151
|
Georgievska B, Gustavsson S, Lundkvist J, Neelissen J, Eketjäll S, Ramberg V, Bueters T, Agerman K, Juréus A, Svensson S, Berg S, Fälting J, Lendahl U. Revisiting the peripheral sink hypothesis: inhibiting BACE1 activity in the periphery does not alter β-amyloid levels in the CNS. J Neurochem 2014; 132:477-86. [PMID: 25156639 DOI: 10.1111/jnc.12937] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/03/2014] [Indexed: 11/28/2022]
Abstract
Aggregation of amyloid beta (Aβ) peptides and the subsequent neural plaque formation is a central aspect of Alzheimer's disease. Various strategies to reduce Aβ load in the brain are therefore intensely pursued. It has been hypothesized that reducing Aβ peptides in the periphery, that is in organs outside the brain, would be a way to diminish Aβ levels and plaque load in the brain. In this report, we put this peripheral sink hypothesis to test by investigating how selective inhibition of Aβ production in the periphery using a β-secretase (BACE)1 inhibitor or reduced BACE1 gene dosage affects Aβ load in the brain. Selective inhibition of peripheral BACE1 activity in wild-type mice or mice over-expressing amyloid precursor protein (APPswe transgenic mice; Tg2576) reduced Aβ levels in the periphery but not in the brain, not even after chronic treatment over several months. In contrast, a BACE1 inhibitor with improved brain disposition reduced Aβ levels in both brain and periphery already after acute dosing. Mice heterozygous for BACE1, displayed a 62% reduction in plasma Aβ40, whereas brain Aβ40 was only lowered by 11%. These data suggest that reduction of Aβ in the periphery is not sufficient to reduce brain Aβ levels and that BACE1 is not the rate-limiting enzyme for Aβ processing in the brain. This provides evidence against the peripheral sink hypothesis and suggests that a decrease in Aβ via BACE1 inhibition would need to be carried out in the brain. Aggregation of amyloid beta (Aβ) peptides in the brain is a central aspect of Alzheimer's disease. In this study, we demonstrate that inhibition of Aβ formation by BACE1 inhibitors needs to be carried out in the brain and that reduction of Aβ in the periphery is not sufficient to reduce brain Aβ levels. This information is useful for developing future Aβ-targeting therapies for Alzheimer's disease.
Collapse
|
152
|
Menting KW, Claassen JAHR. β-secretase inhibitor; a promising novel therapeutic drug in Alzheimer's disease. Front Aging Neurosci 2014; 6:165. [PMID: 25100992 PMCID: PMC4104928 DOI: 10.3389/fnagi.2014.00165] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) and vascular dementia are responsible for up to 90% of dementia cases. According to the World Health Organization (WHO), a staggering number of 35.6 million people are currently diagnosed with dementia. Blocking disease progression or preventing AD altogether is desirable for both social and economic reasons and recently focus has shifted to a new and promising drug: the β-secretase inhibitor. Much of AD research has investigated the amyloid cascade hypothesis, which postulates that AD is caused by changes in amyloid beta (Aβ) stability and aggregation. Blocking Aβ production by inhibiting the first protease required for its generation, β-secretase/BACE1, may be the next step in blocking AD progression. In April 2012, promising phase I data on inhibitor MK-8931 was presented. This drug reduced Aβ cerebral spinal fluids (CSF) levels up to 92% and was well tolerated by patients. In March 2013 data was added from a one week trial in 32 mild to moderate AD patients, showing CSF Aβ levels decreased up to 84%. However, β-site APP cleaving enzyme 1 (BACE1) inhibitors require further research. First, greatly reducing Aβ levels through BACE1 inhibition may have harmful side effects. Second, BACE1 inhibitors have yet to pass clinical trial phase II/III and no data on possible side effects on AD patients are available. And third, there remains doubt about the clinical efficacy of BACE1 inhibitors. In moderate AD patients, Aβ plaques have already been formed. BACE1 inhibitors prevent production of new Aβ plaques, but hypothetically do not influence already existing Aβ peptides. Therefore, BACE1 inhibitors are potentially better at preventing AD instead of having therapeutic use.
Collapse
Affiliation(s)
- Kelly Willemijn Menting
- Department of Geriatric Medicine and Radboud Alzheimer Center, Radboud University Medical Center Nijmegen, Gelderland, Netherlands
| | - Jurgen A H R Claassen
- Department of Geriatric Medicine and Radboud Alzheimer Center, Radboud University Medical Center Nijmegen, Gelderland, Netherlands
| |
Collapse
|
153
|
Hwang YJ, Im C. Docking and Quantitative Structure Activity Relationship studies of Acyl Guanidines as β-Secretase (BACE1) Inhibitor. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.7.2065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
154
|
Potential therapeutic strategies for Alzheimer's disease targeting or beyond β-amyloid: insights from clinical trials. BIOMED RESEARCH INTERNATIONAL 2014; 2014:837157. [PMID: 25136630 PMCID: PMC4124758 DOI: 10.1155/2014/837157] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with two hallmarks: β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer's disease.
Collapse
|
155
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that causes dementia in a large percentage of the aged population and for which there are only symptomatic treatments. Disease-modifying therapies that are currently being pursued are based on the amyloid cascade theory. This states that accumulation of amyloid β (Aβ) in the brain triggers a cascade of cellular events leading to neurodegeneration. Aβ, which is the major constituent of amyloid plaques, is a peptidic fragment derived from proteolytic processing of the amyloid precursor protein (APP) by sequential cleavages that involve β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase. Targeting BACE1 is a rational approach as its cleavage of APP is the rate-limiting step in Aβ production and this enzyme is elevated in the brain of patients with AD. Furthermore, knocking out the BACE1 gene in mice showed little apparent consequences. Ten years of intensive research has led to the design of efficacious BACE1 inhibitors with favorable pharmacological properties. Several drug candidates have shown promising results in animal models, as they reduce amyloid plaque pathology in the brain and rescue cognitive deficits. Phase I clinical trials indicate that these drugs are well tolerated, and the results from further trials in AD patients are now awaited eagerly. Yet, recent novel information on BACE1 biology, and the discovery that BACE1 cleaves a selection of substrates involved in myelination, retinal homeostasis, brain circuitry, and synaptic function, alert us to potential side effects of BACE1 inhibitors that will require further evaluation to provide a safe therapy for AD.
Collapse
|
156
|
Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 2014; 130:4-28. [PMID: 24646365 PMCID: PMC4086641 DOI: 10.1111/jnc.12715] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
Abstract
The β-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer's disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-β peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies using BACE1- and BACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic β-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer's disease. The protease BACE1 is a major drug target in Alzheimer disease. Together with its homolog BACE2, both proteases have an increasing number of functions within and outside of the nervous system. This review highlights recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer disease.
