151
|
Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol 2014; 5:534. [PMID: 25352838 PMCID: PMC4195361 DOI: 10.3389/fmicb.2014.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others' work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.
Collapse
Affiliation(s)
- Arnaud Moris
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France ; Department of Immunology, Hôpital Pitié-Salpêtière Paris, France
| | - Shannon Murray
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| |
Collapse
|
152
|
Barrett BS, Guo K, Harper MS, Li SX, Heilman KJ, Davidson NO, Santiago ML. Reassessment of murine APOBEC1 as a retrovirus restriction factor in vivo. Virology 2014; 468-470:601-608. [PMID: 25303118 DOI: 10.1016/j.virol.2014.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 12/21/2022]
Abstract
APOBEC1 is a cytidine deaminase involved in cholesterol metabolism that has been linked to retrovirus restriction, analogous to the evolutionarily-related APOBEC3 proteins. In particular, murine APOBEC1 was shown to inhibit Friend retrovirus (FV) in vitro, generating high levels of C-to-T and G-to-A mutations. These observations raised the possibility that FV infection might be altered in APOBEC1-null mice. To examine this question directly, we infected wild-type and APOBEC1-null mice with FV complex and evaluated acute infection levels. Surprisingly, APOBEC1-null mice exhibited similar cellular infection levels and plasma viremia relative to wild-type mice. Moreover, next-generation sequencing analyses revealed that in contrast to APOBEC3, APOBEC1 did not enhance retroviral C-to-T and G-to-A mutational frequencies in genomic DNA. Thus, APOBEC1 neither inhibited nor significantly drove the molecular evolution of FV in vivo. Our findings reinforce that not all retrovirus restriction factors characterized as potent in vitro may be functionally relevant in vivo.
Collapse
Affiliation(s)
- Bradley S Barrett
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Michael S Harper
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sam X Li
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Karl J Heilman
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nicholas O Davidson
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mario L Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
153
|
de Castro FL, Junqueira DM, de Medeiros RM, da Silva TR, Costenaro JG, Knak MB, de Matos Almeida SE, Campos FS, Roehe PM, Franco AC. Analysis of single-nucleotide polymorphisms in the APOBEC3H gene of domestic cats (Felis catus) and their association with the susceptibility to feline immunodeficiency virus and feline leukemia virus infections. INFECTION GENETICS AND EVOLUTION 2014; 27:389-94. [DOI: 10.1016/j.meegid.2014.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|
154
|
Lewis KL, Del Cid N, Traver D. Perspectives on antigen presenting cells in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:63-73. [PMID: 24685511 PMCID: PMC4158852 DOI: 10.1016/j.dci.2014.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 05/29/2023]
Abstract
Antigen presentation is a critical step in the activation of naïve T lymphocytes. In mammals, dendritic cells (DCs), macrophages, and B lymphocytes can all function as antigen presenting cells (APCs). Although APCs have been identified in zebrafish, it is unclear if they fulfill similar roles in the initiation of adaptive immunity. Here we review the characterization of zebrafish macrophages, DCs, and B cells and evidence of their function as true APCs. Finally, we discuss the conservation of APC activity in vertebrates and the use of zebrafish to provide a new perspective on the evolution of these functions.
Collapse
Affiliation(s)
- Kanako L Lewis
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Natasha Del Cid
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - David Traver
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
155
|
Widera M, Hillebrand F, Erkelenz S, Vasudevan AAJ, Münk C, Schaal H. A functional conserved intronic G run in HIV-1 intron 3 is critical to counteract APOBEC3G-mediated host restriction. Retrovirology 2014; 11:72. [PMID: 25169827 PMCID: PMC4163160 DOI: 10.1186/s12977-014-0072-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/08/2014] [Indexed: 11/24/2022] Open
Abstract
Background The HIV-1 accessory proteins, Viral Infectivity Factor (Vif) and the pleiotropic Viral Protein R (Vpr) are important for efficient virus replication. While in non-permissive cells an appropriate amount of Vif is critical to counteract APOBEC3G-mediated host restriction, the Vpr-induced G2 arrest sets the stage for highest transcriptional activity of the HIV-1 long terminal repeat. Both vif and vpr mRNAs harbor their translational start codons within the intron bordering the non-coding leader exons 2 and 3, respectively. Intron retention relies on functional cross-exon interactions between splice sites A1 and D2 (for vif mRNA) and A2 and D3 (for vpr mRNA). More precisely, prior to the catalytic step of splicing, which would lead to inclusion of the non-coding leader exons, binding of U1 snRNP to the 5' splice site (5'ss) facilitates recognition of the 3'ss by U2 snRNP and also supports formation of vif and vpr mRNA. Results We identified a G run localized deep in the vpr AUG containing intron 3 (GI3-2), which was critical for balanced splicing of both vif and vpr non-coding leader exons. Inactivation of GI3-2 resulted in excessive exon 3 splicing as well as exon-definition mediated vpr mRNA formation. However, in an apparently mutually exclusive manner this was incompatible with recognition of upstream exon 2 and vif mRNA processing. As a consequence, inactivation of GI3-2 led to accumulation of Vpr protein with a concomitant reduction in Vif protein. We further demonstrate that preventing hnRNP binding to intron 3 by GI3-2 mutation diminished levels of vif mRNA. In APOBEC3G-expressing but not in APOBEC3G-deficient T cell lines, mutation of GI3-2 led to a considerable replication defect. Moreover, in HIV-1 isolates carrying an inactivating mutation in GI3-2, we identified an adjacent G-rich sequence (GI3-1), which was able to substitute for the inactivated GI3-2. Conclusions The functionally conserved intronic G run in HIV-1 intron 3 plays a major role in the apparently mutually exclusive exon selection of vif and vpr leader exons and hence in vif and vpr mRNA formation. The competition between these exons determines the ability to evade APOBEC3G-mediated antiviral effects due to optimal vif expression. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0072-1) contains supplementary material, which is available to authorized users.
Collapse
|
156
|
Salter JD, Morales GA, Smith HC. Structural insights for HIV-1 therapeutic strategies targeting Vif. Trends Biochem Sci 2014; 39:373-80. [PMID: 25124760 DOI: 10.1016/j.tibs.2014.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022]
Abstract
HIV-1 viral infectivity factor (Vif) is a viral accessory protein that is required for HIV-1 infection due largely to its role in recruiting antiretroviral factors of the APOBEC3 (apolipoprotein B editing catalytic subunit-like 3) family to an E3 ubiquitin ligase complex for polyubiquitylation and proteasomal degradation. The crystal structure of the (near) full-length Vif protein in complex with Elongin (Elo)B/C, core-binding factor (CBF)β and Cullin (Cul)5 revealed that Vif has a novel structural fold. In our opinion the structural data revealed not only the protein-protein interaction sites that determine Vif stability and interaction with cellular proteins, but also motifs driving Vif homodimerization, which are essential in Vif functionality and HIV-1 infection. Vif-mediated protein-protein interactions are excellent targets for a new class of antiretroviral therapeutics to combat AIDS.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Guillermo A Morales
- Cogent Professionals, 101 West Ohio Street, Suite 2000, Indianapolis, IN 46204, USA
| | - Harold C Smith
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
157
|
Saraconi G, Severi F, Sala C, Mattiuz G, Conticello SG. The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol 2014; 15:417. [PMID: 25085003 PMCID: PMC4144122 DOI: 10.1186/s13059-014-0417-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 07/17/2014] [Indexed: 12/20/2022] Open
Abstract
Background The AID/APOBECs are deaminases that act on cytosines in a diverse set of pathways and some of them have been linked to the onset of genetic alterations in cancer. Among them, APOBEC1 is the only family member to physiologically target RNA, as the catalytic subunit in the Apolipoprotein B mRNA editing complex. APOBEC1 has been linked to cancer development in mice but its oncogenic mechanisms are not yet well understood. Results We analyze whether expression of APOBEC1 induces a mutator phenotype in vertebrate cells, likely through direct targeting of genomic DNA. We show its ability to increase the inactivation of a stably inserted reporter gene in a chicken cell line that lacks any other AID/APOBEC proteins, and to increase the number of imatinib-resistant clones in a human cellular model for chronic myeloid leukemia through induction of mutations in the BCR-ABL1 fusion gene. Moreover, we find the presence of an AID/APOBEC mutational signature in esophageal adenocarcinomas, a type of tumor where APOBEC1 is expressed, that mimics the one preferred by APOBEC1 in vitro. Conclusions Our findings suggest that the ability of APOBEC1 to trigger genetic alterations represents a major layer in its oncogenic potential. Such APOBEC1-induced mutator phenotypes could play a role in the onset of esophageal adenocarcinomas. APOBEC1 could be involved in cancer promotion at the very early stages of carcinogenesis, as it is highly expressed in Barrett's esophagus, a condition often associated with esophageal adenocarcinoma. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0417-z) contains supplementary material, which is available to authorized users.
