151
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
152
|
Oikawa M, Simeone A, Hormanseder E, Teperek M, Gaggioli V, O'Doherty A, Falk E, Sporniak M, D'Santos C, Franklin VNR, Kishore K, Bradshaw CR, Keane D, Freour T, David L, Grzybowski AT, Ruthenburg AJ, Gurdon J, Jullien J. Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription. Nat Commun 2020; 11:3491. [PMID: 32661239 PMCID: PMC7359334 DOI: 10.1038/s41467-020-17238-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sperm contributes genetic and epigenetic information to the embryo to efficiently support development. However, the mechanism underlying such developmental competence remains elusive. Here, we investigated whether all sperm cells have a common epigenetic configuration that primes transcriptional program for embryonic development. Using calibrated ChIP-seq, we show that remodelling of histones during spermiogenesis results in the retention of methylated histone H3 at the same genomic location in most sperm cell. This homogeneously methylated fraction of histone H3 in the sperm genome is maintained during early embryonic replication. Such methylated histone fraction resisting post-fertilisation reprogramming marks developmental genes whose expression is perturbed upon experimental reduction of histone methylation. A similar homogeneously methylated histone H3 fraction is detected in human sperm. Altogether, we uncover a conserved mechanism of paternal epigenetic information transmission to the embryo through the homogeneous retention of methylated histone in a sperm cells population.
Collapse
Affiliation(s)
- Mami Oikawa
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Angela Simeone
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eva Hormanseder
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Marta Teperek
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Vincent Gaggioli
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Alan O'Doherty
- UCD School of Agriculture and Food Science, University College Dublin, Dublin 4, D04 V1W8, Ireland
| | - Emma Falk
- CRTI, INSERM, UNIV Nantes, Nantes, France
| | | | - Clive D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Charles R Bradshaw
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Declan Keane
- ReproMed Ireland, Rockfield Medical Campus, Northblock, Dundrum, Dublin 16, D16 W7W3, Ireland
| | - Thomas Freour
- Service de Biologie de la Reproduction, CHU Nantes, Nantes, France
| | | | - Adrian T Grzybowski
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - John Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- CRTI, INSERM, UNIV Nantes, Nantes, France.
| |
Collapse
|
153
|
Coles GL, Cristea S, Webber JT, Levin RS, Moss SM, He A, Sangodkar J, Hwang YC, Arand J, Drainas AP, Mooney NA, Demeter J, Spradlin JN, Mauch B, Le V, Shue YT, Ko JH, Lee MC, Kong C, Nomura DK, Ohlmeyer M, Swaney DL, Krogan NJ, Jackson PK, Narla G, Gordan JD, Shokat KM, Sage J. Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell 2020; 38:129-143.e7. [PMID: 32531271 PMCID: PMC7363571 DOI: 10.1016/j.ccell.2020.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
Abstract
Using unbiased kinase profiling, we identified protein kinase A (PKA) as an active kinase in small cell lung cancer (SCLC). Inhibition of PKA activity genetically, or pharmacologically by activation of the PP2A phosphatase, suppresses SCLC expansion in culture and in vivo. Conversely, GNAS (G-protein α subunit), a PKA activator that is genetically activated in a small subset of human SCLC, promotes SCLC development. Phosphoproteomic analyses identified many PKA substrates and mechanisms of action. In particular, PKA activity is required for the propagation of SCLC stem cells in transplantation studies. Broad proteomic analysis of recalcitrant cancers has the potential to uncover targetable signaling networks, such as the GNAS/PKA/PP2A axis in SCLC.
Collapse
Affiliation(s)
- Garry L Coles
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sandra Cristea
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - James T Webber
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rebecca S Levin
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Steven M Moss
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Andy He
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jaya Sangodkar
- Division of Genetic Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeonjoo C Hwang
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia Arand
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Alexandros P Drainas
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Nancie A Mooney
- Baxter Laboratory, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jessica N Spradlin
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brandon Mauch
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Vicky Le
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yan Ting Shue
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julie H Ko
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Myung Chang Lee
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Christina Kong
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY, USA; Atux Iskay LLC, Plainsboro, New Jersey, NJ 08536, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; David J. Gladstone Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA; David J. Gladstone Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Peter K Jackson
- Baxter Laboratory, Stanford University, Stanford, CA 94305, USA; Department of Microbiology & Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Goutham Narla
- Division of Genetic Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John D Gordan
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, 265 Campus Drive, Stanford, CA 94305-5457, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
154
|
Lombardi N, Salzano AM, Troise AD, Scaloni A, Vitaglione P, Vinale F, Marra R, Caira S, Lorito M, d’Errico G, Lanzuise S, Woo SL. Effect of Trichoderma Bioactive Metabolite Treatments on the Production, Quality, and Protein Profile of Strawberry Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7246-7258. [PMID: 32426974 PMCID: PMC8154561 DOI: 10.1021/acs.jafc.0c01438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 05/30/2023]
Abstract
Fungi of the genus Trichoderma produce secondary metabolites having several biological activities that affect plant metabolism. We examined the effect of three Trichoderma bioactive metabolites (BAMs), namely, 6-pentyl-α-pyrone (6PP), harzianic acid (HA), and hydrophobin 1 (HYTLO1), on yield, fruit quality, and protein representation of strawberry plants. In particular, 6PP and HA increased the plant yield and number of fruits, when compared to control, while HYTLO1 promoted the growth of the roots and increased the total soluble solids content up to 19% and the accumulation of ascorbic acid and cyanidin 3-O-glucoside in red ripened fruits. Proteomic analysis showed that BAMs influenced the representation of proteins associated with the protein metabolism, response to stress/external stimuli, vesicle trafficking, carbon/energy, and secondary metabolism. Results suggest that the application of Trichoderma BAMs affects strawberry plant productivity and fruit quality and integrate previous observations on deregulated molecular processes in roots and leaves of Trichoderma-treated plants with original data on fruits.
Collapse
Affiliation(s)
- Nadia Lombardi
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Anna Maria Salzano
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Antonio Dario Troise
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Andrea Scaloni
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Paola Vitaglione
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Francesco Vinale
- Department
of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80138 Naples, Italy
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
| | - Roberta Marra
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Simonetta Caira
- Proteomics
& Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80131 Naples, Italy
| | - Matteo Lorito
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
- Task
Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Giada d’Errico
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Stefania Lanzuise
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Naples, Italy
| | - Sheridan Lois Woo
- Institute
for Sustainable Plant Protection, National
Research Council, 80055 Portici, Naples, Italy
- Task
Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
- Department
of Pharmacy, University of Naples Federico
II, 80131 Naples, Italy
| |
Collapse
|
155
|
Greenwood EJD, Williamson JC, Sienkiewicz A, Naamati A, Matheson NJ, Lehner PJ. Promiscuous Targeting of Cellular Proteins by Vpr Drives Systems-Level Proteomic Remodeling in HIV-1 Infection. Cell Rep 2020; 27:1579-1596.e7. [PMID: 31042482 PMCID: PMC6506760 DOI: 10.1016/j.celrep.2019.04.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
HIV-1 encodes four “accessory proteins” (Vif, Vpr, Vpu, and Nef), dispensable for viral replication in vitro but essential for viral pathogenesis in vivo. Well characterized cellular targets have been associated with Vif, Vpu, and Nef, which counteract host restriction and promote viral replication. Conversely, although several substrates of Vpr have been described, their biological significance remains unclear. Here, we use complementary unbiased mass spectrometry-based approaches to demonstrate that Vpr is both necessary and sufficient for the DCAF1/DDB1/CUL4 E3 ubiquitin ligase-mediated degradation of at least 38 cellular proteins, causing systems-level changes to the cellular proteome. We therefore propose that promiscuous targeting of multiple host factors underpins complex Vpr-dependent cellular phenotypes and validate this in the case of G2/M cell cycle arrest. Our model explains how Vpr modulates so many cell biological processes and why the functional consequences of previously described Vpr targets, identified and studied in isolation, have proved elusive. HIV-1 Vpr is responsible for almost all proteomic changes in HIV-1-infected cells Vpr directly targets multiple nuclear proteins for degradation Vpr cellular phenotypes (e.g., cell cycle arrest) stem from broad substrate targeting Targeting of a few proteins is conserved across diverse primate lentiviral species
Collapse
Affiliation(s)
- Edward J D Greenwood
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - James C Williamson
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Agata Sienkiewicz
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Adi Naamati
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul J Lehner
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK; Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
156
|
Lombardi N, Caira S, Troise AD, Scaloni A, Vitaglione P, Vinale F, Marra R, Salzano AM, Lorito M, Woo SL. Trichoderma Applications on Strawberry Plants Modulate the Physiological Processes Positively Affecting Fruit Production and Quality. Front Microbiol 2020; 11:1364. [PMID: 32719661 PMCID: PMC7350708 DOI: 10.3389/fmicb.2020.01364] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Many Trichoderma spp. are successful plant beneficial microbial inoculants due to their ability to act as biocontrol agents with direct antagonistic activities to phytopathogens, and as biostimulants capable of promoting plant growth. This work investigated the effects of treatments with three selected Trichoderma strains (T22, TH1, and GV41) to strawberry plants on the productivity, metabolites and proteome of the formed fruits. Trichoderma applications stimulated plant growth, increased strawberry fruit yield, and favored selective accumulation of anthocyanins and other antioxidants in red ripened fruits. Proteomic analysis of fruits harvested from the plants previously treated with Trichoderma demonstrated that the microbial inoculants highly affected the representation of proteins associated with responses to stress/external stimuli, nutrient uptake, protein metabolism, carbon/energy metabolism and secondary metabolism, also providing a possible explanation to the presence of specific metabolites in fruits. Bioinformatic analysis of these differential proteins revealed a central network of interacting molecular species, providing a rationale to the concomitant modulation of different plant physiological processes following the microbial inoculation. These findings indicated that the application of Trichoderma-based products exerts a positive impact on strawberry, integrating well with previous observations on the molecular mechanisms activated in roots and leaves of other tested plant species, demonstrating that the efficacy of using a biological approach with beneficial microbes on the maturing plant is also able to transfer advantages to the developing fruits.
Collapse
Affiliation(s)
- Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Simonetta Caira
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Antonio Dario Troise
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Sheridan Lois Woo
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
157
|
Himmerkus N, Svendsen SL, Quintanova C, Bleich M, Von Schwerdtner O, Benzing T, Welling PA, Leipziger J, Rinschen MM. Viewing Cortical Collecting Duct Function Through Phenotype-guided Single-Tubule Proteomics. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa007. [PMID: 35330743 PMCID: PMC8788781 DOI: 10.1093/function/zqaa007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
The revolution of the omics technologies has enabled profiling of the molecules of any sample. However, the heterogeneity of the kidney with highly specialized nephron segments like the cortical collecting duct (CCD) poses a challenge regarding integration of omics data and functional analysis. We examined function and proteome from the same single CCDs of C57Bl6 mice by investigating them in a double-barreled perfusion system before targeted mass spectrometry. Transepithelial voltage (Vte), transepithelial resistance, as well as amiloride-sensitive voltage (ΔVteamil) were recorded. CCDs were of 400-600 µm of length, showed lumen negative Vte between -8.5 and -32.5 mV and an equivalent short circuit current I'sc between 54 and 192 µA/cm2. On a single-tubule proteome level, intercalated cell (IC) markers strongly correlated with other intercalated cell markers and negatively with principal cell markers. Integration of proteome data with phenotype data revealed that tubular length correlated with actin and Na+-K+-ATPase expression. ΔVte(amil) reflected the expression level of the β-subunit of the epithelial sodium channel. Intriguingly, ΔVte(amil) correlated inversely with the water channel AQP2 and the negative regulator protein NEDD4L (NEDD4-2). In pendrin knockout (KO) mice, the CCD proteome was accompanied by strong downregulation of other IC markers like CLCNKB, BSND (Barttin), and VAA (vH+-ATPase), a configuration that may contribute to the salt-losing phenotype of Pendred syndrome. Proteins normally coexpressed with pendrin were decreased in pendrin KO CCDs. In conclusion, we show that functional proteomics on a single nephron segment scale allows function-proteome correlations, and may potentially help predicting function from omics data.
