151
|
Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KLB. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 2006; 175:415-26. [PMID: 17074885 PMCID: PMC2064519 DOI: 10.1083/jcb.200607020] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 10/06/2006] [Indexed: 11/25/2022] Open
Abstract
This study demonstrates that the eukaryotic translation initiation factor eIF4E is a critical node in an RNA regulon that impacts nearly every stage of cell cycle progression. Specifically, eIF4E coordinately promotes the messenger RNA (mRNA) export of several genes involved in the cell cycle. A common feature of these mRNAs is a structurally conserved, approximately 50-nucleotide element in the 3' untranslated region denoted as an eIF4E sensitivity element. This element is sufficient for localization of capped mRNAs to eIF4E nuclear bodies, formation of eIF4E-specific ribonucleoproteins in the nucleus, and eIF4E-dependent mRNA export. The roles of eIF4E in translation and mRNA export are distinct, as they rely on different mRNA elements. Furthermore, eIF4E-dependent mRNA export is independent of ongoing RNA or protein synthesis. Unlike the NXF1-mediated export of bulk mRNAs, eIF4E-dependent mRNA export is CRM1 dependent. Finally, the growth-suppressive promyelocytic leukemia protein (PML) inhibits this RNA regulon. These data provide novel perspectives into the proliferative and oncogenic properties of eIF4E.
Collapse
Affiliation(s)
- Biljana Culjkovic
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H4M 1J6, Canada
| | | | | | | | | |
Collapse
|
152
|
Bono F, Ebert J, Lorentzen E, Conti E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 2006; 126:713-25. [PMID: 16923391 DOI: 10.1016/j.cell.2006.08.006] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 07/31/2006] [Accepted: 08/09/2006] [Indexed: 11/30/2022]
Abstract
The exon junction complex (EJC) plays a major role in posttranscriptional regulation of mRNA in metazoa. The EJC is deposited onto mRNA during splicing and is transported to the cytoplasm where it influences translation, surveillance, and localization of the spliced mRNA. The complex is formed by the association of four proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP. The 2.2 A resolution structure of the EJC reveals how it stably locks onto mRNA. The DEAD-box protein eIF4AIII encloses an ATP molecule and provides the binding sites for six ribonucleotides. Btz wraps around eIF4AIII and stacks against the 5' nucleotide. An intertwined network of interactions anchors Mago-Y14 and Btz at the interface between the two domains of eIF4AIII, effectively stabilizing the ATP bound state. Comparison with the structure of the eIF4AIII-Btz subcomplex that we have also determined reveals that large conformational changes are required upon EJC assembly and disassembly.
Collapse
Affiliation(s)
- Fulvia Bono
- European Molecular Biology Laboratory, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
153
|
Marín-Vinader L, van Genesen ST, Lubsen NH. mRNA made during heat shock enters the first round of translation. ACTA ACUST UNITED AC 2006; 1759:535-42. [PMID: 17118471 DOI: 10.1016/j.bbaexp.2006.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 11/26/2022]
Abstract
To determine whether mRNA synthesized during a heat shock is translated at least once in spite of the strong inhibition of translation by heat shock, we used nonsense-mediated decay (NMD) as an assay since NMD requires a round of translation. As NMD substrate we used the human psigammaE-crystallin gene, which contains a premature termination codon, and as control, its close relative, the human gammaD-crystallin gene, both placed under control of the Hsp70 promoter. We show that no spliced psigammaE-crystallin mRNA can be detected in heat shocked cells, suggesting that NMD resumes as soon as splicing is restored. We further show that newly synthesized mRNAs co-sediment with the 40S ribosomal subunits, indicating that the transcripts are recruited to the translation machinery but are stalled at the translation initiation stage. Using fluorescence loss in photobleaching (FLIP) we show that cytoplasmic EGFP-CBP20 is immobile in heat shocked cells. CBP20 is part of the cap binding complex which is thought to direct the first round of translation. Together our data suggest that all mRNAs made during heat shock enter the pioneer round of translation.
Collapse
Affiliation(s)
- Laura Marín-Vinader
- Department of Biochemistry 271, Radboud University of Nijmegen. P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
154
|
Andersen CBF, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CLP, Pedersen JS, Séraphin B, Le Hir H, Andersen GR. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 2006; 313:1968-72. [PMID: 16931718 DOI: 10.1126/science.1131981] [Citation(s) in RCA: 328] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In higher eukaryotes, a multiprotein exon junction complex is deposited on spliced messenger RNAs. The complex is organized around a stable core, which serves as a binding platform for numerous factors that influence messenger RNA function. Here, we present the crystal structure of a tetrameric exon junction core complex containing the DEAD-box adenosine triphosphatase (ATPase) eukaryotic initiation factor 4AIII (eIF4AIII) bound to an ATP analog, MAGOH, Y14, a fragment of MLN51, and a polyuracil mRNA mimic. eIF4AIII interacts with the phosphate-ribose backbone of six consecutive nucleotides and prevents part of the bound RNA from being double stranded. The MAGOH and Y14 subunits lock eIF4AIII in a prehydrolysis state, and activation of the ATPase probably requires only modest conformational changes in eIF4AIII motif I.
Collapse
|
155
|
Holbrook JA, Neu-Yilik G, Gehring NH, Kulozik AE, Hentze MW. Internal ribosome entry sequence-mediated translation initiation triggers nonsense-mediated decay. EMBO Rep 2006; 7:722-6. [PMID: 16799467 PMCID: PMC1500827 DOI: 10.1038/sj.embor.7400721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/08/2006] [Accepted: 05/10/2006] [Indexed: 11/09/2022] Open
Abstract
In eukaryotes, a surveillance pathway known as nonsense-mediated decay (NMD) regulates the abundance of messenger RNAs containing premature termination codons (PTCs). In mammalian cells, it has been asserted that the NMD-relevant first round of translation is special and involves initiation by a specific protein heterodimer, the nuclear cap-binding complex (CBC). Arguing against a requirement for CBC-mediated translation initiation, we show that ribosomal recruitment by the internal ribosomal entry sequence of the encephalomyocarditis virus triggers NMD of a PTC-containing transcript under conditions in which ribosome entry from the cap is prohibited. These data generalize the previous model and suggest that translation per se, irrespective of how it is initiated, can mediate NMD.
Collapse
Affiliation(s)
- Jill A Holbrook
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Niels H Gehring
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
| | - Andreas E Kulozik
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Department for Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Tel: +49 6221 56 2303; Fax: +49 6221 56 4559; E-mail:
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, University Hospital Heidelberg, Im Neuenheimer Feld 150, Heidelberg 69120, Germany
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
- Tel: +49 6221 387 501; Fax: +49 6221 387 518; E-mail:
| |
Collapse
|
156
|
Kuzmiak HA, Maquat LE. Applying nonsense-mediated mRNA decay research to the clinic: progress and challenges. Trends Mol Med 2006; 12:306-16. [PMID: 16782405 DOI: 10.1016/j.molmed.2006.05.005] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/18/2006] [Accepted: 05/22/2006] [Indexed: 11/15/2022]
Abstract
Premature termination codons (PTCs) are equivalent to nonsense sequences. They encode no amino acid, and their presence precludes the synthesis of full-length proteins. Furthermore, the resulting truncated proteins, if synthesized and stable, are likely to be non-functional or might even be deleterious to cellular metabolism. Approximately one third of genetic and acquired diseases are due to PTCs. In fact, PTCs are apt to cause at least some cases of all diseases that involve protein insufficiency. Cells have evolved a way to eliminate mRNAs that contain PTCs using a mechanism called nonsense-mediated mRNA decay (NMD). Here, we will review how to determine which PTCs elicit NMD, what is currently known about the mechanism of NMD, and additional information that is pertinent to establishing therapies for PTC-associated diseases.