Collapse
|
158
|
Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev 2014; 25:597-609. [PMID: 25037686 DOI: 10.1016/j.cytogfr.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Understanding of the innate immune response to viral infections is rapidly progressing, especially with regards to the detection of DNA viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) is a large dsDNA virus that is responsible for three human diseases: Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. The major target cells of KSHV (B cells and endothelial cells) express a wide range of pattern recognition receptors (PRRs) and play a central role in mobilizing inflammatory responses. On the other hand, KSHV encodes an array of immune evasion genes, including several pirated host genes, which interfere with multiple aspects of the immune response. This review summarizes current understanding of innate immune recognition of KSHV and the role of immune evasion genes that shape the antiviral and inflammatory responses.
Collapse
|
159
|
Palmeri A, Ausiello G, Ferrè F, Helmer-Citterich M, Gherardini PF. A Proteome-wide Domain-centric Perspective on Protein Phosphorylation. Mol Cell Proteomics 2014; 13:2198-212. [PMID: 24830415 PMCID: PMC4159644 DOI: 10.1074/mcp.m114.039990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 01/18/2023] Open
Abstract
Phosphorylation is a widespread post-translational modification that modulates the function of a large number of proteins. Here we show that a significant proportion of all the domains in the human proteome is significantly enriched or depleted in phosphorylation events. A substantial improvement in phosphosites prediction is achieved by leveraging this observation, which has not been tapped by existing methods. Phosphorylation sites are often not shared between multiple occurrences of the same domain in the proteome, even when the phosphoacceptor residue is conserved. This is partly because of different functional constraints acting on the same domain in different protein contexts. Moreover, by augmenting domain alignments with structural information, we were able to provide direct evidence that phosphosites in protein-protein interfaces need not be positionally conserved, likely because they can modulate interactions simply by sitting in the same general surface area.
Collapse
Affiliation(s)
- Antonio Palmeri
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Gabriele Ausiello
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Fabrizio Ferrè
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Manuela Helmer-Citterich
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | - Pier Federico Gherardini
- From the ‡Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| |
Collapse
|
160
|
Suspène R, Caval V, Henry M, Bouzidi MS, Wain-Hobson S, Vartanian JP. Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics. Br J Cancer 2014; 110:2615-22. [PMID: 24691422 PMCID: PMC4021520 DOI: 10.1038/bjc.2014.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The revolution in cancer genomics shows that the dominant mutations are CG->TA transitions. The sources of these mutations are probably two host cell cytidine deaminases APOBEC3A and APOBEC3B. The former in particular can access nuclear DNA and monotonously introduce phenomenal numbers of C->T mutations in the signature 5'TpC context. These can be copied as G->A transitions in the 5'GpA context. METHODS DNA hypermutated by an APOBEC3 enzyme can be recovered by a technique called 3DPCR, which stands for differential DNA denaturation PCR. This method exploits the fact that APOBEC3-edited DNA is richer in A+T compared with the reference. We explore explicitly 3DPCR error using cloned DNA. RESULTS Here we show that the technique has a higher error rate compared with standard PCR and can generate DNA strands containing both C->T and G->A mutations in a 5'GpCpR context. Sequences with similar traits have been recovered from human tumour DNA using 3DPCR. CONCLUSIONS Differential DNA denaturation PCR cannot be used to identify fixed C->T transitions in cancer genomes. Presently, the overall mutation frequency is ∼10(4)-10(5) base substitutions per cancer genome, or 0.003-0.03 kb(-1). By contrast, the 3DPCR error rate is of the order of 4-20 kb(-1) owing to constant selection for AT DNA and PCR-mediated recombination. Accordingly, sequences recovered by 3DPCR harbouring mixed C->T and G->A mutations associated with the 5'GpC represent artefacts.
Collapse
Affiliation(s)
- R Suspène
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - V Caval
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - M Henry
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - M S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - S Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| | - J-P Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris, France
| |
Collapse
|
161
|
Immunoglobulin somatic hypermutation by APOBEC3/Rfv3 during retroviral infection. Proc Natl Acad Sci U S A 2014; 111:7759-64. [PMID: 24821801 DOI: 10.1073/pnas.1403361111] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Somatic hypermutation (SHM) is an integral process in the development of high-affinity antibodies that are important for recovery from viral infections and vaccine-induced protection. Ig SHM occurs predominantly in germinal centers (GC) via the enzymatic activity of activation-induced deaminase (AID). In contrast, the evolutionarily related apolipoprotein B mRNA-editing enzyme, catalytic polypeptide 3 (APOBEC3) proteins are known to restrict retroviruses, including HIV-1. We previously reported that mouse APOBEC3 encodes Recovery from Friend virus 3 (Rfv3), a classical resistance gene in mice that promotes the neutralizing antibody response against retrovirus infection. We now show that APOBEC3/Rfv3 complements AID in driving Ig SHM during retrovirus infection. Analysis of antibody sequences from retrovirus-specific hybridomas and GC B cells from infected mice revealed Ig heavy-chain V genes with significantly increased C-to-T and G-to-A transitions in wild-type as compared with APOBEC3-defective mice. The context of the mutations was consistent with APOBEC3 but not AID mutational activity. These findings help explain the role of APOBEC3/Rfv3 in promoting the neutralizing antibody responses essential for recovery from retroviral infection and highlight APOBEC3-mediated deamination as a previously unidentified mechanism for antibody diversification in vivo.
Collapse
|
162
|
Aydin H, Taylor MW, Lee JE. Structure-guided analysis of the human APOBEC3-HIV restrictome. Structure 2014; 22:668-84. [PMID: 24657093 DOI: 10.1016/j.str.2014.02.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/20/2014] [Indexed: 01/03/2023]
Abstract
Human APOBEC3 (A3) proteins are host-encoded intrinsic restriction factors that inhibit the replication of many retroviral pathogens. Restriction is believed to occur as a result of the DNA cytosine deaminase activity of the A3 proteins; this activity converts cytosines into uracils in single-stranded DNA retroviral replication intermediates. A3 proteins are also equipped with deamination-independent means to restrict retroviruses that work cooperatively with deamination-dependent restriction pathways. A3 proteins substantially bolster the intrinsic immune system by providing a powerful block to the transmission of retroviral pathogens; however, most retroviruses are able to subvert this replicative restriction in their natural host. HIV-1, for instance, evades A3 proteins through the activity of its accessory protein Vif. Here, we summarize data from recent A3 structural and functional studies to provide perspectives into the interactions between cellular A3 proteins and HIV-1 macromolecules throughout the viral replication cycle.
