151
|
Niles KM, Yeh JR, Chan D, Landry M, Nagano MC, Trasler JM. Haploinsufficiency of the paternal-effect gene Dnmt3L results in transient DNA hypomethylation in progenitor cells of the male germline. Hum Reprod 2012; 28:519-30. [PMID: 23159436 DOI: 10.1093/humrep/des395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION How does haploinsufficiency of the paternal-effect gene Dnmt3L affect DNA methylation establishment and stability in the male germline? SUMMARY ANSWER Reduced expression of DNMT3L in male germ cells, associated with haploinsufficiency of the paternal-effect gene Dnmt3L, results in abnormal hypomethylation of prenatal germline progenitor cells. WHAT IS KNOWN ALREADY The DNA methyltransferase regulator Dnmt3-Like (Dnmt3L) is a paternal-effect gene required for DNA methylation acquisition in male germline stem cells and their precursors. In males, DNMT3L deficiency causes meiotic abnormalities and infertility. While Dnmt3L heterozygous males are fertile, they have abnormalities in X chromosome compaction and postmeiotic gene expression and sire offspring with sex chromosome aneuploidy. It has been proposed that the paternal effects of Dnmt3L haploinsufficiency are due to epigenetic defects in early male germ cells. DNA methylation is an essential epigenetic modification essential for normal germ cell development. Since patterns of DNA methylation across the genome are initially acquired in prenatal male germ cells, perturbations in methylation could contribute to the epigenetic basis of the paternal effects in Dnmt3L(+/-) males. STUDY DESIGN, SIZE, DURATION This is a cross-sectional study of DNA methylation in Dnmt3L(+/+) versus Dnmt3L(+/-) male germ cells collected from mice at 16.5 days post-coitum (dpc), Day 6 and Day 70 (n = 3 per genotype, each n represents a pool of 2-20 animals). Additionally, DNA methylation was compared in enriched populations of spermatogonial stem cells (SSC)/progenitor cells from Dnmt3L(+/+) and Dnmt3L(+/-) males following ≈ 2 months in culture. MATERIALS, SETTING, METHODS DNA methylation at intergenic loci along chromosomes 9 and X was examined by quantitative analysis of DNA methylation by real-time polymerase chain reaction at the time of initial acquisition of epigenetic patterns in the prenatal male germline (16.5 dpc) and compared with patterns in early post-natal spermatogonia (Day 6) and in spermatozoa in mice. DNA methylation status at CpG-rich sites across the genome was assessed in spermatogonial precursors from Day 4 male mice using restriction landmark genomic scanning. MAIN RESULTS AND THE ROLE OF CHANCE At 16.5 dpc, 42% of intergenic loci examined along chromosome 9 and 10% of those along chromosome X were hypomethylated in Dnmt3L heterozygotes. By Day 6 and in spermatozoa, germ cell DNA methylation was similar in heterozygous and wild-type mice. DNA methylation stability of acquired patterns in wild-type and Dnmt3L(+/-) SSC/progenitor cell culture was analyzed at numerous loci across the genome in cells cultured in vitro and collected at passages 6-28. While the methylation of most loci was stable in culture over time, differences at ≈ 1% of sites were found between Dnmt3L(+/-) and Dnmt3L(+/+) cultures. LIMITATIONS, REASONS FOR CAUTION Evaluation of DNA methylation in SSCs can only be performed after a period of culture limiting the investigation to changes observed during culture when compared with DNA methylation differences between genotypes that could be present at the beginning of culture establishment. WIDER IMPLICATIONS OF THE FINDINGS The DNA methylation defects described here in prenatal male germline progenitor cells and SSC culture are the earliest epigenetic perturbations yet identified for a mammalian paternal-effect gene and may influence downstream epigenetic events in germ cells at later stages of development. Together, the results provide evidence of a 'window' of susceptibility in prenatal male germ cell precursors for the induction of epimutations due to genetic perturbations and, potentially, in utero environmental exposures.