Collapse
Affiliation(s)
- Holly A Kuzmiak
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
157
|
Dhalia R, Marinsek N, Reis CRS, Katz R, Muniz JRC, Standart N, Carrington M, de Melo Neto OP. The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res 2006; 34:2495-507. [PMID: 16687655 PMCID: PMC1459412 DOI: 10.1093/nar/gkl290] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/04/2006] [Accepted: 04/06/2006] [Indexed: 11/13/2022] Open
Abstract
Protozoan parasites belonging to the family Trypanosomatidae are characterized by an unusual pathway for the production of mRNAs via polycistronic transcription and trans-splicing of a 5' capped mini-exon which is linked to the 3' cleavage and polyadenylation of the upstream transcript. However, little is known of the mechanism of protein synthesis in these organisms, despite their importance as agents of a number of human diseases. Here we have investigated the role of two Trypanosoma brucei homologues of the translation initiation factor eIF4A (in the light of subsequent experiments these were named as TbEIF4AI and TbEIF4AIII). eIF4A, a DEAD-box RNA helicase, is a subunit of the translation initiation complex eIF4F which binds to the cap structure of eukaryotic mRNA and recruits the small ribosomal subunit. TbEIF4AI is a very abundant predominantly cytoplasmic protein (over 1 x 10(5) molecules/cell) and depletion to approximately 10% of normal levels through RNA interference dramatically reduces protein synthesis one cell cycle following double-stranded RNA induction and stops cell proliferation. In contrast, TbEIF4AIII is a nuclear, moderately expressed protein (approximately 1-2 x 10(4) molecules/cell), and its depletion stops cellular proliferation after approximately four cell cycles. Ectopic expression of a dominant negative mutant of TbEIF4AI, but not of TbEIF4AIII, induced a slow growth phenotype in transfected cells. Overall, our results suggest that only TbEIF4AI is involved in protein synthesis while the properties and sequence of TbEIF4AIII indicate that it may be the orthologue of eIF4AIII, a component of the exon junction complex in mammalian cells.
Collapse
Affiliation(s)
- Rafael Dhalia
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo CruzAvenue Moraes Rego s/n, Campus UFPE, Recife PE 50670-420, Brazil
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
- Instituto de Física de São Carlos, Universidade de São PauloCaixa Postal 369, São Carlos SP 13560-970, Brazil
| | - Nina Marinsek
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Christian R. S. Reis
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo CruzAvenue Moraes Rego s/n, Campus UFPE, Recife PE 50670-420, Brazil
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
- Instituto de Física de São Carlos, Universidade de São PauloCaixa Postal 369, São Carlos SP 13560-970, Brazil
| | - Rodolfo Katz
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo CruzAvenue Moraes Rego s/n, Campus UFPE, Recife PE 50670-420, Brazil
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
- Instituto de Física de São Carlos, Universidade de São PauloCaixa Postal 369, São Carlos SP 13560-970, Brazil
| | - João R. C. Muniz
- Instituto de Física de São Carlos, Universidade de São PauloCaixa Postal 369, São Carlos SP 13560-970, Brazil
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | |
Collapse
|
158
|
Hosoda N, Lejeune F, Maquat LE. Evidence that poly(A) binding protein C1 binds nuclear pre-mRNA poly(A) tails. Mol Cell Biol 2006; 26:3085-97. [PMID: 16581783 PMCID: PMC1446973 DOI: 10.1128/mcb.26.8.3085-3097.2006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, poly(A) binding protein C1 (PABP C1) has well-known roles in mRNA translation and decay in the cytoplasm. However, PABPC1 also shuttles in and out of the nucleus, and its nuclear function is unknown. Here, we show that PABPC1, like the major nuclear poly(A) binding protein PABPN1, associates with nuclear pre-mRNAs that are polyadenylated and intron containing. PABPC1 does not bind nonpolyadenylated histone mRNA, indicating that the interaction of PABPC1 with pre-mRNA requires a poly(A) tail. Consistent with this conclusion, UV cross-linking results obtained using intact cells reveal that PABPC1 binds directly to pre-mRNA poly(A) tails in vivo. We also show that PABPC1 immunopurifies with poly(A) polymerase, suggesting that PABPC1 is acquired by polyadenylated transcripts during poly(A) tail synthesis. Our findings demonstrate that PABPC1 associates with polyadenylated transcripts earlier in mammalian mRNA biogenesis than previously thought and offer insights into the mechanism by which PABPC1 is recruited to newly synthesized poly(A). Our results are discussed in the context of pre-mRNA processing and stability and mRNA trafficking and the pioneer round of translation.
Collapse
Affiliation(s)
- Nao Hosoda
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, Rochester, NY 14642
| | | | | |
Collapse
|
159
|
Wittmann J, Hol EM, Jäck HM. hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay. Mol Cell Biol 2006; 26:1272-87. [PMID: 16449641 PMCID: PMC1367210 DOI: 10.1128/mcb.26.4.1272-1287.2006] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic surveillance pathway that selectively degrades aberrant mRNAs with premature termination codons (PTCs). Although a small number of cases exist in mammals, where NMD controls levels of physiologic PTC transcripts, it is still unclear whether the engagement of NMD in posttranscriptional control of gene expression is a more prevalent phenomenon. To identify physiologic NMD substrates and to study how NMD silencing affects the overall dynamics of a cell, we stably down-regulated hUPF2, the human homolog of the yeast NMD factor UPF2, by RNA interference. As expected, hUPF2-silenced HeLa cells were impaired in their ability to recognize ectopically expressed aberrant PTC transcripts. Surprisingly, hUPF2 silencing did not affect cell growth and viability but clearly diminished phosphorylation of hUPF1, suggesting a role of hUPF2 in modulating NMD activity through phosphorylation of hUPF1. Genome-wide DNA microarray expression profiling identified 37 novel up-regulated and 57 down-regulated transcripts in hUPF2-silenced cells. About 60% of the up-regulated mRNAs carry typical NMD motifs. Hence, NMD is important not only for maintaining the transcriptome integrity by removing nonfunctional and aberrant PTC-bearing transcripts but also for posttranscriptional control of selected physiologic transcripts with NMD features.
Collapse
Affiliation(s)
- Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus Fiebiger Center, University of Erlangen-Nürnberg, Glückstrasse 6, D-91054 Erlangen, Germany
| | | | | |
Collapse
|
160
|
Pan Q, Saltzman AL, Kim YK, Misquitta C, Shai O, Maquat LE, Frey BJ, Blencowe BJ. Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev 2006; 20:153-8. [PMID: 16418482 PMCID: PMC1356107 DOI: 10.1101/gad.1382806] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sequence-based analyses have predicted that approximately 35% of mammalian alternative splicing (AS) events produce premature termination codon (PTC)-containing splice variants that are targeted by the process of nonsense-mediated mRNA decay (NMD). This led to speculation that AS may often regulate gene expression by activating NMD. Using AS microarrays, we show that PTC-containing splice variants are generally produced at uniformly low levels across diverse mammalian cells and tissues, independently of the action of NMD. Our results suggest that most PTC-introducing AS events are not under positive selection pressure and therefore may not contribute important functional roles.