Collapse
Affiliation(s)
- Halil Aydin
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew W Taylor
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
163
|
APOBEC2 mRNA and protein is predominantly expressed in skeletal and cardiac muscles of chickens. Gene 2014; 539:263-9. [DOI: 10.1016/j.gene.2014.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 11/14/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022]
|
164
|
Affiliation(s)
- Chen Gao
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine at University of California at Los Angeles
| | - Yibin Wang
- Departments of Anesthesiology, Physiology and Medicine, Molecular Biology Institute, David Geffen School of Medicine at University of California at Los Angeles
| |
Collapse
|
165
|
Lindič N, Budič M, Petan T, Knisbacher BA, Levanon EY, Lovšin N. Differential inhibition of LINE1 and LINE2 retrotransposition by vertebrate AID/APOBEC proteins. Retrovirology 2013; 10:156. [PMID: 24344916 PMCID: PMC3880073 DOI: 10.1186/1742-4690-10-156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 12/02/2013] [Indexed: 01/06/2023] Open
Abstract
Background The role of AID/APOBEC proteins in the mammalian immune response against retroviruses and retrotransposons is well established. G to A hypermutations, the hallmark of their cytidine deaminase activity, are present in several mammalian retrotransposons. However, the role of AID/APOBEC proteins in non-mammalian retroelement restriction is not completely understood. Results Here we provide the first evidence of anti-retroelement activity of a reptilian APOBEC protein. The green anole lizard A1 protein displayed potent DNA mutator activity and inhibited ex vivo retrotransposition of LINE1 and LINE2 ORF1 protein encoding elements, displaying a mechanism of action similar to that of the human A1 protein. In contrast, the human A3 proteins did not require ORF1 protein to inhibit LINE retrotransposition, suggesting a differential mechanism of anti-LINE action of A1 proteins, which emerged in amniotes, and A3 proteins, exclusive to placental mammals. In accordance, genomic analyses demonstrate differential G to A DNA editing of LINE retrotransposons in the lizard genome, which is also the first evidence for G to A DNA editing in non-mammalian genomes. Conclusion Our data suggest that vertebrate APOBEC proteins differentially inhibit the retrotransposition of LINE elements and that the anti-retroelement activity of APOBEC proteins predates mammals.
Collapse
Affiliation(s)
| | | | | | | | | | - Nika Lovšin
- Department of Chemistry and Biochemistry, Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
166
|
Maeda K, Almofty SA, Singh SK, Eid MMA, Shimoda M, Ikeda T, Koito A, Pham P, Goodman MF, Sakaguchi N. GANP interacts with APOBEC3G and facilitates its encapsidation into the virions to reduce HIV-1 infectivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:6030-6039. [PMID: 24198285 PMCID: PMC4086635 DOI: 10.4049/jimmunol.1302057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ssDNA-dependent deoxycytidine deaminase apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (A3G) is a potent restrictive factor against HIV-1 virus lacking viral-encoded infectivity factor (Vif) in CD4(+) T cells. A3G antiretroviral activity requires its encapsulation into HIV-1 virions. In this study, we show that germinal center-associated nuclear protein (GANP) is induced in activated CD4(+) T cells and physically interacts with A3G. Overexpression of GANP augments the A3G encapsidation into the virion-like particles and ΔVif HIV-1 virions. GANP is encapsidated in HIV-1 virion and modulates A3G packaging into the cores together with cellular RNAs, including 7SL RNA, and with unspliced HIV-1 genomic RNA. GANP upregulation leads to a significant increase in A3G-catalyzed G→A hypermutation in the viral genome and suppression of HIV-1 infectivity in a single-round viral infection assay. Conversely, GANP knockdown caused a marked increase in HIV-1 infectivity in a multiple-round infection assay. The data suggest that GANP is a cellular factor that facilitates A3G encapsidation into HIV-1 virions to inhibit viral infectivity.
Collapse
MESH Headings
- APOBEC-3G Deaminase
- Acetyltransferases/antagonists & inhibitors
- Acetyltransferases/biosynthesis
- Acetyltransferases/chemistry
- Acetyltransferases/genetics
- Acetyltransferases/physiology
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cytidine Deaminase/chemistry
- Cytidine Deaminase/physiology
- Genes, vif
- HIV-1/physiology
- HIV-1/ultrastructure
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/biosynthesis
- Intracellular Signaling Peptides and Proteins/chemistry
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Lymphocyte Activation
- Mutation
- Protein Interaction Mapping
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Interfering/pharmacology
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Signal Recognition Particle/metabolism
- Up-Regulation
- Virion/metabolism
- Virion/ultrastructure
- Virulence
- Virus Replication
- vif Gene Products, Human Immunodeficiency Virus/deficiency
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Kazuhiko Maeda
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Sarah Ameen Almofty
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shailendra Kumar Singh
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mohammed Mansour Abbas Eid
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Terumasa Ikeda
- Department of Retrovirology and Self-Defense, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Atsushi Koito
- Department of Retrovirology and Self-Defense, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910
| | - Myron F. Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910
| | - Nobuo Sakaguchi
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
167
|
Lu Z, Bergeron JRC, Atkinson RA, Schaller T, Veselkov DA, Oregioni A, Yang Y, Matthews SJ, Malim MH, Sanderson MR. Insight into the HIV-1 Vif SOCS-box-ElonginBC interaction. Open Biol 2013; 3:130100. [PMID: 24225024 PMCID: PMC3843819 DOI: 10.1098/rsob.130100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/24/2013] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 viral infectivity factor (Vif) neutralizes cell-encoded antiviral APOBEC3 proteins by recruiting a cellular ElonginB (EloB)/ElonginC (EloC)/Cullin5-containing ubiquitin ligase complex, resulting in APOBEC3 ubiquitination and proteolysis. The suppressors-of-cytokine-signalling-like domain (SOCS-box) of HIV-1 Vif is essential for E3 ligase engagement, and contains a BC box as well as an unusual proline-rich motif. Here, we report the NMR solution structure of the Vif SOCS-ElonginBC (EloBC) complex. In contrast to SOCS-boxes described in other proteins, the HIV-1 Vif SOCS-box contains only one α-helical domain followed by a β-sheet fold. The SOCS-box of Vif binds primarily to EloC by hydrophobic interactions. The functionally essential proline-rich motif mediates a direct but weak interaction with residues 101-104 of EloB, inducing a conformational change from an unstructured state to a structured state. The structure of the complex and biophysical studies provide detailed insight into the function of Vif's proline-rich motif and reveal novel dynamic information on the Vif-EloBC interaction.