Collapse
Affiliation(s)
- K M Niles
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
152
|
Heim CN, Fanslow DA, Dann CT. Development of quantitative microscopy-based assays for evaluating dynamics of living cultures of mouse spermatogonial stem/progenitor cells. Biol Reprod 2012; 87:90. [PMID: 22933516 DOI: 10.1095/biolreprod.112.101717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cell (SSC) self-renewal and differentiation are required for continuous production of spermatozoa and long-term fertility. Studying SSCs in vivo remains challenging because SSCs are rare cells and definitive molecular markers for their identification are lacking. The development of a method for propagating SSCs in vitro greatly facilitated analysis of SSCs. The cultured cells grow as clusters of a dynamic mixture of "true" stem cells and differentiating progenitor cells. Cells in the stem/progenitor culture system share many properties with spermatogonia in vivo; however, to fully exploit it as a model for spermatogonial development, new assays are needed that account for the dynamic heterogeneity inherent in the culture system. Here, assays were developed for quantifying dynamics of cultures of stem/progenitor cells that expressed histone-green fluorescent protein (GFP). First, we built on published results showing that cluster formation in vitro reliably predicts the relative number of SSCs. The GFP-based in vitro cluster assay allows quantification of SSCs with significantly fewer resources than a transplantation assay. Second, we compared the dynamics of differentiation in two experimental paradigms by imaging over a 17-day time frame. Finally, we performed short-term live imaging and observed cell migration, coordinated cell proliferation, and cell death resembling that of spermatogonia in the testes. The methods that we present provide a foundation for the use of fluorescent reporters in future microscopy-based high-throughput screens by using living spermatogonial stem/progenitor cultures applicable to toxicology, contraceptive discovery, and identification of regulators of self-renewal and differentiation.
Collapse
Affiliation(s)
- Crystal N Heim
- Department of Chemistry, Indiana University, Bloomington, USA
| | | | | |
Collapse
|
153
|
Kaucher AV, Oatley MJ, Oatley JM. NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol Reprod 2012; 86:164, 1-11. [PMID: 22378757 DOI: 10.1095/biolreprod.111.097386] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Spermatogenesis relies on coordinated differentiation of stem and progenitor spermatogonia, and the transcription factor STAT3 is essential for this process in mammals. Here we studied the THY1+ spermatogonial population in mouse testes, which contains spermatogonial stem cells (SSC) and non-stem cell progenitor spermatogonia, to further define the downstream mechanism regulating differentiation. Transcript abundance for the bHLH transcription factor Neurog3 was found to be significantly reduced upon transient inhibition of STAT3 signaling in these cells and exposure to GDNF, a key growth factor regulating self-renewal of SSCs, suppressed activation of STAT3 and in accordance Neurog3 gene expression. Moreover, STAT3 was found to bind the distal Neurog3 promoter/enhancer region in THY1+ spermatogonia and regulate transcription. Transient inhibition of Neurog3 expression in cultures of proliferating THY1+ spermatogonia increased stem cell content after several self-renewal cycles without effecting overall proliferation of the cells, indicating impaired differentiation of SSCs to produce progenitor spermatogonia. Furthermore, cultured THY1+ spermatogonia with induced deficiency of Neurog3 were found to be incapable of differentiation in vivo following transplantation into testes of recipient mice. Collectively, these results establish a mechanism by which activation of STAT3 regulates the expression of NEUROG3 to subsequently drive differentiation of SSC and progenitor spermatogonia in the mammalian germline.