Collapse
Affiliation(s)
- Qun Pan
- Banting and Best Department of Medical Research, University of Toronto, Ontario, M5G 1L6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Tange TØ, Shibuya T, Jurica MS, Moore MJ. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA (NEW YORK, N.Y.) 2005; 11:1869-83. [PMID: 16314458 PMCID: PMC1370875 DOI: 10.1261/rna.2155905] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The multiprotein exon junction complex (EJC) is deposited on mRNAs upstream of exon-exon junctions as a consequence of pre-mRNA splicing. In mammalian cells, this complex serves as a key modulator of spliced mRNA metabolism. To date, neither the complete composition nor the exact assembly pathway of the EJC has been entirely elucidated. Using in vitro splicing and a two-step chromatography procedure, we have purified the EJC and analyzed its components by mass spectrometry. In addition to finding most of the known EJC factors, we identified two novel EJC components, Acinus and SAP18. Heterokaryon analysis revealed that SAP18 is a shuttling protein whereas Acinus is restricted to the nucleus. In MS2 tethering assays Acinus stimulated gene expression at the RNA level, while MLN51, another EJC factor, stimulated mRNA translational efficiency. Using tandem affinity purification (TAP) of proteins overexpressed in HeLa cells, we demonstrated that Acinus binds directly to another EJC component, RNPS1, while stable association of SAP18 to form the trimeric apoptosis and splicing associated protein (ASAP) complex requires both Acinus and RNPS1. Using the same methodology, we further identified what appears to be the minimal stable EJC core, a heterotetrameric complex consisting of eIF4AIII, Magoh, Y14, and MLN51.
Collapse
Affiliation(s)
- Thomas Ø Tange
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
162
|
Abstract
Nonsense-mediated mRNA decay is a surveillance pathway that reduces errors in gene expression by eliminating aberrant mRNAs that encode incomplete polypeptides. Recent experiments suggest a working model whereby premature and normal translation termination events are distinct as a consequence of the spatial relationship between the termination codon and mRNA binding proteins, a relationship partially established by nuclear pre-mRNA processing. Aberrant termination then leads to both translational repression and an increased susceptibility of the mRNA to multiple ribonucleases.
Collapse
Affiliation(s)
- Kristian E Baker
- Howard Hughes Medical Institute, University of Arizona, 1007 East Lowell Street, Tucson, Arizona 85721, USA
| | | |
Collapse
|
163
|
Monshausen M, Gehring NH, Kosik KS. The mammalian RNA-binding protein Staufen2 links nuclear and cytoplasmic RNA processing pathways in neurons. Neuromolecular Med 2005; 6:127-44. [PMID: 15970630 DOI: 10.1385/nmm:6:2-3:127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 02/21/2005] [Accepted: 03/23/2005] [Indexed: 11/11/2022]
Abstract
Members of the Staufen family of RNA-binding proteins are highly conserved cytoplasmic RNA transporters associated with RNA granules. staufen2 is specifically expressed in neurons where the delivery of RNA to dendrites is thought to have a role in plasticity. We found that Staufen2 interacts with the nuclear pore protein p62, with the RNA export protein Tap and with the exon-exon junction complex (EJC) proteins Y14-Mago. The interaction of Staufen2 with the Y14-Mago heterodimer seems to represent a highly conserved complex as the same proteins are involved in the Staufen-mediated localization of oskar mRNA in Drosophila oocytes. A pool of Staufen2 is present in neuronal nuclei and colocalizes to a large degree with p62 and partly with Tap, Y14, and Mago. We suggest a model whereby a set of conserved genes in the oskar mRNA export pathway may be recruited to direct a dendritic destination for mRNAs originating as a Staufen2 nuclear complex.
Collapse
Affiliation(s)
- Michaela Monshausen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
164
|
Hosoda N, Kim YK, Lejeune F, Maquat LE. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol 2005; 12:893-901. [PMID: 16186820 DOI: 10.1038/nsmb995] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 08/25/2005] [Indexed: 11/09/2022]
Abstract
In mammalian cells, nonsense-mediated messenger RNA decay (NMD) targets newly synthesized nonsense-containing mRNA bound by the cap-binding-protein heterodimer CBP80-CBP20 and at least one exon-junction complex (EJC). An EJC includes the NMD factors Upf3 or Upf3X and Upf2, and Upf2 recruits Upf1. Once this pioneer translation initiation complex is remodeled so that CBP80-CBP20 is replaced by eukaryotic initiation factor 4E, the mRNA is no longer detectably targeted for NMD. Here, we provide evidence that CBP80 augments the efficiency of NMD but not of Staufen1 (Stau1)-mediated mRNA decay (SMD). SMD depends on the recruitment of Upf1 by the RNA-binding protein Stau1 but does not depend on the other Upf proteins. We find that CBP80 interacts with Upf1 and promotes the interaction of Upf1 with Upf2 but not with Stau1.
Collapse
Affiliation(s)
- Nao Hosoda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
165
|
Ballut L, Marchadier B, Baguet A, Tomasetto C, Séraphin B, Le Hir H. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat Struct Mol Biol 2005; 12:861-9. [PMID: 16170325 DOI: 10.1038/nsmb990] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 08/09/2005] [Indexed: 11/09/2022]
Abstract
The multiprotein exon junction complex (EJC) is assembled on mRNAs as a consequence of splicing. EJC core components maintain a stable grip on mRNAs even as the overall EJC protein composition evolves while mRNAs travel to the cytoplasm. Here we show that recombinant EJC subunits MLN51, MAGOH and Y14, together with the DEAD-box protein eIF4AIII bound to ATP, are necessary and sufficient to form a highly stable complex on single-stranded RNA. Cross-linking and RNase protection studies indicate that this recombinant complex recapitulates the EJC core. The stable association of the recombinant EJC core with RNA is maintained by inhibition of eIF4AIII ATPase activity by MAGOH-Y14. We elucidate the modalities of EJC binding to RNA and provide the first example of how cellular machineries may use RNA helicases to clamp several proteins onto RNA in stable and sequence-independent manners.
Collapse
Affiliation(s)
- Lionel Ballut
- Equipe Labélisée La Ligue, Centre de Génétique Moléculaire, associé à l'Université Paris 6, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
166
|
Abstract
From the very beginning, mRNAs have a complex existence. They are transcribed, capped, spliced, modified at the 3'end, exported from the nucleus, translated, and eventually degraded. These many events not only affect the overall survival and properties of an mRNA, but are also carefully co-ordinated and integrated with quality control mechanisms that function to ensure that only 'proper' mRNAs are translated at the correct developmental time and place. This does not mean that all mRNAs follow a single or uniform path from synthesis to death. Instead, there are diverse means by which the activities of specific mRNAs are regulated, and these controls often depend upon multiple events in the mRNA's life. mRNAs are not found naked in the cell, instead they are part of complex RNPs (ribonucleoproteins) that consist of many factors. These RNPs are highly dynamic structures that change during the lifetime of a given RNA; linking events such as synthesis and processing to the final fate of the mRNA. Here, we will discuss what is known of the assembly of RNPs in general, with specific reference to the myriad of connections between different nuclear events and the cytoplasmic activity of an mRNA. Due to space limitations this review is not comprehensive, instead we focus on specific examples to illustrate these emerging themes in gene expression.
Collapse
Affiliation(s)
- Scott Kuersten
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
167
|
Abstract
Transcription is coupled with the concomitant assembly of RNA-binding proteins to the nascent mRNA to generate a stable and export-competent mRNP particle. RNA-binding factors recruited at active transcription sites specify the processing, nuclear export, subcellular localization, translation and stability of the mRNA. The assembly of the mRNP particle starts with the association of the cap-binding protein complex followed by the splicing-dependent assembly of the exon-junction complex in intron-containing genes and by the binding of RNA-export adaptor proteins. New findings suggest that mRNP assembly is a genetically controlled process that plays a key role in gene expression and other cellular processes, including the maintenance of genome integrity.