Collapse
Affiliation(s)
- Nina Himmerkus
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | | | - Markus Bleich
- Institute of Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | | | - Thomas Benzing
- Center for Molecular Medicine, University of Cologne, Cologne, Germany,Department II of Internal Medicine, University of Cologne, Cologne, Germany
| | - Paul A Welling
- Departments of Physiology and Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Center for Molecular Medicine, University of Cologne, Cologne, Germany,Department II of Internal Medicine, University of Cologne, Cologne, Germany,Scripps Center for Metabolomics, Scripps Research, San Diego, CA, USA,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Corresponding author. E-mail:
| |
Collapse
|
158
|
Castro Machado F, Bittencourt-Cunha P, Malvezzi AM, Arico M, Radio S, Smircich P, Zoltner M, Field MC, Schenkman S. EIF2α phosphorylation is regulated in intracellular amastigotes for the generation of infective Trypanosoma cruzi trypomastigote forms. Cell Microbiol 2020; 22:e13243. [PMID: 32597009 DOI: 10.1111/cmi.13243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Trypanosomatids regulate gene expression mainly at the post-transcriptional level through processing, exporting and stabilising mRNA and control of translation. In most eukaryotes, protein synthesis is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2) at serine 51. Phosphorylation halts overall translation by decreasing availability of initiator tRNAmet to form translating ribosomes. In trypanosomatids, the N-terminus of eIF2α is extended with threonine 169 the homologous phosphorylated residue. Here, we evaluated whether eIF2α phosphorylation varies during the Trypanosoma cruzi life cycle, the etiological agent of Chagas' disease. Total levels of eIF2α are diminished in infective and non-replicative trypomastigotes compared with proliferative forms from the intestine of the insect vector or amastigotes from mammalian cells, consistent with decreased protein synthesis reported in infective forms. eIF2α phosphorylation increases in proliferative intracellular forms prior to differentiation into trypomastigotes. Parasites overexpressing eIF2αT169A or with an endogenous CRISPR/Cas9-generated eIF2αT169A mutation were created and analysis revealed alterations to the proteome, largely unrelated to the presence of μORF in epimastigotes. eIF2αT169A mutant parasites produced fewer trypomastigotes with lower infectivity than wild type, with increased levels of sialylated mucins and oligomannose glycoproteins, and decreased galactofuranose epitopes and the surface protease GP63 on the cell surface. We conclude that eIF2α expression and phosphorylation levels affect proteins relevant for intracellular progression of T. cruzi.
Collapse
Affiliation(s)
- Fabricio Castro Machado
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Bittencourt-Cunha
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amaranta Muniz Malvezzi
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mirella Arico
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Santiago Radio
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Laboratory of Molecular Interactions, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Laboratory of Molecular Interactions, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Martin Zoltner
- Drug Discovery and Evaluation, Centre for Research of Pathogenicity and Virulence of Parasites, Charles University, Prague, Czech Republic
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK.,Institute of Parasitology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sergio Schenkman
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
159
|
Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biol 2020; 18:77. [PMID: 32605621 PMCID: PMC7325665 DOI: 10.1186/s12915-020-00814-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Eukaryotic gene expression is controlled by a number of RNA-binding proteins (RBP), such as the proteins from the Puf (Pumilio and FBF) superfamily (PufSF). These proteins bind to RNA via multiple Puf repeat domains, each of which specifically recognizes a single RNA base. Recently, three diversified PufSF proteins have been described in model organisms, each of which is responsible for the maturation of ribosomal RNA or the translational regulation of mRNAs; however, less is known about the role of these proteins across eukaryotic diversity. RESULTS Here, we investigated the distribution and function of PufSF RBPs in the tree of eukaryotes. We determined that the following PufSF proteins are universally conserved across eukaryotes and can be broadly classified into three groups: (i) Nop9 orthologues, which participate in the nucleolar processing of immature 18S rRNA; (ii) 'classical' Pufs, which control the translation of mRNA; and (iii) PUM3 orthologues, which are involved in the maturation of 7S rRNA. In nearly all eukaryotes, the rRNA maturation proteins, Nop9 and PUM3, are retained as a single copy, while mRNA effectors ('classical' Pufs) underwent multiple lineage-specific expansions. We propose that the variation in number of 'classical' Pufs relates to the size of the transcriptome and thus the potential mRNA targets. We further distinguished full set of PufSF proteins in divergent metamonad Giardia intestinalis and initiated their cellular and biochemical characterization. CONCLUSIONS Our data suggest that the last eukaryotic common ancestor (LECA) already contained all three types of PufSF proteins and that 'classical' Pufs then underwent lineage-specific expansions.
Collapse
Affiliation(s)
- Vladimíra Najdrová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Martina Vinopalová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
160
|
Duma J, Nothaft H, Weaver D, Fodor C, Beadle B, Linton D, Benoit SL, Scott NE, Maier RJ, Szymanski CM. Influence of Protein Glycosylation on Campylobacter fetus Physiology. Front Microbiol 2020; 11:1191. [PMID: 32625174 PMCID: PMC7313396 DOI: 10.3389/fmicb.2020.01191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023] Open
Abstract
Campylobacter fetus is commonly associated with venereal disease and abortions in cattle and sheep, and can also cause intestinal or systemic infections in humans that are immunocompromised, elderly, or exposed to infected livestock. It is also believed that C. fetus infection can result from the consumption or handling of contaminated food products, but C. fetus is rarely detected in food since isolation methods are not suited for its detection and the physiology of the organism makes culturing difficult. In the related species, Campylobacter jejuni, the ability to colonize the host has been linked to N-linked protein glycosylation with quantitative proteomics demonstrating that glycosylation is interconnected with cell physiology. Using label-free quantitative (LFQ) proteomics, we found more than 100 proteins significantly altered in expression in two C. fetus subsp. fetus protein glycosylation (pgl) mutants (pglX and pglJ) compared to the wild-type. Significant increases in the expression of the (NiFe)-hydrogenase HynABC, catalyzing H2-oxidation for energy harvesting, correlated with significantly increased levels of cellular nickel, improved growth in H2 and increased hydrogenase activity, suggesting that N-glycosylation in C. fetus is involved in regulating the HynABC hydrogenase and nickel homeostasis. To further elucidate the function of the C. fetus pgl pathway and its enzymes, heterologous expression in Escherichia coli followed by mutational and functional analyses revealed that PglX and PglY are novel glycosyltransferases involved in extending the C. fetus hexasaccharide beyond the conserved core, while PglJ and PglA have similar activities to their homologs in C. jejuni. In addition, the pgl mutants displayed decreased motility and ethidium bromide efflux and showed an increased sensitivity to antibiotics. This work not only provides insight into the unique protein N-glycosylation pathway of C. fetus, but also expands our knowledge on the influence of protein N-glycosylation on Campylobacter cell physiology.
Collapse
Affiliation(s)
- Justin Duma
- Department of Microbiology, University of Georgia, Athens, GA, United States.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Danielle Weaver
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Christopher Fodor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Bernadette Beadle
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dennis Linton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, United States.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
161
|
Dickinson A, Saraswat M, Syrjänen S, Tohmola T, Silén R, Randén-Brady R, Carpén T, Hagström J, Haglund C, Mattila P, Mäkitie A, Joenväärä S, Silén S. Comparing serum protein levels can aid in differentiating HPV-negative and -positive oropharyngeal squamous cell carcinoma patients. PLoS One 2020; 15:e0233974. [PMID: 32542012 PMCID: PMC7295232 DOI: 10.1371/journal.pone.0233974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The surrogate immunohistochemical marker, p16INK4a, is used in clinical practice to determine the high-risk human papillomavirus (HPV) status of oropharyngeal squamous cell carcinomas (OPSCC). With a specificity of 83%, this will misclassify some patients compared with direct HPV testing. Patients who are p16INK4a-positive but HPV DNA-negative, or RNA-negative, may be unsuitable for treatment de-escalation aimed at reducing treatment-related side effects. We aimed to identify cost-effective serum markers to improve decision making for patients at risk of misclassification by p16INK4a alone. METHODS Serum proteins from pre-treatment samples of 36 patients with OPSCC were identified and quantified using label-free mass spectrometry-based proteomics. HPV-status was determined using p16INK4a/HPV DNA and E6/E7 mRNA. Serum protein expressions were compared between groups of patients according to HPV status, using the unpaired t-test with a Benjamini-Hochberg correction. ROC curves (AUC) were calculated with SPSS (v25). RESULTS Of 174 serum proteins identified, complement component C7 (C7), apolipoprotein F (ApoF) and galectin-3-Binding Protein (LGALS3BP) significantly differed between HPV-positive and -negative tumors (AUC ranging from 0.84-0.87). ApoF levels were more than twice as high in the E6/E7 mRNA HPV-positive group than HPV-negative. CONCLUSIONS Serum C7, ApoF and LGALS3BP levels discriminate between HPV-positive and HPV-negative OPSCC. Further studies are needed to validate these host immunity-related proteins as markers for HPV-associated OPSCC.
Collapse
Affiliation(s)
- Amy Dickinson
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Stina Syrjänen
- Department of Oral Pathology and Oral Radiology, University of Turku, Turku, Finland
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Tiialotta Tohmola
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Robert Silén
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Reija Randén-Brady
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Carpén
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Oral Pathology and Oral Radiology, University of Turku, Turku, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki, University Hospital Helsinki, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki, University Hospital Helsinki, Helsinki, Finland
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Petri Mattila
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Suvi Silén
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
162
|
Samonig L, Loipetzberger A, Blöchl C, Rurik M, Kohlbacher O, Aberger F, Huber CG. Proteins and Molecular Pathways Relevant for the Malignant Properties of Tumor-Initiating Pancreatic Cancer Cells. Cells 2020; 9:E1397. [PMID: 32503348 PMCID: PMC7349116 DOI: 10.3390/cells9061397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer stem cells (CSCs), a small subset of the tumor bulk with highly malignant properties, are deemed responsible for tumor initiation, growth, metastasis, and relapse. In order to reveal molecular markers and determinants of their tumor-initiating properties, we enriched rare stem-like pancreatic tumor-initiating cells (TICs) by harnessing their clonogenic growth capacity in three-dimensional multicellular spheroid cultures. We compared pancreatic TICs isolated from three-dimensional tumor spheroid cultures with nontumor-initiating cells (non-TICs) enriched in planar cultures. Employing differential proteomics (PTX), we identified more than 400 proteins with significantly different expression in pancreatic TICs and the non-TIC population. By combining the unbiased PTX with mRNA expression analysis and literature-based predictions of pro-malignant functions, we nominated the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14) as well as galactin-3-binding protein LGALS3BP (MAC-2-BP) as putative determinants of pancreatic TICs. In silico pathway analysis followed by candidate-based RNA interference mediated loss-of-function analysis revealed a critical role of S100A8, S100A9, and LGALS3BP as molecular determinants of TIC proliferation, migration, and in vivo tumor growth. Our study highlights the power of combining unbiased proteomics with focused gene expression and functional analyses for the identification of novel key regulators of TICs, an approach that warrants further application to identify proteins and pathways amenable to drug targeting.
