151
|
Szakasits D, Heinen P, Wieczorek K, Hofmann J, Wagner F, Kreil DP, Sykacek P, Grundler FMW, Bohlmann H. The transcriptome of syncytia induced by the cyst nematode Heterodera schachtii in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:771-84. [PMID: 18980640 PMCID: PMC2667683 DOI: 10.1111/j.1365-313x.2008.03727.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/10/2008] [Accepted: 09/23/2008] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana is a host for the sugar beet cyst nematode Heterodera schachtii. Juvenile nematodes invade the roots and induce the development of a syncytium, which functions as a feeding site for the nematode. Here, we report on the transcriptome of syncytia induced in the roots of Arabidopsis. Microaspiration was employed to harvest pure syncytium material, which was then used to prepare RNA for hybridization to Affymetrix GeneChips. Initial data analysis showed that the gene expression in syncytia at 5 and 15 days post-infection did not differ greatly, and so both time points were compared together with control roots. Out of a total of 21 138 genes, 18.4% (3893) had a higher expression level and 15.8% (3338) had a lower expression level in syncytia, as compared with control roots, using a multiple-testing corrected false discovery rate of below 5%. A gene ontology (GO) analysis of up- and downregulated genes showed that categories related to high metabolic activity were preferentially upregulated. A principal component analysis was applied to compare the transcriptome of syncytia with the transcriptome of different Arabidopsis organs (obtained by the AtGenExpress project), and with specific root tissues. This analysis revealed that syncytia are transcriptionally clearly different from roots (and all other organs), as well as from other root tissues.
Collapse
Affiliation(s)
- Dagmar Szakasits
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Petra Heinen
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Krzysztof Wieczorek
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Julia Hofmann
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Florian Wagner
- RZPD German Resource Center for Genome ResearchBerlin, Germany
| | - David P Kreil
- WWTF Chair of Bioinformatics, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Peter Sykacek
- WWTF Chair of Bioinformatics, Department of Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Florian M W Grundler
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life SciencesVienna, Austria
- * For correspondence (fax: +43 1 47654 3359; e-mail )
| |
Collapse
|
152
|
Fosu-Nyarko J, Jones MGK, Wang Z. Functional characterization of transcripts expressed in early-stage Meloidogyne javanica-induced giant cells isolated by laser microdissection. MOLECULAR PLANT PATHOLOGY 2009; 10:237-48. [PMID: 19236572 PMCID: PMC6640526 DOI: 10.1111/j.1364-3703.2008.00526.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The root-knot nematode Meloidogyne javanica induces giant cells and feeds from them during its development and reproduction. To study the cellular processes underlying the formation of giant cells, laser microdissection was used to isolate the contents of early-stage giant cells 4 and 7 days post-infection (dpi) from tomato, and cDNA libraries from both stages were generated with 87 [250 expressed sequence tag (EST) clones] and 54 (309 EST clones) individual transcripts identified, respectively. These transcripts have roles in metabolism, stress response, protein synthesis, cell division and morphogenesis, transport, signal transduction, protein modification and fate, and regulation of cellular processes. The expression of 25 selected transcripts was studied further by real-time quantitative reverse transcriptase-polymerase chain reaction. Among them, 13 showed continuous up-regulation in giant cells from 4 to 7 dpi. The expression of two transcripts was higher than in controls at 4 dpi and remained at the same level at 7 dpi; a further five transcripts were highly expressed only at 7 dpi. The Phi-1 protein gene, a cell cycle-related homologue in tobacco, was expressed 8.5 times more strongly in giant cells than in control cells at 4 dpi, but was reduced to 6.7 times at 7 dpi. Using in situ hybridization, the expression of the Phi-1 gene was preferentially localized in the cytoplasm of giant cells at 4 dpi, together with a pectinesterase U1 precursor gene. The identification of highly expressed transcripts in developing giant cells adds to the knowledge of the plant genes responsive to nematode infection, and may provide candidate genes for nematode control strategies.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre (SABC), School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA6150, Australia
| | | | | |
Collapse
|
153
|
Elling AA, Mitreva M, Gai X, Martin J, Recknor J, Davis EL, Hussey RS, Nettleton D, McCarter JP, Baum TJ. Sequence mining and transcript profiling to explore cyst nematode parasitism. BMC Genomics 2009; 10:58. [PMID: 19183474 PMCID: PMC2640417 DOI: 10.1186/1471-2164-10-58] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 01/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants. RESULTS We present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males) for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode. CONCLUSION We have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the currently known 6,860 H. glycines genes to a pool of 788 most promising candidate genes (including known parasitism genes) and documented their expression profiles. Using our approach to pre-select genes likely involved in parasitism now allows detailed functional analyses in a manner not feasible for larger numbers of genes. The generation of the candidate pool described here is an important enabling advance because it will significantly facilitate the unraveling of fascinating plant-animal interactions and deliver knowledge that can be transferred to other pathogen-host systems. Ultimately, the exploration of true parasitism genes verified from the gene pool delineated here will identify weaknesses in the nematode life cycle that can be exploited by novel anti-nematode efforts.