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
168
|
Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 2005; 17:309-15. [PMID: 15901502 DOI: 10.1016/j.ceb.2005.03.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) generally involves nonsense codon recognition by translating ribosomes at a position approximately 25 nts upstream of a splicing-generated exon junction complex of proteins. As such, NMD provides a means to degrade abnormal mRNAs that encode potentially deleterious truncated proteins. Additionally, an estimated one-third of naturally occurring, alternatively spliced mRNAs is also targeted for NMD. Given the extraordinary frequency of alternative splicing together with data indicating that naturally occurring transcripts other than alternatively spliced mRNAs are likewise targeted for NMD, it is believed that mammalian cells routinely utilize NMD to achieve proper levels of gene expression.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA
| | | |
Collapse
|
169
|
Hsu IW, Hsu M, Li C, Chuang TW, Lin RI, Tarn WY. Phosphorylation of Y14 modulates its interaction with proteins involved in mRNA metabolism and influences its methylation. J Biol Chem 2005; 280:34507-12. [PMID: 16100109 DOI: 10.1074/jbc.m507658200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multicomponent exon junction complex (EJC) is deposited on the spliced mRNA during pre-mRNA splicing and is implicated in several post-splicing events, including mRNA export, nonsense-mediated mRNA decay (NMD), and translation control. This report is the first to identify potential post-translational modifications of the EJC core component Y14. We demonstrate that Y14 is phosphorylated at its repeated arginine/serine (RS) dipeptides, likely by SR protein-specific kinases. Phosphorylation of Y14 abolished its interaction with EJC components as well as factors that function downstream of the EJC. A non-phosphorylatable Y14 mutant was equivalent to the wild-type protein with respect to its association with spliced mRNA and its ability in NMD activation, but the mutant sequestered EJC and NMD factors on ribosome-containing mRNA ribonucleoproteins (mRNPs). We therefore hypothesize that phosphorylation of Y14 occurs upon completion of mRNA surveillance, leading to dissociation of Y14 from ribosome-containing mRNPs. Moreover, we found that Y14 is possibly methylated at multiple arginine residues in the carboxyl-terminal domain and that methylation of Y14 was antagonized by phosphorylation of RS dipeptides. This study reveals antagonistic post-translational modifications of Y14 that may be involved in the remodeling of Y14-containing mRNPs.
Collapse
Affiliation(s)
- Ia-Wen Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|
170
|
Abstract
Production of mature mRNAs that encode functional proteins consists of a highly complex pathway of synthesis, processing and export. Along this pathway, the mRNA transcript is scrutinized by quality control machinery at numerous steps. Such extensive RNA surveillance ensures that only correctly processed mature mRNAs are translated and precludes production of aberrant transcripts that could encode mutant or possibly deleterious proteins.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
171
|
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
172
|
Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KLB. eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3'UTR. ACTA ACUST UNITED AC 2005; 169:245-56. [PMID: 15837800 PMCID: PMC2171863 DOI: 10.1083/jcb.200501019] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eukaryotic translation initiation factor eIF4E is a critical modulator of cellular growth with functions in the nucleus and cytoplasm. In the cytoplasm, recognition of the 5' m(7)G cap moiety on all mRNAs is sufficient for their functional interaction with eIF4E. In contrast, we have shown that in the nucleus eIF4E associates and promotes the nuclear export of cyclin D1, but not GAPDH or actin mRNAs. We determined that the basis of this discriminatory interaction is an approximately 100-nt sequence in the 3' untranslated region (UTR) of cyclin D1 mRNA, we refer to as an eIF4E sensitivity element (4E-SE). We found that cyclin D1 mRNA is enriched at eIF4E nuclear bodies, suggesting these are functional sites for organization of specific ribonucleoproteins. The 4E-SE is required for eIF4E to efficiently transform cells, thereby linking recognition of this element to eIF4E mediated oncogenic transformation. Our studies demonstrate previously uncharacterized fundamental differences in eIF4E-mRNA recognition between the nuclear and cytoplasmic compartments and further a novel level of regulation of cellular proliferation.
Collapse
Affiliation(s)
- Biljana Culjkovic
- Institute for Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
173
|
Inada T, Aiba H. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. EMBO J 2005; 24:1584-95. [PMID: 15933721 PMCID: PMC1142571 DOI: 10.1038/sj.emboj.7600636] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 03/03/2005] [Indexed: 11/09/2022] Open
Abstract
A novel mRNA surveillance for mRNA lacking a termination codon (nonstop mRNA) has been proposed in which Ski7p is thought to recognize stalled ribosomes at the 3' end of mRNA. Here we report our analysis of translation and decay of nonstop mRNAs in Saccharomyces cerevisiae. Although the reduction of nonstop mRNAs was only 4.5-fold, a level that is sufficient for residual protein synthesis, translation products of nonstop mRNAs were hardly detectable. We show that nonstop mRNAs were associated with polysomes, but not with Pab1p. We also show that ribosomes translating nonstop mRNA formed stable and heavy polysome complexes with mRNA. These data suggest that ribosome stalling at the 3' end of nonstop mRNA may block further rounds of translation, hence repressing protein synthesis. Furthermore, it was found that the 5' --> 3' decay pathway was accelerated for nonstop mRNA decay in the absence of Ski7p. We also found that translation of aberrant mRNAs with a shortened 3'-UTR was repressed, suggesting that an improper spatial distance between the termination codon and the 3' end of mRNA results in translation repression.
Collapse
Affiliation(s)
- Toshifumi Inada
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | |
Collapse
|
174
|
Kim YK, Furic L, Desgroseillers L, Maquat LE. Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell 2005; 120:195-208. [PMID: 15680326 DOI: 10.1016/j.cell.2004.11.050] [Citation(s) in RCA: 399] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 11/11/2004] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
Mammalian Staufen (Stau)1 is an RNA binding protein that is thought to function in mRNA transport and translational control. Nonsense-mediated mRNA decay (NMD) degrades abnormal and natural mRNAs that terminate translation sufficiently upstream of a splicing-generated exon-exon junction. Here we describe an mRNA decay mechanism that involves Stau1, the NMD factor Upf1, and a termination codon. Unlike NMD, this mechanism does not involve pre-mRNA splicing and occurs when Upf2 or Upf3X is downregulated. Stau1 binds directly to Upf1 and elicits mRNA decay when tethered downstream of a termination codon. Stau1 also interacts with the 3'-untranslated region of ADP-ribosylation factor (Arf)1 mRNA. Accordingly, downregulating either Stau1 or Upf1 increases Arf1 mRNA stability. These findings suggest that Arf1 mRNA is a natural target for Stau1-mediated decay, and data indicate that other mRNAs are also natural targets. We discuss this pathway as a means for cells to downregulate the expression of Stau1 binding transcripts.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
175
|
Gao Q, Das B, Sherman F, Maquat LE. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proc Natl Acad Sci U S A 2005; 102:4258-63. [PMID: 15753296 PMCID: PMC555522 DOI: 10.1073/pnas.0500684102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) in mammalian cells is restricted to newly synthesized mRNA that is bound at the 5' cap by the major nuclear cap-binding complex and at splicing-generated exon-exon junctions by exon junction complexes. This messenger ribonucleoprotein has been called the pioneer translation initiation complex and, accordingly, NMD occurs as a consequence of nonsense codon recognition during a pioneer round of translation. Here, we characterize the nature of messenger ribonucleoprotein that is targeted for NMD in Saccharomyces cerevisiae. Data indicate that NMD targets both cap-binding complex (Cbc)1p- and eukaryotic translation initiation factor (eIF)4E-bound mRNAs, unlike in mammalian cells, where NMD does not detectably target eIF4E-bound mRNA. First, intron-containing pre-mRNAs in yeast are detectably bound by either Cbc1p, or, unlike in mammalian cells, eIF4E, indicating that mRNAs can be derived from either Cbc1p- or eIF4E-bound pre-mRNAs. Second, the ratio of nonsense-containing Cbc1p-bound mRNA to nonsense-free Cbc1p-bound mRNA, which was < 0.4 for those mRNAs tested here, is essentially identical to the ratio of the corresponding nonsense-containing eIF4E-bound mRNA to nonsense-free eIF4E-bound mRNA, and both ratios increase in cells treated with the translational inhibitor cycloheximide (CHX). These data, together with data presented here and elsewhere showing that Cbc1p-bound transcripts are precursors to eIF4E-bound transcripts, demonstrate that Cbc1p-bound mRNA is targeted for NMD. In support of the idea that eIF4E-bound mRNA is also targeted for NMD, eIF4E-bound mRNA is targeted for NMD in strains that lack Cbc1p. These results suggest that both Cbc1p- and eIF4E-mediated pioneer rounds of translation occur in yeast.
