151
|
LCN2 and TIMP1 as Potential Serum Markers for the Early Detection of Familial Pancreatic Cancer. Transl Oncol 2013; 6:99-103. [PMID: 23544163 DOI: 10.1593/tlo.12373] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 02/08/2023] Open
Abstract
High-risk individuals of familial pancreatic cancer (FPC) families are considered to be good candidates for screening programs to detect early PC or its high-grade precursor lesions, especially pancreatic intraepithelial neoplasia (PanIN) 2/3 lesions. There is a definite need for diagnostic markers as neither reliable imaging methods nor biomarkers are available to detect these lesions. On the basis of a literature search, the potential serum markers neutrophil gelatinase-associated lipocalin (LCN2), metallopeptidase inhibitor 1 (TIMP1), chemokine (C-X-C motif) ligand 16 (CXCL16), IGFBP4, and iC3a, which were first tested in transgenic KrasLSL.(G12D/+);p53(R172H/+);Pdx1-Cre mice, were identified. ELISA analyses of LCN2, TIMP1, and CXCL16 revealed significantly higher levels in mice with PanIN2/3 lesions or PC compared to mice with normal pancreata or PanIN1 lesions. Analysis of preoperative human serum samples from patients with sporadic PC (n = 61), hereditary PC (n = 24), chronic pancreatitis (n = 28), pancreatic neuroendocrine tumors (n = 11), and FPC patients with histologically proven multifocal PanIN2/3 lesions (n = 3), as well as healthy control subjects (n = 20), confirmed significantly higher serum levels of LCN2 and TIMP1 in patients with PC and multifocal PanIN2/3 lesions. The combination of LCN2 and TIMP1 as a diagnostic test for the detection of PC had a sensitivity, specificity, and positive predictive value of 100% each. Although this preliminary finding needs to be validated in a large series of individuals at high risk for FPC, serum measurement of LCN2 and TIMP1 might be a promising screening tool.
Collapse
|
152
|
Liu G, Yang D, Sun Y, Shmulevich I, Xue F, Sood AK, Zhang W. Differing clinical impact of BRCA1 and BRCA2 mutations in serous ovarian cancer. Pharmacogenomics 2013; 13:1523-35. [PMID: 23057551 DOI: 10.2217/pgs.12.137] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A key function of BRCA1 and BRCA2 is the participation in dsDNAbreak repair via homologous recombination. BRCA1 and BRCA2 mutations, which occur in most hereditary ovarian cancers (OCs) and approximately 10% of all OC cases, are associated with defects in homologous recombination and genomic instability, a phenotype termed 'BRCAness'. The clinical effects of BRCA1 and BRCA2 mutations have commonly been analyzed together; however, it is becoming increasingly apparent that these mutations do not have the same effects in OC. Recently, three major reports highlighted the unequal clinical characteristics of OCs with BRCA1 and BRCA2 mutations. All studies demonstrated that BRCA2-mutated patients are associated with better survival and therapeutic response than BRCA1-mutated and wild-type patients with serous OC. The differing prognostic effects of the BRCA2 and BRCA1 mutations is likely due to differing roles of BRCA1 and BRCA2 in homologous recombination repair and a stronger association between the BRCA2 mutation and a hypermutator phenotype. These new findings have potentially important implications for clinical management of patients with serous OC.
Collapse
Affiliation(s)
- Guoyan Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Langer P, Slater E, Fendrich V, Habbe N, Bartsch DK. Familial pancreatic cancer: current status. ACTA ACUST UNITED AC 2013; 1:193-201. [PMID: 23489306 DOI: 10.1517/17530059.1.2.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The term 'familial pancreatic cancer (FPC) defines families with at least two first-degree relatives with confirmed pancreatic cancer that do not fulfill the criteria of other inherited cancer syndromes with an increased risk for the development of PC, such as Peutz-Jeghers syndrome, hereditary pancreatitis and hereditary breast and ovarian cancer. FPC is a mostly autosomal dominant inherited tumor syndrome with a heterogeneous phenotype. The major genetic defect has not been identified yet, although mutations, for example in the BRCA2 gene, could be identified in some FPC families. Nevertheless, most experts recommend participation in screening and surveillance programs to high-risk individuals. Most board-approved screening programs are based on endoscopic ultrasound. The first data on the prospective screening of high-risk individuals have demonstrated that precursor lesions of PC can be identified, but false-positive findings do occur.
Collapse
Affiliation(s)
- Peter Langer
- Philipps-University Hospital, Department of General Surgery, Baldingerstraße, D-35043 Marburg, Germany +49 6421 2866442 ; +49 6421 2868995
| | | | | | | | | |
Collapse
|
154
|
Mocci E, Milne RL, Méndez-Villamil EY, Hopper JL, John EM, Andrulis IL, Chung WK, Daly M, Buys SS, Malats N, Goldgar DE. Risk of pancreatic cancer in breast cancer families from the breast cancer family registry. Cancer Epidemiol Biomarkers Prev 2013; 22:803-11. [PMID: 23456555 DOI: 10.1158/1055-9965.epi-12-0195] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Increased risk of pancreatic cancer has been reported in breast cancer families carrying BRCA1and BRCA2 mutations; however, pancreatic cancer risk in mutation-negative (BRCAX) families has not been explored to date. The aim of this study was to estimate pancreatic cancer risk in high-risk breast cancer families according to the BRCA mutation status. METHODS A retrospective cohort analysis was applied to estimate standardized incidence ratios (SIR) for pancreatic cancer. A total of 5,799 families with ≥1 breast cancer case tested for mutations in BRCA1 and/or BRCA2 were eligible. Families were divided into four classes: BRCA1, BRCA2, BRCAX with ≥2 breast cancer diagnosed before age 50 (class 3), and the remaining BRCAX families (class 4). RESULTS BRCA1 mutation carriers were at increased risk of pancreatic cancer [SIR = 4.11; 95% confidence interval (CI), 2.94-5.76] as were BRCA2 mutation carriers (SIR = 5.79; 95% CI, 4.28-7.84). BRCAX family members were also at increased pancreatic cancer risk, which did not appear to vary by number of members with early-onset breast cancer (SIR = 1.31; 95% CI, 1.06-1.63 for class 3 and SIR = 1.30; 95% CI, 1.13-1.49 for class 4). CONCLUSIONS Germline mutations in BRCA1 and BRCA2 are associated with an increased risk of pancreatic cancer. Members of BRCAX families are also at increased risk of pancreatic cancer, pointing to the existence of other genetic factors that increase the risk of both pancreatic cancer and breast cancer. IMPACT This study clarifies the relationship between familial breast cancer and pancreatic cancer. Given its high mortality, pancreatic cancer should be included in risk assessment in familial breast cancer counseling.
Collapse
Affiliation(s)
- Evelina Mocci
- Genetic and Molecular Epidemiology Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abbas S. Molecular biology of adenocarcinoma of the pancreatic duct, current state and future therapeutic avenues. Surg Oncol 2013; 22:69-76. [PMID: 23415924 DOI: 10.1016/j.suronc.2012.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma is a lethal disease; currently surgery offers five years survival of less than 5%. Any improvement in the outcome is likely to be through novel therapeutic agents that will target the genetic machinery of the cell. Knowledge of genetic alterations in the process of carcinogenesis is expanding rapidly, the targeted therapy, however, is progressing slowly. Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lend the cancer cells their ability not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes involve genetic alteration in oncogenes, cancer suppressor genes, changes in cell cycle, pathways of apoptosis and also changes in epithelial to mesenchymal transition. Monotherapeutic targeted agents seem(s) to have limited effect on cancer cells. The near future is likely to show an improvement in the treatment outcome, which is likely to be a result of the combination of targeted agents with surgery and chemotherapy.
Collapse
Affiliation(s)
- Saleh Abbas
- Deakin University, Barwon Health, Bellerine St, Geelong 3200, Vic, Australia.
| |
Collapse
|
156
|
Abstract
It is estimated that 5% to 10% of pancreatic cancer is familial. Although there is evidence of a major pancreatic cancer susceptibility gene, the majority of families with multiple cases of pancreatic cancer do not have an identifiable causative gene or syndrome. However, a subset of pancreatic cancer is attributable to known inherited cancer predisposition syndromes, including several hereditary breast cancer genes (BRCA1, BRCA2, and PALB2), CDKN2A, hereditary pancreatitis, hereditary nonpolyposis colorectal cancer, and Peutz-Jeghers syndrome. In addition to explaining a proportion of familial pancreatic cancer, individuals with these conditions are at increased risk for pancreatic cancer. Relatives from familial pancreatic cancer kindreds without one of these identifiable syndromes may have as high as a 32-fold risk of pancreatic cancer, depending on the number of affected first-degree relatives. Such high-risk individuals may benefit from increased surveillance, and strategies for early detection of pancreatic cancer are under evaluation.