Collapse
Affiliation(s)
- Robert Vassar
- Department of Cell and Molecular Biology, Feinberg University School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peer-Hendrik Kuhn
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Adolf-Butenandt Institute, Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Matthew E. Kennedy
- Neurosciences, Merck Research Labs, Boston, Massachusetts, USA
- Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, Division of Psychiatry Research, University of Zurich, Zurich, Switzerland
- Graduate programs of the Zurich Center for Integrative Human Physiology and Zurich Neuroscience Center, University of Zurich, Zurich, Switzerland
| | - Philip C. Wong
- Departments of Pathology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute for Advanced Study, Technische Universität München, Garching, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
157
|
Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer's disease research. Front Genet 2014; 5:189. [PMID: 25071820 PMCID: PMC4075077 DOI: 10.3389/fgene.2014.00189] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022] Open
Abstract
Rodent models have been extensively used to investigate the cause and mechanisms behind Alzheimer’s disease. Despite many years of intensive research using these models we still lack a detailed understanding of the molecular events that lead to neurodegeneration. Although zebrafish lack the complexity of advanced cognitive behaviors evident in rodent models they have proven to be a very informative model for the study of human diseases. In this review we give an overview of how the zebrafish has been used to study Alzheimer’s disease. Zebrafish possess genes orthologous to those mutated in familial Alzheimer’s disease and research using zebrafish has revealed unique characteristics of these genes that have been difficult to observe in rodent models. The zebrafish is becoming an increasingly popular model for the investigation of Alzheimer’s disease and will complement studies using other models to help complete our understanding of this disease.
Collapse
Affiliation(s)
- Morgan Newman
- School of Molecular and Biomedical Science, University of Adelaide SA, Australia
| | - Esmaeil Ebrahimie
- School of Molecular and Biomedical Science, University of Adelaide SA, Australia
| | - Michael Lardelli
- School of Molecular and Biomedical Science, University of Adelaide SA, Australia
| |
Collapse
|
158
|
Upregulation of SET expression by BACE1 and its implications in Down syndrome. Mol Neurobiol 2014; 51:781-90. [PMID: 24935721 DOI: 10.1007/s12035-014-8782-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/09/2014] [Indexed: 01/18/2023]
Abstract
Down syndrome (DS) is one of the most common genetic diseases. Patients with DS display growth delay and intellectual disabilities and develop Alzheimer's disease (AD) neuropathology after middle age, including neuritic plaques and neurofibrillary tangles. Beta-site amyloid β precursor protein (APP) cleaving enzyme 1 (BACE1), essential for Aβ production and neuritic plaque formation, is elevated in DS patients. However, its homolog, β-site APP cleaving enzyme 2 (BACE2), functions as θ-secretase and plays a differential role in plaque formation. In this study, by using Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D SDS-PAGE) and LC-MS/MS proteomic profiling analysis, we found that the SET oncogene protein (SET) expression was associated with BACE1 but not BACE2. SET protein was increased in BACE1 overexpressing cells and was markedly reduced in the BACE1 knockout mice. We found that the overexpression of BACE1 or SET significantly inhibited cell proliferation. Moreover, knockdown of SET in BACE1 overexpression cells significantly rescued BACE1-induced cell growth suppression. Furthermore, both BACE1 and SET protein levels were increased in Down syndrome patients. It suggests that BACE1 overexpression-induced SET upregulation may contribute to growth delay and cognitive impairment in DS patients. Our work provides a new insight that BACE1 overexpression not only promotes neuritic plaque formation but may also potentiate neurodegeneration mediated by SET elevation in Alzheimer-associated dementia in DS.
Collapse
|
159
|
Oehlrich D, Prokopcova H, Gijsen HJ. The evolution of amidine-based brain penetrant BACE1 inhibitors. Bioorg Med Chem Lett 2014; 24:2033-45. [DOI: 10.1016/j.bmcl.2014.03.025] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/18/2023]
|
160
|
Descamps O, Spilman P, Zhang Q, Libeu CP, Poksay K, Gorostiza O, Campagna J, Jagodzinska B, Bredesen DE, John V. AβPP-selective BACE inhibitors (ASBI): novel class of therapeutic agents for alzheimer's disease. J Alzheimers Dis 2014; 37:343-55. [PMID: 23948888 DOI: 10.3233/jad-130578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A systematic approach was used to identify AβPP-selective BACE inhibitors (ASBI) and to evaluate their in vivo ability to modulate AβPP processing selectively. We identified a bioflavonoid nutritional supplement as a molecular lead that acts as an ASBI in cell models, and show that increasing brain levels of this bioflavonoid through a pro-drug approach leads to reduction of Aβ42 in an Alzheimer's disease mouse model. ASBIs represent a novel class of candidate therapeutic agents for Alzheimer's disease.
Collapse
|
161
|
Kanatsu K, Morohashi Y, Suzuki M, Kuroda H, Watanabe T, Tomita T, Iwatsubo T. Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase. Nat Commun 2014; 5:3386. [PMID: 24577224 DOI: 10.1038/ncomms4386] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023] Open
Abstract
A body of evidence suggests that aberrant metabolism of amyloid-β peptide (Aβ) underlies the aetiology of Alzheimer disease (AD). Recently, a single-nucleotide polymorphism in phosphatidylinositol binding clathrin assembly protein (PICALM/CALM) gene, which encodes a protein implicated in the clathrin-mediated endocytosis, was identified as a genetic protective factor for AD, although its mechanistic details have little been explored. Here we show that loss of CALM leads to the selective decrease in the production ratio of the pathogenic Aβ species, Aβ42. Active form of γ-secretase is constitutively endocytosed via the clathrin-mediated pathway in a CALM dependent manner. Alteration in the rate of clathrin-mediated endocytosis of γ-secretase causes a shift in its steady-state localization, which consequently impacts on the production ratio of Aβ42. Our study identifies CALM as an endogenous modulator of γ-secretase activity by regulating its endocytosis and also as an excellent target for Aβ42-lowering AD therapeutics.
Collapse
Affiliation(s)
- Kunihiko Kanatsu
- 1] Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2]
| | - Yuichi Morohashi
- 1] Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 113-0033, Japan [3]
| | - Mai Suzuki
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Hiromasa Kuroda
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Taisuke Tomita
- 1] Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 113-0033, Japan
| | - Takeshi Iwatsubo
- 1] Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan [2] Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo 113-0033, Japan [3] Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
162
|
Baptista FI, Henriques AG, Silva AMS, Wiltfang J, da Cruz e Silva OAB. Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer's disease. ACS Chem Neurosci 2014; 5:83-92. [PMID: 24328060 DOI: 10.1021/cn400213r] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease is characterized by pathological aggregation of protein tau and amyloid-β peptides, both of which are considered to be toxic to neurons. Naturally occurring dietary flavonoids have received considerable attention as alternative candidates for Alzheimer's therapy taking into account their antiamyloidogenic, antioxidative, and anti-inflammatory properties. Experimental evidence supports the hypothesis that certain flavonoids may protect against Alzheimer's disease in part by interfering with the generation and assembly of amyloid-β peptides into neurotoxic oligomeric aggregates and also by reducing tau aggregation. Several mechanisms have been proposed for the ability of flavonoids to prevent the onset or to slow the progression of the disease. Some mechanisms include their interaction with important signaling pathways in the brain like the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways that regulate prosurvival transcription factors and gene expression. Other processes include the disruption of amyloid-β aggregation and alterations in amyloid precursor protein processing through the inhibition of β-secretase and/or activation of α-secretase, and inhibiting cyclin-dependent kinase-5 and glycogen synthase kinase-3β activation, preventing abnormal tau phosphorylation. The interaction of flavonoids with different signaling pathways put forward their therapeutic potential to prevent the onset and progression of Alzheimer's disease and to promote cognitive performance. Nevertheless, further studies are needed to give additional insight into the specific mechanisms by which flavonoids exert their potential neuroprotective actions in the brain of Alzheimer's disease patients.