Collapse
Affiliation(s)
- Zhisheng Lu
- Randall Division of Cell and Molecular Biophysics, King's College London, 3rd Floor, New Hunt's House, Guy's Campus, London Bridge, London SE1 1UL, UK
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Julien R. C. Bergeron
- Randall Division of Cell and Molecular Biophysics, King's College London, 3rd Floor, New Hunt's House, Guy's Campus, London Bridge, London SE1 1UL, UK
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - R. Andrew Atkinson
- Randall Division of Cell and Molecular Biophysics, King's College London, 3rd Floor, New Hunt's House, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Torsten Schaller
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Dennis A. Veselkov
- Randall Division of Cell and Molecular Biophysics, King's College London, 3rd Floor, New Hunt's House, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Alain Oregioni
- MRC Biomedical NMR Centre, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Yi Yang
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Stephen J. Matthews
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Michael H. Malim
- Department of Infectious Diseases, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Mark R. Sanderson
- Randall Division of Cell and Molecular Biophysics, King's College London, 3rd Floor, New Hunt's House, Guy's Campus, London Bridge, London SE1 1UL, UK
| |
Collapse
|
168
|
Bekerman E, Jeon D, Ardolino M, Coscoy L. A role for host activation-induced cytidine deaminase in innate immune defense against KSHV. PLoS Pathog 2013; 9:e1003748. [PMID: 24244169 PMCID: PMC3820765 DOI: 10.1371/journal.ppat.1003748] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/20/2013] [Indexed: 12/04/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is specifically induced in germinal center B cells to carry out somatic hypermutation and class-switch recombination, two processes responsible for antibody diversification. Because of its mutagenic potential, AID expression and activity are tightly regulated to minimize unwanted DNA damage. Surprisingly, AID expression has been observed ectopically during pathogenic infections. However, the function of AID outside of the germinal centers remains largely uncharacterized. In this study, we demonstrate that infection of human primary naïve B cells with Kaposi's sarcoma-associated herpesvirus (KSHV) rapidly induces AID expression in a cell intrinsic manner. We find that infected cells are marked for elimination by Natural Killer cells through upregulation of NKG2D ligands via the DNA damage pathway, a pathway triggered by AID. Moreover, without having a measurable effect on KSHV latency, AID impinges directly on the viral fitness by inhibiting lytic reactivation and reducing infectivity of KSHV virions. Importantly, we uncover two KSHV-encoded microRNAs that directly regulate AID abundance, further reinforcing the role for AID in the antiviral response. Together our findings reveal additional functions for AID in innate immune defense against KSHV with implications for a broader involvement in innate immunity to other pathogens. Immune responses to pathogens rely heavily on the ability of B cells to generate a unique set of antibodies that can bind and eliminate the pathogen. Activation-induced cytidine deaminase (AID) is the enzyme specifically upregulated in activated B cells to diversify the antibody repertoire by introducing mutations within the antibody coding genes. Curiously, AID expression has been observed outside of activated B cells upon infection with a number of viral and bacterial pathogens. However, in such cases AID function is poorly characterized and often deemed inappropriate since its mutagenic activity can put the cell at risk for oncogenic transformation. In this study, we investigate the expression of AID in response to infection with an oncogenic human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV) and the antibody-independent immune defense it exerts. We show that AID marks infected cells for elimination by natural killer (NK) cells and directly impinges on viral fitness. Furthermore, we uncover novel viral immune evasion strategies employed by KSHV to counteract AID. Together, our findings demonstrate a protective role for AID in the response to infection with an oncogenic virus such as KSHV and suggest that AID may actually limit transformation rather than serve as its culprit.
Collapse
Affiliation(s)
- Elena Bekerman
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | | | | | | |
Collapse
|
169
|
Caval V, Suspène R, Vartanian JP, Wain-Hobson S. Orthologous mammalian APOBEC3A cytidine deaminases hypermutate nuclear DNA. Mol Biol Evol 2013; 31:330-40. [PMID: 24162735 DOI: 10.1093/molbev/mst195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human APOBEC3 gene cluster locus encodes polynucleotide cytidine deaminases. Although many act as viral restriction factors through mutation of single-stranded DNA, recent reports have shown that human APOBEC3A was capable of efficiently hypermutating nuclear DNA and inducing DNA breaks in genomic DNA. In addition, the enzyme was unique in efficiently deaminating 5-methylcytidine in single-stranded DNA. To appreciate the evolutionary relevance of these activities, we analyzed A3A-related enzymes from the rhesus and tamarin monkey, horse, sheep, dog, and panda. All proved to be orthologous to the human enzyme in all these activities revealing strong conservation more than 148 My. Hence, their singular role in DNA catabolism is a well-established mechanism probably outweighing any deleterious or pathological roles such as genomic instability and cancer formation.
Collapse
Affiliation(s)
- Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
170
|
Sun J, Keim CD, Wang J, Kazadi D, Oliver PM, Rabadan R, Basu U. E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells. Genes Dev 2013; 27:1821-33. [PMID: 23964096 PMCID: PMC3759698 DOI: 10.1101/gad.210211.112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Programmed mutagenesis of the immunoglobulin locus of B lymphocytes during class switch recombination (CSR) and somatic hypermutation requires RNA polymerase II (polII) transcription complex-dependent targeting of the DNA mutator activation-induced cytidine deaminase (AID). AID deaminates cytidine residues on substrate sequences in the immunoglobulin (Ig) locus via a transcription-dependent mechanism, and this activity is stimulated by the RNA polII stalling cofactor Spt5 and the 11-subunit cellular noncoding RNA 3'-5' exonucleolytic processing complex RNA exosome. The mechanism by which the RNA exosome recognizes immunoglobulin locus RNA substrates to stimulate AID DNA deamination activity on its in vivo substrate sequences is an important question. Here we report that E3-ubiquitin ligase Nedd4 destabilizes AID-associated RNA polII by a ubiquitination event, leading to generation of 3' end free RNA exosome RNA substrates at the Ig locus and other AID target sequences genome-wide. We found that lack of Nedd4 activity in B cells leads to accumulation of RNA exosome substrates at AID target genes and defective CSR. Taken together, our study links noncoding RNA processing following RNA polII pausing with regulation of the mutator AID protein. Our study also identifies Nedd4 as a regulator of noncoding RNAs that are generated by stalled RNA polII genome-wide.
Collapse
Affiliation(s)
- Jianbo Sun
- Department of Microbiology and Immunology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Horn AV, Klawitter S, Held U, Berger A, Vasudevan AAJ, Bock A, Hofmann H, Hanschmann KMO, Trösemeier JH, Flory E, Jabulowsky RA, Han JS, Löwer J, Löwer R, Münk C, Schumann GG. Human LINE-1 restriction by APOBEC3C is deaminase independent and mediated by an ORF1p interaction that affects LINE reverse transcriptase activity. Nucleic Acids Res 2013; 42:396-416. [PMID: 24101588 PMCID: PMC3874205 DOI: 10.1093/nar/gkt898] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
LINE-1 (L1) retrotransposons are mobile genetic elements whose extensive proliferation resulted in the generation of ≈ 34% of the human genome. They have been shown to be a cause of single-gene diseases. Moreover, L1-encoded endonuclease can elicit double-strand breaks that may lead to genomic instability. Mammalian cells adopted strategies restricting mobility and deleterious consequences of uncontrolled retrotransposition. The human APOBEC3 protein family of polynucleotide cytidine deaminases contributes to intracellular defense against retroelements. APOBEC3 members inhibit L1 retrotransposition by 35-99%. However, genomic L1 retrotransposition events that occurred in the presence of L1-restricting APOBEC3 proteins are devoid of detectable G-to-A hypermutations, suggesting one or multiple deaminase-independent L1 restricting mechanisms. We set out to uncover the mechanism of APOBEC3C (A3C)-mediated L1 inhibition and found that it is deaminase independent, requires an intact dimerization site and the RNA-binding pocket mutation R122A abolishes L1 restriction by A3C. Density gradient centrifugation of L1 ribonucleoprotein particles, subcellular co-localization of L1-ORF1p and A3C and co-immunoprecipitation experiments indicate that an RNA-dependent physical interaction between L1 ORF1p and A3C dimers is essential for L1 restriction. Furthermore, we demonstrate that the amount of L1 complementary DNA synthesized by L1 reverse transcriptase is reduced by ≈ 50% if overexpressed A3C is present.
Collapse
Affiliation(s)
- Axel V Horn
- Section PR2/Retroelements, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany, Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA, Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany, Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany and Biostatistics Section, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4(+) cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity.