Collapse
Affiliation(s)
- Qinshan Gao
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
176
|
Abstract
Gene regulation by short RNAs is a ubiquitous and important mode of control. MicroRNAs are short, single-strand RNAs that bind with partial complementarity to the 3' untranslated region of several genes to silence their expression. This expanding class of endogenous short RNAs are evolutionarily conserved and participate in control of development and cell-specific gene function. Several of these microRNAs have been cloned uniquely from mammalian lymphocytes suggesting specialized roles in lymphocyte development and function. In addition, several genes linked to RNAi in lower eukaryotes have mammalian homologs with specialized roles in adaptive immunity. For example, in worms, the nonsense-mediated decay (NMD) and RNAi pathways appear to be intricately linked. NMD plays a key role in regulating antigen-receptor expression in lymphocytes and there are mammalian homologs for factors identified in worms that appear to be common in both RNAi and NMD pathways. On the other hand, RNA editing and RNAi have an inverse relationship and RNA editing has an important role in viral immunity. These observations indicate unique roles for dsRNAs in the mammalian immune system.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
177
|
Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 2005; 16:260-9. [PMID: 15496452 PMCID: PMC539170 DOI: 10.1091/mbc.e04-09-0791] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 10/13/2004] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic analysis of plant (Arabidopsis thaliana) nucleoli, in which we have identified 217 proteins. This allows a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis. The comparison identified many common proteins, plant-specific proteins, proteins of unknown function found in both proteomes, and proteins that were nucleolar in plants but nonnucleolar in human. Seventy-two proteins were expressed as GFP fusions and 87% showed nucleolar or nucleolar-associated localization. In a striking and unexpected finding, we have identified six components of the postsplicing exon-junction complex (EJC) involved in mRNA export and nonsense-mediated decay (NMD)/mRNA surveillance. This association was confirmed by GFP-fusion protein localization. These results raise the possibility that in plants, nucleoli may have additional functions in mRNA export or surveillance.
Collapse
|
178
|
Hirose T, Shu MD, Steitz JA. Splicing of U12-type introns deposits an exon junction complex competent to induce nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A 2004; 101:17976-81. [PMID: 15608055 PMCID: PMC539812 DOI: 10.1073/pnas.0408435102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metazoan cells have two pathways for intron removal involving the U2- and U12-type spliceosomes, which contain mostly nonoverlapping sets of small nuclear ribonucleoproteins. We show that in vitro splicing of a U12-type intron assembles an exon junction complex (EJC) that is comparably positioned and contains many of the same components as that deposited by the U2-type spliceosome. The presence of a U12-type intron downstream of a premature termination codon within an open reading frame (ORF) induces nonsense-mediated decay of the mRNA in vivo. These findings suggest a common pathway for EJC assembly by the two spliceosomes and highlight the evolutionary age of the EJC and its downstream functions in gene expression.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
179
|
Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R. The DEK protein--an abundant and ubiquitous constituent of mammalian chromatin. Gene 2004; 343:1-9. [PMID: 15563827 DOI: 10.1016/j.gene.2004.08.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/09/2004] [Accepted: 08/25/2004] [Indexed: 11/21/2022]
Abstract
The protein DEK is an abundant and ubiquitous chromatin protein in multicellular organisms (not in yeast). It is expressed in more than a million copies/nucleus of rapidly proliferating mammalian cells. DEK has two DNA binding modules of which one includes a SAP box, a sequence motif that DEK shares with a number of other chromatin proteins. DEK has no apparent affinity to specific DNA sequences, but preferentially binds to superhelical and cruciform DNA, and induces positive supercoils into closed circular DNA. The available evidence strongly suggests that DEK could function as an architectural protein in chromatin comparable to the better known classic architectural chromatin proteins, the high-mobility group or HMG proteins.
Collapse
Affiliation(s)
- Tanja Waldmann
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
180
|
Kuperwasser N, Brogna S, Dower K, Rosbash M. Nonsense-mediated decay does not occur within the yeast nucleus. RNA (NEW YORK, N.Y.) 2004; 10:1907-15. [PMID: 15547136 PMCID: PMC1370679 DOI: 10.1261/rna.7132504] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nonsense-mediated decay (NMD) is a eukaryotic regulatory process that degrades mRNAs with premature termination codons (PTCs). Although NMD is a translation-dependent process, there is evidence from mammalian systems that PTC recognition and mRNA degradation takes place in association with nuclei. Consistent with this notion, degradation of mammalian PTC-containing mRNAs occurs when they are bound by the cap binding complex (CBC) during a "pioneer" round of translation. Moreover, there are reports indicating that a PTC can trigger other nuclear events such as alternative splicing, abnormal 3' end processing, and accumulation of pre-mRNA at transcription sites. To examine whether a PTC can elicit similar nuclear events in yeast, we used RNA export-defective mutants to sequester mRNAs within nuclei. The results indicate that nuclear PTC-containing yeast RNAs are NMD insensitive. We also observed by fluorescent in situ hybridization that there was no PTC effect on mRNA accumulated at the site of transcription. Finally, we show that yeast NMD occurs minimally if at all on CBC-bound transcripts, arguing against a CBC-mediated pioneer round of translation in yeast. The data taken together indicate that there are no direct consequences of a PTC within the yeast nucleus.
Collapse
Affiliation(s)
- Nicolas Kuperwasser
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
181
|
Lejeune F, Ranganathan AC, Maquat LE. eIF4G is required for the pioneer round of translation in mammalian cells. Nat Struct Mol Biol 2004; 11:992-1000. [PMID: 15361857 DOI: 10.1038/nsmb824] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 08/03/2004] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) in mammalian cells targets cap-binding protein 80 (CBP80)-bound mRNA during or after a pioneer round of translation. It is unknown whether eukaryotic translation initiation factor 4G (eIF4G) functions in the pioneer round. We show that baculovirus-produced CBP80 and CBP20 independently interact with eIF4GI. The interactions between eIF4G and the heterodimer CBP80/20 suggest that eIF4G has a function in the pioneer initiation complex rather than merely a presence during remodeling to the steady-state complex. First, NMD is inhibited upon eIF4G cleavage by HIV-2 or poliovirus 2A protease. Second, eIF4GI coimmunopurifies with pre-mRNA, indicating that it associates with transcripts before the pioneer round. Third, eIF4G immunopurifies with Upf NMD factors and eIF4AIII, which are constituents of the pioneer translation initiation complex. We propose a model in which eIF4G serves to connect CBP80/20 with other initiation factors during the pioneer round of translation.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York, 14642 USA
| | | | | |
Collapse
|
182
|
Waldmann T, Baack M, Richter N, Gruss C. Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res 2004; 31:7003-10. [PMID: 14627833 PMCID: PMC290247 DOI: 10.1093/nar/gkg864] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ubiquitous proto-oncogene protein DEK has been found to be associated with chromatin during the entire cell cycle. It changes the topology of DNA in chromatin and protein-free DNA through the introduction of positive supercoils. The sequence and structure specificities of DEK-DNA interactions are not completely understood. The binding of DEK to DNA is not sequence specific, but we describe here that DEK has a clear preference for supercoiled and four-way junction DNA. In the presence of topoisomerase II, DEK stimulates intermolecular catenation of circular DNA molecules. DEK also increases the probability of intermolecular ligation of linear DNA molecules by DNA ligase. These binding properties qualify DEK as an architectural protein.