Collapse
Affiliation(s)
- Filipa I. Baptista
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana G. Henriques
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jens Wiltfang
- Department
of Psychiatry and Psychotherapy, University Medicine Göttingen, 37075 Göttingen, Germany
| | - Odete A. B. da Cruz e Silva
- Laboratory
of Neurosciences, Centre for Cell Biology, Health Sciences Department
and Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
163
|
Abstract
The β secretase, widely known as β-site amyloid precursor protein cleaving enzyme 1 (BACE1), initiates the production of the toxic amyloid β (Aβ) that plays a crucial early part in Alzheimer's disease pathogenesis. BACE1 is a prime therapeutic target for lowering cerebral Aβ concentrations in Alzheimer's disease, and clinical development of BACE1 inhibitors is being intensely pursued. Although BACE1 inhibitor drug development has proven challenging, several promising BACE1 inhibitors have recently entered human clinical trials. The safety and efficacy of these drugs are being tested at present in healthy individuals and patients with Alzheimer's disease, and will soon be tested in individuals with presymptomatic Alzheimer's disease. Although hopes are high that BACE1 inhibitors might be efficacious for the prevention or treatment of Alzheimer's disease, concerns have been raised about potential mechanism-based side-effects of these drugs. The potential of therapeutic BACE1 inhibition might prove to be a watershed in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Riqiang Yan
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Robert Vassar
- Department of Cell and Molecular Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
164
|
Bobylev AG, Bobyleva LG, Vikhlyantsev IM, Ulanova AD, Salmov NN, Podlubnaya ZA. Comparative studies of amyloid properties of muscles proteins and brain Aβ-peptides and identification of approaches to destruction of their amyloids in vitro. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350913060055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
165
|
Thomas AA, Hunt KW, Volgraf M, Watts RJ, Liu X, Vigers G, Smith D, Sammond D, Tang TP, Rhodes SP, Metcalf AT, Brown KD, Otten JN, Burkard M, Cox AA, Do MKG, Dutcher D, Rana S, DeLisle RK, Regal K, Wright AD, Groneberg R, Scearce-Levie K, Siu M, Purkey HE, Lyssikatos JP, Gunawardana IW. Discovery of 7-tetrahydropyran-2-yl chromans: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors that reduce amyloid β-protein (Aβ) in the central nervous system. J Med Chem 2014; 57:878-902. [PMID: 24397738 DOI: 10.1021/jm401635n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In an attempt to increase selectivity vs Cathepsin D (CatD) in our BACE1 program, a series of 1,3,4,4a,10,10a-hexahydropyrano[4,3-b]chromene analogues was developed. Three different Asp-binding moieties were examined: spirocyclic acyl guanidines, aminooxazolines, and aminothiazolines in order to modulate potency, selectivity, efflux, and permeability. Using structure-based design, substitutions to improve binding to both the S3 and S2' sites of BACE1 were explored. An acyl guanidine moiety provided the most potent analogues. These compounds demonstrated 10-420 fold selectivity for BACE1 vs CatD, and were highly potent in a cell assay measuring Aβ1-40 production (5-99 nM). They also suffered from high efflux. Despite this undesirable property, two of the acyl guanidines achieved free brain concentrations (Cfree,brain) in a guinea pig PD model sufficient to cover their cell IC50s. Moreover, a significant reduction of Aβ1-40 in guinea pig, rat, and cyno CSF (58%, 53%, and 63%, respectively) was observed for compound 62.
Collapse
Affiliation(s)
- Allen A Thomas
- Array BioPharma , 3200 Walnut Street, Boulder, Colorado 80301, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Evin G, Barakat A. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer's disease. Degener Neurol Neuromuscul Dis 2014; 4:1-19. [PMID: 32669897 PMCID: PMC7337240 DOI: 10.2147/dnnd.s41056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in the elderly and an unmet clinical challenge. A variety of therapies that are currently under development are directed to the amyloid cascade. Indeed, the accumulation and toxicity of amyloid-β (Aβ) is believed to play a central role in the etiology of the disease, and thus rational interventions are aimed at reducing the levels of Aβ in the brain. Targeting β-site amyloid precursor protein-cleaving enzyme (BACE)-1 represents an attractive strategy, as this enzyme catalyzes the initial and rate-limiting step in Aβ production. Observation of increased levels of BACE1 and enzymatic activity in the brain, cerebrospinal fluid, and platelets of patients with AD and mild cognitive impairment supports the potential benefits of BACE1 inhibition. Numerous potent inhibitors have been generated, and many of these have been proved to lower Aβ levels in the brain of animal models. Over 10 years of intensive research on BACE1 inhibitors has now culminated in advancing half a dozen of these drugs into human trials, yet translating the in vitro and cellular efficacy of BACE1 inhibitors into preclinical and clinical trials represents a challenge. This review addresses the promises and also the potential problems associated with BACE1 inhibitors for AD therapy, as the complex biological function of BACE1 in the brain is becoming unraveled.