Collapse
|
173
|
Mussil B, Suspène R, Aynaud MM, Gauvrit A, Vartanian JP, Wain-Hobson S. Human APOBEC3A isoforms translocate to the nucleus and induce DNA double strand breaks leading to cell stress and death. PLoS One 2013; 8:e73641. [PMID: 23977391 PMCID: PMC3748023 DOI: 10.1371/journal.pone.0073641] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/21/2013] [Indexed: 01/14/2023] Open
Abstract
Human APOBEC3 enzymes deaminate single stranded DNA. At least five can deaminate mitochondrial DNA in the cytoplasm, while three can deaminate viral DNA in the nucleus. However, only one, APOBEC3A, can hypermutate genomic DNA. We analysed the distribution and function of the two APOBEC3A isoforms p1 and p2 in transfected cell lines. Both can translocate to the nucleus and hypermutate CMYC DNA and induce DNA double strand breaks as visualized by the detection of ©H2AX or Chk2. APOBEC3A induced G1 phase cell cycle arrest and triggered several members of the intrinsic apoptosis pathway. Activation of purified human CD4+ T lymphocytes with PHA, IL2 and interferon α resulted in C->T hypermutation of genomic DNA and double stranded breaks suggesting a role for APOBEC3A in pro-inflammatory conditions. As chronic inflammation underlies many diseases including numerous cancers, it is possible that APOBEC3A induction may generate many of the lesions typical of a cancer genome.
Collapse
Affiliation(s)
- Bianka Mussil
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | | | - Anne Gauvrit
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | | | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
174
|
Host restriction of lentiviruses and viral countermeasures: APOBEC3 and Vif. Viruses 2013; 5:1934-47. [PMID: 23903287 PMCID: PMC3761234 DOI: 10.3390/v5081934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 01/02/2023] Open
Abstract
It is becoming increasingly clear that organisms have developed a variety of mechanisms to fight against viral infection. The viruses have developed means of counteracting these defences in various ways. The APOBEC3 proteins are a mammalian-specific family of nucleic acid cytidine deaminases that block retroviral infection. These inhibitors are counteracted by the Vif proteins encoded by most lentiviruses. In this paper, we will review the interaction of the lentiviral Vif proteins with the APOBEC3 proteins, with an emphasis on sheep APOBEC3 and maedi-visna virus (MVV) Vif.
Collapse
|
175
|
Ali S, Karki N, Bhattacharya C, Zhu R, MacDuff DA, Stenglein MD, Schumacher AJ, Demorest ZL, Harris RS, Matin A, Aggarwal S. APOBEC3 inhibits DEAD-END function to regulate microRNA activity. BMC Mol Biol 2013; 14:16. [PMID: 23890083 PMCID: PMC3729616 DOI: 10.1186/1471-2199-14-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
The RNA binding protein DEAD-END (DND1) is one of the few proteins known to regulate microRNA (miRNA) activity at the level of miRNA-mRNA interaction. DND1 blocks miRNA interaction with the 3′-untranslated region (3′-UTR) of specific mRNAs and restores protein expression. Previously, we showed that the DNA cytosine deaminase, APOBEC3 (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide like 3), interacts with DND1. APOBEC3 has been primarily studied for its role in restricting and inactivating retroviruses and retroelements. In this report, we examine the significance of DND1-APOBEC3 interaction. We found that while human DND1 inhibits miRNA-mediated inhibition of P27, human APOBEC3G is able to counteract this repression and restore miRNA activity. APOBEC3G, by itself, does not affect the 3′-UTR of P27. We found that APOBEC3G also blocks DND1 function to restore miR-372 and miR-206 inhibition through the 3′-UTRs of LATS2 and CX43, respectively. In corollary experiments, we tested whether DND1 affects the viral restriction function or mutator activity of APOBEC3. We found that DND1 does not affect APOBEC3 inhibition of infectivity of exogenous retrovirus HIV (ΔVif) or retrotransposition of MusD. In addition, examination of Ter/Ter;Apobec3−/− mice, lead us to conclude that DND1 does not regulate the mutator activity of APOBEC3 in germ cells. In summary, our results show that APOBEC3 is able to modulate DND1 function to regulate miRNA mediated translational regulation in cells but DND1 does not affect known APOBEC3 function.
Collapse
Affiliation(s)
- Sara Ali
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Vieira VC, Soares MA. The role of cytidine deaminases on innate immune responses against human viral infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683095. [PMID: 23865062 PMCID: PMC3707226 DOI: 10.1155/2013/683095] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 02/06/2023]
Abstract
The APOBEC family of proteins comprises deaminase enzymes that edit DNA and/or RNA sequences. The APOBEC3 subgroup plays an important role on the innate immune system, acting on host defense against exogenous viruses and endogenous retroelements. The role of APOBEC3 proteins in the inhibition of viral infection was firstly described for HIV-1. However, in the past few years many studies have also shown evidence of APOBEC3 action on other viruses associated with human diseases, including HTLV, HCV, HBV, HPV, HSV-1, and EBV. APOBEC3 inhibits these viruses through a series of editing-dependent and independent mechanisms. Many viruses have evolved mechanisms to counteract APOBEC effects, and strategies that enhance APOBEC3 activity constitute a new approach for antiviral drug development. On the other hand, novel evidence that editing by APOBEC3 constitutes a source for viral genetic diversification and evolution has emerged. Furthermore, a possible role in cancer development has been shown for these host enzymes. Therefore, understanding the role of deaminases on the immune response against infectious agents, as well as their role in human disease, has become pivotal. This review summarizes the state-of-the-art knowledge of the impact of APOBEC enzymes on human viruses of distinct families and harboring disparate replication strategies.
Collapse
Affiliation(s)
- Valdimara C. Vieira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rua André Cavalcanti, No. 37–4 Andar, Bairro de Fátima, 20231-050 Rio de Janeiro, RJ, Brazil
| | - Marcelo A. Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rua André Cavalcanti, No. 37–4 Andar, Bairro de Fátima, 20231-050 Rio de Janeiro, RJ, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
177
|
Extensive diversification of IgH subclass-encoding genes and IgM subclass switching in crocodilians. Nat Commun 2013; 4:1337. [PMID: 23299887 DOI: 10.1038/ncomms2317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 11/22/2012] [Indexed: 01/01/2023] Open
Abstract
Crocodilians are a group of reptiles that are closely related to birds and are thought to possess a strong immune system. Here we report that the IgH locus in the Siamese crocodile and the Chinese alligator contains multiple μ genes, in contrast to other tetrapods. Both the μ2 and μ3 genes are expressed through class-switch recombination involving the switch region and germline transcription. Both IgM1 and IgM2 are present in the serum as polymers, which implies that IgM class switching may have significant roles in humoural immunity. The crocodilian α genes are the first IgA-encoding genes identified in reptiles, and these genes show an inverted transcriptional orientation similar to that of birds. The identification of both α and δ genes in crocodilians suggests that the IgH loci of modern living mammals, reptiles and birds share a common ancestral organization.
Collapse
|
178
|
Abstract
Major conceptual roadblocks impede the development of an HIV-1 vaccine that can stimulate a potent neutralizing antibody response. Animal models that support HIV-1 replication and allow for host genetic manipulation would be an ideal platform for testing various immunological hypotheses, but progress on this research front has been slow and disappointing. In contrast, many valuable concepts emerged from more than 50 years of studying the Friend retrovirus model. This was recently exemplified by the identification of an innate restriction gene, Apobec3, that could promote the retrovirus-specific neutralizing antibody response. Here we review both classical and recent data on humoral immunity against Friend retrovirus infection, and highlight the potential of this model for unraveling novel aspects of the retrovirus-specific antibody response that may guide HIV-1 vaccine development efforts.