Collapse
Affiliation(s)
- Amy V Kaucher
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
154
|
Mirzapour T, Movahedin M, Tengku Ibrahim TA, Haron AW, Nowroozi MR. Evaluation of the effects of cryopreservation on viability, proliferation and colony formation of human spermatogonial stem cells in vitro culture. Andrologia 2012; 45:26-34. [PMID: 22621173 DOI: 10.1111/j.1439-0272.2012.01302.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 01/15/2023] Open
Abstract
Proliferation of spermatogonial stem cells (SSCs) in vitro system is very important. It can enhance SSCs numbers for success of transplantation and treatment of infertility in cancer patients. In this study, testicular cells that obtained from azoospermia patients (n=8) by enzymatic digestion were cryopreserved at the beginning and after 2 weeks of culture. Then, frozen-thawed SSCs were co-cultured on fresh Sertoli cells (experimental group 1), and frozen-thawed Sertoli cells (experimental group 2) for another 3 weeks. In control group, fresh SSCs were co-cultured on fresh Sertoli cells. Viability rate after enzymatic digestion was 93.4%±5.0. Frozen-thawed testicular cells after 2 weeks of culture had a significantly (P<0.05) higher percentage of living cells compared to frozen-thawed testicular cells at the beginning of culture (59.2±7.05 and 46.3±8.40 respectively). The number of colonies in the experimental group 1 was significantly higher than experimental group 2 (19.6±2.8 and 8.33±1.5, respectively, P<0.05). The diameter of the colonies in the experimental group 1 was significantly higher than control and experimental group 2 (P<0.05) after 3 weeks of culture (269.7±52.1, 204.34±24.1 and 112.52±23.5 μm, respectively). Cryopreservation technique will raise the possibility of banking SSCs for men who have a cancer-related illness and waiting for radiotherapy and/or chemotherapy.
Collapse
Affiliation(s)
- T Mirzapour
- Department of Biology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | | | | | | | | |
Collapse
|
155
|
Nasiri Z, Hosseini S, Hajian M, Abedi P, Bahadorani M, Baharvand H, Nasr-Esfahani M. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells In-vitro. Theriogenology 2012; 77:1519-28. [DOI: 10.1016/j.theriogenology.2011.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/20/2011] [Accepted: 11/20/2011] [Indexed: 01/06/2023]
|
156
|
Spermatogonial stem cells (SSCs) in buffalo (Bubalus bubalis) testis. PLoS One 2012; 7:e36020. [PMID: 22536454 PMCID: PMC3334991 DOI: 10.1371/journal.pone.0036020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/26/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Water buffalo is an economically important livestock species and about half of its total world population exists in India. Development of stem cell technology in buffalo can find application in targeted genetic modification of this species. Testis has emerged as a source of pluripotent stem cells in mice and human; however, not much information is available in buffalo. OBJECTIVES AND METHODS Pou5f1 (Oct 3/4) is a transcription factor expressed by pluripotent stem cells. Therefore, in the present study, expression of POU5F1 transcript and protein was examined in testes of both young and adult buffaloes by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Further, using the testis transplantation assay, a functional assay for spermatogonial stem cells (SSCs), stem cell potential of gonocytes/spermatogonia isolated from prepubertal buffalo testis was also determined. RESULTS Expression of POU5F1 transcript and protein was detected in prepubertal and adult buffalo testes. Western blot analysis revealed that the POU5F1 protein in the buffalo testis exists in two isoforms; large (∼47 kDa) and small (∼21 kDa). Immunohistochemical analysis revealed that POU5F1 expression in prepubertal buffalo testis was present in gonocytes/spermatogonia and absent from somatic cells. In the adult testis, POU5F1 expression was present primarily in post-meiotic germ cells such as round spermatids, weakly in spermatogonia and spermatocytes, and absent from elongated spermatids. POU5F1 protein expression was seen both in cytoplasm and nuclei of the stained germ cells. Stem cell potential of prepubertal buffalo gonocytes/spermatogonia was confirmed by the presence of colonized DBA-stained cells in the basal membrane of seminiferous tubules of xenotransplanted mice testis. CONCLUSION/SIGNIFICANCE These findings strongly indicate that gonocytes/spermatogonia, isolated for prepubertal buffalo testis can be a potential target for establishing a germ stem cell line that would enable genetic modification of buffaloes.