Collapse
Affiliation(s)
- Genevieve Evin
- Oxidation Biology Laboratory, Mental Health Research Institute, Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Adel Barakat
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
167
|
Moreira PI, Zhu X, Nunomura A, Smith MA, Perry G. Therapeutic options in Alzheimer’s disease. Expert Rev Neurother 2014; 6:897-910. [PMID: 16784412 DOI: 10.1586/14737175.6.6.897] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) places an enormous burden on individuals, families and society. Consequently, a tremendous effort is being devoted to the development of drugs that prevent or delay neurodegeneration. Current pharmacological treatments are based on the use of acetylcholinesterase inhibitors or memantine, a N-methyl-D-aspartate channel blocker. However, new therapeutic approaches, including those more closely targeted to the pathogenesis of the disease, are being developed. These potentially disease-modifying therapeutics include secretase inhibitors, cholesterol-lowering drugs, amyloid-beta immunotherapy, nonsteroidal anti-inflammatory drugs, hormonal modulation and the use of antioxidants. The possibility that oxidative stress is a primary event in AD indicates that antioxidant-based therapies are perhaps the most promising weapons against this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Paula I Moreira
- Case Western Reserve University, Department of Pathology, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
168
|
Tomita T. Secretase inhibitors and modulators for Alzheimer’s disease treatment. Expert Rev Neurother 2014; 9:661-79. [DOI: 10.1586/ern.09.24] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
169
|
|
170
|
Dhanjal JK, Goyal S, Sharma S, Hamid R, Grover A. Mechanistic insights into mode of action of potent natural antagonists of BACE-1 for checking Alzheimer's plaque pathology. Biochem Biophys Res Commun 2013; 443:1054-9. [PMID: 24365147 DOI: 10.1016/j.bbrc.2013.12.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 11/16/2022]
Abstract
Alzheimer's is a neurodegenerative disorder resulting in memory loss and decline in cognitive abilities. Accumulation of extracellular beta amyloidal plaques is one of the major pathology associated with this disease. β-Secretase or BACE-1 performs the initial and rate limiting step of amyloidic pathway in which 37-43 amino acid long peptides are generated which aggregate to form plaques. Inhibition of this enzyme offers a viable prospect to check the growth of these plaques. Numerous efforts have been made in recent years for the generation of BACE-1 inhibitors but many of them failed during the preclinical or clinical trials due to drug related or drug induced toxicity. In the present work, we have used computational methods to screen a large dataset of natural compounds to search for small molecules having BACE-1 inhibitory activity with low toxicity to normal cells. Molecular dynamics simulations were performed to analyze molecular interactions between the screened compounds and the active residues of the enzyme. Herein, we report two natural compounds of inhibitory nature active against β-secretase enzyme of amyloidic pathway and are potent lead molecules against Alzheimer's disease.
Collapse
Affiliation(s)
| | - Sukriti Goyal
- Apaji Institute of Mathematics & Applied Computer Technology, Banasthali University, Tonk 304022, Rajasthan, India
| | - Sudhanshu Sharma
- Department of Biotechnology, Delhi Technological University, New Delhi 110042, India
| | - Rabia Hamid
- Department of Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
171
|
Hoffmeister A, Tuennemann J, Sommerer I, Mössner J, Rittger A, Schleinitz D, Kratzsch J, Rosendahl J, Klöting N, Stahl T, Rossner S, Paroni F, Maedler K, Kovacs P, Blüher M. Genetic and biochemical evidence for a functional role of BACE1 in the regulation of insulin mRNA expression. Obesity (Silver Spring) 2013; 21:E626-33. [PMID: 23596049 DOI: 10.1002/oby.20482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 03/18/2013] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Beta-site amyloid precursor protein cleaving enzyme (BACE1) is highly expressed in pancreatic β-cells. The BACE1 gene is located in a region associated with a high diabetes risk in PIMA Indians. DESIGN AND METHODS INS-1E cells were used to study the impact of siRNA-mediated BACE1 knockdown and glucose metabolism was characterized in Bace1(-/-) mice. BACE1 gene was sequenced in DNA samples from 48 subjects and 13 representative single nucleotide polymorphisms (SNPs) were then genotyped for association studies in 1,527 Caucasians. RESULTS Reduction of Bace1 expression results in a significant decrease in insulin mRNA expression in INS-1E cells. Bace1(-/-) mice display significantly lower body weight, lower plasma insulin concentrations, but normal glucose tolerance and insulin sensitivity. In a case-control study including 538 healthy controls and 989 patients with type 2 diabetes (T2D), one SNP (rs535860) was significantly associated with T2D (P < 3.5 × 10(-5) , adjusted for age, sex, and BMI). CONCLUSIONS Reduced Bace1 expression causes impaired insulin expression in pancreatic β-cells of Bace1(-/-) mice, suggesting that BACE1 plays a role in the regulation of insulin biogenesis. The functionally relevant rs535860 SNP may decrease BACE1 expression by creating a new miR-661 binding site and could therefore contribute to T2D development.
Collapse
|
172
|
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that are around 22 nucleotides in length. miRNAs play a key role in neuronal development, differentiation, and synaptic plasticity. An increasing amount of evidence indicates that miRNAs regulate the expression of β-site APP cleaving enzyme (BACE1), a key enzyme in Alzheimer's disease (AD) pathology. Changes in miRNA expression as a causal factor in AD have not been fully elucidated. We hypothesized that the abnormal expression of miRNAs may contribute to AD pathology, specifically through the regulation of BACE1.
Collapse
Affiliation(s)
- Yanyao Deng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | | |
Collapse
|
173
|
Novel BACE1 inhibitors with a non-acidic heterocycle at the P1′ position. Bioorg Med Chem 2013; 21:6665-73. [DOI: 10.1016/j.bmc.2013.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022]
|
174
|
Chen XF, Zhang YW, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer's disease. Mol Brain 2013; 6:44. [PMID: 24144318 PMCID: PMC3854070 DOI: 10.1186/1756-6606-6-44] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by loss of memory and cognitive function. A key neuropathological event in AD is the accumulation of amyloid-β (Aβ) peptide. The production and clearance of Aβ in the brain are regulated by a large group of genes. The expression levels of these genes must be fine-tuned in the brain to keep Aβ at a balanced amount under physiological condition. Misregulation of AD genes has been found to either increase AD risk or accelerate the disease progression. In recent years, important progress has been made in uncovering the regulatory elements and transcriptional factors that guide the expression of these genes. In this review, we describe the mechanisms of transcriptional regulation for the known AD genes and the misregualtion that leads to AD susceptibility.
Collapse
Affiliation(s)
- Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, 361102 Xiamen, Fujian, People's Republic of China.
| | | | | | | |
Collapse
|
175
|
Rueeger H, Lueoend R, Machauer R, Veenstra SJ, Jacobson LH, Staufenbiel M, Desrayaud S, Rondeau JM, Möbitz H, Neumann U. Discovery of cyclic sulfoxide hydroxyethylamines as potent and selective β-site APP-cleaving enzyme 1 (BACE1) inhibitors: Structure based design and in vivo reduction of amyloid β-peptides. Bioorg Med Chem Lett 2013; 23:5300-6. [DOI: 10.1016/j.bmcl.2013.07.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 01/16/2023]
|
176
|
Zou Y, Xu L, Chen W, Zhu Y, Chen T, Fu Y, Li L, Ma L, Xiong B, Wang X, Li J, He J, Zhang H, Xu Y, Li J, Shen J. Discovery of pyrazole as C-terminus of selective BACE1 inhibitors. Eur J Med Chem 2013; 68:270-83. [DOI: 10.1016/j.ejmech.2013.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/26/2013] [Accepted: 06/06/2013] [Indexed: 02/08/2023]
|
177
|
AZ-4217: a high potency BACE inhibitor displaying acute central efficacy in different in vivo models and reduced amyloid deposition in Tg2576 mice. J Neurosci 2013; 33:10075-84. [PMID: 23761903 DOI: 10.1523/jneurosci.1165-13.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aβ, the product of APP (amyloid precursor protein), has been implicated in the pathophysiology of Alzheimer's disease (AD). β-Site APP cleaving enzyme1 (BACE1) is the enzyme initiating the processing of the APP to Aβ peptides. Small molecule BACE1 inhibitors are expected to decrease Aβ-peptide generation and thereby reduce amyloid plaque formation in the brain, a neuropathological hallmark of AD. BACE1 inhibition thus addresses a key mechanism in AD and its potential as a therapeutic target is currently being addressed in clinical studies. Here, we report the discovery and the pharmacokinetic and pharmacodynamic properties of BACE1 inhibitor AZ-4217, a high potency compound (IC50 160 pM in human SH-SY5Y cells) with an excellent in vivo efficacy. Central efficacy of BACE1 inhibition was observed after a single dose in C57BL/6 mice, guinea pigs, and in an APP transgenic mouse model of cerebral amyloidosis (Tg2576). Furthermore, we demonstrate that in a 1 month treatment paradigm BACE1 inhibition of Aβ production does lower amyloid deposition in 12-month-old Tg2576 mice. These results strongly support BACE1 inhibition as concretely impacting amyloid deposition and therefore potentially an important approach for therapeutic intervention in AD.