Collapse
|
179
|
Wang K, Li Y, Dai C, Wang K, Yu J, Tan Y, Zhang W, Yu XF. Characterization of the relationship between APOBEC3B deletion and ACE Alu insertion. PLoS One 2013; 8:e64809. [PMID: 23717661 PMCID: PMC3663847 DOI: 10.1371/journal.pone.0064809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/18/2013] [Indexed: 12/15/2022] Open
Abstract
The insertion/deletion (I/D) polymorphism of the angiotensin converting enzyme (ACE), commonly associated with many diseases, is believed to have affected human adaptation to environmental changes during the out-of-Africa expansion. APOBEC3B (A3B), a member of the cytidine deaminase family APOBEC3s, also exhibits a variable gene insertion/deletion polymorphism across world populations. Using data available from published reports, we examined the global geographic distribution of ACE and A3B genotypes. In tracking the modern human dispersal routes of these two genes, we found that the variation trends of the two I/D polymorphisms were directly correlated. We observed that the frequencies of ACE insertion and A3B deletion rose in parallel along the expansion route. To investigate the presence of a correlation between the two polymorphisms and the effect of their interaction on human health, we analyzed 1199 unrelated Chinese adults to determine their genotypes and other important clinical characteristics. We discovered a significant difference between the ACE genotype/allele distribution in the A3B DD and A3B II/ID groups (P = 0.045 and 0.015, respectively), indicating that the ACE Alu I allele frequency in the former group was higher than in the latter group. No specific clinical phenotype could be associated with the interaction between the ACE and A3B I/D polymorphisms. A3B has been identified as a powerful inhibitor of Alu retrotransposition, and primate A3 genes have undergone strong positive selection (and expansion) for restricting the mobility of endogenous retrotransposons during evolution. Based on these findings, we suggest that the ACE Alu insertion was enabled (facilitated) by the A3B deletion and that functional loss of A3B provided an opportunity for enhanced human adaptability and survival in response to the environmental and climate challenges arising during the migration from Africa.
Collapse
Affiliation(s)
- Kang Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuanyuan Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chunyan Dai
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kaishi Wang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinghua Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yiran Tan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
180
|
Capolunghi F, Rosado MM, Sinibaldi M, Aranburu A, Carsetti R. Why do we need IgM memory B cells? Immunol Lett 2013; 152:114-20. [PMID: 23660557 DOI: 10.1016/j.imlet.2013.04.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 12/22/2022]
Abstract
Immunological memory is our reservoir of ready-to-use antibodies and memory B cells. Because of immunological memory a secondary infection will be very light or not occur at all. Antibodies and cells, generated in the germinal center in response to the first encounter with antigen, are highly specific, remain in the organism virtually forever and are mostly of IgG isotype. Long lived plasma cells homing to the bone marrow ensure the constant production of protective antibodies, whereas switched memory B cells proliferate and differentiate in response to secondary challenge. IgM memory B cells represent our first-line defense against infections. They are generated by a T-cell independent mechanism probably triggered by Toll-like receptor-9. They produce natural antibodies with anti-bacterial specificity and the spleen is indispensable for their maintenance. We will review the characteristics and functions of IgM memory B cells that explain their importance in the immediate protection from pathogens. IgM memory B cells, similar to mouse B-1a B cells, may be a remnant of a primitive immune system that developed in the spleen of cartilaginous fish and persisted throughout evolution notwithstanding the sophisticated tools of the adaptive immune system.
Collapse
Affiliation(s)
- Federica Capolunghi
- Department of Laboratories, Children Hospital Bambino Gesù (IRCCS), Piazza S.Onofrio 4, 00165 Rome, Italy
| | | | | | | | | |
Collapse
|
181
|
Abdouni H, King JJ, Suliman M, Quinlan M, Fifield H, Larijani M. Zebrafish AID is capable of deaminating methylated deoxycytidines. Nucleic Acids Res 2013; 41:5457-68. [PMID: 23585279 PMCID: PMC3664802 DOI: 10.1093/nar/gkt212] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) deaminates deoxycytidine (dC) to deoxyuracil (dU) at immunoglobulin loci in B lymphocytes to mediate secondary antibody diversification. Recently, AID has been proposed to also mediate epigenetic reprogramming by demethylating methylated cytidines (mC) possibly through deamination. AID overexpression in zebrafish embryos was shown to promote genome demethylation through G:T lesions, implicating a deamination-dependent mechanism. We and others have previously shown that mC is a poor substrate for human AID. Here, we examined the ability of bony fish AID to deaminate mC. We report that zebrafish AID was unique among all orthologs in that it efficiently deaminates mC. Analysis of domain-swapped and mutant AID revealed that mC specificity is independent of the overall high-catalytic efficiency of zebrafish AID. Structural modeling with or without bound DNA suggests that efficient deamination of mC by zebrafish AID is likely not due to a larger catalytic pocket allowing for better fit of mC, but rather because of subtle differences in the flexibility of its structure.
Collapse
Affiliation(s)
- Hala Abdouni
- Program in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland A1B 3V6, Canada
| | | | | | | | | | | |
Collapse
|
182
|
Bizinoto MC, Yabe S, Leal É, Kishino H, Martins LDO, de Lima ML, Morais ER, Diaz RS, Janini LM. Codon pairs of the HIV-1 vif gene correlate with CD4+ T cell count. BMC Infect Dis 2013; 13:173. [PMID: 23578255 PMCID: PMC3637627 DOI: 10.1186/1471-2334-13-173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/26/2013] [Indexed: 01/28/2023] Open
Abstract
Background The human APOBEC3G (A3G) protein activity is associated with innate immunity against HIV-1 by inducing high rates of guanosines to adenosines (G-to-A) mutations (viz., hypermutation) in the viral DNA. If hypermutation is not enough to disrupt the reading frames of viral genes, it may likely increase the HIV-1 diversity. To counteract host innate immunity HIV-1 encodes the Vif protein that binds A3G protein and form complexes to be degraded by cellular proteolysis. Methods Here we studied the pattern of substitutions in the vif gene and its association with clinical status of HIV-1 infected individuals. To perform the study, unique vif gene sequences were generated from 400 antiretroviral-naïve individuals. Results The codon pairs: 78–154, 85–154, 101–157, 105–157, and 105–176 of vif gene were associated with CD4+ T cell count lower than 500 cells per mm3. Some of these codons were located in the 81LGQGVSIEW89 region and within the BC-Box. We also identified codons under positive selection clustered in the N-terminal region of Vif protein, between 21WKSLVK26 and 40YRHHY44 regions (i.e., 31, 33, 37, 39), within the BC-Box (i.e., 155, 159) and the Cullin5-Box (i.e., 168) of vif gene. All these regions are involved in the Vif-induced degradation of A3G/F complexes and the N-terminal of Vif protein binds to viral and cellular RNA. Conclusions Adaptive evolution of vif gene was mostly to optimize viral RNA binding and A3G/F recognition. Additionally, since there is not a fully resolved structure of the Vif protein, codon pairs associated with CD4+ T cell count may elucidate key regions that interact with host cell factors. Here we identified and discriminated codons under positive selection and codons under functional constraint in the vif gene of HIV-1.
Collapse
|
183
|
D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and rhesus APOBEC3B. Virology 2013; 441:31-9. [PMID: 23542011 DOI: 10.1016/j.virol.2013.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/08/2012] [Accepted: 03/01/2013] [Indexed: 12/15/2022]
Abstract
APOBEC3B is one of seven human APOBEC3 DNA cytosine deaminases that function to inhibit the replication and persistence of retroelements and retroviruses. Human APOBEC3B restricts the replication of HIV-1 in HEK293 cells, while our laboratory clone of rhesus macaque APOBEC3B did not. We mapped the restriction determinant to a single amino acid difference that alters enzymatic activity. Human APOBEC3B D316 is catalytically active and capable of restricting HIV-1 while rhesus APOBEC3B N316 is not; swapping these residues alters the activity and restriction phenotypes respectively. Genotyping of primate center rhesus macaques revealed uniform homozygosity for aspartate at position 316. Considering the C-to-T nature of the underlying mutation, we suspect that our rhesus APOBEC3B cDNA was inactivated by its own gene product during subcloning in Escherichia coli. This region has been previously characterized for its role in substrate specificity, but these data indicate it also has a fundamental role in deaminase activity.