Collapse
Affiliation(s)
- Lisa Samonig
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
| | - Andrea Loipetzberger
- Department of Biosciences, Cancer Cluster Salzburg, Molecular Cancer and Stem Cell Research, University of Salzburg, A-5020 Salzburg, Austria;
| | - Constantin Blöchl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
| | - Marc Rurik
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; (M.R.); (O.K.)
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; (M.R.); (O.K.)
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076 Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, Molecular Cancer and Stem Cell Research, University of Salzburg, A-5020 Salzburg, Austria;
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
163
|
Le NH, Locard-Paulet M, Stella A, Tomas N, Molle V, Burlet-Schiltz O, Daffé M, Marrakchi H. The protein kinase PknB negatively regulates biosynthesis and trafficking of mycolic acids in mycobacteria. J Lipid Res 2020; 61:1180-1191. [PMID: 32487543 DOI: 10.1194/jlr.ra120000747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis and remains one of the most widespread and deadliest bacterial pathogens in the world. A distinguishing feature of mycobacteria that sets them apart from other bacteria is the unique architecture of their cell wall, characterized by various species-specific lipids, most notably mycolic acids (MAs). Therefore, targeted inhibition of enzymes involved in MA biosynthesis, transport, and assembly has been extensively explored in drug discovery. Additionally, more recent evidence suggests that many enzymes in the MA biosynthesis pathway are regulated by kinase-mediated phosphorylation, thus opening additional drug-development opportunities. However, how phosphorylation regulates MA production remains unclear. Here, we used genetic strategies combined with lipidomics and phosphoproteomics approaches to investigate the role of protein phosphorylation in Mycobacterium The results of this analysis revealed that the Ser/Thr protein kinase PknB regulates the export of MAs and promotes the remodeling of the mycobacterial cell envelope. In particular, we identified the essential MmpL3 as a substrate negatively regulated by PknB. Taken together, our findings add to the understanding of how PknB activity affects the mycobacterial MA biosynthesis pathway and reveal the essential role of protein phosphorylation/dephosphorylation in governing lipid metabolism, paving the way for novel antimycobacterial strategies.
Collapse
Affiliation(s)
- Nguyen-Hung Le
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nicolas Tomas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS, UMR 5235, Montpellier, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
164
|
An atlas of the catalytically active liver and spleen kinases in chicken identified by chemoproteomics. J Proteomics 2020; 225:103850. [PMID: 32502695 DOI: 10.1016/j.jprot.2020.103850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/08/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Phosphorylation is a post-translational protein modification regulating most known cellular processes. While protein kinases constitute a large family of highly conserved enzymes, identification of active kinases is challenging due to a low abundance of some of these signaling molecules. Although chicken is the first agricultural animal to have a sequenced genome, annotation of the kinome, i.e., a complement of all protein kinases in the genome is limited. We used chemical probes consisting of ATP and ADP derivatives binding to specific lysine (Lys) residues within the ATP-binding pocket of kinases, combined with proteomics, to identify 267 peptides labeled with the ATP and ADP acyl derivatives and 188 corresponding chicken kinases in chicken spleen and liver. Our description of active chicken kinases and ATP binding sites will support future studies focused on identifying the role of this important class of enzymes in chicken health and disease. SIGNIFICANCE: Advances made in understanding chicken enzymes are critical for the improved knowledge of the regulatory pathways controlling physiological processes in chicken. Since protein phosphorylation controls multiple aspects of cell fate, it is often linked to pathological conditions, and understanding of the kinase expression in chicken is essential for future therapeutic approaches. We coupled proteomics and labeling with active-site probes binding to Lys residues within the ATP-binding pocket of kinases to identify 188 kinases and corresponding 267 peptides labeled with the ATP and ADP acyl derivatives in chicken spleen and liver. Results of the present study describing catalytically active kinases is a starting point for chemoproteomic-based interrogation of kinases in chicken exposed to different conditions. Kinases identified in this study are available through the Chickspress genome browser that has previously published mRNA, miRNA, and shotgun proteomics data.
Collapse
|
165
|
Bensimon A, Koch JP, Francica P, Roth SM, Riedo R, Glück AA, Orlando E, Blaukat A, Aebersold DM, Zimmer Y, Aebersold R, Medová M. Deciphering MET-dependent modulation of global cellular responses to DNA damage by quantitative phosphoproteomics. Mol Oncol 2020; 14:1185-1206. [PMID: 32336009 PMCID: PMC7266272 DOI: 10.1002/1878-0261.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that interference with growth factor receptor tyrosine kinase (RTK) signaling can affect DNA damage response (DDR) networks, with a consequent impact on cellular responses to DNA-damaging agents widely used in cancer treatment. In that respect, the MET RTK is deregulated in abundance and/or activity in a variety of human tumors. Using two proteomic techniques, we explored how disrupting MET signaling modulates global cellular phosphorylation response to ionizing radiation (IR). Following an immunoaffinity-based phosphoproteomic discovery survey, we selected candidate phosphorylation sites for extensive characterization by targeted proteomics focusing on phosphorylation sites in both signaling networks. Several substrates of the DDR were confirmed to be modulated by sequential MET inhibition and IR, or MET inhibition alone. Upon combined treatment, for two substrates, NUMA1 S395 and CHEK1 S345, the gain and loss of phosphorylation, respectively, were recapitulated using invivo tumor models by immunohistochemistry, with possible utility in future translational research. Overall, we have corroborated phosphorylation sites at the intersection between MET and the DDR signaling networks, and suggest that these represent a class of proteins at the interface between oncogene-driven proliferation and genomic stability.
Collapse
Affiliation(s)
- Ariel Bensimon
- Department of BiologyInstitute of Molecular Systems BiologyETH ZürichSwitzerland
- Present address:
CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Jonas P. Koch
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Paola Francica
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Selina M. Roth
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Rahel Riedo
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Astrid A. Glück
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Eleonora Orlando
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | | | - Daniel M. Aebersold
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZürichSwitzerland
- Faculty of ScienceUniversity of ZürichSwitzerland
| | - Michaela Medová
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| |
Collapse
|
166
|
Hakobyan A, Zhu J, Glatter T, Paczia N, Liesack W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab Eng 2020; 61:181-196. [PMID: 32479801 DOI: 10.1016/j.ymben.2020.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Methane, a non-expensive natural substrate, is used by Methylocystis spp. as a sole source of carbon and energy. Here, we assessed whether Methylocystis sp. strain SC2 is able to also utilize hydrogen as an energy source. The addition of 2% H2 to the culture headspace had the most significant positive effect on the growth yield under CH4 (6%) and O2 (3%) limited conditions. The SC2 biomass yield doubled from 6.41 (±0.52) to 13.82 (±0.69) mg cell dry weight per mmol CH4, while CH4 consumption was significantly reduced. Regardless of H2 addition, CH4 utilization was increasingly redirected from respiration to fermentation-based pathways with decreasing O2/CH4 mixing ratios. Theoretical thermodynamic calculations confirmed that hydrogen utilization under oxygen-limited conditions doubles the maximum biomass yield compared to fully aerobic conditions without H2 addition. Hydrogen utilization was linked to significant changes in the SC2 proteome. In addition to hydrogenase accessory proteins, the production of Group 1d and Group 2b hydrogenases was significantly increased in both short- and long-term incubations. Both long-term incubation with H2 (37 d) and treatments with chemical inhibitors revealed that SC2 growth under hydrogen-utilizing conditions does not require the activity of complex I. Apparently, strain SC2 has the metabolic capacity to channel hydrogen-derived electrons into the quinone pool, which provides a link between hydrogen oxidation and energy production. In summary, H2 may be a promising alternative energy source in biotechnologically oriented methanotroph projects that aim to maximize biomass yield from CH4, such as the production of high-quality feed protein.
Collapse
Affiliation(s)
- Anna Hakobyan
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jing Zhu
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
167
|
Pan-Proteomic Analysis and Elucidation of Protein Abundance among the Closely Related Brucella Species, Brucella abortus and Brucella melitensis. Biomolecules 2020; 10:biom10060836. [PMID: 32486122 PMCID: PMC7355635 DOI: 10.3390/biom10060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a zoonotic infection caused by bacteria of the genus Brucella. The species, B. abortus and B. melitensis, major causative agents of human brucellosis, share remarkably similar genomes, but they differ in their natural hosts, phenotype, antigenic, immunogenic, proteomic and metabolomic properties. In the present study, label-free quantitative proteomic analysis was applied to investigate protein expression level differences. Type strains and field strains were each cultured six times, cells were harvested at a midlogarithmic growth phase and proteins were extracted. Following trypsin digestion, the peptides were desalted, separated by reverse-phase nanoLC, ionized using electrospray ionization and transferred into an linear trap quadrapole (LTQ) Orbitrap Velos mass spectrometer to record full scan MS spectra (m/z 300–1700) and tandem mass spectrometry (MS/MS) spectra of the 20 most intense ions. Database matching with the reference proteomes resulted in the identification of 826 proteins. The Cluster of Gene Ontologies of the identified proteins revealed differences in bimolecular transport and protein synthesis mechanisms between these two strains. Among several other proteins, antifreeze proteins, Omp10, superoxide dismutase and 30S ribosomal protein S14 were predicted as potential virulence factors among the proteins differentially expressed. All mass spectrometry data are available via ProteomeXchange with identifier PXD006348.
Collapse
|
168
|
Shiferaw GA, Vandermarliere E, Hulstaert N, Gabriels R, Martens L, Volders PJ. COSS: A Fast and User-Friendly Tool for Spectral Library Searching. J Proteome Res 2020; 19:2786-2793. [PMID: 32384242 DOI: 10.1021/acs.jproteome.9b00743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Spectral similarity searching to identify peptide-derived MS/MS spectra is a promising technique, and different spectrum similarity search tools have therefore been developed. Each of these tools, however, comes with some limitations, mainly because of low processing speed and issues with handling large databases. Furthermore, the number of spectral data formats supported is typically limited, which also creates a threshold to adoption. We have therefore developed COSS (CompOmics Spectral Searching), a new and user-friendly spectral library search tool supporting two scoring functions. COSS also includes decoy spectra generation for result validation. We have benchmarked COSS on three different spectral libraries and compared the results with established spectral searching tools and a sequence database search tool. Our comparison showed that COSS more reliably identifies spectra, is capable of handling large data sets and libraries, and is an easy to use tool that can run on low computer specifications. COSS binaries and source code can be freely downloaded from https://github.com/compomics/COSS.