Collapse
|
178
|
Huang D, Liu Y, Shi B, Li Y, Wang G, Liang G. Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. J Mol Graph Model 2013; 45:65-83. [PMID: 24004830 DOI: 10.1016/j.jmgm.2013.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 01/03/2023]
Abstract
The β-enzyme (BACE), which takes an active part in the processing of amyloid precursor protein, thereby leads to the production of amyloid-β (Aβ) in the brain, is a major therapeutic target against Alzheimer's disease. The present study is aimed at studying 3D-QSAR of BACE-1 inhibitors and their binding mode. We build a 3D-QSAR model involving 99 training BACE-1 inhibitors based on Topomer CoMFA, and 26 molecules are employed to validate the external predictive power of the model obtained. The multiple correlation coefficients of fitting modeling, leave one out cross validation, and external validation are 0.966, 0.767 and 0.784, respectively. Topomer search is used as a tool for virtual screening in lead-like compounds of ZINC databases (2012); as a result, we successfully design 30 new molecules with higher activity than that of all training and test inhibitors. Besides, Surflex-dock is employed to explore binding mode of the inhibitors studied when acting with BACE-1 enzyme. The result shows that the inhibitors closely interact with the key sites related to ASP93, THR133, GLN134, ASP289, GLY291, THR292, THR293, ASN294, ARG296 and SER386 of BACE-1.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | | | | | | | | | | |
Collapse
|
179
|
Youn K, Jeong WS, Jun M. β-Secretase (BACE1) inhibitory property of loganin isolated fromCorni fructus. Nat Prod Res 2013; 27:1471-4. [DOI: 10.1080/14786419.2012.718774] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
180
|
Li X, Hong L, Coughlan K, Wang L, Cao L, Tang J. Structure-activity relationship of memapsin 2: implications on physiological functions and Alzheimer's disease. Acta Biochim Biophys Sin (Shanghai) 2013; 45:613-21. [PMID: 23676825 DOI: 10.1093/abbs/gmt050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Memapsin 2 (BACE1, β-secretase), a membrane aspartic protease, functions in the cleavage of the type I transmembrane protein, β-amyloid precursor protein (APP), leading to the production of amyloid β (Aβ) in the brain. Since Aβ is closely associated with the pathogenesis of Alzheimer's disease, understanding the biological function, particularly the catalytic activities of memapsin 2, would assist in a better understanding of the disease and the development of its inhibitors. The transmembrane and cytosolic domains of memapsin 2 function in cellular transport and localization, which are important regulatory mechanisms for its activity. The catalytic ectodomain contains a long substrate cleft that is responsible for substrate recognition, specificity, and peptide bond hydrolysis. The substrate cleft accommodates 11 residues of the substrate in separate binding subsites. Besides APP, a number of membrane proteins have been reported to be substrates of memapsin 2. The elucidation for the specificity of these subsites and the amino acid sequences surrounding the memapsin 2 cleavage site in these proteins has led to the establishment of a predictive model that can quantitatively estimate the efficiency of cleavage for any potential substrates. Such tools may be employed for future studies of memapsin 2 about its biological function. Herein, we review the current knowledge on the structure-function relationship of memapsin 2 and its relationship in the biological function.
Collapse
Affiliation(s)
- Xiaoman Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
181
|
Wang J, Shan C, Cao W, Zhang C, Teng J, Chen J. SCG10 promotes non-amyloidogenic processing of amyloid precursor protein by facilitating its trafficking to the cell surface. Hum Mol Genet 2013; 22:4888-900. [DOI: 10.1093/hmg/ddt339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
182
|
Hu X, He W, Luo X, Tsubota KE, Yan R. BACE1 regulates hippocampal astrogenesis via the Jagged1-Notch pathway. Cell Rep 2013; 4:40-9. [PMID: 23831026 PMCID: PMC3740554 DOI: 10.1016/j.celrep.2013.06.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 01/18/2023] Open
Abstract
BACE1 is the sole secretase for generating β-amyloid (Aβ) in vivo and is being actively pursued as a drug target for the treatment of Alzheimer's disease. Transmembrane BACE1 exerts its biological activity by cleaving its membrane-bound cellular substrates. Here, we reveal that BACE1 directly regulates the level of membrane-anchored full-length Jagged1 (Jag1), a signaling molecule important for the control of neurogenesis and astrogenesis, via interaction with its cognate Notch receptor. We show that shedding of Jag1 is reduced in BACE1 null mice and upregulated Jag1 enhances Notch signaling via cell-cell juxtacrine interactions. Additional biochemical assays confirmed that overexpression of BACE1 enhanced cleavage of Jag1. Consequently, BACE1 null mice exhibit a significant increase in astrogenesis with a corresponding decrease in neurogenesis in their hippocampi during early development. Hence, BACE1 appears to function as a signaling protease that controls the balance of neurogenesis and astrogenesis via the Jag1-Notch pathway.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Wanxia He
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Xiaoyang Luo
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Katherine Elyse Tsubota
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Riqiang Yan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
183
|
Abstract
The central nervous system has been considered off-limits to antibody therapeutics. However, recent advances in preclinical and clinical drug development suggest that antibodies can cross the blood-brain barrier in limited quantities and act centrally to mediate their effects. In particular, immunotherapy for Alzheimer's disease has shown that targeting beta amyloid with antibodies can reduce pathology in both mouse models and the human brain, with strong evidence supporting a central mechanism of action. These findings have fueled substantial efforts to raise antibodies against other central nervous system targets, particularly neurodegenerative targets, such as tau, beta-secretase, and alpha-synuclein. Nevertheless, it is also apparent that antibody penetration across the blood-brain barrier is limited, with an estimated 0.1-0.2 % of circulating antibodies found in brain at steady-state concentrations. Thus, technologies designed to improve antibody uptake in brain are receiving increased attention and are likely going to represent the future of antibody therapy for neurologic diseases, if proven safe and effective. Herein we review briefly the progress and limitations of traditional antibody drug development for neurodegenerative diseases, with a focus on passive immunotherapy. We also take a more in-depth look at new technologies for improved delivery of antibodies to the brain.