Collapse
Affiliation(s)
- Tanja Waldmann
- University of Konstanz, Department of Biology, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
183
|
Abstract
Over the past decade many studies have revealed a complex web of interconnections between the numerous steps required for eukaryotic gene expression. One set of interconnections link nuclear pre-mRNA splicing and the subsequent metabolism of the spliced mRNAs. It is now apparent that the means of connection is a set of proteins, collectively called the exon junction complex, which are deposited as a consequence of splicing upstream of mRNA exon-exon junctions.
Collapse
Affiliation(s)
- Thomas Ø Tange
- Howard Hughes Medical Institute, Department of Biochemistry, MS009, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
184
|
Yang F, Schoenberg DR. Endonuclease-Mediated mRNA Decay Involves the Selective Targeting of PMR1 to Polyribosome-Bound Substrate mRNA. Mol Cell 2004; 14:435-45. [PMID: 15149593 DOI: 10.1016/j.molcel.2004.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 03/26/2004] [Accepted: 03/28/2004] [Indexed: 10/26/2022]
Abstract
PMR1 is a polysome-associated mRNA endonuclease that initiates the destabilization of albumin mRNA. The current study examined whether endonuclease-mediated mRNA decay involved the selective binding of PMR1 to substrate mRNA on polysomes. PMR1 is uniformly distributed throughout the cytoplasm on polysomes and in lighter complexes and does not colocalize in cytoplasmic foci with Dcp1. Deletion mutagenesis identified polysome-targeting domains in the N and C termini of PMR1, either of which could target GFP to polysomes. Selectivity in targeting to polysome-bound substrate mRNP was determined by testing the ability of full-length PMR1 or protein lacking targeting domains to recover albumin and luciferase mRNA from dissociated polysomes. Only PMR1 bearing intact polysome-targeting domains selectively recovered albumin mRNA, and polysome targeting of both protein and substrate was required for the efficient degradation of albumin mRNA. Thus, endonuclease-mediated mRNA decay occurs on a polysome-bound complex containing PMR1 and its substrate mRNA.
Collapse
Affiliation(s)
- Feng Yang
- Department of Molecular and Cellular Biochemistry, The Ohio State Biochemistry Program, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
185
|
Abstract
Studies of nonsense-mediated mRNA decay in mammalian cells have proffered unforeseen insights into changes in mRNA-protein interactions throughout the lifetime of an mRNA. Remarkably, mRNA acquires a complex of proteins at each exon-exon junction during pre-mRNA splicing that influences the subsequent steps of mRNA translation and nonsense-mediated mRNA decay. Complex-loaded mRNA is thought to undergo a pioneer round of translation when still bound by cap-binding proteins CBP80 and CBP20 and poly(A)-binding protein 2. The acquisition and loss of mRNA-associated proteins accompanies the transition from the pioneer round to subsequent rounds of translation, and from translational competence to substrate for nonsense-mediated mRNA decay.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
186
|
Lytle JR, Steitz JA. Premature termination codons do not affect the rate of splicing of neighboring introns. RNA (NEW YORK, N.Y.) 2004; 10:657-68. [PMID: 15037775 PMCID: PMC1370556 DOI: 10.1261/rna.5241404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 12/29/2003] [Indexed: 05/21/2023]
Abstract
Introduction of a premature termination codon (PTC) into an exon of a gene can lead to nonsense-mediated decay of the mRNA, which is best characterized as a cytoplasmic event. However, increasing evidence has suggested that PTCs may also influence the nuclear processing of an RNA transcript, leading to models of nuclear surveillance perhaps involving translating nuclear ribosomes. We used quantitative RT-PCR to measure the in vivo steady-state levels of every exon-intron junction in wild-type, PTC-containing, and missense-containing precursor mRNAs of both the nonrearranging dihydrofolate reductase (DHFR) and the somatically rearranging Ig- micro genes. We find that each exon-intron junction's abundance and, therefore, the rate of intron removal, is not significantly affected by the presence of a PTC in a neighboring exon in either the DHFR or Ig- micro pre-mRNA. Similarly, the abundance of the uncleaved Ig- micro polyadenylation sites does not differ between wild-type and PTC-containing Ig- micro pre-mRNAs. Our Ig- micro data were confirmed by RNase protection analyses, and multiple cell isolates were examined to resolve differences with previously published data on steady-state pre-mRNA levels. We conclude that the presence of a PTC affects the rate of neither splicing nor the cleavage step of 3' end formation during pre-mRNA processing in the nucleus. Our results are discussed with respect to existing evidence for nuclear surveillance mechanisms.
Collapse
Affiliation(s)
- J Robin Lytle
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
187
|
Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, Kaenjak-Angeletti A, Bedwell DM. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA (NEW YORK, N.Y.) 2004; 10:691-703. [PMID: 15037778 PMCID: PMC1262634 DOI: 10.1261/rna.5147804] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Nonsense-Mediated mRNA Decay (NMD) pathway mediates the rapid degradation of mRNAs that contain premature stop mutations in eukaryotic organisms. It was recently shown that mutations in three yeast genes that encode proteins involved in the NMD process, UPF1, UPF2, and UPF3, also reduce the efficiency of translation termination. In the current study, we compared the efficiency of translation termination in a upf1Delta strain and a [PSI(+)] strain using a collection of translation termination reporter constructs. The [PSI(+)] state is caused by a prion form of the polypeptide chain release factor eRF3 that limits its availability to participate in translation termination. In contrast, the mechanism by which Upf1p influences translation termination is poorly understood. The efficiency of translation termination is primarily determined by a tetranucleotide termination signal consisting of the stop codon and the first nucleotide immediately 3' of the stop codon. We found that the upf1Delta mutation, like the [PSI(+)] state, decreases the efficiency of translation termination over a broad range of tetranucleotide termination signals in a unique, context-dependent manner. These results suggest that Upf1p may associate with the termination complex prior to polypeptide chain release. We also found that the increase in readthrough observed in a [PSI(+)]/upf1Delta strain was larger than the readthrough observed in strains carrying either defect alone, indicating that the upf1Delta mutation and the [PSI(+)] state influence the termination process in distinct ways. Finally, our analysis revealed that the mRNA destabilization associated with NMD could be separated into two distinct forms that correlated with the extent the premature stop codon was suppressed. The minor component of NMD was a 25% decrease in mRNA levels observed when readthrough was >/=0.5%, while the major component was represented by a larger decrease in mRNA abundance that was observed only when readthrough was </=0.5%. This low threshold for the onset of the major component of NMD indicates that mRNA surveillance is an ongoing process that occurs throughout the lifetime of an mRNA.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Chiu SY, Lejeune F, Ranganathan AC, Maquat LE. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev 2004; 18:745-54. [PMID: 15059963 PMCID: PMC387415 DOI: 10.1101/gad.1170204] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The bulk of cellular proteins derive from the translation of eukaryotic translation initiation factor (eIF)4E-bound mRNA. However, recent studies of nonsense-mediated mRNA decay (NMD) indicate that cap-binding protein (CBP)80-bound mRNA, which is a precursor to eIF4E-bound mRNA, can also be translated during a pioneer round of translation. Here, we report that the pioneer round, which can be assessed by measuring NMD, is not inhibited by 4E-BP1, which is known to inhibit steady-state translation by competing with eIF4G for binding to eIF4E. Therefore, at least in this way, the pioneer round of translation is distinct from steady-state translation. eIF4GI, poly(A)-binding protein (PABP)1, eIF3, eIF4AI, and eIF2alpha coimmunopurify with both CBP80 and eIF4E, which suggests that each factor functions in both modes of translation. Consistent with roles for PABP1 and eIF2alpha in the pioneer round of translation, PABP-interacting protein 2, which is known to destabilize PABP1 binding to poly(A) and inhibit steady-state translation, as well as inactive eIF2alpha, which is also known to inhibit steady-state translation, also inhibit NMD. Polysome profiles indicate that CBP80-bound mRNAs are translated less efficiently than their eIF4E-bound counterparts.