Collapse
Affiliation(s)
- Axel A Elling
- Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Makedonka Mitreva
- Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Xiaowu Gai
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John Martin
- Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Justin Recknor
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
- Eli Lilly and Company, Lilly Research Laboratories, Greenfield, IN 46140, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - James P McCarter
- Genome Sequencing Center, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Divergence Inc., St. Louis, MO 63141, USA
| | - Thomas J Baum
- Interdepartmental Genetics Program, Iowa State University, Ames, IA 50011, USA
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
154
|
Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC PLANT BIOLOGY 2009; 9:10. [PMID: 19161626 PMCID: PMC2649119 DOI: 10.1186/1471-2229-9-10] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/22/2009] [Indexed: 05/06/2023]
Abstract
BACKGROUND Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM) of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR. RESULTS This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM)-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis. CONCLUSION Transcript profiling using the Affymetrix GeneChip Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was developed to enable laser microdissection of M. truncatula root cortical cells. LM coupled with RT-PCR provided spatial gene expression information for both symbionts and expanded current information available for gene expression in cortical cells containing arbuscules.
Collapse
Affiliation(s)
- S Karen Gomez
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | - Hélène Javot
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
- CEA/Cadarache IBEB, Service de Biologie Végétale et de Microbiologie Environnementales, UMR 6191 CNRS-CEA-Aix Marseille Univ., F-13108 St. Paul Lez Durance, France
| | | | - Ivone Torres-Jerez
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Yuhong Tang
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Elison B Blancaflor
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Michael K Udvardi
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
155
|
Grunewald W, Cannoot B, Friml J, Gheysen G. Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection. PLoS Pathog 2009; 5:e1000266. [PMID: 19148279 PMCID: PMC2613529 DOI: 10.1371/journal.ppat.1000266] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 12/15/2008] [Indexed: 01/21/2023] Open
Abstract
Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.
Collapse
Affiliation(s)
- Wim Grunewald
- Department of Plant Systems Biology, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
156
|
Li Y, Fester T, Taylor CG. Transcriptomic Analysis of Nematode Infestation. CELL BIOLOGY OF PLANT NEMATODE PARASITISM 2009. [DOI: 10.1007/978-3-540-85215-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
157
|
Hofmann J, Hess PH, Szakasits D, Blöchl A, Wieczorek K, Daxböck-Horvath S, Bohlmann H, van Bel AJE, Grundler FMW. Diversity and activity of sugar transporters in nematode-induced root syncytia. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3085-95. [PMID: 19487386 PMCID: PMC2718214 DOI: 10.1093/jxb/erp138] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 05/18/2023]
Abstract
The plant-parasitic nematode Heterodera schachtii stimulates plant root cells to form syncytial feeding structures which synthesize all nutrients required for successful nematode development. Cellular re-arrangements and modified metabolism of the syncytia are accompanied by massive intra- and intercellular solute allocations. In this study the expression of all genes annotated as sugar transporters in the Arabidopsis Membrane Protein Library was investigated by Affymetrix gene chip analysis in young and fully developed syncytia compared with non-infected Arabidopsis thaliana roots. The expression of three highly up-regulated (STP12, MEX1, and GTP2) and three highly down-regulated genes (SFP1, STP7, and STP4) was analysed by quantitative RT-PCR (qRT-PCR). The most up-regulated gene (STP12) was chosen for further in-depth studies using in situ RT-PCR and a nematode development assay with a T-DNA insertion line revealing a significant reduction of male nematode development. The specific role of STP12 expression in syncytia of male juveniles compared with those of female juveniles was further shown by qRT-PCR. In order to provide evidence for sugar transporter activity across the plasma membrane of syncytia, fluorescence-labelled glucose was used and membrane potential recordings following the application of several sugars were performed. Analyses of soluble sugar pools revealed a highly specific composition in syncytia. The presented work demonstrates that sugar transporters are specifically expressed and active in syncytia, indicating a profound role in inter- and intracelluar transport processes.