Collapse
Affiliation(s)
- Genet Abay Shiferaw
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Elien Vandermarliere
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Niels Hulstaert
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Pieter-Jan Volders
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
169
|
Bundgaard L, Stensballe A, Elbæk KJ, Berg LC. Mass spectrometric analysis of the in vitro secretome from equine bone marrow-derived mesenchymal stromal cells to assess the effect of chondrogenic differentiation on response to interleukin-1β treatment. Stem Cell Res Ther 2020; 11:187. [PMID: 32434555 PMCID: PMC7238576 DOI: 10.1186/s13287-020-01706-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Similar to humans, the horse is a long-lived, athletic species. The use of mesenchymal stromal cells (MSCs) is a relatively new frontier, but has been used with promising results in treating joint diseases, e.g., osteoarthritis. It is believed that MSCs exert their main therapeutic effects through secreted trophic biomolecules. Therefore, it has been increasingly important to characterize the MSC secretome. It has been shown that the effect of the MSCs is strongly influenced by the environment in the host compartment, and it is a crucial issue when considering MSC therapy. The aim of this study was to investigate differences in the in vitro secreted protein profile between naïve and chondrogenic differentiating bone marrow-derived (BM)-MSCs when exposed to an inflammatory environment. Methods Equine BM-MSCs were divided into a naïve group and a chondrogenic group. Cells were treated with normal expansion media or chondrogenic media. Cells were treated with IL-1β for a period of 5 days (stimulation), followed by 5 days without IL-1β (recovery). Media were collected after 48 h and 10 days. The secretomes were digested and analyzed by nanoLC-MS/MS to unravel the orchestration of proteins. Results The inflammatory proteins IL6, CXCL1, CXCL6, CCL7, SEMA7A, SAA, and haptoglobin were identified in the secretome after 48 h from all cells stimulated with IL-1β. CXCL8, OSM, TGF-β1, the angiogenic proteins VCAM1, ICAM1, VEGFA, and VEGFC, the proteases MMP1 and MMP3, and the protease inhibitor TIMP3 were among the proteins only identified in the secretome after 48 h from cells cultured in normal expansion media. After 10-day incubation, the proteins CXCL1, CXCL6, and CCL7 were still identified in the secretome from BM-MSCs stimulated with IL-1β, but the essential inducer of inflammation, IL6, was only identified in the secretome from cells cultured in normal expansion media. Conclusion The findings in this study indicate that naïve BM-MSCs have a more extensive inflammatory response at 48 h to stimulation with IL-1β compared to BM-MSCs undergoing chondrogenic differentiation. This extensive inflammatory response decreased after 5 days without IL-1β (day 10), but a difference in composition of the secretome between naïve and chondrogenic BM-MSCs was still evident.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Kirstine Juul Elbæk
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark
| |
Collapse
|
170
|
Ali M, Kabir F, Raskar S, Renuse S, Na CH, Delannoy M, Khan SY, Riazuddin SA. Generation and proteome profiling of PBMC-originated, iPSC-derived lentoid bodies. Stem Cell Res 2020; 46:101813. [PMID: 32474394 DOI: 10.1016/j.scr.2020.101813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 04/09/2020] [Indexed: 01/13/2023] Open
Abstract
Here, we report proteome profiling of peripheral blood mononuclear cell (PBMC)-originated, induced pluripotent stem cell (iPSC)-derived, lens-like organoids termed lentoid bodies at two differentiation time points. A small aliquot of the blood sample was ascertained to collect PBMCs that were reprogrammed to iPSCs. The PBMC-originated, iPSCs were differentiated to lentoid bodies employing the "fried egg" method. Quantitative real-time PCR (qRT-PCR) analysis revealed increased expression levels of lens-associated markers in lentoid bodies while transmission electron microscopy identified closely packed lens epithelial- and differentiating fiber-like cells in lentoid bodies. Total cellular protein was extracted from lentoid bodies at differentiation day 25 and mass spectrometry identified a total of 9,473 proteins. The low counts of crystallin proteins at differentiation day 25 prompted us to re-examine the proteome at differentiation day 35 as we reasoned that 10 additional days of differentiation will increase the crystallin count. However, we did not detect any substantial increase in crystallin protein counts at differentiation day 35. In conclusion, we report generation and proteome profiles of PBMC-originated, iPSC-derived lentoid bodies at multiple differentiation time points.
Collapse
Affiliation(s)
- Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Snehal Raskar
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Santosh Renuse
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Delannoy
- Department of Cell Biology and Imaging Facility, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
171
|
Aloui C, Barlier C, Awounou D, Thiam S, Fagan J, Claverol S, Tavernier E, Mounier C, Hamzeh-Cognasse H, Cognasse F, Garraud O, Laradi S. Dysregulated pathways and differentially expressed proteins associated with adverse transfusion reactions in different types of platelet components. J Proteomics 2020; 218:103717. [PMID: 32088354 DOI: 10.1016/j.jprot.2020.103717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022]
Abstract
Platelet components (PCs) are occasionally associated with adverse transfusion reactions (ATRs). ATRs can occur regardless of the type of PC being transfused, whether it is a single-donor apheresis PC (SDA-PC) or a pooled PC (PPCs). The purpose of this study was to investigate the proteins and dysregulated pathways in both of the main types of PCs. The proteomic profiles of platelet pellets from SDA-PCs and PPCs involved in ATRs were analysed using the label-free LC-MS/MS method. Differentially expressed proteins with fold changes >|1.5| in clinical cases versus controls were characterised using bioinformatic tools (RStudio, GeneCodis3, and Ingenuity Pathways Analysis (IPA). The proteins were confirmed by western blotting. The common primary proteins found to be dysregulated in both types of PCs were the mitochondrial carnitine/acylcarnitine carrier protein (SLC25A20), multimerin-1 (MMRN1), and calumenin (CALU), which are associated with the important enrichment of platelet activation, platelet degranulation, and mitochondrial activity. Furthermore, this analysis revealed the involvement of commonly dysregulated canonical pathways, particularly mitochondrial dysfunction, platelet activation, and acute phase response. This proteomic analysis provided an interesting contribution to our understanding of the meticulous physiopathology of PCs associated with ATR. A larger investigation would assist in delineating the most relevant proteins to target within preventive transfusion safety strategies. BIOLOGICAL SIGNIFICANCE: Within platelet transfusion strategies, the two primary types of PCs predominantly processed in Europe, include (i) single donor apheresis PCs (SDA-PCs) from one donor and (ii) pooled PCs (PPCs). The current study used PCs from five buffy coats derived from five whole blood donations that were identical in ABO, RH1 and KEL1 groups. Both PC types were shown to be associated with the onset of an ATR in the transfused patient. Several common platelet proteins were found to be dysregulated in bags associated with ATR occurrences regardless of the type of PCs transfused and of their process. The dysregulated proteins included mitochondrial carnitine/acylcarnitine carrier protein (SLC25A20), which is involved in a fatty acid oxidation disorder; calumenin (CALU); and multimerin-1 (MMRN1), which is chiefly involved in platelet activation and degranulation. Dysregulated platelet protein pathways for ATRs that occurred with SDA-PCs and PPCs could support the dysregulated functions found in association with those three proteins. Those common platelet proteins may become candidates to define biomarkers associated with the onset of an ATR from PC transfusions, including monitoring during the quality steps of PC manufacturing, provided that the results are confirmed in larger cohorts. This study enriches our knowledge of platelet proteomics in PCs under pathological conditions.
Collapse
Affiliation(s)
- Chaker Aloui
- French Blood Bank (EFS) Auvergne-Rhône-Alpes, Saint-Etienne, France; GIMAP-EA3064, University of Lyon, Saint-Etienne, France
| | - Céline Barlier
- French Blood Bank (EFS) Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Danielle Awounou
- French Blood Bank (EFS) Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Saliou Thiam
- French Blood Bank (EFS) Auvergne-Rhône-Alpes, Saint-Etienne, France
| | - Jocelyne Fagan
- French Blood Bank (EFS) Auvergne-Rhône-Alpes, Saint-Etienne, France; GIMAP-EA3064, University of Lyon, Saint-Etienne, France
| | - Stéphane Claverol
- Proteome Platform, CGFB, University of Bordeaux Segalen, Bordeaux, France
| | | | | | | | - Fabrice Cognasse
- French Blood Bank (EFS) Auvergne-Rhône-Alpes, Saint-Etienne, France; GIMAP-EA3064, University of Lyon, Saint-Etienne, France
| | - Olivier Garraud
- GIMAP-EA3064, University of Lyon, Saint-Etienne, France; National Institute of Blood Transfusion (INTS), Paris, France
| | - Sandrine Laradi
- French Blood Bank (EFS) Auvergne-Rhône-Alpes, Saint-Etienne, France; GIMAP-EA3064, University of Lyon, Saint-Etienne, France.
| |
Collapse
|
172
|
Aguilar-Rojas A, Castellanos-Castro S, Matondo M, Gianetto QG, Varet H, Sismeiro O, Legendre R, Fernandes J, Hardy D, Coppée JY, Olivo-Marin JC, Guillen N. Insights into amebiasis using a human 3D-intestinal model. Cell Microbiol 2020; 22:e13203. [PMID: 32175652 DOI: 10.1111/cmi.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human-parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three-dimensional (3D)-intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria-like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D-intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Ciudad de México, Mexico
| | - Silvia Castellanos-Castro
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Universidad Autónoma de la Ciudad de México, Colegio de Ciencias y Humanidades, Ciudad de México, Mexico
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Hugo Varet
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Rachel Legendre
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Julien Fernandes
- Institut Pasteur, UTechSPBI, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | | | - Nancy Guillen
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
173
|
Characterization of RNP Networks of PUM1 and PUM2 Post-Transcriptional Regulators in TCam-2 Cells, a Human Male Germ Cell Model. Cells 2020; 9:cells9040984. [PMID: 32316190 PMCID: PMC7226987 DOI: 10.3390/cells9040984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
Mammalian Pumilio (PUM) proteins are sequence-specific, RNA-binding proteins (RBPs) with wide-ranging roles. They are involved in germ cell development, which has functional implications in development and fertility. Although human PUM1 and PUM2 are closely related to each other and recognize the same RNA binding motif, there is some evidence for functional diversity. To address that problem, first we used RIP-Seq and RNA-Seq approaches, and identified mRNA pools regulated by PUM1 and PUM2 proteins in the TCam-2 cell line, a human male germ cell model. Second, applying global mass spectrometry-based profiling, we identified distinct PUM1- and PUM2-interacting putative protein cofactors, most of them involved in RNA processing. Third, combinatorial analysis of RIP and RNA-Seq, mass spectrometry, and RNA motif enrichment analysis revealed that PUM1 and PUM2 form partially varied RNP-regulatory networks (RNA regulons), which indicate different roles in human reproduction and testicular tumorigenesis. Altogether, this work proposes that protein paralogues with very similar and evolutionary highly conserved functional domains may play divergent roles in the cell by combining with different sets of protein cofactors. Our findings highlight the versatility of PUM paralogue-based post-transcriptional regulation, offering insight into the mechanisms underlying their diverse biological roles and diseases resulting from their dysfunction.