Collapse
|
157
|
Tong MH, Mitchell DA, McGowan SD, Evanoff R, Griswold MD. Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3), are involved in the regulation of spermatogonial differentiation in mice. Biol Reprod 2012; 86:72. [PMID: 22116806 DOI: 10.1095/biolreprod.111.096313] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Increasing evidence indicates that microRNAs (miRNAs) may be critical players in spermatogenesis. The miRNA expression profiles of THY1(+)-enriched undifferentiated spermatogonia were characterized, and members of Mir-17-92 (Mirc1) and its paralog Mir-106b-25 (Mirc3) clusters are significantly downregulated during retinoic acid-induced spermatogonial differentiation, both in vitro and in vivo. The repression of microRNA clusters Mir-17-92 (Mirc1) and Mir-106b-25 (Mirc3) by retinoic acid in turn potentially upregulates the expression of Bim, Kit, Socs3, and Stat3. The male germ cell-specific Mir-17-92 (Mirc1) knockout mice exhibit small testes, a lower number of epididymal sperm, and mild defect in spermatogenesis. Absence of Mir-17-92 (Mirc1) in male germ cells dramatically increases expression of Mir-106b-25 (Mirc3) cluster miRNAs in the germ cells. These results suggest that Mir-17-92 (Mirc1) cluster and Mir-106b-25 (Mirc3) cluster miRNAs possibly functionally cooperate in regulating spermatogonial development.
Collapse
Affiliation(s)
- Ming-Han Tong
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
158
|
Song HW, Dann CT, McCarrey JR, Meistrich ML, Cornwall GA, Wilkinson MF. Dynamic expression pattern and subcellular localization of the Rhox10 homeobox transcription factor during early germ cell development. Reproduction 2012; 143:611-24. [PMID: 22393026 DOI: 10.1530/rep-11-0479] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Homeobox genes encode transcription factors that regulate diverse developmental events. The largest known homeobox gene cluster - the X-linked mouse reproductive homeobox (Rhox) cluster - harbors genes whose expression patterns and functions are largely unknown. Here, we report that a member of this cluster, Rhox10, is expressed in male germ cells. Rhox10 is highly transcribed in spermatogonia in vivo and is upregulated in response to the differentiation-inducing agent retinoic acid in vitro. Using a specific RHOX10 antiserum that we generated, we found that RHOX10 protein is selectively expressed in fetal gonocytes, germline stem cells, spermatogonia, and early spermatocytes. RHOX10 protein undergoes a dramatic shift in subcellular localization as germ cells progress from mitotically arrested gonocytes to mitotic spermatogonia and from mitotic spermatogonia to early meiotic spermatocytes, consistent with RHOX10 performing different functions in these stages.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
159
|
Garcia T, Hofmann MC. Isolation of undifferentiated and early differentiating type A spermatogonia from Pou5f1-GFP reporter mice. Methods Mol Biol 2012; 825:31-44. [PMID: 22144234 PMCID: PMC3314309 DOI: 10.1007/978-1-61779-436-0_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Limited understanding of the mechanisms underlying self-renewal and differentiation of spermatogonial stem cells hampers our ability to develop new therapeutic and contraceptive approaches. Mouse models of spermatogonial stem cell development are key to developing new insights into the biology of both the normal and diseased testis. Advances in transgenic reporter mice have enabled the isolation, molecular characterization, and functional analysis of mouse Type A spermatogonia subpopulations from the normal testis, including populations enriched for spermatogonial stem cells. Application of these reporters both to the normal testis and to gene-deficient and over-expression models will promote a better understanding of the earliest steps of spermatogenesis, and the role of spermatogonial stem cells in germ cell tumor.