Collapse
|
157
|
Wörmann SM, Algül H. Risk Factors and Therapeutic Targets in Pancreatic Cancer. Front Oncol 2013; 3:282. [PMID: 24303367 PMCID: PMC3831165 DOI: 10.3389/fonc.2013.00282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/03/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sonja Maria Wörmann
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Hana Algül
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- *Correspondence: Hana Algül, II. Medizinische Klinik, Klinikum rechts der Isar, Universität München, Ismaninger Str. 22, Munich 81675, Germany e-mail:
| |
Collapse
|
158
|
Abstract
Pancreatic cancer (PC) is typically a fatal disease due to its rapid growth and the lack of early diagnostic -techniques. Because approximately 10% of PCs are attributable to a hereditary susceptibility, identifying and studying patients with a family history of PC or known genetic predisposition to PC can improve the prevention, diagnosis, and treatment of PC. A skilled team of study investigators, physicians, genetic counselors, and data managers must work with patients and families to confidentially store and organize data from PC patients and high-risk patients. This data, collected in conjunction with patients' tissue and blood specimens, will contribute to the understanding of the biology, etiology, and epidemiology of PC, and can ultimately improve screening and management for patients with an underlying hereditary predisposition to PC.
Collapse
|
159
|
Abstract
Pancreatic cancer is a leading cause of cancer death, and it has the poorest prognosis of any major tumour type. Familial pancreatic cancer registries are important for investigating the genetic aetiology of this devastating disease. Using data from our familial pancreatic cancer registry and other registries, this Review discusses the usefulness of family registries in the study of pancreatic and other cancers, and also how such registries provide a unique opportunity for laboratory, population and clinical research.
Collapse
Affiliation(s)
- Alison P Klein
- Department of Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA.
| |
Collapse
|
160
|
|
161
|
Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, Izatt T, Sinari S, Christoforides A, Aldrich J, Kurdoglu A, Barrett M, Phillips L, Benson H, Tembe W, Braggio E, Kiefer JA, Legendre C, Posner R, Hostetter GH, Baker A, Egan JB, Han H, Lake D, Stites EC, Ramanathan RK, Fonseca R, Stewart AK, Von Hoff D. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One 2012; 7:e43192. [PMID: 23071490 PMCID: PMC3468610 DOI: 10.1371/journal.pone.0043192] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/19/2012] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection.
Collapse
Affiliation(s)
- Winnie S. Liang
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - David W. Craig
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - John Carpten
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | | | - Michael J. Demeure
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Virginia G. Piper Cancer Center Clinical Trials, Scottsdale Healthcare, Scottsdale, Arizona, United States of America
| | - Glen J. Weiss
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Virginia G. Piper Cancer Center Clinical Trials, Scottsdale Healthcare, Scottsdale, Arizona, United States of America
| | - Tyler Izatt
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Shripad Sinari
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Alexis Christoforides
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Jessica Aldrich
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Ahmet Kurdoglu
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Michael Barrett
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Lori Phillips
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Hollie Benson
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Waibhav Tembe
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | | | - Jeffrey A. Kiefer
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Christophe Legendre
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Richard Posner
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Galen H. Hostetter
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Angela Baker
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Jan B. Egan
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Haiyong Han
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Douglas Lake
- Arizona State University, Tempe, Arizona, United States of America
| | - Edward C. Stites
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Ramesh K. Ramanathan
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Virginia G. Piper Cancer Center Clinical Trials, Scottsdale Healthcare, Scottsdale, Arizona, United States of America
| | - Rafael Fonseca
- Mayo Clinic, Scottsdale, Arizona, United States of America
| | | | - Daniel Von Hoff
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Mayo Clinic, Scottsdale, Arizona, United States of America
- Virginia G. Piper Cancer Center Clinical Trials, Scottsdale Healthcare, Scottsdale, Arizona, United States of America
- * E-mail:
| |
Collapse
|
162
|
Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, Izatt T, Sinari S, Christoforides A, Aldrich J, Kurdoglu A, Barrett M, Phillips L, Benson H, Tembe W, Braggio E, Kiefer JA, Legendre C, Posner R, Hostetter GH, Baker A, Egan JB, Han H, Lake D, Stites EC, Ramanathan RK, Fonseca R, Stewart AK, Von Hoff D. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One 2012. [PMID: 23071490 DOI: 10.137/journal.pone.0043192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAC) is among the most lethal malignancies. While research has implicated multiple genes in disease pathogenesis, identification of therapeutic leads has been difficult and the majority of currently available therapies provide only marginal benefit. To address this issue, our goal was to genomically characterize individual PAC patients to understand the range of aberrations that are occurring in each tumor. Because our understanding of PAC tumorigenesis is limited, evaluation of separate cases may reveal aberrations, that are less common but may provide relevant information on the disease, or that may represent viable therapeutic targets for the patient. We used next generation sequencing to assess global somatic events across 3 PAC patients to characterize each patient and to identify potential targets. This study is the first to report whole genome sequencing (WGS) findings in paired tumor/normal samples collected from 3 separate PAC patients. We generated on average 132 billion mappable bases across all patients using WGS, and identified 142 somatic coding events including point mutations, insertion/deletions, and chromosomal copy number variants. We did not identify any significant somatic translocation events. We also performed RNA sequencing on 2 of these patients' tumors for which tumor RNA was available to evaluate expression changes that may be associated with somatic events, and generated over 100 million mapped reads for each patient. We further performed pathway analysis of all sequencing data to identify processes that may be the most heavily impacted from somatic and expression alterations. As expected, the KRAS signaling pathway was the most heavily impacted pathway (P<0.05), along with tumor-stroma interactions and tumor suppressive pathways. While sequencing of more patients is needed, the high resolution genomic and transcriptomic information we have acquired here provides valuable information on the molecular composition of PAC and helps to establish a foundation for improved therapeutic selection.
Collapse
Affiliation(s)
- Winnie S Liang
- Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Noh JM, Choi DH, Baek H, Nam SJ, Lee JE, Kim JW, Ki CS, Park W, Huh SJ. Associations between BRCA Mutations in High-Risk Breast Cancer Patients and Familial Cancers Other than Breast or Ovary. J Breast Cancer 2012; 15:283-7. [PMID: 23091540 PMCID: PMC3468781 DOI: 10.4048/jbc.2012.15.3.283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/28/2012] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We investigated the relationship between BRCA mutations and the distribution of familial cancers other than breast or ovary in high-risk breast cancer patients. METHODS PATIENTS WITH BREAST CANCER WHO HAD AT LEAST ONE OF THE FOLLOWING RISK FACTORS WERE ENROLLED: reported family history of breast or ovarian cancer; 40 years of age or younger age at diagnosis; bilateral breast cancer; or male gender. Genetic testing for BRCA mutation and questionnaires about personal and family histories of malignancies were performed. RESULTS Among the 238 eligible patients, 49 (20.6%) patients had BRCA1/2 mutations, which were more frequent in patients with multiple risk factors (p<0.0001). There were 271 members of 156 (65.5%) families who had histories of other primary cancer. The distribution of the families was 119 (63.0%) and 37 (75.5%) in the BRCA-negative and positive group, respectively (p=0.0996). Multiple familial cancers occurred in 70 families, which were significantly more frequent in BRCA-positive families (p=0.0034). By ordinal logistic regression, the occurrence of multiple familial cancers was associated with BRCA mutations (p=0.0045), not with other risk factors. The most common site of disease was the stomach, which is the most common in nationwide. And the proportional incidence of pancreatic cancer (6.8%) was significantly higher than that of nationwide cancer statistics (2.4%, p=0.0137). CONCLUSION BRCA mutations in high-risk breast cancer patients were associated with multiple risk factors and multiple family members with other primary cancers. Genetic counseling based on accurate information should be provided to families with BRCA mutation carriers.
Collapse
Affiliation(s)
- Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Suzuki R, Ohira H, Irisawa A, Bhutani MS. Pancreatic cancer: early detection, diagnosis, and screening. Clin J Gastroenterol 2012; 5:322-6. [DOI: 10.1007/s12328-012-0327-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 07/22/2012] [Indexed: 12/18/2022]
|
165
|
Costello E, Greenhalf W, Neoptolemos JP. New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol 2012; 9:435-44. [PMID: 22733351 DOI: 10.1038/nrgastro.2012.119] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Late diagnosis of pancreatic ductal adenocarcinoma (pancreatic cancer) and the limited response to current treatments results in an exceptionally poor prognosis. Advances in our understanding of the molecular events underpinning pancreatic cancer development and metastasis offer the hope of tangible benefits for patients. In-depth mutational analyses have shed light on the genetic abnormalities in pancreatic cancer, providing potential treatment targets. New biological studies in patients and in mouse models have advanced our knowledge of the timing of metastasis of pancreatic cancer, highlighting new directions for the way in which patients are treated. Furthermore, our increasing understanding of the molecular events in tumorigenesis is leading to the identification of biomarkers that enable us to predict response to treatment. A major drawback, however, is the general lack of an adequate systematic approach to advancing the use of biomarkers in cancer drug development, highlighted in a Cancer Biomarkers Collaborative consensus report. In this Review, we summarize the latest insights into the biology of pancreatic cancer, and their repercussions for treatment. We provide an overview of current treatments and, finally, we discuss novel therapeutic approaches, including the role of biomarkers in therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Eithne Costello
- National Institute for Health Research Pancreas Biomedical Research Unit and Liverpool Cancer Research UK Centre, Department of Molecular, University of Liverpool, Liverpool, L69 3GA, UK
| | | | | |
Collapse
|
166
|
Panneerselvam J, Park HK, Zhang J, Dudimah FD, Zhang P, Wang H, Fei P. FAVL impairment of the Fanconi anemia pathway promotes the development of human bladder cancer. Cell Cycle 2012; 11:2947-55. [PMID: 22828653 PMCID: PMC3419064 DOI: 10.4161/cc.21400] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Effectiveness of DNA cross-linking drugs in the treatment of bladder cancer suggests that bladder cancer cells may have harbored an insufficient cellular response to DNA cross-link damage, which will sensitize cells to DNA cross-linking agents. Cell sensitivity benefits from deficient DNA damage responses, which, on the other hand, can cause cancer. Many changed cellular signaling pathways are known to be involved in bladder tumorigenesis; however, DNA cross-link damage response pathway [Fanconi anemia (FA) pathway], whose alterations appear to be a plausible cause of the development of bladder cancer, remains an under-investigated area in bladder cancer research. In this study, we found FAVL (variant of FA protein L--FANCL) was elevated substantially in bladder cancer tissues examined. Ectopic expression of FAVL in bladder cancer cells as well as normal human cells confer an impaired FA pathway and hypersensitivity to Mitomycin C, similar to those found in FA cells, indicating that FAVL elevation may possess the same tumor promotion potential as an impaired FA pathway harbored in FA cells. Indeed, a higher level of FAVL expression can promote the growth of bladder cancer cells in vitro and in vivo, which, at least partly, results from FAVL perturbation of FANCL expression, an essential factor for the activation of the FA pathway. Moreover, a higher level of FAVL expression was found to be associated with chromosomal instability and the invasiveness of bladder cancer cells. Collectively, FAVL elevation can increase the tumorigenic potential of bladder cancer cells, including the invasive potential that confers the development of advanced bladder cancer. These results enhance our understanding the pathogenesis of human bladder cancer, holding a promise to develop additional effective tools to fight human bladder cancer.