Collapse
Affiliation(s)
- Shang-Yi Chiu
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
189
|
Custódio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA (NEW YORK, N.Y.) 2004; 10:622-33. [PMID: 15037772 PMCID: PMC1370553 DOI: 10.1261/rna.5258504] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies over the past years indicate that there is extensive coupling between nuclear export of mRNA and pre-mRNA processing. Here, we visualized the distribution of exon junction complex (EJC) proteins and RNA export factors relative to sites of abundant pre-mRNA synthesis in the nucleus. We analyzed both HeLa cells infected with adenovirus and murine erythroleukemia (MEL) cells stably transfected with the human beta-globin gene. Using in situ hybridization and confocal microscopy, we observe accumulation of EJC proteins (REF/Aly, Y14, SRm160, UAP56, RNPS1, and Magoh) and core spliceosome components (U snRNPs) at sites of transcription. This suggests that EJC proteins bind stably to pre-mRNA cotranscriptionally. No concentration of the export factors NXF1/TAP, p15, and Dbp5 was detected on nascent transcripts, arguing that in mammalian cells these proteins bind the mRNA shortly before or after release from the sites of transcription. These results also suggest that binding of EJC proteins to the mRNA is not sufficient to recruit TAP-p15, consistent with recent findings showing that the EJC does not play a crucial role in mRNA export. Contrasting to the results obtained in MEL cells expressing normal human beta-globin transcripts, mutant pre-mRNAs defective in splicing and 3'end processing do not colocalize with SRm160, REF, UAP56, or Sm proteins. This shows that the accumulation of EJC proteins at transcription sites requires efficient processing of the nascent pre-mRNAs, arguing that transcription per se is not sufficient for the stable assembly of the EJC.
Collapse
Affiliation(s)
- Noélia Custódio
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal
| | | | | | | | | | | |
Collapse
|
190
|
Shibuya T, Tange TØ, Sonenberg N, Moore MJ. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol 2004; 11:346-51. [PMID: 15034551 DOI: 10.1038/nsmb750] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 03/03/2004] [Indexed: 11/09/2022]
Abstract
The exon junction complex (EJC), a set of proteins deposited on mRNAs as a consequence of pre-mRNA splicing, is a key effector of downstream mRNA metabolism. We have identified eIF4AIII, a member of the eukaryotic translation initiation factor 4A family of RNA helicases (also known as DExH/D box proteins), as a novel EJC core component. Crosslinking and antibody inhibition studies suggest that eIF4AIII constitutes at least part of the platform anchoring other EJC components to spliced mRNAs. A nucleocytoplasmic shuttling protein, eIF4AIII associates in vitro and in vivo with two other EJC core factors, Y14 and Magoh. In mammalian cells, eIF4AIII is essential for nonsense-mediated mRNA decay (NMD). Finally, a model is proposed by which eIF4AIII represents a new functional class of DExH/D box proteins that act as RNA clamps or 'place holders' for the sequence-independent attachment of additional factors to RNAs.
Collapse
Affiliation(s)
- Toshiharu Shibuya
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
191
|
Iborra FJ, Escargueil AE, Kwek KY, Akoulitchev A, Cook PR. Molecular cross-talk between the transcription, translation, and nonsense-mediated decay machineries. J Cell Sci 2004; 117:899-906. [PMID: 14762111 DOI: 10.1242/jcs.00933] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is widely believed that translation occurs only in the cytoplasm of eukaryotes, but recent results suggest some takes place in nuclei, coupled to transcription. Support for this heterodoxy comes from studies of the nonsense-mediated decay (NMD) pathway; this pathway probably uses ribosomes to proofread messenger RNAs. We find components of the machineries involved in transcription, translation and NMD colocalise, interact and copurify, and that interactions between them are probably mediated by the C-terminal domain of the catalytic subunit of RNA polymerase II. These results are simply explained if the NMD machinery uses nuclear ribosomes to translate - and so proofread - newly made transcripts; then, faulty transcripts and any truncated peptides produced by nuclear translation would be degraded.
Collapse
Affiliation(s)
- Francisco J Iborra
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | |
Collapse
|
192
|
Nott A, Le Hir H, Moore MJ. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 2004; 18:210-22. [PMID: 14752011 PMCID: PMC324426 DOI: 10.1101/gad.1163204] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In mammalian cells, spliced mRNAs yield greater quantities of protein per mRNA molecule than do otherwise identical mRNAs not made by splicing. This increased translational yield correlates with enhanced cytoplasmic polysome association of spliced mRNAs, and is attributable to deposition of exon junction complexes (EJCs). Translational stimulation can be replicated by tethering the EJC proteins Y14, Magoh, and RNPS1 or the nonsense-mediated decay (NMD) factors Upf1, Upf2, and Upf3b to an intronless reporter mRNA. Thus, in addition to its previously characterized role in NMD, the EJC also promotes mRNA polysome association. Furthermore, the ability to stimulate translation when bound inside an open reading frame appears to be a general feature of factors required for NMD.
Collapse
Affiliation(s)
- Ajit Nott
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
193
|
Ohnishi T, Yamashita A, Kashima I, Schell T, Anders KR, Grimson A, Hachiya T, Hentze MW, Anderson P, Ohno S. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol Cell 2004; 12:1187-200. [PMID: 14636577 DOI: 10.1016/s1097-2765(03)00443-x] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eukaryotic mRNAs containing premature termination codons (PTCs) are degraded by a process known as nonsense-mediated mRNA decay (NMD). NMD has been suggested to require the recognition of PTC by an mRNA surveillance complex containing UPF1/SMG-2. In multicellular organisms, UPF1/SMG-2 is a phosphoprotein, and its phosphorylation contributes to NMD. Here we show that phosphorylated hUPF1, the human ortholog of UPF1/SMG-2, forms a complex with human orthologs of the C. elegans NMD proteins SMG-5 and SMG-7. The complex also associates with protein phosphatase 2A (PP2A), resulting in dephosphorylation of hUPF1. Overexpression of hSMG-5 mutants that retain interaction with P-hUPF1 but which cannot induce its dephosphorylation impair NMD, suggesting that NMD requires P-hUPF1 dephosphorylation. We also show that P-hUPF1 forms distinct complexes containing different isoforms of hUPF3A. We propose that sequential phosphorylation and dephosphorylation of hUPF1 by hSMG-1 and PP2A, respectively, contribute to the remodeling of the mRNA surveillance complex.
Collapse
Affiliation(s)
- Tetsuo Ohnishi
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Bjork P, Baurén G, Gelius B, Wrange O, Wieslander L. The Chironomus tentans translation initiation factor eIF4H is present in the nucleus but does not bind to mRNA until the mRNA reaches the cytoplasmic perinuclear region. J Cell Sci 2003; 116:4521-32. [PMID: 14576346 DOI: 10.1242/jcs.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the cell nucleus, precursors to mRNA, pre-mRNAs, associate with a large number of proteins and are processed to mRNA-protein complexes, mRNPs. The mRNPs are then exported to the cytoplasm and the mRNAs are translated into proteins. The mRNAs containing in-frame premature stop codons are recognized and degraded in the nonsense-mediated mRNA decay process. This mRNA surveillence may also occur in the nucleus and presumably involves components of the translation machinery. Several translation factors have been detected in the nucleus, but their functional relationship to the dynamic protein composition of pre-mRNPs and mRNPs in the nucleus is still unclear.
Here, we have identified and characterized the translation initiation factor eIF4H in the dipteran Chironomus tentans. In the cytoplasm, Ct-eIF4H is associated with poly(A+) RNA in polysomes. We show that a minor fraction of Ct-eIF4H enters the nucleus. This fraction is independent on the level of transcription. CteIF4H could not be detected in gene-specific pre-mRNPs or mRNPs, nor in bulk mRNPs in the nucleus. Our immunoelectron microscopy data suggest that Ct-eIF4H associates with mRNP in the cytoplasmic perinuclear region, immediately as the mRNP exits from the nuclear pore complex.