Collapse
Affiliation(s)
- Y. Joy Yu
- Neurodegeneration Labs, Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, San Francisco, CA USA
| | - Ryan J. Watts
- Neurodegeneration Labs, Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, San Francisco, CA USA
| |
Collapse
|
184
|
Saraceno C, Musardo S, Marcello E, Pelucchi S, Di Luca M. Modeling Alzheimer's disease: from past to future. Front Pharmacol 2013; 4:77. [PMID: 23801962 PMCID: PMC3685797 DOI: 10.3389/fphar.2013.00077] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/30/2013] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is emerging as the most prevalent and socially disruptive illness of aging populations, as more people live long enough to become affected. Although AD is placing a considerable and increasing burden on society, it represents the largest unmet medical need in neurology, because current drugs improve symptoms, but do not have profound disease-modifying effects. Although AD pathogenesis is multifaceted and difficult to pinpoint, genetic and cell biological studies led to the amyloid hypothesis, which posits that amyloid β (Aβ) plays a pivotal role in AD pathogenesis. Amyloid precursor protein (APP), as well as β- and γ-secretases are the principal players involved in Aβ production, while α-secretase cleavage on APP prevents Aβ deposition. The association of early onset familial AD with mutations in the APP and γ-secretase components provided a potential tool of generating animal models of the disease. However, a model that recapitulates all the aspects of AD has not yet been produced. Here, we face the problem of modeling AD pathology describing several models, which have played a major role in defining critical disease-related mechanisms and in exploring novel potential therapeutic approaches. In particular, we will provide an extensive overview on the distinct features and pros and contras of different AD models, ranging from invertebrate to rodent models and finally dealing with computational models and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Claudia Saraceno
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano Milano, Italy ; Centre of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano Milano, Italy
| | | | | | | | | |
Collapse
|
185
|
Kim CH, Yoo YM. Altered APP Carboxyl-Terminal Processing Under Ferrous Iron Treatment in PC12 Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:189-95. [PMID: 23776394 PMCID: PMC3682078 DOI: 10.4196/kjpp.2013.17.3.189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 12/27/2022]
Abstract
Amyloid-β peptide (Aβ), generated by proteolytic cleavage of the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). The key step in the generation of Aβ is cleavage of APP by beta-site APP-cleaving enzyme 1 (BACE1). Levels of BACE1 are increased in vulnerable regions of the AD brain, but the underlying mechanism is unknown. In the present study, we reported the effects of ferrous ions at subtoxic concentrations on the mRNA levels of BACE1 and a-disintegrin-and-metalloproteinase 10 (ADAM10) in PC12 cells and the cell responses to ferrous ions. The cell survival in PC12 cells significantly decreased with 0 to 0.3 mM FeCl2, with 0.6 mM FeCl2 treatment resulting in significant reductions by about 75%. 4,6-diamidino-2-phenylindole (DAPI) staining showed that the nuclei appeared fragmented in 0.2 and 0.3 mM FeCl2. APP-α-carboxyl terminal fragment (APP-α-CTF) associations with ADAM10 and APP-β-CTF with BACE1 were increased. Levels of ADAM10 and BACE1 mRNA increased in response to the concentrations of 0.25 mM, respectively. In addition, p-ERK and p-Bad (S112, S155) expressions were increased, suggesting that APP-CTF formation is related to ADAM10/BACE1 expression. Levels of Bcl-2 protein were increased, but significant changes were not observed in the expression of Bax. These data suggest that ion-induced enhanced expression of AMDA10/BACE1 could be one of the causes for APP-α/β-CTF activation.
Collapse
Affiliation(s)
- Chi Hyun Kim
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju 220-710, Korea
| | | |
Collapse
|
186
|
Karpagam V, Sathishkumar N, Sathiyamoorthy S, Rasappan P, Shila S, Kim YJ, Yang DC. Identification of BACE1 inhibitors from Panax ginseng saponins-An Insilco approach. Comput Biol Med 2013; 43:1037-44. [PMID: 23816176 DOI: 10.1016/j.compbiomed.2013.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 01/08/2023]
Abstract
BACE1, a β secretase candidate enzyme, initiates the Alzheimer's disease (AD) pathogenesis via amyloid β (Aβ) peptide production serving as a potential therapeutic target. Previous experimental evidence suggested that ginsenosides, a key component of Panax ginseng, are effective against AD. In this study, we implemented a molecular modeling method to reveal the inhibitory action of ginsenosides on BACE1 activity. We selected 12 ginsenosides and performed molecular docking studies to evaluate its interaction with the BACE1 active site, which is essential for inhibition. Further ADMET filtration was applied to find drug-like molecules with a specific ability to cross blood brain barrier (BBB), and to determine toxicity. The BACE1-ginsenosides complex was further subjected to a molecular dynamics simulation to study the stability of the complex and its hydrogen bond interactions. In summary, our findings show ginsenosides CK, F1, Rh1 and Rh2 are potential BACE1 inhibitors from Panax ginseng.
Collapse
Affiliation(s)
- Veerappan Karpagam
- Department of Biochemistry, VRR Institute of Biomedical Science, Chennai-600056, Tamilnadu, India.
| | | | | | | | | | | | | |
Collapse
|
187
|
Stamford A, Strickland C. Inhibitors of BACE for treating Alzheimer's disease: a fragment-based drug discovery story. Curr Opin Chem Biol 2013; 17:320-8. [PMID: 23683349 DOI: 10.1016/j.cbpa.2013.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 11/27/2022]
Abstract
Several fragment-based methods have been applied to the discovery of new lead sources for inhibitors of BACE1, an important therapeutic target for Alzheimer's disease. Among the most common fragment hits were various amidine-containing molecules in which the amidine engaged in discrete H-bond donor-acceptor interaction with the BACE1 catalytic dyad. Structure and medicinal chemistry knowledge-based optimization with emphasis on ligand efficiency resulted in identification of a key pharmacophore comprising a non-planar cyclic amidine scaffold directly attached to a phenyl group projecting into S1. This key pharmacophore is a common feature of known clinical candidates and has dominated the recent patent literature. A structural comparison of the non-planar cyclic amidine motif with other BACE1 pharmacophores highlights its uniqueness and distinct advantages.