Collapse
|
174
|
Bekhouche B, Tourville A, Ravichandran Y, Tacine R, Abrami L, Dussiot M, Khau-Dancasius A, Boccara O, Khirat M, Mangeney M, Dingli F, Loew D, Boëda B, Jordan P, Molina TJ, Bellon N, Fraitag S, Hadj-Rabia S, Blanche S, Puel A, Etienne-Manneville S, van der Goot FG, Cherfils J, Hermine O, Casanova JL, Bodemer C, Smahi A, Delon J. A toxic palmitoylation of Cdc42 enhances NF-κB signaling and drives a severe autoinflammatory syndrome. J Allergy Clin Immunol 2020; 146:1201-1204.e8. [PMID: 32283203 DOI: 10.1016/j.jaci.2020.03.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Bahia Bekhouche
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Aurore Tourville
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Yamini Ravichandran
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France; Sorbonne Université, Collège doctoral, F-75005 Paris, France
| | - Rachida Tacine
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Michael Dussiot
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Andrea Khau-Dancasius
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Olivia Boccara
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Necker- Enfants Malades Hospital (AP-HP), Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Meriem Khirat
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Marianne Mangeney
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Pénélope Jordan
- Fédération de Génétique, Service de Génétique Moléculaire, Hôpital Necker-Enfants Malades, Paris, France
| | - Thierry Jo Molina
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France; Department of Pathology, Necker Enfants Malades, Université de Paris, Paris, France
| | - Nathalia Bellon
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Necker- Enfants Malades Hospital (AP-HP), Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Sylvie Fraitag
- Department of Pathology, reference centre MAGEC, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Necker- Enfants Malades Hospital (AP-HP), Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Stéphane Blanche
- Unité d'Immunologie Hématologie Rhumatologie Pédiatrique, Necker-Enfants Malades Hospital (AP-HP5), Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Descartes University, Imagine Institute, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, Cachan, France
| | - Olivier Hermine
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France; Department of Hematology, Hôpital Necker AP-HP, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Descartes University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, Howard Hughes Medical Institute, New York, NY; Department of Pediatric Immunology and Hematology, Necker-Enfants Malades Hospital (AP-HP), Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Christine Bodemer
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Necker- Enfants Malades Hospital (AP-HP), Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.
| | - Asma Smahi
- Institut Imagine, INSERM U1163, CNRS ERL 8254, Université Paris Descartes, Sorbonne Paris-Cité, Laboratoire d'Excellence GR-Ex, Paris, France.
| | - Jérôme Delon
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.
| |
Collapse
|
175
|
Engle DD, Tiriac H, Rivera KD, Pommier A, Whalen S, Oni TE, Alagesan B, Lee EJ, Yao MA, Lucito MS, Spielman B, Da Silva B, Schoepfer C, Wright K, Creighton B, Afinowicz L, Yu KH, Grützmann R, Aust D, Gimotty PA, Pollard KS, Hruban RH, Goggins MG, Pilarsky C, Park Y, Pappin DJ, Hollingsworth MA, Tuveson DA. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science 2020; 364:1156-1162. [PMID: 31221853 DOI: 10.1126/science.aaw3145] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/25/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation alterations are indicative of tissue inflammation and neoplasia, but whether these alterations contribute to disease pathogenesis is largely unknown. To study the role of glycan changes in pancreatic disease, we inducibly expressed human fucosyltransferase 3 and β1,3-galactosyltransferase 5 in mice, reconstituting the glycan sialyl-Lewisa, also known as carbohydrate antigen 19-9 (CA19-9). Notably, CA19-9 expression in mice resulted in rapid and severe pancreatitis with hyperactivation of epidermal growth factor receptor (EGFR) signaling. Mechanistically, CA19-9 modification of the matricellular protein fibulin-3 increased its interaction with EGFR, and blockade of fibulin-3, EGFR ligands, or CA19-9 prevented EGFR hyperactivation in organoids. CA19-9-mediated pancreatitis was reversible and could be suppressed with CA19-9 antibodies. CA19-9 also cooperated with the KrasG12D oncogene to produce aggressive pancreatic cancer. These findings implicate CA19-9 in the etiology of pancreatitis and pancreatic cancer and nominate CA19-9 as a therapeutic target.
Collapse
Affiliation(s)
- Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Keith D Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Arnaud Pommier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eun Jung Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Melissa A Yao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matthew S Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Spielman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brandon Da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Christina Schoepfer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kevin Wright
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brianna Creighton
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lauren Afinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kenneth H Yu
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Joan and Sanford I. Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Daniela Aust
- Institute for Pathology, Universitätsklinikum Dresden, 01307 Dresden, Germany
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, Institute for Computational Health Sciences, and Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ralph H Hruban
- Sidney Kimmel Cancer Center, The Sol Goldman Pancreatic Cancer Research Center, and Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael G Goggins
- Sidney Kimmel Cancer Center, The Sol Goldman Pancreatic Cancer Research Center, and Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA.,Departments of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. .,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
176
|
Anjo SI, Dos Santos PV, Rosado L, Baltazar G, Baldeiras I, Pires D, Gomes A, Januário C, Castelo-Branco M, Grãos M, Manadas B. A different vision of translational research in biomarker discovery: a pilot study on circulatory mitochondrial proteins as Parkinson's disease potential biomarkers. Transl Neurodegener 2020; 9:11. [PMID: 32266064 PMCID: PMC7118951 DOI: 10.1186/s40035-020-00188-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background The identification of circulating biomarkers that closely correlate with Parkinson’s Disease (PD) has failed several times in the past. Nevertheless, in this pilot study, a translational approach was conducted, allowing the evaluation of the plasma levels of two mitochondrial-related proteins, whose combination leads to a robust model with potential diagnostic value to discriminate the PD patients from matched controls. Methods The proposed translational approach was initiated by the analysis of secretomes from cells cultured under control or well-defined oxidative stress conditions, followed by the identification of proteins related to PD pathologic mechanisms that were altered between the two states. This pipeline was further translated into the analysis of undepleted plasma samples from 28 control and 31 PD patients. Results From the secretome analysis, several mitochondria-related proteins were found to be differentially released between control and stress conditions and to be able to distinguish the two secretomes. Similarly, two mitochondrial-related proteins were found to be significantly changed in a PD cohort compared to matched controls. Moreover, a linear discriminant model with potential diagnostic value to discriminate PD patients was obtained using the combination of these two proteins. Both proteins are associated with apoptotic mitochondrial changes, which may correspond to potential indicators of cell death. Moreover, one of these proteins, the VPS35 protein, was reported in plasma for the first time, and its quantification was only possible due to its previous identification in the secretome analysis. Conclusions In this work, an adaptation of a translational pipeline for biomarker selection was presented and transposed to neurological diseases, in the present case Parkinson’s Disease. The novelty and success of this pilot study may arise from the combination of: i) a translational research pipeline, where plasma samples are interrogated using knowledge previously obtained from the evaluation of cells’ secretome under oxidative stress; ii) the combined used of statistical analysis and an informed selection of candidates based on their link with relevant disease mechanisms, and iii) the use of SWATH-MS, an untargeted MS method that allows a complete record of the analyzed samples and a targeted data extraction of the quantitative values of proteins previously identified.
Collapse
Affiliation(s)
- Sandra I Anjo
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,2Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Luiza Rosado
- 4Centro Hospitalar Cova da Beira, E.P.E, Covilhã, Portugal
| | - Graça Baltazar
- 3Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Inês Baldeiras
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,2Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,5Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Diana Pires
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Andreia Gomes
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Cristina Januário
- 5Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Coimbra, Portugal
| | - Mário Grãos
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,7Biocant, Biotechnology Transfer Association, Cantanhede, Portugal.,8Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Bruno Manadas
- 1CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,8Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| |
Collapse
|
177
|
Zhang J, Tang N, Zhao Y, Zhao R, Fu X, Zhao D, Zhao Y, Huang L, Li C, Qiu Y, Xue B, Fang L. Global Phosphoproteomic Analysis Reveals Significant Metabolic Reprogramming in the Termination of Liver Regeneration in Mice. J Proteome Res 2020; 19:1788-1799. [PMID: 32105074 PMCID: PMC7205775 DOI: 10.1021/acs.jproteome.0c00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorylation is crucial in regulating various biological processes. However, comprehensive phosphoproteomic profiling in the termination of liver regeneration (LR) is still missing. Here, we used Tandem Mass Tag (TMT) labeling coupled with phosphopeptide enrichment and two-dimensional (2D) liquid chromatography-mass spectrometry (LC-MS)/MS analysis to establish a global phosphoproteomic map in the liver of mice at day 5 after partial hepatectomy (PH). Altogether, 9731 phosphosites from 3443 proteins were identified and 7802 phosphosites from 2980 proteins were quantified. Motif analysis of the identified phosphosites revealed a diverse array of consensus sequences, suggesting that multiple kinase families including ERK/MAPK, PKA/PKC, CaMK-II, CKII, and CDK may be involved in the termination of LR. Functional clustering analysis of proteins with dysregulated phosphosites showed that they mainly participate in metabolic pathways, DNA replication, and tight junction. More importantly, the deletion of PP2Acα in the liver remarkably changes the overall phosphorylation profile, indicating its critical role in regulating the termination of LR. Finally, several differentially phosphorylated sites were validated by co-immunoprecipitation and Western blot. Taken together, our data unravel the first comprehensive phosphoproteomic map in the termination of LR in mice, which greatly expands our knowledge in the complicated regulation of this process and provides new directions for the treatment of liver cancer using liver resection.