Collapse
Affiliation(s)
- Thomas Garcia
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Marie-Claude Hofmann
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
160
|
Kaul G, Kumar S, Kumari S. Enrichment of CD9<sup>+</sup> spermatogonial stem cells from goat (<i>Capra aegagrus hircus</i>) testis using magnetic microbeads. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/scd.2012.23014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
161
|
Grasso M, Fuso A, Dovere L, de Rooij DG, Stefanini M, Boitani C, Vicini E. Distribution of GFRA1-expressing spermatogonia in adult mouse testis. Reproduction 2011; 143:325-32. [PMID: 22143971 DOI: 10.1530/rep-11-0385] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mice and other mammals, spermatogenesis is maintained by spermatogonial stem cells (SSCs), a cell population belonging to undifferentiated type A spermatogonia. In the accepted model of SSC self-renewal, Asingle (As) spermatogonia are the stem cells, whereas paired (Apaired (Apr)) and chained (Aaligned (Aal)) undifferentiated spermatogonia are committed to differentiation. This model has been recently challenged by evidence that As and chained (Apr and Aal), undifferentiated spermatogonia are heterogeneous in terms of gene expression and function. The expression profile of several markers, such as GFRA1 (the GDNF co-receptor), is heterogeneous among As, Apr and Aal spermatogonia. In this study, we have analysed and quantified the distribution of GFRA1-expressing cells within the different stages of the seminiferous epithelial cycle. We show that in all stages, GFRA1+ chained spermatogonia (Apr to Aal) are more numerous than GFRA1+ As spermatogonia. Numbers of chained GFRA1+ spermatogonia are sharply reduced in stages VII-VIII when Aal differentiate into A1 spermatogonia. GFRA1 expression is regulated by GDNF and in cultures of isolated seminiferous tubules, we found that GDNF expression and secretion by Sertoli cells is stage-dependent, being maximal in stages II-VI and decreasing thereafter. Using qRT-PCR analysis, we found that GDNF regulates the expression of genes such as Tex14, Sohlh1 and Kit (c-Kit) known to be involved in spermatogonial differentiation. Expression of Kit was upregulated by GDNF in a stage-specific manner. Our data indicate that GDNF, besides its crucial role in the self-renewal of stem cells also functions in the differentiation of chained undifferentiated spermatogonia.
Collapse
Affiliation(s)
- Margherita Grasso
- Fondazione Pasteur Cenci Bolognetti, Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, La Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
162
|
Mirzapour T, Movahedin M, Tengku Ibrahim TA, Koruji M, Haron AW, Nowroozi MR, Rafieian SH. Effects of basic fibroblast growth factor and leukaemia inhibitory factor on proliferation and short-term culture of human spermatogonial stem cells. Andrologia 2011; 44 Suppl 1:41-55. [DOI: 10.1111/j.1439-0272.2010.01135.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
163
|
Zhang S, Sun J, Pan S, Zhu H, Wang L, Hu Y, Wang J, Wang F, Cao H, Yan X, Hua J. Retinol (vitamin A) maintains self-renewal of pluripotent male germline stem cells (mGSCs) from adult mouse testis. J Cell Biochem 2011; 112:1009-21. [PMID: 21308744 DOI: 10.1002/jcb.23029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies have shown that male germline stem cells (mGSCs), which are responsible for maintaining spermatogenesis in the male, could be obtained from mouse and human testis. However, the traditional cultural methods were mostly dependent on serum and feeder, and the initial mGSCs were either obtained from neonatal mice or the detailed description of its potency and origin was not provided. Here we reported a novel (retinol (RE) serum-free and feeder-free) system for the successful culture of adult germline stem cells from adult Kunming mice (8-24 weeks) testis. The isolated mGSCs cultured in RE serum-free and feeder-free medium maintained the typical morphology of undifferentiated embryonic stem cells (ESCs), and they proliferated well in RE medium analyzed by proliferation assay, RT-PCR, microarray, and Western blotting. These cells also showed typical properties of ESCs (alkaline phosphatase (AP) positive, expressions of Oct4, Sox2, Nanog, and SSEA1, with the capacity to form teratomas and differentiate into various types of cells within three germ layers). Taken together, we conclude that RE promotes the self-renewal of mGSCs and maintains the pluripotency of mGSCs, the RE serum-free and feeder-free system may be useful for the culture of pluripotent stem cell lines from adult testis tissues, which provides a new resource for tissue engineering and therapy for infertility.