Collapse
Affiliation(s)
- Petra Bjork
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
195
|
McCracken S, Longman D, Johnstone IL, Cáceres JF, Blencowe BJ. An evolutionarily conserved role for SRm160 in 3'-end processing that functions independently of exon junction complex formation. J Biol Chem 2003; 278:44153-60. [PMID: 12944400 DOI: 10.1074/jbc.m306856200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SRm160 (the SR-related nuclear matrix protein of 160 kDa) functions as a splicing coactivator and 3'-end cleavage-stimulatory factor. It is also a component of the splicing-dependent exon-junction complex (EJC), which has been implicated in coupling of pre-mRNA splicing with mRNA turnover and mRNA export. We have investigated whether the association of SRm160 with the EJC is important for efficient 3'-end cleavage. The EJC components RNPS1, REF, UAP56, and Y14 interact with SRm160. However, when these factors were tethered to transcripts, only SRm160 and RNPS1 stimulated 3'-end cleavage. Whereas SRm160 stimulated cleavage to a similar extent in the presence or absence of an active intron, stimulation of 3'-end cleavage by tethered RNPS1 is dependent on an active intron. Assembly of an EJC adjacent to the cleavage and polyadenylation signal in vitro did not significantly affect cleavage efficiency. These results suggest that SRm160 stimulates cleavage independently of its association with EJC components and that the cleavage-stimulatory activity of RNPS1 may be an indirect consequence of its ability to stimulate splicing. Using RNA interference (RNAi) in Caenorhabditis elegans, we determined whether interactions between SRm160 and the cleavage machinery are important in a whole organism context. Simultaneous RNAi of SRm160 and the cleavage factor CstF-50 (Cleavage stimulation factor 50-kDa subunit) resulted in late embryonic developmental arrest. In contrast, RNAi of CstF-50 in combination with RNPS1 or REFs did not result in an apparent phenotype. Our combined results provide evidence for an evolutionarily conserved interaction between SRm160 and the 3'-end cleavage machinery that functions independently of EJC formation.
Collapse
Affiliation(s)
- Susan McCracken
- Banting and Best Department of Medical Research, C. H. Best Institute, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | |
Collapse
|
196
|
Lejeune F, Li X, Maquat LE. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell 2003; 12:675-87. [PMID: 14527413 DOI: 10.1016/s1097-2765(03)00349-6] [Citation(s) in RCA: 282] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a mechanism by which cells recognize and degrade mRNAs that prematurely terminate translation. To date, the polarity and enzymology of NMD in mammalian cells is unknown. We show here that downregulating the Dcp2 decapping protein or the PM/Scl100 component of the exosome (1) significantly increases the abundance of steady-state nonsense-containing but not nonsense-free mRNAs, and (2) significantly slows the decay rate of transiently induced nonsense-containing but not nonsense-free mRNA. Downregulating poly(A) ribonuclease (PARN) also increases the abundance of nonsense-containing mRNAs. Furthermore, NMD factors Upf1, Upf2, and Upf3X coimmunopurify with the decapping enzyme Dcp2, the putative 5'-->3' exonuclease Rat1, the proven 5'-->3' exonuclease Xrn1, exosomal components PM/Scl100, Rrp4, and Rrp41, and PARN. From these and other data, we conclude that NMD in mammalian cells degrades mRNAs from both 5' and 3' ends by recruiting decapping and 5'-->3' exonuclease activities as well as deadenylating and 3'-->5' exonuclease activities.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Box 712, Rochester, NY 14642, USA
| | | | | |
Collapse
|
197
|
Wiegand HL, Lu S, Cullen BR. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci U S A 2003; 100:11327-32. [PMID: 12972633 PMCID: PMC208756 DOI: 10.1073/pnas.1934877100] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intron-containing genes are generally expressed more effectively in human cells than are intronless versions of the same gene. We have asked whether this effect is due directly to splicing or instead reflects the action of components of the exon junction complex (EJC) that is assembled at splice junctions after splicing is completed. Here, we show that intron removal does not enhance gene expression if EJC formation is blocked. Conversely, RNA tethering of the EJC components SRm160 or RNPS1 boosts the expression of intronless mRNAs but not of spliced mRNAs. Splicing and RNPS1 tethering are shown to enhance the same steps in mRNA biogenesis and function, including mRNA 3' end processing and translation. Together, these data argue that the EJC is primarily responsible for the positive effect of splicing on gene expression.
Collapse
Affiliation(s)
- Heather L Wiegand
- Howard Hughes Medical Institute and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
198
|
Affiliation(s)
- Cecília Maria Arraiano
- ITQB-Instituto de Tecnologia Química e Biológica/Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal.
| | | |
Collapse
|
199
|
Baron-Benhamou J, Fortes P, Inada T, Preiss T, Hentze MW. The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. RNA (NEW YORK, N.Y.) 2003; 9:654-62. [PMID: 12756324 PMCID: PMC1370433 DOI: 10.1261/rna.5100903] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 02/20/2003] [Indexed: 05/19/2023]
Abstract
In eukaryotes, the m(7)GpppN cap structure is added to all nascent RNA polymerase II transcripts, and serves important functions at multiple steps of RNA metabolism. The predominantly nuclear cap-binding complex (CBC) binds to the cap during RNA synthesis. The predominantly cytoplasmic eukaryotic initiation factor 4F (eIF4F) is thought to replace CBC after export of mature mRNA to the cytoplasm, and mediates the bulk of cellular translation. Yeast as well as mammalian CBC interacts in vitro with eIF4G, a subunit of eIF4F. In this work, we investigate a potential role of this interaction during translation in yeast. We identify a mutation (DR548/9AA) in Tif4631p, one of two isoforms of yeast eIF4G, that abolishes its binding to CBC. Cells expressing this mutant protein as the sole source of eIF4G grow at wild-type rates, and bulk cellular translation, as assessed by metabolic labeling and polysome profile analysis, is unchanged. Importantly, we find that the DR548/9AA mutation neither diminishes nor delays the translation of newly induced reporter mRNA. Finally, microarray analysis reveals marked transcriptome alterations in CBC subunit deletion strains, whereas eIF4G point mutants have essentially a wild-type transcriptome composition. Collectively, these data suggest that in yeast, the phenotypic consequences of CBC deletions are separable from its interaction with eIF4G, and that the CBC-eIF4G interaction is dispensable for a potential "pioneering round" of translation in yeast.
Collapse
Affiliation(s)
- Julie Baron-Benhamou
- Gene Expression Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
200
|
Fribourg S, Gatfield D, Izaurralde E, Conti E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat Struct Mol Biol 2003; 10:433-9. [PMID: 12730685 DOI: 10.1038/nsb926] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 04/14/2003] [Indexed: 11/08/2022]
Abstract
Y14 and Mago are conserved eukaryotic proteins that associate with spliced mRNAs in the nucleus and remain associated at exon junctions during and after nuclear export. In the cytoplasm, Y14 is involved in mRNA quality control via the nonsense-mediated mRNA decay (NMD) pathway and, together with Mago, is involved in localization of osk (oskar) mRNA. We have determined the crystal structure of the complex between Drosophila melanogaster Y14 and Mago at a resolution of 2.5 A. The structure reveals an atypical mode of protein-protein recognition mediated by an RNA-binding domain (RBD). Instead of binding RNA, the RBD of Y14 engages its RNP1 and RNP2 motifs to bind Mago. Using structure-guided mutagenesis, we show that Mago is also a component of the NMD pathway, and that its association with Y14 is essential for function. Heterodimerization creates a single structural platform that interacts with the NMD machinery via phylogenetically conserved residues.
Collapse
Affiliation(s)
- Sébastien Fribourg
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|