Collapse
Affiliation(s)
- Jingzi Zhang
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Neng Tang
- Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Yinjuan Zhao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ruoyu Zhao
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Xiao Fu
- Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Dandan Zhao
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Chaojun Li
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Yudong Qiu
- Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Fang
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
178
|
Ferreira D, Escudeiro A, Adega F, Anjo SI, Manadas B, Chaves R. FA-SAT ncRNA interacts with PKM2 protein: depletion of this complex induces a switch from cell proliferation to apoptosis. Cell Mol Life Sci 2020; 77:1371-1386. [PMID: 31346634 PMCID: PMC11104958 DOI: 10.1007/s00018-019-03234-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/11/2023]
Abstract
FA-SAT is a highly conserved satellite DNA sequence transcribed in many Bilateria species. To disclose the cellular and functional profile of FA-SAT non-coding RNAs, a comprehensive experimental approach, including the transcripts location in the cell and in the cell cycle, the identification of its putative protein interactors, and silencing/ectopic expression phenotype analysis, was performed. FA-SAT non-coding RNAs play a nuclear function at the G1 phase of the cell cycle and the interactomic assay showed that the PKM2 protein is the main interactor. The disruption of the FA-SAT non-coding RNA/PKM2 protein complex, by the depletion of either FA-SAT or PKM2, results in the same phenotype-apoptosis, and the ectopic overexpression of FA-SAT did not affect the cell-cycle progression, but promotes the PKM2 nuclear accumulation. Overall, our data first describe the importance of this ribonucleoprotein complex in apoptosis and cell-cycle progression, what foresees a promising novel candidate molecular target for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Daniela Ferreira
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Escudeiro
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra I Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Lisbon, Portugal.
| |
Collapse
|
179
|
Zhu J, Lin YH, Dingess KA, Mank M, Stahl B, Heck AJR. Quantitative Longitudinal Inventory of the N-Glycoproteome of Human Milk from a Single Donor Reveals the Highly Variable Repertoire and Dynamic Site-Specific Changes. J Proteome Res 2020; 19:1941-1952. [PMID: 32125861 PMCID: PMC7252941 DOI: 10.1021/acs.jproteome.9b00753] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein N-glycosylation on human milk proteins assists in protecting an infant's health and functions among others as competitive inhibitors of pathogen binding and immunomodulators. Due to the individual uniqueness of each mother's milk and the overall complexity and temporal changes of protein N-glycosylation, analysis of the human milk N-glycoproteome requires longitudinal personalized approaches, providing protein- and N-site-specific quantitative information. Here, we describe an automated platform using hydrophilic-interaction chromatography (HILIC)-based cartridges enabling the proteome-wide monitoring of intact N-glycopeptides using just a digest of 150 μg of breast milk protein. We were able to map around 1700 glycopeptides from 110 glycoproteins covering 191 glycosites, of which 43 sites have not been previously reported with experimental evidence. We next quantified 287 of these glycopeptides originating from 50 glycoproteins using a targeted proteomics approach. Although each glycoprotein, N-glycosylation site, and attached glycan revealed distinct dynamic changes, we did observe a few general trends. For instance, fucosylation, especially terminal fucosylation, increased across the lactation period. Building on the improved glycoproteomics approach outlined above, future studies are warranted to reveal the potential impact of the observed glycosylation microheterogeneity on the healthy development of infants.
Collapse
Affiliation(s)
- Jing Zhu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Beijing Institute of Nutritional Resources, 100069 Beijing, China
| | - Yu-Hsien Lin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marko Mank
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, The Netherlands.,Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CG Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
180
|
Mejhert N, Kuruvilla L, Gabriel KR, Elliott SD, Guie MA, Wang H, Lai ZW, Lane EA, Christiano R, Danial NN, Farese RV, Walther TC. Partitioning of MLX-Family Transcription Factors to Lipid Droplets Regulates Metabolic Gene Expression. Mol Cell 2020; 77:1251-1264.e9. [PMID: 32023484 PMCID: PMC7397554 DOI: 10.1016/j.molcel.2020.01.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leena Kuruvilla
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katlyn R Gabriel
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shane D Elliott
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marie-Aude Guie
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huajin Wang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Lane
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Romain Christiano
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
181
|
MELK mediates the stability of EZH2 through site-specific phosphorylation in extranodal natural killer/T-cell lymphoma. Blood 2020; 134:2046-2058. [PMID: 31434700 DOI: 10.1182/blood.2019000381] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Oncogenic EZH2 is overexpressed and extensively involved in the pathophysiology of different cancers including extranodal natural killer/T-cell lymphoma (NKTL). However, the mechanisms regarding EZH2 upregulation is poorly understood, and it still remains untargetable in NKTL. In this study, we examine EZH2 protein turnover in NKTL and identify MELK kinase as a regulator of EZH2 ubiquitination and turnover. Using quantitative mass spectrometry analysis, we observed a MELK-mediated increase of EZH2 S220 phosphorylation along with a concomitant loss of EZH2 K222 ubiquitination, suggesting a phosphorylation-dependent regulation of EZH2 ubiquitination. MELK inhibition through both chemical and genetic means led to ubiquitination and destabilization of EZH2 protein. Importantly, we determine that MELK is upregulated in NKTL, and its expression correlates with EZH2 protein expression as determined by tissue microarray derived from NKTL patients. FOXM1, which connected MELK to EZH2 signaling in glioma, was not involved in mediating EZH2 ubiquitination. Furthermore, we identify USP36 as the deubiquitinating enzyme that deubiquitinates EZH2 at K222. These findings uncover an important role of MELK and USP36 in mediating EZH2 stability in NKTL. Moreover, MELK overexpression led to decreased sensitivity to bortezomib treatment in NKTL based on deprivation of EZH2 ubiquitination. Therefore, modulation of EZH2 ubiquitination status by targeting MELK may be a new therapeutic strategy for NKTL patients with poor bortezomib response.
Collapse
|
182
|
Role of Plasmodium falciparum Protein GEXP07 in Maurer's Cleft Morphology, Knob Architecture, and P. falciparum EMP1 Trafficking. mBio 2020; 11:mBio.03320-19. [PMID: 32184257 PMCID: PMC7078486 DOI: 10.1128/mbio.03320-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The trafficking of the virulence antigen PfEMP1 and its presentation at the knob structures at the surface of parasite-infected RBCs are central to severe adhesion-related pathologies such as cerebral and placental malaria. This work adds to our understanding of how PfEMP1 is trafficked to the RBC membrane by defining the protein-protein interaction networks that function at the Maurer’s clefts controlling PfEMP1 loading and unloading. We characterize a protein needed for virulence protein trafficking and provide new insights into the mechanisms for host cell remodeling, parasite survival within the host, and virulence. The malaria parasite Plasmodium falciparum traffics the virulence protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of infected red blood cells (RBCs) via membranous organelles, known as the Maurer’s clefts. We developed a method for efficient enrichment of Maurer’s clefts and profiled the protein composition of this trafficking organelle. We identified 13 previously uncharacterized or poorly characterized Maurer’s cleft proteins. We generated transfectants expressing green fluorescent protein (GFP) fusions of 7 proteins and confirmed their Maurer’s cleft location. Using co-immunoprecipitation and mass spectrometry, we generated an interaction map of proteins at the Maurer’s clefts. We identified two key clusters that may function in the loading and unloading of PfEMP1 into and out of the Maurer’s clefts. We focus on a putative PfEMP1 loading complex that includes the protein GEXP07/CX3CL1-binding protein 2 (CBP2). Disruption of GEXP07 causes Maurer’s cleft fragmentation, aberrant knobs, ablation of PfEMP1 surface expression, and loss of the PfEMP1-mediated adhesion. ΔGEXP07 parasites have a growth advantage compared to wild-type parasites, and the infected RBCs are more deformable and more osmotically fragile.
Collapse
|
183
|
Knöppel A, Andersson DI, Näsvall J. Synonymous Mutations in rpsT Lead to Ribosomal Assembly Defects That Can Be Compensated by Mutations in fis and rpoA. Front Microbiol 2020; 11:340. [PMID: 32210939 PMCID: PMC7069363 DOI: 10.3389/fmicb.2020.00340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2020] [Indexed: 11/21/2022] Open
Abstract
We previously described how four deleterious synonymous mutations in the Salmonella enterica rpsT gene (encoding ribosomal protein S20) result in low S20 levels that can be compensated by mutations that restore [S20]. Here, we have further studied the cause for the deleterious effects of S20 deficiency and found that the S20 mutants were also deficient in four other 30S proteins (S1, S2, S12, and S21), which is likely due to an assembly defect of the S20 deficient 30S subunits. We examined the compensatory effect by six additional mutations affecting the global regulator Fis and the C-terminal domain of the α subunit of RNA polymerase (encoded by rpoA). The fis and rpoA mutations restored the S20 levels, concomitantly restoring the assembly defect and the levels of S1, S2, S12, and S21. These results illustrate the complexity of compensatory evolution and how the negative effects of deleterious mutations can be suppressed by a multitude of mechanisms. Additionally, we found that the mutations in fis and rpoA caused reduced expression of other ribosomal components. Notably, some of the fis mutations and the rpoA mutation corrected the fitness of the rpsT mutants to wild-type levels, although expression of other ribosomal components was reduced compared to wild-type. This finding raises new questions regarding the relation between translation capacity and growth rate.
Collapse
|
184
|
Beltran-Camacho L, Jimenez-Palomares M, Rojas-Torres M, Sanchez-Gomar I, Rosal-Vela A, Eslava-Alcon S, Perez-Segura MC, Serrano A, Antequera-González B, Alonso-Piñero JA, González-Rovira A, Extremera-García MJ, Rodriguez-Piñero M, Moreno-Luna R, Larsen MR, Durán-Ruiz MC. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther 2020; 11:106. [PMID: 32143690 PMCID: PMC7060566 DOI: 10.1186/s13287-020-01591-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/10/2020] [Accepted: 02/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background Critical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities. Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization. Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues. Methods Balb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 μl physiological serum (SC, n:8) or 5 × 105 human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related. Results Administration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown. Conclusions Our results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network. Graphical abstract ![]()
Collapse
Affiliation(s)
- Lucia Beltran-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Margarita Jimenez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Ismael Sanchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Sara Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | | | - Ana Serrano
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain
| | - Borja Antequera-González
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Jose Angel Alonso-Piñero
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Almudena González-Rovira
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | - Mª Jesús Extremera-García
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain.,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain
| | | | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cadiz, Spain. .,Institute of Biomedical Research Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
185
|
Castillejo MÁ, Fondevilla-Aparicio S, Fuentes-Almagro C, Rubiales D. Quantitative Analysis of Target Peptides Related to Resistance Against Ascochyta Blight ( Peyronellaea pinodes) in Pea. J Proteome Res 2020; 19:1000-1012. [PMID: 32040328 DOI: 10.1021/acs.jproteome.9b00365] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peyronellaea pinodes causes Ascochyta blight, one of the major diseases in pea worldwide. Cultivated pea plants have a low resistance to this disease. Although quantitative trait loci (QTLs) involved in the resistance to Ascochyta blight have been identified, the specific genes associated with these QTLs remain unknown, which makes marker-assisted selection difficult. Complex traits alter proteins and their abundance. Quantitative estimation of proteins in pea might therefore be useful in selecting potential markers for breeding. In this work, we developed a strategy using a combination of shotgun proteomics (viz., high performance liquid chromatography-mass spectrometry data-dependent acquisition) and data-independent acquisition (DIA) analysis, to identify putative protein markers associated with resistance to Ascochyta blight and explored its use for breeding selection. For this purpose, an initial list of target peptides based on proteins closely related to resistance to P. pinodes was compiled by using two genotypes with contrasting responses to the disease. Then, targeted data analysis (viz., shotgun proteomics-DIA) was used for constitutive quantification of the target peptides in a representative number of the recombinant inbred line population segregated for resistance as derived from a cross between the two genotypes. Finally, a peptide panel of potential markers for resistance to P. pinodes was built. The results thus obtained are discussed and compared with those of previous gene expression studies using the same parental pea genotypes responding to the pathogen. Also, a molecular defense mechanism against Ascochyta blight in pea is proposed. To the authors' knowledge, this is the first time a targeted proteomics approach based on data analysis has been used to identify peptides associated with resistance to this disease.