Collapse
Affiliation(s)
| | - Hwan Ki Park
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | | | - Piyan Zhang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | - Hong Wang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester, MN USA
| | - Peiwen Fei
- University of Hawaii Cancer Center; University of Hawaii; Honolulu, HI USA
| |
Collapse
|
167
|
Abstract
Familial pancreatic cancer (FPC) describes families with at least two first-degree relatives with confirmed exocrine pancreatic cancer that do not fulfil the criteria of other inherited tumour syndromes with increased risks of pancreatic cancer, such as Peutz-Jeghers syndrome, hereditary pancreatitis, and hereditary breast and ovarian cancer. The inheritance of FPC is mostly autosomal dominant and with a heterogeneous phenotype. The major gene defect is yet to be identified, although germline mutations in BRCA2, PALB2 and ATM are causative in some FPC families. Expert consensus conferences considered it appropriate to screen for pancreatic cancer in high-risk individuals using a multidisciplinary approach under research protocol conditions. However, neither biomarkers nor reliable imaging modalities for the detection of high-grade precursor lesions are yet available. Most screening programmes are currently based on findings from endoscopic ultrasonography and MRI, and data has demonstrated that precursor lesions of pancreatic cancer can be identified. No consensus exists regarding the age to initiate or stop screening and the optimal intervals for follow-up. Timing and extent of surgery as a treatment for FPC are debated. This Review focuses on the clinical phenotype of FPC, its histopathological characteristics, known underlying genetic changes and associated genetic counselling and screening.
Collapse
|
168
|
Segura PP, Ponce CG, Ramón Y Cajal T, Blanch RS, Aranda E. Hereditary pancreatic cancer: molecular bases and their application in diagnosis and clinical management: a guideline of the TTD group. Clin Transl Oncol 2012; 14:553-63. [PMID: 22855135 DOI: 10.1007/s12094-012-0840-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/19/2012] [Indexed: 12/16/2022]
Abstract
Pancreatic carcinoma (PC) represents the fourth leading cause of cancer death in Spain with a death rate of 2,400 males and 2,000 females per year. Poor outcome related to its silent nature and the lack of reliable secondary prevention measures translate into advanced-stage diagnosis, 75 % of deaths within the first year of diagnosis and 5-year survival rate of <5 %. Family history was first recognized as a risk factor for PC. Further population-based and case-control studies subsequently found that 7.8 % of patients with PC have a family history of the same tumor and individuals with a first-degree relative with PC have a 3.2-fold increased risk of developing PC. Overall, it is estimated that up to 10 % of PC have a familial component. However, known genetic syndromes account for <20 % of the observed familial aggregation of PC. We review the most important aspects in epidemiology, molecular biology and clinical management of familial PC.
Collapse
Affiliation(s)
- P Pérez Segura
- Medical Oncology, Clinical Hospital San Carlos, Madrid, Spain.
| | | | | | | | | |
Collapse
|
169
|
Wittel UA, Momi N, Seifert G, Wiech T, Hopt UT, Batra SK. The pathobiological impact of cigarette smoke on pancreatic cancer development (review). Int J Oncol 2012; 41:5-14. [PMID: 22446714 PMCID: PMC3589138 DOI: 10.3892/ijo.2012.1414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/25/2012] [Indexed: 12/13/2022] Open
Abstract
Despite extensive efforts, pancreatic cancer remains incurable. Most risk factors, such as genetic disposition, metabolic diseases or chronic pancreatitis cannot be influenced. By contrast, cigarette smoking, an important risk factor for pancreatic cancer, can be controlled. Despite the epidemiological evidence of the detrimental effects of cigarette smoking with regard to pancreatic cancer development and its unique property of being influenceable, our understanding of cigarette smoke-induced pancreatic carcinogenesis is limited. Current data on cigarette smoke-induced pancreatic carcinogenesis indicate multifactorial events that are triggered by nicotine, which is the major pharmacologically active constituent of tobacco smoke. In addition to nicotine, a vast number of carcinogens have the potential to reach the pancreatic gland, where they are metabolized, in some instances to even more toxic compounds. These metabolic events are not restricted to pancreatic ductal cells. Several studies show that acinar cells are also greatly affected. Furthermore, pancreatic cancer progenitor cells do not only derive from the ductal epithelial lineage, but also from acinar cells. This sheds new light on cigarette smoke-induced acinar cell damage. On this background, our objective is to outline a multifactorial model of tobacco smoke-induced pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Uwe A Wittel
- Department of General- and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
170
|
Diabetes mellitus in pancreatic cancer patients in the Czech Republic: sex differences. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:414893. [PMID: 22792091 PMCID: PMC3390055 DOI: 10.1155/2012/414893] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/21/2012] [Accepted: 05/08/2012] [Indexed: 12/15/2022]
Abstract
Aims. The prevalence of diabetes mellitus in pancreatic cancer patients and control subjects was compared.
Methods. Retrospective evaluation of 182 pancreatic cancer patients and 135 controls. The presence of diabetes was evaluated and the time period between the diagnosis of diabetes and pancreatic cancer was assessed. A subanalysis based on patient sex was conducted.
Results. Diabetes mellitus was present in 64 patients (35.2%) in pancreatic cancer group and in 27 patients (20.0%) in control group (χ2 = 8.709; P = 0.003). In 18 patients (28.1% of diabetic pancreatic cancer patients) diabetes was new-onset. Diabetes was new-onset in 23.3% of females compared to 38.1% of males (χ2 = 1.537; P = 0.215). The overall prevalence of diabetes was significantly higher among female pancreatic cancer patients (25% versus 43.9%; χ2 = 7.070, P = 0.008), while diabetes prevalence was equally represented in the control group patients (22.1% versus 17.2%; χ2 = 0.484, P = 0.487).
Conclusion. The prevalence of diabetes mellitus in study group of pancreatic cancer patients was significantly higher when compared to control group. Pancreatic cancer patients with diabetes were predominantly females, while diabetes was equally prevalent among sexes in the control group. Therefore, patient sex may play important role in the risk stratification.
Collapse
|
171
|
Momi N, Kaur S, Ponnusamy MP, Kumar S, Wittel UA, Batra SK. Interplay between smoking-induced genotoxicity and altered signaling in pancreatic carcinogenesis. Carcinogenesis 2012; 33:1617-28. [PMID: 22623649 DOI: 10.1093/carcin/bgs186] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite continuous research efforts directed at early diagnosis and treatment of pancreatic cancer (PC), the status of patients affected by this deadly malignancy remains dismal. Its notoriety with regard to lack of early diagnosis and resistance to the current chemotherapeutics is due to accumulating signaling abnormalities. Hoarding experimental and epidemiological evidences have established a direct correlation between cigarette smoking and PC risk. The cancer initiating/promoting nature of cigarette smoke can be attributed to its various constituents including nicotine, which is the major psychoactive component, and several other toxic constituents, such as nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and polycyclic aromatic hydrocarbons. These predominant smoke-constituents initiate a series of oncogenic events facilitating epigenetic alterations, self-sufficiency in growth signals, evasion of apoptosis, sustained angiogenesis, and metastasis. A better understanding of the molecular mechanisms underpinning these events is crucial for the prevention and therapeutic intervention against PC. This review presents various interconnected signal transduction cascades, the smoking-mediated genotoxicity, and genetic polymorphisms influencing the susceptibility for smoking-mediated PC development by modulating pivotal biological aspects such as cell defense/tumor suppression, inflammation, DNA repair, as well as tobacco-carcinogen metabolization. Additionally, it provides a large perspective toward tumor biology and the therapeutic approaches against PC by targeting one or several steps of smoking-mediated signaling cascades.