Collapse
Affiliation(s)
- Julia Hofmann
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan-Str. 82, A-1190 Vienna, Austria
| | - Paul H. Hess
- Plant Cell Biology Research Group, Institute of General Botany, Justus-Liebig-University, Senckenbergstr. 17, D-35390 Giessen, Germany
| | - Dagmar Szakasits
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan-Str. 82, A-1190 Vienna, Austria
| | - Andreas Blöchl
- Department of Chemical Ecology and Ecosystem Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Krzysztof Wieczorek
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan-Str. 82, A-1190 Vienna, Austria
| | - Sabine Daxböck-Horvath
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan-Str. 82, A-1190 Vienna, Austria
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan-Str. 82, A-1190 Vienna, Austria
| | - Aart J. E. van Bel
- Plant Cell Biology Research Group, Institute of General Botany, Justus-Liebig-University, Senckenbergstr. 17, D-35390 Giessen, Germany
| | - Florian M. W. Grundler
- Institute of Plant Protection, Department of Applied Plant Sciences and Plant Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences Vienna, Peter Jordan-Str. 82, A-1190 Vienna, Austria
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
158
|
Molecular Insights in the Susceptible Plant Response to Nematode Infection. CELL BIOLOGY OF PLANT NEMATODE PARASITISM 2008. [DOI: 10.1007/978-3-540-85215-5_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
159
|
Hewezi T, Howe P, Maier TR, Baum TJ. Arabidopsis small RNAs and their targets during cyst nematode parasitism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1622-34. [PMID: 18986258 DOI: 10.1094/mpmi-21-12-1622] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-parasitic cyst nematodes induce the formation of specialized feeding cells in infected roots, which involves plant developmental processes that have been shown to be influenced by microRNAs (miRNAs) and other small RNAs. This observation provided the foundation to investigate the potential involvement of small RNAs in plant-cyst nematode interactions. First, we examined the susceptibilities of Arabidopsis DICER-like (dcl) and RNA-dependent RNA polymerase (rdr) mutants to the sugar beet cyst nematode Heterodera schachtii. The examined mutants exhibited a trend of decreased susceptibility, suggesting a role of small RNAs mediating gene regulation processes during the plant-nematode interaction. Second, we generated two small RNA libraries from aseptic Arabidopsis roots harvested at 4 and 7 days after infection with surface-sterilized H. schachtii. Sequences of known miRNAs as well as novel small interfering (si)RNAs were identified. Following this discovery, we used real-time reverse-transcriptase polymerase chain reaction to quantify a total of 15 Arabidopsis transcripts that are known targets of six of the different miRNA families found in our study (miR160, miR164, miR167, miR171, miR396, and miR398) in inoculated and noninoculated Arabidopsis roots. Our analyses showed mostly negative correlations between miRNA accumulation and target gene mRNA abundance, suggesting regulatory roles of these miRNAs during parasitism. Also, we identified a total of 125 non-miRNA siRNAs. Some of these siRNAs perfectly complement protein-coding mRNAs or match transposon or retrotransposon sequences in sense or antisense orientations. We further quantified a group of siRNAs in H. schachtii-inoculated roots. The examined siRNAs exhibited distinct expression patterns in infected and noninfected roots, providing additional evidence for the implication of small RNAs in cyst nematode parasitism. These data lay the foundation for detailed analyses of the functions of small RNAs during phytonematode parasitism.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Pathology, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
160
|
Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:315-24. [PMID: 19015219 PMCID: PMC3071771 DOI: 10.1093/jxb/ern289] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/25/2008] [Accepted: 10/27/2008] [Indexed: 05/17/2023]
Abstract
Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.