Collapse
Affiliation(s)
| | | | | | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| |
Collapse
|
186
|
CenH3-Independent Kinetochore Assembly in Lepidoptera Requires CCAN, Including CENP-T. Curr Biol 2020; 30:561-572.e10. [PMID: 32032508 DOI: 10.1016/j.cub.2019.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023]
Abstract
Accurate chromosome segregation requires assembly of the multiprotein kinetochore complex at centromeres. In most eukaryotes, kinetochore assembly is primed by the histone H3 variant CenH3 (also called CENP-A), which physically interacts with components of the inner kinetochore constitutive centromere-associated network (CCAN). Unexpectedly, regarding its critical function, previous work identified that select eukaryotic lineages, including several insects, have lost CenH3 while having retained homologs of the CCAN. These findings imply alternative CCAN assembly pathways in these organisms that function in CenH3-independent manners. Here we study the composition and assembly of CenH3-deficient kinetochores of Lepidoptera (butterflies and moths). We show that lepidopteran kinetochores consist of previously identified CCAN homologs as well as additional components, including a divergent CENP-T homolog, that are required for accurate mitotic progression. Our study focuses on CENP-T, which we found to be sufficient to recruit the Mis12 and Ndc80 outer kinetochore complexes. In addition, CRISPR-mediated gene editing in Bombyx mori establishes an essential function of CENP-T in vivo. Finally, the retention of CENP-T and additional CCAN homologs in other independently derived CenH3-deficient insects indicates a conserved mechanism of kinetochore assembly between these lineages. Our study provides the first functional insights into CCAN-based kinetochore assembly pathways that function independently of CenH3, contributing to the emerging picture of an unexpected plasticity to build a kinetochore.
Collapse
|
187
|
Cygan AM, Theisen TC, Mendoza AG, Marino ND, Panas MW, Boothroyd JC. Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins within the Toxoplasma gondii Parasitophorous Vacuole Required for Translocation of Dense Granule Effectors into Host Cells. mSphere 2020; 5:e00858-19. [PMID: 32075880 PMCID: PMC7031616 DOI: 10.1128/msphere.00858-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/24/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous, intracellular protozoan that extensively modifies infected host cells through secreted effector proteins. Many such effectors must be translocated across the parasitophorous vacuole (PV), in which the parasites replicate, ultimately ending up in the host cytosol or nucleus. This translocation has previously been shown to be dependent on five parasite proteins: MYR1, MYR2, MYR3, ROP17, and ASP5. We report here the identification of several MYR1-interacting and novel PV-localized proteins via affinity purification of MYR1, including TGGT1_211460 (dubbed MYR4), TGGT1_204340 (dubbed GRA54), and TGGT1_270320 (PPM3C). Further, we show that three of the MYR1-interacting proteins, GRA44, GRA45, and MYR4, are essential for the translocation of the Toxoplasma effector protein GRA16 and for the upregulation of human c-Myc and cyclin E1 in infected cells. GRA44 and GRA45 contain ASP5 processing motifs, but like MYR1, processing at these sites appears to be nonessential for their role in protein translocation. These results expand our understanding of the mechanism of effector translocation in Toxoplasma and indicate that the process is highly complex and dependent on at least eight discrete proteins.IMPORTANCEToxoplasma is an extremely successful intracellular parasite and important human pathogen. Upon infection of a new cell, Toxoplasma establishes a replicative vacuole and translocates parasite effectors across this vacuole to function from the host cytosol and nucleus. These effectors play a key role in parasite virulence. The work reported here newly identifies three parasite proteins that are necessary for protein translocation into the host cell. These results significantly increase our knowledge of the molecular players involved in protein translocation in Toxoplasma-infected cells and provide additional potential drug targets.
Collapse
Affiliation(s)
- Alicja M Cygan
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Terence C Theisen
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Alma G Mendoza
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Nicole D Marino
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Michael W Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
188
|
Functional dissection of the retrograde Shiga toxin trafficking inhibitor Retro-2. Nat Chem Biol 2020; 16:327-336. [PMID: 32080624 PMCID: PMC7039708 DOI: 10.1038/s41589-020-0474-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
The retrograde transport inhibitor Retro-2 has a protective effect on cells and in mice against Shiga-like toxins and ricin. Retro-2 causes toxin accumulation in early endosomes, and relocalization of the Golgi SNARE protein syntaxin-5 to the endoplasmic reticulum. The molecular mechanisms by which this is achieved remain unknown. Here, we show that Retro-2 targets the endoplasmic reticulum exit site component Sec16A, affecting anterograde transport of syntaxin-5 from the endoplasmic reticulum to the Golgi. The formation of canonical SNARE complexes involving syntaxin-5 is not affected in Retro-2-treated cells. In contrast, the interaction of syntaxin-5 with a newly discovered binding partner, the retrograde trafficking chaperone GPP130, is abolished, and we show that GPP130 must indeed bind to syntaxin-5 to drive Shiga toxin transport from endosomes to the Golgi. We thereby identify Sec16A as a druggable target, and provide evidence for a non-SNARE function for syntaxin-5 in interaction with the GPP130.
Collapse
|
189
|
Wein S, Andrews B, Sachsenberg T, Santos-Rosa H, Kohlbacher O, Kouzarides T, Garcia BA, Weisser H. A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. Nat Commun 2020; 11:926. [PMID: 32066737 PMCID: PMC7026122 DOI: 10.1038/s41467-020-14665-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The field of epitranscriptomics continues to reveal how post-transcriptional modification of RNA affects a wide variety of biological phenomena. A pivotal challenge in this area is the identification of modified RNA residues within their sequence contexts. Mass spectrometry (MS) offers a comprehensive solution by using analogous approaches to shotgun proteomics. However, software support for the analysis of RNA MS data is inadequate at present and does not allow high-throughput processing. Existing software solutions lack the raw performance and statistical grounding to efficiently handle the numerous modifications found on RNA. We present a free and open-source database search engine for RNA MS data, called NucleicAcidSearchEngine (NASE), that addresses these shortcomings. We demonstrate the capability of NASE to reliably identify a wide range of modified RNA sequences in four original datasets of varying complexity. In human tRNA, we characterize over 20 different modification types simultaneously and find many cases of incomplete modification.
Collapse
Affiliation(s)
- Samuel Wein
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
| | - Byron Andrews
- STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Timo Sachsenberg
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Tübingen, Germany
| | | | - Oliver Kohlbacher
- Center for Bioinformatics Tübingen, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | | | - Benjamin A Garcia
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hendrik Weisser
- STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
190
|
Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat Commun 2020; 11:896. [PMID: 32060274 PMCID: PMC7021791 DOI: 10.1038/s41467-020-14639-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Predicting the outcome of immunotherapy treatment in melanoma patients is challenging. Alterations in genes involved in antigen presentation and the interferon gamma (IFNγ) pathway play an important role in the immune response to tumors. We describe here that the overexpression of PSMB8 and PSMB9, two major components of the immunoproteasome, is predictive of better survival and improved response to immune-checkpoint inhibitors of melanoma patients. We study the mechanism underlying this connection by analyzing the antigenic peptide repertoire of cells that overexpress these subunits using HLA peptidomics. We find a higher response of patient-matched tumor infiltrating lymphocytes against antigens diferentially presented after immunoproteasome overexpression. Importantly, we find that PSMB8 and PSMB9 expression levels are much stronger predictors of melanoma patientsʼ immune response to checkpoint inhibitors than the tumors’ mutational burden. These results suggest that PSMB8 and PSMB9 expression levels can serve as important biomarkers for stratifying melanoma patients for immune-checkpoint treatment. The response to immunotherapy of melanoma patients is heterogeneous. Here, the authors demonstrate that a high expression of the two major components of the immunoproteasome, PSMB8 and PSMB9, modulates the production of HLA peptides and it is predictive of better survival and improved response to immune-checkpoint inhibitors of melanoma patients.
Collapse
|
191
|
Sparvoli D, Zoltner M, Cheng CY, Field MC, Turkewitz AP. Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila. J Cell Sci 2020; 133:jcs238659. [PMID: 31964712 PMCID: PMC7033735 DOI: 10.1242/jcs.238659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
192
|
Fürsch J, Kammer KM, Kreft SG, Beck M, Stengel F. Proteome-Wide Structural Probing of Low-Abundant Protein Interactions by Cross-Linking Mass Spectrometry. Anal Chem 2020; 92:4016-4022. [DOI: 10.1021/acs.analchem.9b05559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Julius Fürsch
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Kai-Michael Kammer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefan G. Kreft
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3. 60438 Frankfurt am Main, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
193
|
Ham AS, Chojnowska K, Tintignac LA, Lin S, Schmidt A, Ham DJ, Sinnreich M, Rüegg MA. mTORC1 signalling is not essential for the maintenance of muscle mass and function in adult sedentary mice. J Cachexia Sarcopenia Muscle 2020; 11:259-273. [PMID: 31697050 PMCID: PMC7015237 DOI: 10.1002/jcsm.12505] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The balance between protein synthesis and degradation (proteostasis) is a determining factor for muscle size and function. Signalling via the mammalian target of rapamycin complex 1 (mTORC1) regulates proteostasis in skeletal muscle by affecting protein synthesis and autophagosomal protein degradation. Indeed, genetic inactivation of mTORC1 in developing and growing muscle causes atrophy resulting in a lethal myopathy. However, systemic dampening of mTORC1 signalling by its allosteric inhibitor rapamycin is beneficial at the organismal level and increases lifespan. Whether the beneficial effect of rapamycin comes at the expense of muscle mass and function is yet to be established. METHODS We conditionally ablated the gene coding for the mTORC1-essential component raptor in muscle fibres of adult mice [inducible raptor muscle-specific knockout (iRAmKO)]. We performed detailed phenotypic and biochemical analyses of iRAmKO mice and compared them with muscle-specific raptor knockout (RAmKO) mice, which lack raptor in developing muscle fibres. We also used polysome profiling and proteomics to assess protein translation and associated signalling in skeletal muscle of iRAmKO mice. RESULTS Analysis at different time points reveal that, as in RAmKO mice, the proportion of oxidative fibres decreases, but slow-type fibres increase in iRAmKO mice. Nevertheless, no significant decrease in body and muscle mass or muscle fibre area was detected up to 5 months post-raptor depletion. Similarly, ex vivo muscle force was not significantly reduced in iRAmKO mice. Despite stable muscle size and function, inducible raptor depletion significantly reduced the expression of key components of the translation machinery and overall translation rates. CONCLUSIONS Raptor depletion and hence complete inhibition of mTORC1 signalling in fully grown muscle leads to metabolic and morphological changes without inducing muscle atrophy even after 5 months. Together, our data indicate that maintenance of muscle size does not require mTORC1 signalling, suggesting that rapamycin treatment is unlikely to negatively affect muscle mass and function.