Collapse
Affiliation(s)
- Navneet Momi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | | | |
Collapse
|
172
|
Levanat S, Musani V, Cvok ML, Susac I, Sabol M, Ozretic P, Car D, Eljuga D, Eljuga L, Eljuga D. Three novel BRCA1/BRCA2 mutations in breast/ovarian cancer families in Croatia. Gene 2012; 498:169-76. [PMID: 22366370 DOI: 10.1016/j.gene.2012.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/09/2012] [Indexed: 02/08/2023]
Abstract
BRCA1 and BRCA2 genes from 167 candidates (145 families) were scanned for mutations. We identified 14 pathogenic point mutations in 17 candidates, 9 in BRCA1 and 5 in BRCA2. Of those, 11 have been previously described and 3 were novel (c.5335C>T in BRCA1 and c.4139_4140dupTT and c.8175G>A in BRCA2). No large deletions or duplications involving BRCA1 and BRCA2 genes were identified. No founder mutations were detected for the Croatian population. Croatia shares most of the mutations with neighboring Slovenia and also with Germany, Austria and Poland. Two common sequence variants in BRCA1, c.2077G>A and c.4956G>A, were found more frequently in mutation carriers compared to healthy controls. No difference in BRCA2 variants was detected between the groups. Haplotype inference showed no difference in haplotype distributions between deleterious mutation carriers and non-carriers in neither BRCA1 nor BRCA2. In silico analyses identified one BRCA1 sequence variant (c.4039A>G) and two BRCA2 variants (c.5986G>A and c.6884G>C) as harmful with high probability, and inconclusive results were obtained for our novel BRCA2 variant c.3864_3866delTAA. Combination of QMPSF and HRMA methods provides high detection rate and complete coverage of BRCA1/2 genes. Benefit of BRCA1/2 mutation testing is clear, since we detected mutations in young unaffected women, who will be closely monitored for breast and ovarian cancer.
Collapse
Affiliation(s)
- Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Cerbinskaite A, Mukhopadhyay A, Plummer E, Curtin N, Edmondson R. Defective homologous recombination in human cancers. Cancer Treat Rev 2012; 38:89-100. [DOI: 10.1016/j.ctrv.2011.04.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 12/21/2022]
|
174
|
Canto MI, Hruban RH, Fishman EK, Kamel IR, Schulick R, Zhang Z, Topazian M, Takahashi N, Fletcher J, Petersen G, Klein AP, Axilbund J, Griffin C, Syngal S, Saltzman JR, Mortele KJ, Lee J, Tamm E, Vikram R, Bhosale P, Margolis D, Farrell J, Goggins M. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 2012; 142:796-804; quiz e14-5. [PMID: 22245846 PMCID: PMC3321068 DOI: 10.1053/j.gastro.2012.01.005] [Citation(s) in RCA: 473] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/16/2011] [Accepted: 01/05/2012] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The risk of pancreatic cancer is increased in patients with a strong family history of pancreatic cancer or a predisposing germline mutation. Screening can detect curable, noninvasive pancreatic neoplasms, but the optimal imaging approach is not known. We determined the baseline prevalence and characteristics of pancreatic abnormalities using 3 imaging tests to screen asymptomatic, high-risk individuals (HRIs). METHODS We screened 225 asymptomatic adult HRIs at 5 academic US medical centers once, using computed tomography (CT), magnetic resonance imaging (MRI), and endoscopic ultrasonography (EUS). We compared results in a blinded, independent fashion. RESULTS Ninety-two of 216 HRIs (42%) were found to have at least 1 pancreatic mass (84 cystic, 3 solid) or a dilated pancreatic duct (n = 5) by any of the imaging modalities. Fifty-one of the 84 HRIs with a cyst (60.7%) had multiple lesions, typically small (mean, 0.55 cm; range, 2-39 mm), in multiple locations. The prevalence of pancreatic lesions increased with age; they were detected in 14% of subjects younger than 50 years old, 34% of subjects 50-59 years old, and 53% of subjects 60-69 years old (P < .0001). CT, MRI, and EUS detected a pancreatic abnormality in 11%, 33.3%, and 42.6% of the HRIs, respectively. Among these abnormalities, proven or suspected neoplasms were identified in 85 HRIs (82 intraductal papillary mucinous neoplasms and 3 pancreatic endocrine tumors). Three of 5 HRIs who underwent pancreatic resection had high-grade dysplasia in less than 3 cm intraductal papillary mucinous neoplasms and in multiple intraepithelial neoplasias. CONCLUSIONS Screening of asymptomatic HRIs frequently detects small pancreatic cysts, including curable, noninvasive high-grade neoplasms. EUS and MRI detect pancreatic lesions better than CT.
Collapse
Affiliation(s)
- Marcia Irene Canto
- Department of Medicine (Division of Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA.
| | - Ralph H. Hruban
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | - Elliot K. Fishman
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | - Ihab R. Kamel
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | - Richard Schulick
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | - Zhe Zhang
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | - Mark Topazian
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Mayo Clinic
| | - Naoki Takahashi
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Mayo Clinic
| | - Joel Fletcher
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Mayo Clinic
| | - Gloria Petersen
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Mayo Clinic
| | - Alison P. Klein
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | - Jennifer Axilbund
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | - Constance Griffin
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | - Sapna Syngal
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Dana Farber Cancer Institute,Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Brigham and Women's Hospital
| | - John R. Saltzman
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Brigham and Women's Hospital
| | - Koenraad J. Mortele
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Brigham and Women's Hospital
| | - Jeffrey Lee
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, MD Anderson Cancer Center
| | - Eric Tamm
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, MD Anderson Cancer Center
| | - Raghunandan Vikram
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, MD Anderson Cancer Center
| | - Priya Bhosale
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, MD Anderson Cancer Center
| | - Daniel Margolis
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, University of California Los Angeles
| | - James Farrell
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, University of California Los Angeles
| | - Michael Goggins
- Department of Medicine (Gastroenterology), Epidemiology, Oncology, Biostatistics, Radiology, Anesthesia, Surgery, and Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions
| | | |
Collapse
|
175
|
Abstract
Accumulating data indicate that clinically available abdominal imaging tests such as EUS and MRI/MRCP can detect asymptomatic precursor benign (IPMN, PanIN) and invasive malignant pancreatic neoplasms, such as ductal adenocarcinoma, in individuals with an inherited predisposition. These asymptomatic FPCs detected have been more likely to be resectable, compared to symptomatic tumors. The most challenging part of screening high-risk individuals is the selection of individuals with high-grade precursor neoplasms for preventive treatment (ie, surgical resection before development of invasive cancer). Ongoing and future research should focus on formulating and validating a model for FPC risk and neoplastic progression using patient characteristics, imaging, and biomarkers. The comparative cost and effectiveness of various approaches for screening and surveillance of high-risk individuals also deserves study. For now, screening is best performed in high-risk individuals within the research protocols in academic centers with multidisciplinary teams with expertise in genetics, gastroenterology, radiology, surgery, and pathology.
Collapse
|
176
|
Amin S, McBride R, Kline J, Mitchel EB, Lucas AL, Neugut AI, Frucht H. Incidence of subsequent pancreatic adenocarcinoma in patients with a history of nonpancreatic primary cancers. Cancer 2012; 118:1244-51. [PMID: 21887676 PMCID: PMC3677019 DOI: 10.1002/cncr.26414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/31/2011] [Accepted: 06/06/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Several environmental risk factors are known to predispose individuals to pancreatic cancer, and up to 15% of pancreatic cancers have an inherited component. Understanding metachronous cancer associations can modify pancreas cancer risk. The objective of this study was to investigate the association of nonpancreatic cancers with subsequent pancreatic adenocarcinoma. METHODS The authors used data from the US Surveillance, Epidemiology, and End Results (SEER) registries to identify 1,618,834 individuals who had a primary malignancy and subsequent pancreatic adenocarcinoma (n = 4013). Standardized incidence ratios were calculated as an approximation of relative risk (RR) for the occurrence of pancreatic adenocarcinoma after another primary malignancy. RESULTS Among patients who were diagnosed with a first primary malignancy at ages 20 to 49 years, the risk of subsequent pancreatic adenocarcinoma was increased among patients who had cancers of the ascending colon (relative risk [RR], 4.62; 95% confidence interval [CI], 1.86-9.52), hepatic flexure (RR, 5.42; 95% CI, 1.12-15.84), biliary system (RR, 13.14; 95% CI, 4.27-30.66), breast (RR, 1.32; 95% CI, 1.09-1.59), uterine cervix (RR, 1.61; 95% CI, 1.02-2.41), testes (RR, 2.78; 95% CI, 1.83-4.05), and hematopoietic system (RR, 1.83; 95% CI, 1.28-2.53). Among patients who had a first malignancy at ages 50 to 64 years, the risk was increased after cancers of the stomach (RR, 1.88; 95% CI, 1.13-2.93), hepatic flexure (RR, 2.25; 95% CI, 1.08-4.13), lung and bronchus (RR, 1.46; 95% CI, 1.16-1.82), pharynx (RR, 2.26; 95% CI, 1.13-4.04), and bladder (RR, 1.24; 95% CI, 1.03-1.48). Among patients who had a primary cancer after age 65 years, the risk was increased after cancers of the stomach (RR, 1.79; 95% CI, 1.23-2.53), hepatic flexure (RR, 1.76; 95% CI, 1.06-2.75), biliary system (RR, 2.35; 95% CI, 1.17-4.20), and uterus (RR, 1.23; 95% CI, 1.03-1.47). CONCLUSIONS The results from the current population-based data set suggested that pancreatic adenocarcinoma is associated with certain primary cancers. Genetic predisposition and common environmental and behavioral risk factors all may contribute to this observation. Specific tumor associations will guide future risk-stratification efforts.