Collapse
Affiliation(s)
- Anoop S. Sindhu
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - Tom R. Maier
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Richard S. Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Eric L. Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas J. Baum
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
161
|
Fudali S, Sobczak M, Janakowski S, Griesser M, Grundler FMW, Golinowski W. Expansins are among plant cell wall modifying agents specifically expressed during development of nematode-induced syncytia. PLANT SIGNALING & BEHAVIOR 2008; 3:969-71. [PMID: 19704422 PMCID: PMC2633745 DOI: 10.4161/psb.6169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 04/21/2008] [Indexed: 05/20/2023]
Abstract
Cyst nematodes are economically important pests. As obligatory biotrophic endoparasites they invade host roots and induce formation of syncytia, structures that serve them as the only source of nutrients. During syncytium development, extensive cell wall modifications take place. Cell wall dissolution occurs during cell wall opening formation, cell walls expand during hypertrophy of syncytial elements and local cell wall synthesis leads to the thickening of syncytial cell wall and the formation of cell wall ingrowths. Numerous studies revealed that nematodes change expression of plant genes encoding cell wall modifying proteins including expansins. Expansins poses unique abilities to induce cell wall extension in acidic pH. Recently, we demonstrated that two alpha-expansin genes LeEXPA4 and LeEXPA5 are upregulated in tomato roots infected with potato cyst nematode (Globodera rostochiensis). In this addendum, we present the most recent results concerning involvement of plant cell wall modifying genes in syncytium development and discuss possible practical applications of this knowledge for developing plants with resistance against nematodes.
Collapse
Affiliation(s)
- Sylwia Fudali
- Department of Botany; Warsaw University of Life Sciences (SGGW); Warsaw Poland
| | - Miroslaw Sobczak
- Department of Botany; Warsaw University of Life Sciences (SGGW); Warsaw Poland
| | - Slawomir Janakowski
- Department of Botany; Warsaw University of Life Sciences (SGGW); Warsaw Poland
| | - Michaela Griesser
- Institute of Plant Protection; Department of Applied Plant Sciences and Plant Biotechnology; University of Natural Resources and Applied Life Sciences; Vienna Austria
| | - Florian MW Grundler
- Institute of Plant Protection; Department of Applied Plant Sciences and Plant Biotechnology; University of Natural Resources and Applied Life Sciences; Vienna Austria
| | | |
Collapse
|
162
|
Nelson T, Gandotra N, Tausta SL. Plant cell types: reporting and sampling with new technologies. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:567-73. [PMID: 18653377 DOI: 10.1016/j.pbi.2008.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 05/21/2023]
Abstract
Plants have relatively few cell types, but their specialized functions and their interactions are essential for physiology, development, and defense. The contributions of individual cells have been distinguished by methods including in situ reporting, cell sampling, and cell separation, thus far mostly limited to measurement of single transcripts, proteins, or metabolites. Advances in transcriptomics, proteomics, metabolomics, and activity assays with small samples and in the modeling of these data into networks of expression, regulation, interaction, and metabolism make it possible to evaluate the roles of cell types at system levels. Recent analyses include cell types of developing roots, bundle sheath and mesophyll cells of C4-type leaves, xylem and phloem cells of vascular systems, and specialized regions of embryos and shoot apices.
Collapse
Affiliation(s)
- Timothy Nelson
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208104, New Haven, CT 06520-8104, USA.
| | | | | |
Collapse
|
163
|
Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E, Grundler F, Inzé D, Beeckman T, Gheysen G. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. PLANT PHYSIOLOGY 2008; 148:358-68. [PMID: 18599655 PMCID: PMC2528098 DOI: 10.1104/pp.108.119131] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/22/2008] [Indexed: 05/19/2023]
Abstract
During the interaction between sedentary plant-parasitic nematodes and their host, complex morphological and physiological changes occur in the infected plant tissue, finally resulting in the establishment of a nematode feeding site. This cellular transformation is the result of altered plant gene expression most likely induced by proteins injected in the plant cell by the nematode. Here, we report on the identification of a WRKY transcription factor expressed during nematode infection. Using both promoter-reporter gene fusions and in situ reverse transcription-polymerase chain reaction, we could show that AtWRKY23 is expressed during the early stages of feeding site establishment. Knocking down the expression of WRKY23 resulted in lower infection of the cyst nematode Heterodera schachtii. WRKY23 is an auxin-inducible gene and in uninfected plants WRKY23 acts downstream of the Aux/IAA protein SLR/IAA14. Although auxin is known to be involved in feeding site formation, our results suggest that, during early stages, auxin-independent signals might be at play to activate the initial expression of WRKY23.