Collapse
Affiliation(s)
| | | | - Lionel A Tintignac
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Daniel J Ham
- Biozentrum, University of Basel, Basel, Switzerland
| | - Michael Sinnreich
- Department of Biomedicine, Pharmazentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
194
|
Le P, Kunold E, Macsics R, Rox K, Jennings MC, Ugur I, Reinecke M, Chaves-Moreno D, Hackl MW, Fetzer C, Mandl FAM, Lehmann J, Korotkov VS, Hacker SM, Kuster B, Antes I, Pieper DH, Rohde M, Wuest WM, Medina E, Sieber SA. Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nat Chem 2020; 12:145-158. [PMID: 31844194 PMCID: PMC6994260 DOI: 10.1038/s41557-019-0378-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022]
Abstract
New drugs are desperately needed to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report screening commercial kinase inhibitors for antibacterial activity and found the anticancer drug sorafenib as major hit that effectively kills MRSA strains. Varying the key structural features led to the identification of a potent analogue, PK150, that showed antibacterial activity against several pathogenic strains at submicromolar concentrations. Furthermore, this antibiotic eliminated challenging persisters as well as established biofilms. PK150 holds promising therapeutic potential as it did not induce in vitro resistance, and shows oral bioavailability and in vivo efficacy. Analysis of the mode of action using chemical proteomics revealed several targets, which included interference with menaquinone biosynthesis by inhibiting demethylmenaquinone methyltransferase and the stimulation of protein secretion by altering the activity of signal peptidase IB. Reduced endogenous menaquinone levels along with enhanced levels of extracellular proteins of PK150-treated bacteria support this target hypothesis. The associated antibiotic effects, especially the lack of resistance development, probably stem from the compound's polypharmacology.
Collapse
Affiliation(s)
- Philipp Le
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany
| | - Elena Kunold
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Robert Macsics
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Centre for Infection Research, Partner Site Braunschweig-Hannover, Hannover, Germany
| | - Megan C Jennings
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Ilke Ugur
- Center for Integrated Protein Science, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Maria Reinecke
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Diego Chaves-Moreno
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mathias W Hackl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany
| | - Christian Fetzer
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany
| | - Franziska A M Mandl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany
| | - Johannes Lehmann
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany
| | - Vadim S Korotkov
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany
| | - Stephan M Hacker
- Department of Chemistry, Technische Universität München, Garching bei München, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
- German Cancer Research Center, Heidelberg, Germany
- Center for Integrated Protein Science Munich, Garching bei München, Germany
| | - Iris Antes
- Center for Integrated Protein Science, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA, USA
- Emory Antibiotic Resistance Center, Emory School of Medicine, Atlanta, GA, USA
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Garching bei München, Germany.
- Chair of Organic Chemistry II, Technische Universität München, Garching bei München, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany.
| |
Collapse
|
195
|
Singh PP, Shukla M, White SA, Lafos M, Tong P, Auchynnikava T, Spanos C, Rappsilber J, Pidoux AL, Allshire RC. Hap2-Ino80-facilitated transcription promotes de novo establishment of CENP-A chromatin. Genes Dev 2020; 34:226-238. [PMID: 31919190 PMCID: PMC7000912 DOI: 10.1101/gad.332536.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Centromeres are maintained epigenetically by the presence of CENP-A, an evolutionarily conserved histone H3 variant, which directs kinetochore assembly and hence centromere function. To identify factors that promote assembly of CENP-A chromatin, we affinity-selected solubilized fission yeast CENP-ACnp1 chromatin. All subunits of the Ino80 complex were enriched, including the auxiliary subunit Hap2. Chromatin association of Hap2 is Ies4-dependent. In addition to a role in maintenance of CENP-ACnp1 chromatin integrity at endogenous centromeres, Hap2 is required for de novo assembly of CENP-ACnp1 chromatin on naïve centromere DNA and promotes H3 turnover on centromere regions and other loci prone to CENP-ACnp1 deposition. Prior to CENP-ACnp1 chromatin assembly, Hap2 facilitates transcription from centromere DNA. These analyses suggest that Hap2-Ino80 destabilizes H3 nucleosomes on centromere DNA through transcription-coupled histone H3 turnover, driving the replacement of resident H3 nucleosomes with CENP-ACnp1 nucleosomes. These inherent properties define centromere DNA by directing a program that mediates CENP-ACnp1 assembly on appropriate sequences.
Collapse
Affiliation(s)
- Puneet P. Singh
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Manu Shukla
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Sharon A. White
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Marcel Lafos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Tatsiana Auchynnikava
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom;,Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Alison L. Pidoux
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
196
|
Fumarate dependent protein composition under aerobic and anaerobic growth conditions in Escherichia coli. J Proteomics 2020; 212:103583. [DOI: 10.1016/j.jprot.2019.103583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 11/21/2022]
|
197
|
Leidal AM, Huang HH, Marsh T, Solvik T, Zhang D, Ye J, Kai F, Goldsmith J, Liu JY, Huang YH, Monkkonen T, Vlahakis A, Huang EJ, Goodarzi H, Yu L, Wiita AP, Debnath J. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 2020; 22:187-199. [PMID: 31932738 PMCID: PMC7007875 DOI: 10.1038/s41556-019-0450-y] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022]
Abstract
Traditionally viewed as an autodigestive pathway, autophagy also facilitates cellular secretion; however, the mechanisms underlying these processes remain unclear. Here, we demonstrate that components of the autophagy machinery specify secretion within extracellular vesicles (EVs). Using a proximity-dependent biotinylation proteomics strategy, we identify 200 putative targets of LC3-dependent secretion. This secretome consists of a highly interconnected network enriched in RNA-binding proteins (RBPs) and EV cargoes. Proteomic and RNA profiling of EVs identifies diverse RBPs and small non-coding RNAs requiring the LC3-conjugation machinery for packaging and secretion. Focusing on two RBPs, heterogeneous nuclear ribonucleoprotein K (HNRNPK) and scaffold-attachment factor B (SAFB), we demonstrate that these proteins interact with LC3 and are secreted within EVs enriched with lipidated LC3. Furthermore, their secretion requires the LC3-conjugation machinery, neutral sphingomyelinase 2 (nSMase2) and LC3-dependent recruitment of factor associated with nSMase2 activity (FAN). Hence, the LC3-conjugation pathway controls EV cargo loading and secretion.
Collapse
Affiliation(s)
- Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hector H Huang
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Timothy Marsh
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Tina Solvik
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Dachuan Zhang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - FuiBoon Kai
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Juliet Goldsmith
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer Y Liu
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Yu-Hsin Huang
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Teresa Monkkonen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ariadne Vlahakis
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, Department of Urology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
198
|
Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nat Commun 2020; 11:571. [PMID: 31996674 PMCID: PMC6989696 DOI: 10.1038/s41467-019-13745-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023] Open
Abstract
Aggregation of the Tau protein into fibrils defines progression of neurodegenerative diseases, including Alzheimer’s Disease. The molecular basis for potentially toxic reactions of Tau aggregates is poorly understood. Here we show that π-stacking by Arginine side-chains drives protein binding to Tau fibrils. We mapped an aggregation-dependent interaction pattern of Tau. Fibrils recruit specifically aberrant interactors characterised by intrinsically disordered regions of atypical sequence features. Arginine residues are key to initiate these aberrant interactions. Crucial for scavenging is the guanidinium group of its side chain, not its charge, indicating a key role of π-stacking chemistry for driving aberrant fibril interactions. Remarkably, despite the non-hydrophobic interaction mode, the molecular chaperone Hsp90 can modulate aberrant fibril binding. Together, our data present a molecular mode of action for derailment of protein-protein interaction by neurotoxic fibrils. Tau fibril formation is a hallmark of Alzheimer’s disease. Here the authors reveal an aggregation-dependent protein interaction pattern of Tau and further show that π-stacking of the arginine side-chains drives aberrant protein binding to Tau fibrils.
Collapse
|
199
|
De Martino M, Tkach M, Bruni S, Rocha D, Mercogliano MF, Cenciarini ME, Chervo MF, Proietti CJ, Dingli F, Loew D, Fernández EA, Elizalde PV, Piaggio E, Schillaci R. Blockade of Stat3 oncogene addiction induces cellular senescence and reveals a cell-nonautonomous activity suitable for cancer immunotherapy. Oncoimmunology 2020; 9:1715767. [PMID: 32064174 PMCID: PMC6996562 DOI: 10.1080/2162402x.2020.1715767] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
Stat3 is constitutively activated in several tumor types and plays an essential role in maintaining their malignant phenotype and immunosupression. To take advantage of the promising antitumor activity of Stat3 targeting, it is vital to understand the mechanism by which Stat3 regulates both cell autonomous and non-autonomous processes. Here, we demonstrated that turning off Stat3 constitutive activation in different cancer cell types induces senescence, thus revealing their Stat3 addiction. Taking advantage of the senescence-associated secretory phenotype (SASP) induced by Stat3 silencing (SASP-siStat3), we designed an immunotherapy. The administration of SASP-siStat3 immunotherapy induced a strong inhibition of triple-negative breast cancer and melanoma growth associated with activation of CD4 + T and NK cells. Combining this immunotherapy with anti-PD-1 antibody resulted in survival improvement in mice bearing melanoma. The characterization of the SASP components revealed that type I IFN-related mediators, triggered by the activation of the cyclic GMP-AMP synthase DNA sensing pathway, are important for its immunosurveillance activity. Overall, our findings provided evidence that administration of SASP-siStat3 or low dose of Stat3-blocking agents would benefit patients with Stat3-addicted tumors to unleash an antitumor immune response and to improve the effectiveness of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mara De Martino
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Mercedes Tkach
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Darío Rocha
- Facultad de Ciencias Exactas, Físicas Y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María F Mercogliano
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Mauro E Cenciarini
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María F Chervo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Cecilia J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Elmer A Fernández
- Facultad de Ciencias Exactas, Físicas Y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Universidad Católica De Córdoba, Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Córdoba, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Eliane Piaggio
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología Y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
200
|
Beneke T, Banecki K, Fochler S, Gluenz E. LAX28 is required for the stable assembly of the inner dynein arm f complex, and the tether and tether head complex in Leishmania flagella. J Cell Sci 2020; 133:jcs239855. [PMID: 31932510 PMCID: PMC7747692 DOI: 10.1242/jcs.239855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Motile eukaryotic flagella beat through coordinated activity of dynein motor proteins; however, the mechanisms of dynein coordination and regulation are incompletely understood. The inner dynein arm (IDA) f complex (also known as the I1 complex), and the tether and tether head (T/TH) complex are thought to be key regulators of dynein action but, unlike the IDA f complex, T/TH proteins remain poorly characterised. Here, we characterised T/TH-associated proteins in the protist Leishmania mexicana Proteome analysis of axonemes from null mutants for the CFAP44 T/TH protein showed that they lacked the IDA f protein IC140 and a novel 28-kDa axonemal protein, LAX28. Sequence analysis identified similarities between LAX28 and the uncharacterised human sperm tail protein TEX47, both sharing features with sensory BLUF-domain-containing proteins. Leishmania lacking LAX28, CFAP44 or IC140 retained some motility, albeit with reduced swimming speed and directionality and a propensity for flagellar curling. Expression of tagged proteins in different null mutant backgrounds showed that the axonemal localisation of LAX28 requires CFAP44 and IC140, and the axonemal localisations of CFAP44 and IC140 both depend on LAX28. These data demonstrate a role for LAX28 in motility and show mutual dependencies of IDA f and T/TH-associated proteins for axonemal assembly in Leishmania.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katherine Banecki
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sophia Fochler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|