Collapse
Affiliation(s)
- Sunil Amin
- College of Physicians and Surgeons, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Muzzi Mirza Pancreatic Cancer Prevention & Genetics Program, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
| | - Russell McBride
- Department of Epidemiology, Mailman School of Public Health
- Herbert Irving Comprehensive Cancer Center
| | - Jennie Kline
- Sergievsky Center, Columbia University, New York, NY and the New York State Psychiatric Institute, New York, NY
- Department of Epidemiology, Mailman School of Public Health
| | - Elana B. Mitchel
- College of Physicians and Surgeons, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Muzzi Mirza Pancreatic Cancer Prevention & Genetics Program, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
| | - Aimee L. Lucas
- Muzzi Mirza Pancreatic Cancer Prevention & Genetics Program, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Division of Digestive and Liver Diseases, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Department of Medicine, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
| | - Alfred I. Neugut
- Department of Medicine, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Herbert Irving Comprehensive Cancer Center
| | - Harold Frucht
- Muzzi Mirza Pancreatic Cancer Prevention & Genetics Program, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Division of Digestive and Liver Diseases, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Department of Medicine, Columbia University, New York, NY and New York Presbyterian Hospital, New York, NY
- Herbert Irving Comprehensive Cancer Center
| |
Collapse
|
177
|
Sakorafas GH, Tsiotos GG, Korkolis D, Smyrniotis V. Individuals at high-risk for pancreatic cancer development: management options and the role of surgery. Surg Oncol 2012; 21:e49-58. [PMID: 22244849 DOI: 10.1016/j.suronc.2011.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal disease. Despite advances regarding the safety and long-term results of pancreatectomies, early diagnosis remains the only hope for cure. This necessitates the implementation of an intensive screening program (based mainly on modern imaging), which - given the incidence of PC - is not cost effective for the general population. However, this screening program is recommended for individuals at high-risk for PC development. Indications for screening include the following three clinical settings: hereditary cancer predisposition syndromes associated with PC, hereditary pancreatitis and familial pancreatic cancer syndrome. The aim of this strategy is to identify pre-invasive (precursor) lesions, which are curable. Surgery is recommended in the presence of recognizable lesion on imaging lesions. Partial (anatomic) pancreatectomy - depending on the location of the suspicious lesion - is the most widely accepted type of surgical intervention in this setting; occasionally, however, total pancreatectomy may be required, in carefully selected patients. Despite that experience still remains limited, there is evidence that this aggressive strategy allows early detection of neoplastic lesions, thereby improving the effectiveness of surgery and prognosis.
Collapse
Affiliation(s)
- George H Sakorafas
- Department of Surgery, Athens University, Medical School, Arkadias 19-21, Athens, Greece.
| | | | | | | |
Collapse
|
178
|
Rath MG, Fathali-Zadeh F, Langheinz A, Tchatchou S, Voigtländer T, Heil J, Golatta M, Schott S, Drasseck T, Behnecke A, Burgemeister AL, Evers C, Bugert P, Junkermann H, Schneeweiss A, Bartram CR, Sohn C, Sutter C, Burwinkel B. Molecular and clinical characterization of an in frame deletion of uncertain clinical significance in the BRCA2 gene. Breast Cancer Res Treat 2012; 133:725-34. [PMID: 22228431 DOI: 10.1007/s10549-011-1917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 01/07/2023]
Abstract
In this study, we analyzed a "variant of uncertain significance" (VUS) located in exon 23 of the BRCA2 gene exhibited by six members of five distinct families with hereditary breast cancer (BC). The variant was identified by DNA sequencing, and cDNA analysis revealed its co-expression with wild-type mRNA. We analyzed co-occurrence with other pathological mutations in BRCA1/2, performed a case-control study, looked for evolutionary data and used in-silico analyses to predict its potential clinical significance. Sequencing revealed an in frame deletion of 126 nucleotides in exon 23, leading to a deletion of 42 amino acids (c.9203_9328del126, p.Pro2992_Thr3033del). All of the VUS-carriers suffered from either BC or ovarian/pancreatic cancer. No other definite pathologic mutation of BRCA genes was found in the five families. The identified deletion could not be observed in a control cohort of 2,652 healthy individuals, but in 5 out of 916 (0.5%) tested BC families without a bona fide pathogenic BRCA1/2 mutation (P = 0.0011). According to these results, the in frame deletion c.9203_9328del126 is a rare mutation strongly associated with familial BC. In summary, our investigations indicate that this BRCA2 deletion is pathogenic.
Collapse
Affiliation(s)
- Michelle G Rath
- Division Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Lowery MA, O'Reilly EM. Genomics and pharmacogenomics of pancreatic adenocarcinoma. THE PHARMACOGENOMICS JOURNAL 2011; 12:1-9. [PMID: 22186617 DOI: 10.1038/tpj.2011.52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The last decade has brought significant advances in the development of molecularly targeted therapies for treatment of a variety of human malignancies. In contrast to other solid tumors, however, the impact of novel therapeutic strategies on clinical outcomes in patients with pancreas adenocarcinoma (PAC) has been limited to date. Gemcitabine was established as a standard of care for treatment of advanced PAC in 1997 based on an observed improvement in clinical benefit as adjudicated principally by pain scores and analgesic consumption, and demonstration of an overall survival (OS) benefit in a randomized comparison with 5-fluorouracil (5-FU). Since then, multiple agents targeting oncogenic signaling pathways and mediators of angiogenesis have failed to improve outcomes in phase III clinical trials when compared with gemcitabine monotherapy. An exception to this is the anti-epidermal growth factor receptor therapy erlotinib, which yielded a survival benefit in patients with advanced disease in combination with gemcitabine compared with gemcitabine alone, although this was a marginal incremental improvement for which the clinical significant has been heavily debated. More recently, the most significant therapeutic advance in PAC has come from the combination of several cytotoxic agents; infusional 5-FU, irinotecan and oxaliplatin. This combination chemotherapy regimen, known as FOLFIRINOX, improved survival in patients with an excellent functional status and stage IV disease by 4.3 months compared with gemcitabine alone. This improvement in survival did come at the cost expectedly of a significant increase in toxicities, including gastrointestinal and hematologic particularly. Other gemcitabine-based combination chemotherapy regimens including gemcitabine and platinum analogs and gemcitabine and capecitabine have consistently shown an increased response rate but no OS benefit in individual trials; albeit pooled and meta-analyses have indicated a survival benefit in good performance status patient for both these cytotoxic combinations. Accordingly, the 5-year survival for patients with PAC remains <5%, with an annual disease-specific mortality which approaches the incidence. The challenge remains therefore, to develop more effective systemic therapies against this challenging malignancy. Recent progress toward understanding the genetic events in the development of PAC, in combination with advances in the field of pharmacogenomics offer hope that we may build on achievements to-date to develop more effective therapeutic strategies for PAC in years to come.
Collapse
Affiliation(s)
- M A Lowery
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | | |
Collapse
|
180
|
Rittenhouse DW, Talbott VA, Anklesaria Z, Brody JR, Witkiewicz AK, Yeo CJ. Subject review: pancreatic ductal adenocarcinoma in the setting of mutations in the cystic fibrosis transmembrane conductance regulator gene: case report and review of the literature. J Gastrointest Surg 2011; 15:2284-90. [PMID: 21809164 DOI: 10.1007/s11605-011-1639-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/12/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is the most commonly inherited lethal autosomal recessive genetic disease amongst Caucasians. CF results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Patients with homozygous or compound heterozygous CFTR mutations have a risk of pancreatitis, but typically do not live long enough to develop pancreatic ductal adenocarcinoma (PDA), a disease that has an average age at diagnosis of 65 years. Little is known about the risk of the development of PDA in people who are heterozygous for mutations in the CFTR gene. PATIENTS AND METHODS We report a case of a patient with PDA who underwent resection, who is a carrier for the W1282X nonsense mutation in the CFTR gene. The patient is of Ashkenazi Jewish ethnicity and has a family history of CF, but no family history of PDA. We reviewed the English language literature for the prevalence of PDA in CF patients (and CFTR mutations in the setting of PDA) and their significance in terms of screening, and the use of this mutation as a biomarker for an increased risk of the development of PDA. CONCLUSION We conclude that patients with CFTR mutations, who also have other risks for the development of PDA such as a family history of the disease, should undergo screening and be educated about their risks.
Collapse
Affiliation(s)
- David W Rittenhouse
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
181
|
Wiktor-Brown DM, Sukup-Jackson MR, Fakhraldeen SA, Hendricks CA, Engelward BP. p53 null fluorescent yellow direct repeat (FYDR) mice have normal levels of homologous recombination. DNA Repair (Amst) 2011; 10:1294-9. [PMID: 21993421 DOI: 10.1016/j.dnarep.2011.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 01/16/2023]
Abstract
The tumor suppressor p53 is a transcription factor whose function is critical for maintaining genomic stability in mammalian cells. In response to DNA damage, p53 initiates a signaling cascade that results in cell cycle arrest, DNA repair or, if the damage is severe, programmed cell death. In addition, p53 interacts with repair proteins involved in homologous recombination. Mitotic homologous recombination (HR) plays an essential role in the repair of double-strand breaks (DSBs) and broken replication forks. Loss of function of either p53 or HR leads to an increased risk of cancer. Given the importance of both p53 and HR in maintaining genomic integrity, we analyzed the effect of p53 on HR in vivo using Fluorescent Yellow Direct Repeat (FYDR) mice as well as with the sister chromatid exchange (SCE) assay. FYDR mice carry a direct repeat substrate in which an HR event can yield a fluorescent phenotype. Here, we show that p53 status does not significantly affect spontaneous HR in adult pancreatic cells in vivo or in primary fibroblasts in vitro when assessed using the FYDR substrate and SCEs. In addition, primary fibroblasts from p53 null mice do not show increased susceptibility to DNA damage-induced HR when challenged with mitomycin C. Taken together, the FYDR assay and SCE analysis indicate that, for some tissues and cell types, p53 status does not greatly impact HR.