Collapse
|
184
|
Refsland EW, Harris RS. The APOBEC3 family of retroelement restriction factors. Curr Top Microbiol Immunol 2013; 371:1-27. [PMID: 23686230 DOI: 10.1007/978-3-642-37765-5_1] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to regulate and even target mutagenesis is an extremely valuable cellular asset. Enzyme-catalyzed DNA cytosine deamination is a molecular strategy employed by vertebrates to promote antibody diversity and defend against foreign nucleic acids. Ten years ago, a family of cellular enzymes was first described with several proving capable of deaminating DNA and inhibiting HIV-1 replication. Ensuing studies on the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) restriction factors have uncovered a broad-spectrum innate defense network that suppresses the replication of numerous endogenous and exogenous DNA-based parasites. Although many viruses possess equally elaborate counter-defense mechanisms, the APOBEC3 enzymes offer a tantalizing possibility of leveraging innate immunity to fend off viral infection. Here, we focus on mechanisms of retroelement restriction by the APOBEC3 family of restriction enzymes, and we consider the therapeutic benefits, as well as the possible pathological consequences, of arming cells with active DNA deaminases.
Collapse
Affiliation(s)
- Eric W Refsland
- Department of Biochemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
185
|
Abstract
The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis.
Collapse
Affiliation(s)
- Celia Keim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
186
|
An intronic G run within HIV-1 intron 2 is critical for splicing regulation of vif mRNA. J Virol 2012; 87:2707-20. [PMID: 23255806 DOI: 10.1128/jvi.02755-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3' splice site (3'ss) A1 but lack splicing at 5'ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3'ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3'ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5'ss D2. Here we show that an intronic G run (G(I2)-1) represses the use of a second 5'ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of G(I2)-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here.
Collapse
|
187
|
Abstract
Studies of retroviruses have been instrumental in revealing the existence of an array of antiviral proteins, or restriction factors, and the mechanisms by which they function. Some restriction factors appear to specifically inhibit retrovirus replication, while others have a broader antiviral action. Here, we briefly review current understanding of the mechanisms by which several such proteins exert antiviral activity. We also discuss how retroviruses have evolved to evade or antagonize antiviral proteins, including through the action of viral accessory proteins. Restriction factors, their viral targets and antagonists have exerted evolutionary pressure on each other, resulting in specialization and barriers to cross-species transmission. Potentially, this recently revealed intrinsic system of antiviral immunity might be mobilized for therapeutic benefit.
Collapse
Affiliation(s)
- Theodora Hatziioannou
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, United States
| | | |
Collapse
|
188
|
Abstract
Organisms minimize genetic damage through complex pathways of DNA repair. Yet a gene family--the AID/APOBECs--has evolved in vertebrates with the sole purpose of producing targeted damage in DNA/RNA molecules through cytosine deamination. They likely originated from deaminases involved in A>I editing in tRNAs. AID, the archetypal AID/APOBEC, is the trigger of the somatic diversification processes of the antibody genes. Its homologs may have been associated with the immune system even before the evolution of the antibody genes. The APOBEC3s, arising from duplication of AID, are involved in the restriction of exogenous/endogenous threats such as retroviruses and mobile elements. Another family member, APOBEC1, has (re)acquired the ability to target RNA while maintaining its ability to act on DNA. The AID/APOBECs have shaped the evolution of vertebrate genomes, but their ability to mutate nucleic acids is a double-edged sword: AID is a key player in lymphoproliferative diseases by triggering mutations and chromosomal translocations in B cells, and there is increasing evidence suggesting that other AID/APOBECs could be involved in cancer development as well.
Collapse
|
189
|
Lechner M, Marz M, Ihling C, Sinz A, Stadler PF, Krauss V. The correlation of genome size and DNA methylation rate in metazoans. Theory Biosci 2012; 132:47-60. [PMID: 23132463 DOI: 10.1007/s12064-012-0167-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/03/2012] [Indexed: 12/12/2022]
Abstract
Total DNA methylation rates are well known to vary widely between different metazoans. The phylogenetic distribution of this variation, however, has not been investigated systematically. We combine here publicly available data on methylcytosine content with the analysis of nucleotide compositions of genomes and transcriptomes of 78 metazoan species to trace the evolution of abundance and distribution of DNA methylation. The depletion of CpG and the associated enrichment of TpG and CpA dinucleotides are used to infer the intensity and localization of germline CpG methylation and to estimate its evolutionary dynamics. We observe a positive correlation of the relative methylation of CpG motifs with genome size. We tested this trend successfully by measuring total DNA methylation with LC/MS in orthopteran insects with very different genome sizes: house crickets, migratory locusts and meadow grasshoppers. We hypothesize that the observed correlation between methylation rate and genome size is due to a dependence of both variables from long-term effective population size and is driven by the accumulation of repetitive sequences that are typically methylated during periods of small population sizes. This process may result in generally methylated, large genomes such as those of jawed vertebrates. In this case, the emergence of a novel demethylation pathway and of novel reader proteins for methylcytosine may have enabled the usage of cytosine methylation for promoter-based gene regulation. On the other hand, persistently large populations may lead to a compression of the genome and to the loss of the DNA methylation machinery, as observed, e.g., in nematodes.
Collapse
Affiliation(s)
- Marcus Lechner
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35037, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
190
|
Abstract
PURPOSE OF REVIEW The APOBEC3 cytidine deaminases, which are unique to mammals, have been identified as potent innate cellular defenses against both endogenous retroelements and diverse retroviruses. To evade such host defenses, retroviruses have developed multiple strategies. This article reviews several proposed mechanisms of these viral counter-defenses. RECENT FINDINGS Primate lentiviruses encode a virion-infectivity factor that induces targeted destruction of APOBEC3 proteins by hijacking the cellular ubiquitin-proteasome pathway. Virion-infectivity factor molecules of HIV-1 and SIV are newly identified substrate receptor proteins that assemble with Cul5, ElonginB, ElonginC, and Rbx1 to form an E3 ubiquitin ligase and target selected APOBEC3 proteins for polyubiquitination. Foamy viruses use a different viral protein, BET, which binds and sequesters APOBEC3 away from the assembling virions. Simple retroviruses such as murine leukemia virus may avoid virion packaging of cognate APOBEC3 protein through yet another novel mechanism, in the absence of a viral regulatory factor. SUMMARY APOBEC3 cytidine deaminases target broad retroelements. Contemporary retroviruses have developed multiple unique strategies to combat this powerful host defense system. As a result, these retroviruses and APOBEC3 proteins maintain an equilibrium that allows regulated viral replication. These viral counter-defenses thus represent vulnerable targets for the design of new classes of antiviral inhibitors.
Collapse
|
191
|
Abstract
Host restriction factors are potent, widely expressed intracellular blocks to viral replication that are an important component of the innate immune response to viral infection. However, viruses have evolved mechanisms that antagonize restriction factors. Through evolutionary pressure for both host survival and virus replication, an evolutionary 'arms race' has developed that drives continuous rounds of selection for beneficial mutations in the genes encoding restriction factors and their viral antagonists. Because viruses can evolve faster than their hosts, the innate immune system of modern-day vertebrates is for the most part optimized to defend against ancient viruses, rather than newer viral threats. Thus, the evolutionary history of restriction factors might, in part, explain why humans are susceptible or resistant to the viruses present in the modern world.