Collapse
Affiliation(s)
- Andrew Stamford
- Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, NJ 07065, United States.
| | | |
Collapse
|
188
|
Xu YZ, Yuan S, Bowers S, Hom RK, Chan W, Sham HL, Zhu YL, Beroza P, Pan H, Brecht E, Yao N, Lougheed J, Yan J, Tam D, Ren Z, Ruslim L, Bova MP, Artis DR. Design and synthesis of thiophene dihydroisoquinolines as novel BACE1 inhibitors. Bioorg Med Chem Lett 2013; 23:3075-80. [DOI: 10.1016/j.bmcl.2013.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/25/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
|
189
|
Hunt KW, Cook AW, Watts RJ, Clark CT, Vigers G, Smith D, Metcalf AT, Gunawardana IW, Burkard M, Cox AA, Geck Do MK, Dutcher D, Thomas AA, Rana S, Kallan NC, DeLisle RK, Rizzi JP, Regal K, Sammond D, Groneberg R, Siu M, Purkey H, Lyssikatos JP, Marlow A, Liu X, Tang TP. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: from hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species. J Med Chem 2013; 56:3379-403. [PMID: 23537249 DOI: 10.1021/jm4002154] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A hallmark of Alzheimer's disease is the brain deposition of amyloid beta (Aβ), a peptide of 36-43 amino acids that is likely a primary driver of neurodegeneration. Aβ is produced by the sequential cleavage of APP by BACE1 and γ-secretase; therefore, inhibition of BACE1 represents an attractive therapeutic target to slow or prevent Alzheimer's disease. Herein we describe BACE1 inhibitors with limited molecular flexibility and molecular weight that decrease CSF Aβ in vivo, despite efflux. Starting with spirocycle 1a, we explore structure-activity relationships of core changes, P3 moieties, and Asp binding functional groups in order to optimize BACE1 affinity, cathepsin D selectivity, and blood-brain barrier (BBB) penetration. Using wild type guinea pig and rat, we demonstrate a PK/PD relationship between free drug concentrations in the brain and CSF Aβ lowering. Optimization of brain exposure led to the discovery of (R)-50 which reduced CSF Aβ in rodents and in monkey.
Collapse
Affiliation(s)
- Kevin W Hunt
- Array BioPharma, 3200 Walnut Street, Boulder, CO 80301, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
INTRODUCTION Alzheimer's disease (AD), which is characterized by progressive intellectual deterioration, is the most common cause of dementia. β-Secretase (or BACE1) expression is a trigger for amyloid β peptide formation, a cause of AD, and thus is a molecular target for the development of drugs against AD. Many BACE1 inhibitors have been identified by academic and pharmaceutical research groups and a number of advanced technologies in drug discovery have been applied to the drug discovery. AREAS COVERED The purpose of this review is to present and discuss the methodologies used for BACE1 inhibitor drug discovery via substrate- and structure-based design, high-throughput screening and fragment-based drug design. The authors also review the advantages and disadvantages of these methodologies. EXPERT OPINION Many BACE1 inhibitors have been designed using X-ray crystal structure-based drug design as well as through in silico screening. Nevertheless, there are serious problems with regards to deciding the best X-ray crystal structure for designing BACE1 inhibitors through computational approaches. There are two prominent configurations of BACE1 but there is still room for improvement. Future developments may make it possible to identify BACE1 inhibitors as potential drug candidates.
Collapse
Affiliation(s)
- Yoshio Hamada
- Kobe Gakuin University, Faculty of Pharmaceutical Sciences, Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | | |
Collapse
|
191
|
Bowers S, Xu YZ, Yuan S, Probst GD, Hom RK, Chan W, Konradi AW, Sham HL, Zhu YL, Beroza P, Pan H, Brecht E, Yao N, Lougheed J, Tam D, Ren Z, Ruslim L, Bova MP, Artis DR. Structure-based design of novel dihydroisoquinoline BACE-1 inhibitors that do not engage the catalytic aspartates. Bioorg Med Chem Lett 2013; 23:2181-6. [DOI: 10.1016/j.bmcl.2013.01.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 11/25/2022]
|
192
|
Edraki N, Firuzi O, Foroumadi A, Miri R, Madadkar-Sobhani A, Khoshneviszadeh M, Shafiee A. Phenylimino-2 H -chromen-3-carboxamide derivatives as novel small molecule inhibitors of β-secretase (BACE1). Bioorg Med Chem 2013; 21:2396-2412. [DOI: 10.1016/j.bmc.2013.01.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 11/29/2022]
|
193
|
van Bebber F, Hruscha A, Willem M, Schmid B, Haass C. Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes. J Neurochem 2013; 127:471-81. [DOI: 10.1111/jnc.12198] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/25/2013] [Accepted: 02/12/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Frauke van Bebber
- German Center for Neurodegenerative Diseases (DZNE); Schillerstr Munich Germany
- Adolf-Butenandt Institute, Biochemistry; Ludwig-Maximilians University Munich; Schillerstr Munich Germany
| | - Alexander Hruscha
- German Center for Neurodegenerative Diseases (DZNE); Schillerstr Munich Germany
| | - Michael Willem
- Adolf-Butenandt Institute, Biochemistry; Ludwig-Maximilians University Munich; Schillerstr Munich Germany
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE); Schillerstr Munich Germany
- Adolf-Butenandt Institute, Biochemistry; Ludwig-Maximilians University Munich; Schillerstr Munich Germany
- Munich Centre for Systems Neurology (SyNergy); Munich Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE); Schillerstr Munich Germany
- Adolf-Butenandt Institute, Biochemistry; Ludwig-Maximilians University Munich; Schillerstr Munich Germany
- Munich Centre for Systems Neurology (SyNergy); Munich Germany
| |
Collapse
|
194
|
Sandgren V, Bäck M, Kvarnström I, Dahlgren A. Design and Synthesis of Hydroxyethylene-Based BACE-1 Inhibitors Incorporating Extended P1 Substituents. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2013; 7:1-15. [PMID: 23585822 PMCID: PMC3617544 DOI: 10.2174/1874104501307010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/18/2012] [Accepted: 11/26/2012] [Indexed: 01/14/2023]
Abstract
Novel BACE-1 inhibitors with a hydroxyethylene central core have been developed. Modified P1´ and extended P1 substituents were incorporated with the aim to explore potential interactions with the S1´ and the S1-S3 pocket, respectively, of BACE-1. Inhibitors were identified displaying IC50 values in the nanomolar range, i.e. 69 nM for the most potent compound. Possible inhibitor interactions with the enzyme are also discussed.