Collapse
Affiliation(s)
- Dominika M Wiktor-Brown
- Massachusetts Institute of Technology, Department of Biological Engineering, 77 Massachusetts Avenue, 16-743, Cambridge, MA 02139, United States
| | | | | | | | | |
Collapse
|
182
|
Schneider R, Slater EP, Sina M, Habbe N, Fendrich V, Matthäi E, Langer P, Bartsch DK. German national case collection for familial pancreatic cancer (FaPaCa): ten years experience. Fam Cancer 2011. [PMID: 21207249 DOI: 10.1007/s10689-010 -9414-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Familial pancreatic cancer (FPC) is a rare hereditary tumor syndrome. The 10-years experience of the national case collection for familial pancreatic cancer of Germany (FaPaCa) is reported. Since 1999 FaPaCa has collected families with at least two first-degree relatives with confirmed pancreatic cancer (PC), who did not fulfill the criteria of other hereditary tumor syndromes. Histopathological verification of tumor diagnoses, and genetic counseling were prerequisites for enrollment of families in FaPaCa. 94 of 452 evaluated families fulfilled the criteria for partaking in FaPaCa. PC represented the sole tumor entity in 38 (40%) families. In 56 families additional tumor types occurred, including breast cancer (n = 28), colon cancer (n = 20) and lung cancer (n = 11). In 70 (74%) families the pattern of inheritance was consistent with an autosomal dominant trait. Compared to the preceding generation, a younger age of onset was observed in the offspring of PC patients (median: 57 vs. 69 years), indicating anticipation. Mutation analyses of BRCA2, PALB2, CDKN2a, RNASEL, STK11, NOD2, CHEK2 and PALLD, revealed deleterious causative germline mutations of BRCA2 and PALB2 in 2 of 70 (3%) and 2 of 41 (4.9%) German FPC families, respectively. Prospective PC screening with EUS, MRI and MRCP detected precancerous lesions (IPMN, multifocal PanIN2/3) or carcinoma in 5.5% (4 of 72) to 12.5% (9 of 72) of individuals at risk, depending on histological verification. Appropriate inclusion of families at high risk for PC in registries, such as FaPaCa, provides a unique and excellent tool to gain clinical and genetic knowledge of FPC. Focused research projects can be conducted most efficiently, when data of different FPC registries are combined.
Collapse
Affiliation(s)
- Ralph Schneider
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Schneider R, Slater EP, Sina M, Habbe N, Fendrich V, Matthäi E, Langer P, Bartsch DK. German national case collection for familial pancreatic cancer (FaPaCa): ten years experience. Fam Cancer 2011; 10:323-30. [PMID: 21207249 DOI: 10.1007/s10689-010-9414-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Familial pancreatic cancer (FPC) is a rare hereditary tumor syndrome. The 10-years experience of the national case collection for familial pancreatic cancer of Germany (FaPaCa) is reported. Since 1999 FaPaCa has collected families with at least two first-degree relatives with confirmed pancreatic cancer (PC), who did not fulfill the criteria of other hereditary tumor syndromes. Histopathological verification of tumor diagnoses, and genetic counseling were prerequisites for enrollment of families in FaPaCa. 94 of 452 evaluated families fulfilled the criteria for partaking in FaPaCa. PC represented the sole tumor entity in 38 (40%) families. In 56 families additional tumor types occurred, including breast cancer (n = 28), colon cancer (n = 20) and lung cancer (n = 11). In 70 (74%) families the pattern of inheritance was consistent with an autosomal dominant trait. Compared to the preceding generation, a younger age of onset was observed in the offspring of PC patients (median: 57 vs. 69 years), indicating anticipation. Mutation analyses of BRCA2, PALB2, CDKN2a, RNASEL, STK11, NOD2, CHEK2 and PALLD, revealed deleterious causative germline mutations of BRCA2 and PALB2 in 2 of 70 (3%) and 2 of 41 (4.9%) German FPC families, respectively. Prospective PC screening with EUS, MRI and MRCP detected precancerous lesions (IPMN, multifocal PanIN2/3) or carcinoma in 5.5% (4 of 72) to 12.5% (9 of 72) of individuals at risk, depending on histological verification. Appropriate inclusion of families at high risk for PC in registries, such as FaPaCa, provides a unique and excellent tool to gain clinical and genetic knowledge of FPC. Focused research projects can be conducted most efficiently, when data of different FPC registries are combined.
Collapse
Affiliation(s)
- Ralph Schneider
- Department of Visceral, Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Lowery MA, Kelsen DP, Stadler ZK, Yu KH, Janjigian YY, Ludwig E, D'Adamo DR, Salo-Mullen E, Robson ME, Allen PJ, Kurtz RC, O'Reilly EM. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist 2011; 16:1397-402. [PMID: 21934105 DOI: 10.1634/theoncologist.2011-0185] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND BRCA1 and BRCA2 germline mutations are associated with an elevated risk for pancreas adenocarcinoma (PAC). Other BRCA-associated cancers have been shown to have greater sensitivity to platinum and poly(ADP-ribose) polymerase (PARP) inhibitors with better clinical outcomes than in sporadic cases; however, outcomes in BRCA-associated PAC have not been reported. METHODS Patients with a known BRCA1 or BRCA2 mutation and a diagnosis of PAC were identified from the Gastrointestinal Oncology Service, Familial Pancreas Cancer Registry, and Clinical Genetics Service at Memorial Sloan-Kettering Cancer Center. RESULTS Fifteen patients, five male, with a BRCA1 (n = 4) or BRCA2 (n = 11) mutation and PAC and one patient with a BRCA1 mutation and acinar cell carcinoma of the pancreas were identified. Seven female patients (70%) had a prior history of breast cancer. Four patients received a PARP inhibitor alone or in combination with chemotherapy; three demonstrated an initial radiographic partial response by Response Evaluation Criteria in Solid Tumors whereas one patient had stable disease for 6 months. Six patients received platinum-based chemotherapy first line for metastatic disease; five of those patients had a radiographic partial response. CONCLUSION BRCA mutation-associated PAC represents an underidentified, but clinically important, subgroup of patients. This is of particular relevance given the ongoing development of therapeutic agents targeting DNA repair, which may potentially offer a significant benefit to a genetically selected population. We anticipate that further study and understanding of the clinical and biologic features of BRCA-mutant PAC will aid in the identification of tissue biomarkers indicating defective tumor DNA repair pathways in sporadic PAC.
Collapse
Affiliation(s)
- Maeve A Lowery
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Substantial progress has been made in our understanding of the biology of pancreatic cancer, and advances in patients' management have also taken place. Evidence is beginning to show that screening first-degree relatives of individuals with several family members affected by pancreatic cancer can identify non-invasive precursors of this malignant disease. The incidence of and number of deaths caused by pancreatic tumours have been gradually rising, even as incidence and mortality of other common cancers have been declining. Despite developments in detection and management of pancreatic cancer, only about 4% of patients will live 5 years after diagnosis. Survival is better for those with malignant disease localised to the pancreas, because surgical resection at present offers the only chance of cure. Unfortunately, 80-85% of patients present with advanced unresectable disease. Furthermore, pancreatic cancer responds poorly to most chemotherapeutic agents. Hence, we need to understand the biological mechanisms that contribute to development and progression of pancreatic tumours. In this Seminar we will discuss the most common and deadly form of pancreatic cancer, pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Audrey Vincent
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
186
|
Hong SM, Park JY, Hruban RH, Goggins M. Molecular signatures of pancreatic cancer. Arch Pathol Lab Med 2011. [PMID: 21631264 DOI: 10.1043/2010-0566-ra.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT The introduction of genome- and epigenome-wide screening techniques has dramatically improved our understanding of the molecular mechanisms underlying the development of pancreatic cancer. There are now 3 recognized histologic precursors of pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm, and mucinous cystic neoplasm. Each of these precursor lesions is associated with specific molecular alterations. OBJECTIVE To understand the molecular characteristics of pancreatic ductal adenocarcinoma and its precursor lesions. DATA SOURCES PubMed (US National Library of Medicine). CONCLUSIONS In this review, we briefly summarize recent research findings on the genetics and epigenetics of pancreatic cancer. In addition, we characterize these molecular alterations in the context of the histologic subtypes of pancreatic cancer.