Collapse
|
192
|
Franchini DM, Schmitz KM, Petersen-Mahrt SK. 5-Methylcytosine DNA demethylation: more than losing a methyl group. Annu Rev Genet 2012; 46:419-41. [PMID: 22974304 DOI: 10.1146/annurev-genet-110711-155451] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Demethylation of 5-methylcytosine in DNA is integral to the maintenance of an intact epigenome. The balance between the presence or absence of 5-methylcytosine determines many physiological aspects of cell metabolism, with a turnover that can be measured in minutes to years. Biochemically, addition of the methyl group is shared among all living kingdoms and has been well characterized, whereas the removal or reversion of this mark seems diverse and much less understood. Here, we present a summary of how DNA demethylation can be initiated directly, utilizing the ten-eleven translocation (TET) family of proteins, activation-induced deaminase (AID), or other DNA modifying enzymes, or indirectly, via transcription, RNA metabolism, or DNA repair; how intermediates in those pathways are substrates of the DNA repair machinery; and how demethylation pathways are linked and possibly balanced, avoiding mutations.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milano, Italy.
| | | | | |
Collapse
|
193
|
Schmitz KM, Petersen-Mahrt SK. AIDing the immune system—DIAbolic in cancer. Semin Immunol 2012; 24:241-5. [DOI: 10.1016/j.smim.2012.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022]
|
194
|
The biochemistry of activation-induced deaminase and its physiological functions. Semin Immunol 2012; 24:255-63. [DOI: 10.1016/j.smim.2012.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/18/2012] [Indexed: 01/26/2023]
|
195
|
Talagas M, Marcorelles P, Uguen A, Redon S, Quintin-Roué I, Costa S, Férec C, Morel F, Hieu PD, De Braekeleer M. Identification of a novel population in high-grade oligodendroglial tumors not deleted on 1p/19q using array CGH. J Neurooncol 2012; 109:405-13. [PMID: 22825724 DOI: 10.1007/s11060-012-0909-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/29/2012] [Indexed: 12/15/2022]
Abstract
Oligodendroglial tumors (ODTs) are primary tumors of the central nervous system that show recurrent codeletion of whole chromosome arms 1p and 19q. Non-1p/19q-deleted high-grade ODTs can present other genetic aberrations, CDKN2A deletion (9p21.3), EGFR amplification (7p11.2) and/or chromosome 10 loss, which are associated with a poor prognosis. The identification of these abnormalities allowed drafting a histo-molecular classification. The aim of this study was to precisely identify, using array CGH, the genomic hallmarks of these tumors, particularly those that are not deleted on 1p/19q. We studied 14 formalin-fixed paraffin-embedded high-grade ODTs using pangenomic oligonucleotide array CGH with an average resolution of 22.3 kb. The 1p/19q codeletion was found in five anaplastic oligodendrogliomas. The three genomic aberrations carrying a poor prognosis were found, most often associated, in five out of nine tumors not deleted on 1p/19q. In addition, four recurrent copy number alterations, involving genes that participate to cell growth and cycle, were found to be strongly associated in five tumors not deleted on 1p/19q: gain or amplification at 1q32.1 (MDM4, PIK3C2B genes), 12q14.1 (CDK4 gene), 12q14.3-q15 (MDM2 gene) and homozygous deletion at 22q13.1 (APOBEC3B gene). MDM2, MDM4, CDK4 and PIK3C2B are known for potentially being amplified or overexpressed in high-grade gliomas. However, the involvement of APOBEC3B, coding for mRNA edition enzyme, is described here for the first time. Our results show a strong association between these four alterations. Therefore, this can open a perspective for a novel subgroup in high-grade ODTs not deleted on 1p/19q.
Collapse
Affiliation(s)
- Matthieu Talagas
- Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
APOBEC3 versus Retroviruses, Immunity versus Invasion: Clash of the Titans. Mol Biol Int 2012; 2012:974924. [PMID: 22720156 PMCID: PMC3375093 DOI: 10.1155/2012/974924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/01/2012] [Indexed: 11/17/2022] Open
Abstract
Since the identification of APOBEC3G (A3G) as a potent restriction factor of HIV-1, a tremendous amount of effort has led to a broadened understanding of both A3G and the APOBEC3 (A3) family to which it belongs. In spite of the fine-tuned viral counterattack to A3 activity, in the form of the HIV-1 Vif protein, enthusiasm for leveraging the Vif : A3G axis as a point of clinical intervention remains high. In an impressive explosion of information over the last decade, additional A3 family members have been identified as antiviral proteins, mechanistic details of the restrictive capacity of these proteins have been elucidated, structure-function studies have revealed important molecular details of the Vif : A3G interaction, and clinical cohorts have been scrutinized for correlations between A3 expression and function and viral pathogenesis. In the last year, novel and unexpected findings regarding the role of A3G in immunity have refocused efforts on exploring the potential of harnessing the natural power of this immune defense. These most recent reports allude to functions of the A3 proteins that extend beyond their well-characterized designation as restriction factors. The emerging story implicates the A3 family as not only defense proteins, but also as participants in the broader innate immune response.
Collapse
|
197
|
Miyazawa M. [Molecular evolution of physiologically functioning anti-retroviral APOBEC3 deaminases]. Uirusu 2012; 62:27-38. [PMID: 23189822 DOI: 10.2222/jsv.62.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Recent in vivo findings clearly indicate that mammalian cytidine deaminase APOBEC3 can function as a physiological restriction factor to retrotransposons and infectious retroviruses. However, some retroviruses, including primate lentiviruses, have evolved to counter their natural host's APOBEC3. To survive this arms race, primates seem to have acquired multiple copies of APOBEC3 genes. Surprisingly, however, during the process of the diversification of rodent species, as well as the human race, some ancestral individuals acquired genetic variants that reduced the protein levels of APOBEC3 expression, and these variants currently show unexpectedly wide geographic distributions. These data suggest that in the absence of a heavy burden of infectious retroviruses, high-level expression of APOBEC3 cytidine deaminase might be costly to the integrity of the host genome.
Collapse
Affiliation(s)
- Masaaki Miyazawa
- Department of Immunology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| |
Collapse
|
198
|
Monajemi M, Woodworth CF, Benkaroun J, Grant M, Larijani M. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology 2012; 9:35. [PMID: 22546055 PMCID: PMC3416701 DOI: 10.1186/1742-4690-9-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022] Open
Abstract
The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland, Canada
| | - Claire F Woodworth
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Jessica Benkaroun
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Michael Grant
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| |
Collapse
|
199
|
Koito A, Ikeda T. Apolipoprotein B mRNA-editing, catalytic polypeptide cytidine deaminases and retroviral restriction. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:529-41. [PMID: 22549984 DOI: 10.1002/wrna.1117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apolipoprotein B (apo B) messenger RNA (mRNA)-editing, catalytic polypeptide (APOBEC) cytidine deaminases (CDAs), which can insert mutations into DNA and/or RNA as a result of their ability to deaminate cytidine (C) to uridine (U), originated from a branch of the zinc-dependent deaminase superfamily at the beginning of vertebrate radiation. The ability of mammalian CDAs encoded by the APOBEC3 genes to restrict a broad number of endogenous retroelements and exogenous retroviruses, including human immunodeficiency virus-1, is well established. Furthermore, APOBEC1 from a variety of mammalian species, which mediates the C-to-U deamination of apo B mRNA, a protein involved in lipid transport, also has a role in controlling mobile elements. A large portion of the mammalian genome is derived from ancient transposable elements. Retroelements, transported by an intracellular copy-and-paste process involving an RNA intermediate, constitute the majority of these mobile genetic elements. Endogenous retroviruses are long-terminal repeat (LTR)-type retroelements that account for approximately 10% of human and murine genomic DNA. Non-LTR members are present in extremely high copy numbers, with approximately 40% of the human and murine genomes consisting of long-interspersed nuclear element-1 (L1). These L1 elements modify mammalian genomes not only through insertions but also by the indirect replication of non-autonomous retrotransposons. As expected, vertebrate intrinsic immunity has evolved to support a balance between retroelement insertions that cause deleterious gene disruptions and those that confer beneficial genetic diversity. This review discusses the current understanding of the mechanism of action of APOBEC CDAs and their role in controlling retroviruses and retroelements.
Collapse
Affiliation(s)
- Atsushi Koito
- Department of Retrovirology and Self-Defense, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | | |
Collapse
|
200
|
Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012; 25:318-43. [PMID: 22491774 PMCID: PMC3346299 DOI: 10.1128/cmr.05011-11] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.
Collapse
|