Collapse
Affiliation(s)
- Veronica Sandgren
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| | | | | | | |
Collapse
|
195
|
Qi XL, Ou-Yang K, Ren JM, Wu CX, Xiao Y, Li Y, Guan ZZ. Preventing expression of the nicotinic receptor subunit α7 in SH-SY5Y cells with interference RNA indicates that this receptor may protect against the neurotoxicity of Aβ. Neurochem Res 2013; 38:943-50. [PMID: 23430468 DOI: 10.1007/s11064-013-1001-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 12/17/2022]
Abstract
The present aim was to characterize the influence of the α7 nicotinic acetylcholine receptor (nAChR) on BACE, the enzyme that cleaves the amyloid precursor protein (APP) at the β-site, as well as on the oxidative stress induced by amyloid-β peptide (Aβ). To this end, human neuroblastoma SH-SY5Y cells were transfected with siRNAs targeting the α7 nAChR subunit and/or exposed to Aβ1-42. For α7 nAChR, BACE1 (cleaving at the β-site of APP) and BACE2 (cleaving within the Aβ domain), α-secretase (ADAM10), and the two components of γ-secretase, PS and NCT, the mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. The level of Aβ1-42 in the cell culture medium was determined by an ELISA procedure. The extent of lipid peroxidation and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were assayed spectrophotometrically. In the transfected SH-SY5Y cells, expression of α7 nAChR was reduced; the level of BACE1 increased and that of BACE2 decreased; the amount of ADAM10 lowered; and the level of PS raised. Moreover, the level of Aβ1-42 in the culture medium was elevated. Treatment of non-transfected cells with Aβ elevated the level of malondialdehyde (MDA) and lowered the activities of SOD and GSH-Px and these changes were potentiated by inhibiting expression of α7 nAChR. These results indicate that α7 nAChR plays a significant role in amyloidogenic metabolism of APP and the oxidative stress evoked by Aβ, suggesting that this receptor might help protect against the neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Xiao-Lan Qi
- Department of Molecular Biology, Guiyang Medical University, Guiyang 550004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
Growing evidence suggests that soluble Aβ species can drive Alzheimer disease (AD) pathogenesis by inducing a cascade of events including tau hyperphosphorylation, proteasome impairment, and synaptic dysfunction. However, these studies have relied largely on in vitro approaches to examine the role of soluble Aβ in AD. In particular, it remains unknown whether soluble Aβ oligomers can facilitate the development of human wild-type tau pathology in vivo. To address this question, we developed a novel transgenic model that expresses low levels of APP with the Arctic familial AD mutation to enhance soluble Aβ oligomer formation in conjunction with wild-type human tau. Using a genetic approach, we show that reduction of β-site APP cleaving enzyme (BACE) in these ArcTau mice decreases soluble Aβ oligomers, rescues cognition, and, more importantly, reduces tau accumulation and phosphorylation. Notably, BACE reduction decreases the postsynaptic mislocalization of tau in ArcTau mice and reduces the association between NMDA receptors and PSD-95. These studies provide critical in vivo evidence for a strong mechanistic link between soluble Aβ, wild-type tau, and synaptic pathology.
Collapse
|
197
|
Johnson JL, Chambers E, Jayasundera K. Application of a Bioinformatics-Based Approach to Identify Novel Putative in vivo BACE1 Substrates. Biomed Eng Comput Biol 2013; 5:1-15. [PMID: 25288897 PMCID: PMC4147752 DOI: 10.4137/becb.s8383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACE1, a membrane-bound aspartyl protease that is implicated in Alzheimer’s disease, is the first protease to cut the amyloid precursor protein resulting in the generation of amyloid-β and its aggregation to form senile plaques, a hallmark feature of the disease. Few other native BACE1 substrates have been identified despite its relatively loose substrate specificity. We report a bioinformatics approach identifying several putative BACE1 substrates. Using our algorithm, we successfully predicted the cleavage sites for 70% of known BACE1 substrates and further validated our algorithm output against substrates identified in a recent BACE1 proteomics study that also showed a 70% success rate. Having validated our approach with known substrates, we report putative cleavage recognition sequences within 962 proteins, which can be explored using in vivo methods. Approximately 900 of these proteins have not been identified or implicated as BACE1 substrates. Gene ontology cluster analysis of the putative substrates identified enrichment in proteins involved in immune system processes and in cell surface protein-protein interactions.
Collapse
Affiliation(s)
- Joseph L Johnson
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Emily Chambers
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Keerthi Jayasundera
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| |
Collapse
|
198
|
β-secretase cleavage of the fly amyloid precursor protein is required for glial survival. J Neurosci 2013; 32:16181-92. [PMID: 23152602 DOI: 10.1523/jneurosci.0228-12.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
β-secretase (or BACE1) is the key enzyme in the production of β-amyloid (Aβ), which accumulates in the senile plaques characteristic for Alzheimer's disease. Consequently, the lack of BACE1 prevents β-processing of the amyloid precursor protein and Aβ production, which made it a promising target for drug development. However, the loss of BACE1 is also detrimental, leading to myelination defects and altered neuronal activity, functions that have been associated with the cleavage of Neuregulin and a voltage-gated sodium channel subunit. Here we show that the Drosophila ortholog of BACE, dBACE, is required for glial survival. Cell-specific knockdown experiments reveal that this is a non-cell autonomous function, as a knockdown of dBACE in photoreceptor neurons leads to progressive degeneration of glia in their target zone, the lamina. Interestingly, this phenotype is suppressed by the loss of the fly amyloid precursor protein (APPL), whereas a secretion-deficient form of APPL enhances the degeneration. This shows that full-length APPL in neurons promotes the death of neighboring glial cells and that β-processing of APPL is needed to prevent glial death. These results therefore not only demonstrate a novel function for an APP protein in glia, but they also show this function specifically requires regulation by β-cleavage.
Collapse
|
199
|
Hu X, Schlanger R, He W, Macklin WB, Yan R. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression. FASEB J 2013; 27:1868-73. [PMID: 23335052 DOI: 10.1096/fj.12-224212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
200
|
Butini S, Brogi S, Novellino E, Campiani G, Ghosh AK, Brindisi M, Gemma S. The structural evolution of β-secretase inhibitors: a focus on the development of small-molecule inhibitors. Curr Top Med Chem 2013; 13:1787-807. [PMID: 23931442 PMCID: PMC6034716 DOI: 10.2174/15680266113139990137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/11/2013] [Indexed: 12/12/2022]
Abstract
Effective treatment of Alzheimer's disease (AD) remains a critical unmet need in medicine. The lack of useful treatment for AD led to an intense search for novel therapies based on the amyloid hypothesis, which states that amyloid β-42 (Aβ42) plays an early and crucial role in all cases of AD. β-Secretase (also known as BACE-1 β-site APP-cleaving enzyme, Asp-2 or memapsin-2) is an aspartyl protease representing the rate limiting step in the generation of Aβ peptide fragments, therefore it could represent an important target in the steady hunt for a disease-modifying treatment. Generally, β-secretase inhibitors are grouped into two families: peptidomimetic and nonpeptidomimetic inhibitors. However, irrespective of the class, serious challenges with respect to blood-brain barrier (BBB) penetration and selectivity still remain. Discovering a small molecule inhibitor of β-secretase represents an unnerving challenge but, due to its significant potential as a therapeutic target, growing efforts in this task are evident from both academic and industrial laboratories. In this frame, the rising availability of crystal structures of β-secretase-inhibitor complexes represents an invaluable opportunity for optimization. Nevertheless, beyond the inhibitory activity, the major issue of the current research approaches is about problems associated with BBB penetration and pharmacokinetic properties. This review follows the structural evolution of the early β-secretase inhibitors and gives a snap-shot of the hottest chemical templates in the literature of the last five years, showing research progress in this field.
Collapse
Affiliation(s)
- Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Ettore Novellino
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
- Dipartimento di Farmacia, University of Naples Federico II, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Italy
| |
Collapse
|