Collapse
Affiliation(s)
- Seung-Mo Hong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
187
|
Hereditary pancreatic and hepatobiliary cancers. Int J Surg Oncol 2011; 2011:154673. [PMID: 22312493 PMCID: PMC3265279 DOI: 10.1155/2011/154673] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/28/2011] [Indexed: 02/08/2023] Open
Abstract
Hereditary etiologies of pancreatic and hepatobiliary cancers are increasingly recognized. An estimated >10% of pancreatic and increasing number of hepatobiliary cancers are hereditary. The cumulative risk of hereditary pancreatic cancer ranges from measurable but negligible in cystic fibrosis to a sobering 70% in cases of hereditary pancreatitis. Candidates for pancreatic cancer surveillance are those with a risk pancreatic cancer estimated to be >10-fold that of the normal population. Screening for pancreatic cancer in high-risk individuals is typically performed by endoscopic ultrasound and should begin at least 10 years prior to the age of the youngest affected relative. Disease states known to be associated with increased risk of hepatocellular cancer include hereditary hemochromatosis, autoimmune hepatitis, porphyria, and α1-antitrypsin deficiency, with relative risks as high as 36-fold. Although much less is known about hereditary bile-duct cancers, Muir-Torre syndrome and bile salt export pump deficiency are diseases whose association with hereditary carcinogenesis is under investigation.
Collapse
|
188
|
Abstract
CONTEXT The introduction of genome- and epigenome-wide screening techniques has dramatically improved our understanding of the molecular mechanisms underlying the development of pancreatic cancer. There are now 3 recognized histologic precursors of pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm, and mucinous cystic neoplasm. Each of these precursor lesions is associated with specific molecular alterations. OBJECTIVE To understand the molecular characteristics of pancreatic ductal adenocarcinoma and its precursor lesions. DATA SOURCES PubMed (US National Library of Medicine). CONCLUSIONS In this review, we briefly summarize recent research findings on the genetics and epigenetics of pancreatic cancer. In addition, we characterize these molecular alterations in the context of the histologic subtypes of pancreatic cancer.
Collapse
Affiliation(s)
- Seung-Mo Hong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
189
|
Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. LANCET (LONDON, ENGLAND) 2011. [PMID: 21620466 DOI: 10.1016/so140-6736(10)62307-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Substantial progress has been made in our understanding of the biology of pancreatic cancer, and advances in patients' management have also taken place. Evidence is beginning to show that screening first-degree relatives of individuals with several family members affected by pancreatic cancer can identify non-invasive precursors of this malignant disease. The incidence of and number of deaths caused by pancreatic tumours have been gradually rising, even as incidence and mortality of other common cancers have been declining. Despite developments in detection and management of pancreatic cancer, only about 4% of patients will live 5 years after diagnosis. Survival is better for those with malignant disease localised to the pancreas, because surgical resection at present offers the only chance of cure. Unfortunately, 80-85% of patients present with advanced unresectable disease. Furthermore, pancreatic cancer responds poorly to most chemotherapeutic agents. Hence, we need to understand the biological mechanisms that contribute to development and progression of pancreatic tumours. In this Seminar we will discuss the most common and deadly form of pancreatic cancer, pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Audrey Vincent
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
190
|
Stadler ZK, Salo-Mullen E, Patil SM, Pietanza MC, Vijai J, Saloustros E, Hansen NAL, Kauff ND, Kurtz RC, Kelsen DP, Offit K, Robson ME. Prevalence of BRCA1 and BRCA2 mutations in Ashkenazi Jewish families with breast and pancreatic cancer. Cancer 2011; 118:493-9. [PMID: 21598239 DOI: 10.1002/cncr.26191] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Germline mutations in the BRCA2 cancer susceptibility gene are associated with an increased risk of pancreatic cancer (PC). Breast-pancreas cancer families with BRCA1 mutations have also been observed. The influence of a family history (FH) of PC on BRCA mutation prevalence in patients with breast cancer (BC) is unknown. METHODS A clinical database review (2000-2009) identified 211 Ashkenazi Jewish (AJ) BC probands who 1) underwent BRCA1/2 mutation analysis by full gene sequencing or directed testing for Ashkenazi founder mutations (BRCA1: 185delAG and 5382insC; BRCA2: 6174delT) and 2) had a FH of PC in a first-, second-, or third-degree relative. For each proband, the pretest probability of identifying a BRCA1/2 mutation was estimated using the Myriad II model. The observed-to-expected (O:E) mutation prevalence was calculated for the entire group. RESULTS Of the 211 AJ BC probands with a FH of PC, 30 (14.2%) harbored a BRCA mutation. Fourteen (47%) of the mutations were in BRCA1 and 16 (53%) were in BRCA2. Patients diagnosed with BC at age ≤ 50 years were found to have a higher BRCA1/2 mutation prevalence than probands with BC who were diagnosed at age > 50 years (21.1% vs 6.9%; P = .003). In patients with a first-, second-, or third-degree relative with PC, mutation prevalences were 15.4%, 15.3%, and 8.6%, respectively (P = .58). In the overall group, the observed BRCA1/2 mutation prevalence was 14.2% versus an expected prevalence of 11.8% (O:E ratio, 1.21; P = .15). CONCLUSIONS BRCA1 and BRCA2 mutations are observed with nearly equal distribution in AJ breast-pancreas cancer families, suggesting that both genes are associated with PC risk. In this population, a FH of PC was found to have a limited effect on mutation prevalence.
Collapse
Affiliation(s)
- Zsofia K Stadler
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Abramovitz L, Rubinek T, Ligumsky H, Bose S, Barshack I, Avivi C, Kaufman B, Wolf I. KL1 internal repeat mediates klotho tumor suppressor activities and inhibits bFGF and IGF-I signaling in pancreatic cancer. Clin Cancer Res 2011; 17:4254-66. [PMID: 21571866 DOI: 10.1158/1078-0432.ccr-10-2749] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Klotho is a transmembrane protein which can be shed, act as a circulating hormone and modulate the insulin-like growth factor (IGF)-I and the fibroblast growth factor (FGF) pathways. We have recently identified klotho as a tumor suppressor in breast cancer. Klotho is expressed in the normal pancreas and both the IGF-I and FGF pathways are involved in pancreatic cancer development. We, therefore, undertook to study the expression and activity of klotho in pancreatic cancer. EXPERIMENTAL DESIGN Klotho expression was studied using immunohistochemistry and quantitative RT-PCR. Effects of klotho on cell growth were assessed in the pancreatic cancer cells Panc1, MiaPaCa2, and Colo357, using colony and MTT assays and xenograft models. Signaling pathway activity was measured by Western blotting. RESULTS Klotho expression is downregulated in pancreatic adenocarcinoma. Overexpression of klotho, or treatment with soluble klotho, reduced growth of pancreatic cancer cells in vitro and in vivo, and inhibited activation of the IGF-I and the bFGF pathways. KL1 is a klotho subdomain formed by cleavage or alternative splicing. Compared with the full-length protein, KL1 showed similar growth inhibitory activity but did not promote FGF23 signaling. Thus, its administration to mice showed favorable safety profile. CONCLUSIONS These studies indicate klotho as a potential tumor suppressor in pancreatic cancer, and suggest, for the first time, that klotho tumor suppressive activities are mediated through its KL1 domain. These results suggest the use of klotho or KL1 as potential strategy for the development of novel therapeutic interventions for pancreatic cancer.
Collapse
Affiliation(s)
- Lilach Abramovitz
- Institute of Oncology, The Chaim Sheba Medical Center, Ramat-Gan, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
192
|
|
193
|
Abstract
BRCA1 and BRCA2 mutation carriers have elevated risks of breast and ovarian cancers. The risks for cancers at other sites remain unclear. Melanoma has been associated with BRCA2 mutations in some studies, however, few surveys have included non-melanoma skin cancer. We followed 2729 women with a BRCA1 or BRCA2 mutation for an average of 5.0 years. These women were asked to report new cases of cancer diagnosed in themselves or in their family. The risks of skin cancer were compared for probands with BRCA1 and BRCA2 mutations. Of 1779 women with a BRCA1 mutation, 29 developed skin cancer in the follow-up period (1.6%). Of the 950 women with a BRCA2 mutation, 28 developed skin cancer (3.0%) (OR = 1.83 for BRCA2 versus BRCA1; 95% CI 1.08-3.10; P = 0.02). The odds ratio for basal cell carcinoma was higher (OR = 3.8; 95% CI 1.5-9.4; P = 0.002). BRCA2 mutation carriers are at increased risk for skin cancer, compared with BRCA1 carriers, in particular for basal cell carcinoma.
Collapse
|
194
|
Hucl T, Gallmeier E. DNA repair: exploiting the Fanconi anemia pathway as a potential therapeutic target. Physiol Res 2011; 60:453-65. [PMID: 21401292 DOI: 10.33549/physiolres.932115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA repair is an active cellular process to respond to constant DNA damage caused by metabolic processes and environmental factors. Since the outcome of DNA damage is generally adverse and long term effects may contribute to oncogenesis, cells have developed a variety of DNA repair mechanisms, which operate depending on the type of DNA damage inflicted. At least 15 Fanconi anemia (FA) proteins interact in a common pathway involved in homologous recombination. Inherited homozygous mutations in any of these FA genes cause a rare disease, Fanconi anemia, characterized by congenital abnormalities, progressive bone-marrow failure and cancer susceptibility. Heterozygous germline FA mutations predispose to various types of cancer. In addition, somatic FA mutations have been identified in diverse cancer types. Evidence exists that cells deficient in the FA pathway become dependent on alternative pathways for survival. Additional inhibition of such alternative pathways is thus expected to result in cell death, creating a relationship of synthetic lethality. Identifying these relationships can reveal yet unknown mechanisms of DNA repair and new targets for therapy.
