The organisation of synaptic proteins has been investigated over the last number of years using proteomic methods and with the application ofbioinformatics; a landscape of modular protein complexes at the synapse is emerging. Many share a common organisation centred on a receptor/channel, a protein scaffold, (in which the signalling molecules are localised) and membrane to cytoskeleton interactions. The use of PDZ-domain based protein scaffolds is a particularly common feature in the construction of neuronal protein complexes and the differential presence of these proteins in complexes can have functional consequences. Here we overview current proteomic methodologies for the analysis of multiprotein complexes. In addition, we describe the characterisation of a number of multiprotein complexes associated with ion channels (NMDAR, P2X7 and Kir2) and GPCRs (5-HT2A/5-HT2C, D2 and mGluR5) and discuss common their common components and organisation.
Collapse
|
200
|
Brône B, Moechars D, Marrannes R, Mercken M, Meert T. P2X currents in peritoneal macrophages of wild type and P2X4 -/- mice. Immunol Lett 2007; 113:83-9. [PMID: 17825926 DOI: 10.1016/j.imlet.2007.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/19/2007] [Accepted: 07/27/2007] [Indexed: 11/26/2022]
Abstract
In this study the ATP-induced (P2X) currents in isolated peritoneal macrophages of wild type (WT) and P2X(4) knockout (P2X(4)(-/-)) mice were studied by means of whole-cell patch clamp in order to (1) survey the P2X currents of native macrophages and (2) to investigate the expression of P2X(4)-like currents in the WT versus P2X(4)(-/-) mice. Three types of currents were observed in the isolated macrophages: (1) in approximately 10% of both WT and P2X(4)(-/-) macrophages a fast activating and inactivating P2X1-like current was recorded with low concentrations (0.1-1 microM) of ATP; (2) 85% of wild type and 100% of P2X(4)(-/-) macrophages exhibited a non-desensitizing P2X(7)-like current activated at high concentrations of ATP (10mM). The identity of the P2X(7) current was confirmed using the specific blocker A-740003; (3) 88.6% of the WT but none of the P2X(4)(-/-) macrophages showed a small P2X(4)-like current that desensitized slowly upon ATP application at intermediate concentrations (3-300 microM). Several observations indicated that the slowly desensitizing current in WT macrophages was P2X(4). The EC50 value of 5.3 microM ATP was as expected for P2X(4) and the current induced by 3-300 microM ATP was absent in P2X(4)(-/-) mice. Upon application of 3 microM ivermectin, a P2X(4)-selective modulator, the amplitude of this current was increased and the desensitization was inhibited in WT cells. In addition, this current was facilitated by 10 microM Zn(2+) but inhibited by Cu(2+) (in contrast to P2X(2)). We conclude that the P2X(4) and P2X(7) currents are functionally expressed in recruited peritoneal macrophages of WT mice and that the P2X(4)-like current is absent in P2X(4)(-/-) mice.
Collapse
Affiliation(s)
- Bert Brône
- Gobal Preclinical Development, Johnson and Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, B2340 Beerse, Belgium.
| | | | | | | | | |
Collapse
|