Collapse
Affiliation(s)
- Wim Grunewald
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Davis EL, Hussey RS, Mitchum MG, Baum TJ. Parasitism proteins in nematode-plant interactions. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:360-6. [PMID: 18499507 DOI: 10.1016/j.pbi.2008.04.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/06/2008] [Indexed: 05/19/2023]
Abstract
The current battery of candidate parasitism proteins secreted by nematodes to modify plant tissues for parasitism includes cell-wall-modifying enzymes of potential prokaryotic origin, multiple regulators of host cell cycle and metabolism, proteins that can localize to the plant cell nucleus, potential suppressors of host defense, mimics of plant molecules, and a relatively large cadre of predicted novel nematode parasitism proteins. Phenotypic effects of expressing nematode parasitism proteins in transformed plant tissues, protein-protein interaction assays, and RNA-mediated interference (RNAi) analyses are currently providing exciting evidence of the biological role of candidate nematode secreted parasitism proteins and identifying potential novel means of developing transgenic resistance to nematodes in crops.
Collapse
Affiliation(s)
- Eric L Davis
- North Carolina State University, Department of Plant Pathology, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
165
|
Jones JT, Moens M, Mota M, Li H, Kikuchi T. Bursaphelenchus xylophilus: opportunities in comparative genomics and molecular host-parasite interactions. MOLECULAR PLANT PATHOLOGY 2008; 9:357-68. [PMID: 18705876 PMCID: PMC6640334 DOI: 10.1111/j.1364-3703.2007.00461.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most Bursaphelenchus species are fungal feeding nematodes that colonize dead or dying trees. However, Bursaphelenchus xylophilus, the pine wood nematode, is also a pathogen of trees and is the causal agent of pine wilt disease. B. xylophilus is native to North America and here it causes little damage to trees. Where it is introduced to new regions it causes huge damage. The most severely affected areas are found in the Far East but more recently B. xylophilus has been introduced into Portugal and the potential for damage here is also high. As incidence and severity of pine wilt disease are linked to temperature we suggest that climate change is likely to exacerbate the problems caused by B. xylophilus and, in addition, will extend (northwards in Europe) the range in which pine wilt disease can occur. Here we review what is currently known about the interactions of B. xylophilus with its hosts, including recent developments in our understanding of the molecular biology of pathogenicity in the nematode. We also examine the potential developments that could be made by more widespread use of genomics tools to understand interactions between B. xylophilus, bacterial pathogens that have been implicated in disease and host trees.
Collapse
Affiliation(s)
- John T Jones
- PPP Programme, SCRI, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | | | |
Collapse
|
166
|
Cai S, Lashbrook CC. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. PLANT PHYSIOLOGY 2008; 146:1305-21. [PMID: 18192438 PMCID: PMC2259061 DOI: 10.1104/pp.107.110908] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/08/2008] [Indexed: 05/18/2023]
Abstract
Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ(551)) regulated at the highest statistical significance (P < or = 0.0001) over five floral stages linking prepollination to stamen shed. AZ(551) includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-beta-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed.