Collapse
Affiliation(s)
- T Hucl
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
195
|
Sharma C, Eltawil KM, Renfrew PD, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of pancreatic carcinoma: 1990-2010. World J Gastroenterol 2011; 17:867-97. [PMID: 21412497 PMCID: PMC3051138 DOI: 10.3748/wjg.v17.i7.867] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/08/2010] [Accepted: 12/15/2010] [Indexed: 02/06/2023] Open
Abstract
Several advances in genetics, diagnosis and palliation of pancreatic cancer (PC) have occurred in the last decades. A multidisciplinary approach to this disease is therefore recommended. PC is relatively common as it is the fourth leading cause of cancer related mortality. Most patients present with obstructive jaundice, epigastric or back pain, weight loss and anorexia. Despite improvements in diagnostic modalities, the majority of cases are still detected in advanced stages. The only curative treatment for PC remains surgical resection. No more than 20% of patients are candidates for surgery at the time of diagnosis and survival remains quite poor as adjuvant therapies are not very effective. A small percentage of patients with borderline non-resectable PC might benefit from neo-adjuvant chemoradiation therapy enabling them to undergo resection; however, randomized controlled studies are needed to prove the benefits of this strategy. Patients with unresectable PC benefit from palliative interventions such as biliary decompression and celiac plexus block. Further clinical trials to evaluate new chemo and radiation protocols as well as identification of genetic markers for PC are needed to improve the overall survival of patients affected by PC, as the current overall 5-year survival rate of patients affected by PC is still less than 5%. The aim of this article is to review the most recent high quality literature on this topic.
Collapse
|
196
|
van der Groep P, van der Wall E, van Diest PJ. Pathology of hereditary breast cancer. Cell Oncol (Dordr) 2011; 34:71-88. [PMID: 21336636 PMCID: PMC3063560 DOI: 10.1007/s13402-011-0010-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2010] [Indexed: 12/11/2022] Open
Abstract
Background Hereditary breast cancer runs in families where several members in different generations are affected. Most of these breast cancers are caused by mutations in the high penetrance genes BRCA1 and BRCA2 accounting for about 5% of all breast cancers. Other genes that include CHEK2, PTEN, TP53, ATM, STK11/LKB1, CDH1, NBS1, RAD50, BRIP1 and PALB2 have been described to be high or moderate penetrance breast cancer susceptibility genes, all contributing to the hereditary breast cancer spectrum. However, in still a part of familial hereditary breast cancers no relationship to any of these breast cancer susceptibility genes can be found. Research on new susceptibility genes is therefore ongoing. Design In this review we will describe the function of the today known high or moderate penetrance breast cancer susceptibility genes and the consequences of their mutated status. Furthermore, we will focus on the histology, the immunophenotype and genotype of breast cancers caused by mutations in BRCA1 and BRCA2 genes and the other high or moderate penetrance breast cancer susceptibility genes. Finally, an overview of the clinical implications of hereditary breast cancer patients will be provided. Conclusion This information leads to a better understanding of the morphological, immunohistochemical and molecular characteristics of different types of hereditary breast cancers. Further, these characteristics offer clues for diagnosis and new therapeutic approaches.
Collapse
Affiliation(s)
- Petra van der Groep
- Department of Pathology, University Medical Center Utrecht, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands
| | | | | |
Collapse
|
197
|
Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N, Neoptolemos JP, Greenhalf W, Bartsch DK. PALB2 mutations in European familial pancreatic cancer families. Clin Genet 2011; 78:490-4. [PMID: 20412113 DOI: 10.1111/j.1399-0004.2010.01425.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, PALB2 was reported to be a new pancreatic cancer susceptibility gene as determined by exomic sequencing, as truncating PALB2 mutations were identified in 3 of 96 American patients with familial pancreatic cancer (FPC). Representing the European Registry of Hereditary Pancreatitis and Familial Pancreatic Cancer (EUROPAC) and the German National Case Collection for Familial Pancreatic Cancer (FaPaCa), we evaluated whether truncating mutations could also be detected in European FPC families. We have directly sequenced the 13 exons of the PALB2 gene in affected index patients of 81 FPC families. An index patient was defined as the first medically identified patient, stimulating investigation of other members of the family to discover a possible genetic factor. None of these patients carried a BRCA2 mutation. We identified three (3.7%) truncating PALB2 mutations, each producing different stop codons: R414X, 508-9delAG and 3116delA. Interestingly, each of these three families also had a history of breast cancer. Therefore, PALB2 mutations might be causative for FPC in a small subset of European families, especially in those with an additional occurrence of breast cancer.
Collapse
Affiliation(s)
- E P Slater
- German National Case Collection of Familial Pancreatic Cancer (FaPaCa), Department of Surgery, Philipps-University, Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Hattori H, Skoulidis F, Russell P, Venkitaraman AR. Context dependence of checkpoint kinase 1 as a therapeutic target for pancreatic cancers deficient in the BRCA2 tumor suppressor. Mol Cancer Ther 2011; 10:670-8. [PMID: 21289082 DOI: 10.1158/1535-7163.mct-10-0781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited mutations in the tumor suppressor BRCA2 are predisposed to pancreatic adenocarcinomas, which carry activating mutations in the KRAS oncogene in more than 95% of cases, as well as frequent TP53 inactivation. Here, we have established an RNA interference (RNAi) screen to identify genes whose depletion selectively inhibits the growth of cells lacking BRCA2, and then studied the effects of the genetic depletion or pharmacologic inhibition of 1 candidate, the checkpoint kinase 1 (CHK1), in the context of pancreatic cancer. Pharmacologic inhibition of CHK1 using small-molecule inhibitors (CHK1i) reduced cell growth in several cell lines depleted of BRCA2. Unexpectedly, these drugs did not suppress the growth of BRCA2-deficient pancreatic cancer cell lines from humans or gene-targeted mice expressing active Kras and trans-dominant inhibitory mutant Trp53. Remarkably, the expression of KRAS(G12V) and TP53(G154V) in BRCA2-depleted HEK293 cells was sufficient to render them resistant to CHK1i (but not to mitomycin C or inhibitors of PARP1). CHK1i sensitivity was restored by gemcitabine, an S-phase genotoxin used to treat pancreatic adenocarcinoma. Thus, the growth-suppressive effect of CHK1 inhibition in BRCA2-mutant tumors can be opposed by concurrent KRAS activation and TP53 mutations typical of pancreatic adenocarcinoma, and CHK1i resistance in this setting can be overcome by gemcitabine. Our findings show that approaches that use potential therapeutic targets for cancer identified in synthetic lethal RNAi screens are affected by the genetic context of specific malignancies and combination therapy with other agents. This concept should be taken into account in the ongoing and future development of targeted cancer therapies.
Collapse
Affiliation(s)
- Hiroyoshi Hattori
- Department of Oncology and the Medical Research Council Cancer Cell Unit, University of Cambridge, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | | | | | | |
Collapse
|
199
|
Tempero MA, Arnoletti JP, Behrman S, Ben-Josef E, Benson AB, Berlin JD, Cameron JL, Casper ES, Cohen SJ, Duff M, Ellenhorn JDI, Hawkins WG, Hoffman JP, Kuvshinoff BW, Malafa MP, Muscarella P, Nakakura EK, Sasson AR, Thayer SP, Tyler DS, Warren RS, Whiting S, Willett C, Wolff RA. Pancreatic adenocarcinoma. J Natl Compr Canc Netw 2010; 8:972-1017. [PMID: 20876541 DOI: 10.6004/jnccn.2010.0073] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
200
|
Slater EP, Langer P, Fendrich V, Habbe N, Chaloupka B, Matthäi E, Sina M, Hahn SA, Bartsch DK. Prevalence of BRCA2 and CDKN2a mutations in German familial pancreatic cancer families. Fam Cancer 2010; 9:335-43. [PMID: 20195775 DOI: 10.1007/s10689-010-9329-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous small scale studies reported that deleterious BRCA2 and CDKN2a germline mutations contribute to a subset of families with inherited pancreatic cancer. As the prevalence of those mutations in the setting of familial pancreatic cancer is still not well defined for the German population, we evaluated the presence of BRCA2 and CDKN2a germline mutations in a large cohort of familial pancreatic cancer (FPC) families from the German National Case Collection for Familial Pancreatic Cancer (FaPaCa). Fifty-six FPC families with at least two-first-degree relatives with confirmed pancreatic cancer that did not fulfill the criteria of other tumor predisposition syndromes, were analyzed for BRCA2 and CDKN2a germline mutations by DHPLC and/or direct sequencing. No deleterious CDKN2a mutations were identified in our families suggesting that CDKN2a mutations are unlikely to predispose PC in FPC families without melanoma. No deleterious BRCA2 mutations, but 6 unclassified variants, were detected in our FPC collection. Combining the prevalence of deleterious BRCA2 germline mutations from our previous separate study with the data from this study we were able to much more accurately estimate the BRCA2 carrier frequency for FPC families in the German population. A total of two mutations and 6 unclassified variants (mutation range: 2.8-11.4%) were thus identified in 70 German FPC families, indicating that the prevalence of BRCA2 mutations in the German FPC population is less frequent than previously reported.
Collapse
Affiliation(s)
- Emily P Slater
- Department of Visceral-, Thoracic and Vascular Surgery, Philipps-University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|