Collapse
Affiliation(s)
- Suqin Cai
- Department of Horticulture, Iowa State University, Ames, IA 50011-1100, USA
| | | |
Collapse
|
167
|
Molecular Insights in the Susceptible Plant Response to Nematode Infection. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
168
|
Tucker ML, Burke A, Murphy CA, Thai VK, Ehrenfried ML. Gene expression profiles for cell wall-modifying proteins associated with soybean cyst nematode infection, petiole abscission, root tips, flowers, apical buds, and leaves. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3395-406. [PMID: 17916637 DOI: 10.1093/jxb/erm188] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Changes in transcript accumulation for cell wall-modifying proteins were examined in excised soybean root pieces colonized by soybean cyst nematodes (SCN), Heterodera glycines, using RT-PCR and soybean Affymetrix GeneChips. Sequence-specific PCR primer pairs were prepared from sequence data for core sequences in the GenBank soybean database and consensus sequences derived from the assembly of soybean ESTs. In addition, to identify previously uncharacterized soybean transcripts, degenerate primers were prepared for conserved motifs in cellulases (endo-1,4-beta-glucanases, EGases) and polygalacturonases (PGs) and these were used to amplify segments of transcripts that were then extended with 3' and 5' RACE. Several novel EGase and PG transcripts were identified. Gene expression patterns were determined by real-time RT-PCR for 11 EGases, three expansins (EXPs), 14 PGs, two pectate lyases (PLs), and two xyloglucan endotransglucosylase/hydrolases (XTHs) in soybean roots inoculated with SCN, non-inoculated roots, serial dissections of root tips, leaf abscission zones, flowers, apical buds, and expanding leaves. A large number of genes associated with cell wall modifications are strongly up-regulated in root pieces colonized by SCN. However, in contrast to most of the transcripts for cell wall proteins, two XTH transcripts were specifically down-regulated in the colonized root pieces. Gene expression in serial dissections of root tips (0-2 mm, and 2-7 mm) and whole roots indicate that the SCN up-regulated genes are associated with a wide range of developmental processes in roots. Also of interest, many of the cDNAs examined were up-regulated in petiole abscission zones induced to abscise with ethylene.
Collapse
Affiliation(s)
- Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Bldg 006, 10300 Baltimore Ave, Beltsville, MD 20705-2350, USA.
| | | | | | | | | |
Collapse
|
169
|
Puthoff DP, Ehrenfried ML, Vinyard BT, Tucker ML. GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3407-18. [PMID: 17977850 DOI: 10.1093/jxb/erm211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Soybean cyst nematode (SCN) is currently the most devastating pathogen of soybean. SCN penetrates the root and migrates toward the central vascular bundle where it establishes a complex multinucleated feeding structure that provides plant-derived nutrients to support the development and growth of the nematode. To identify host genes that play significant roles in SCN development in susceptible roots, RNA from SCN-inoculated and non-inoculated root pieces were hybridized to the Affymetrix soybean genome GeneChips. RNA was collected at 8, 12, and 16 d post-inoculation from root pieces that displayed multiple swollen female SCN and similar root pieces from non-inoculated roots. Branch roots and root tips were trimmed from the root pieces to minimize the amount of RNA contributed by these organs. Of the 35 593 transcripts represented on the GeneChip, approximately 26,500 were expressed in the SCN-colonized root pieces. ANOVA followed by False Discovery Rate analysis indicated that the expression levels of 4616 transcripts changed significantly (Q-value < or =0.05) in response to SCN. In this set of 4616 transcripts, 1404 transcripts increased >2-fold and 739 decreased >2-fold. Of the transcripts to which a function could be assigned, a large proportion was associated with cell wall structure. Other functional categories that included a large number of up-regulated transcripts were defence, metabolism, and histones, and a smaller group of transcripts associated with signal transduction and transcription.
Collapse
Affiliation(s)
- David P Puthoff
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, BARC-West, Beltsville, MD 20705, USA
| | | | | | | |
Collapse
|
170
|
Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA. Transcript profiling in host-pathogen interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:329-69. [PMID: 17480183 DOI: 10.1146/annurev.phyto.45.011107.143944] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using genomic technologies, it is now possible to address research hypotheses in the context of entire developmental or biochemical pathways, gene networks, and chromosomal location of relevant genes and their inferred evolutionary history. Through a range of platforms, researchers can survey an entire transcriptome under a variety of experimental and field conditions. Interpretation of such data has led to new insights and revealed previously undescribed phenomena. In the area of plant-pathogen interactions, transcript profiling has provided unparalleled perception into the mechanisms underlying gene-for-gene resistance and basal defense, host vs nonhost resistance, biotrophy vs necrotrophy, and pathogenicity of vascular vs nonvascular pathogens, among many others. In this way, genomic technologies have facilitated a system-wide approach to unifying themes and unique features in the interactions of hosts and pathogens.
Collapse
Affiliation(s)
- Roger P Wise
- Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, Iowa 50011-1020, USA.
| | | | | | | |
Collapse
|