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Reproductive Physiology & Embryo Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Mohamadi SM, Movahedin M, Koruji SM, Jafarabadi MA, Makoolati Z. Comparison of colony formation in adult mouse spermatogonial stem cells developed in Sertoli and STO coculture systems. Andrologia 2011; 44 Suppl 1:431-7. [PMID: 21762195 DOI: 10.1111/j.1439-0272.2011.01201.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study aimed to compare the in vitro effects of coculture with Sertoli and SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) feeder layer cells on the efficiency of adult mouse spermatogonial stem cells (SSCs) colony formation. Sertoli and SSCs were isolated from testes, and their identity was confirmed using immunocytochemistry against Oct4, CDH1, PLZF and C-kit for SSCs and vimentin for Sertoli cells. SSCs were cultured in a simple culture system (control group) and on top of the Sertoli and STO feeder layers for 2 weeks. The number and diameter of colonies were evaluated during third, 7th, 10th and 14th day of culture, and the expression of the Oct-4, α6 and β1 integrins was assessed using quantitative RT-PCR. Significant differences were observed between the three groups, separately for each time (P < 0.05), with higher mean in number and diameter for Sertoli cells (P < 0.05). The results of RT-PCR showed higher gene expression of β1 integrin in Sertoli group, but no significant differences were observed in Oct-4 and α6 integrin gene expression among the three groups. Based the on the optimal effect of Seroli cells on the colony formation of SSCs, it is suggested to use these cells for better colonisation of SSCs.
Collapse
Affiliation(s)
- S M Mohamadi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
165
|
MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A 2011; 108:12740-5. [PMID: 21768389 DOI: 10.1073/pnas.1109987108] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRs) play a key role in the control of gene expression in a wide array of tissue systems, where their functions include the regulation of self-renewal, cellular differentiation, proliferation, and apoptosis. However, the functional importance of individual miRs in controlling spermatogonial stem cell (SSC) homeostasis has not been investigated. Using high-throughput sequencing, we profiled the expression of miRs in the Thy1(+) testis cell population, which is highly enriched for SSCs, and the Thy1(-) cell population, composed primarily of testis somatic cells. In addition, we profiled the global expression of miRs in cultured germ cells, also enriched for SSCs. Our results demonstrate that miR-21, along with miR-34c, -182, -183, and -146a, are preferentially expressed in the Thy1(+) SSC-enriched population, compared with Thy1(-) somatic cells. Importantly, we demonstrate that transient inhibition of miR-21 in SSC-enriched germ cell cultures increased the number of germ cells undergoing apoptosis and significantly reduced the number of donor-derived colonies of spermatogenesis formed from transplanted treated cells in recipient mouse testes, indicating that miR-21 is important in maintaining the SSC population. Moreover, we show that in SSC-enriched germ cell cultures, miR-21 is regulated by the transcription factor ETV5, known to be critical for SSC self-renewal.
Collapse
|
166
|
Yeh JR, Zhang X, Nagano MC. Wnt5a is a cell-extrinsic factor that supports self-renewal of mouse spermatogonial stem cells. J Cell Sci 2011; 124:2357-66. [PMID: 21693582 DOI: 10.1242/jcs.080903] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The maintenance of spermatogonial stem cells (SSCs) provides the foundation for life-long spermatogenesis. Although glial-cell-line-derived neurotrophic factor and fibroblast growth factor 2 are crucial for self-renewal of SSCs, recent studies have suggested that other growth factors have important roles in controlling SSC fate. Because β-catenin-dependent Wnt signaling promotes self-renewal of various stem cell types, we hypothesized that this pathway contributes to SSC maintenance. Using transgenic reporter mice for β-catenin-dependent signaling, we found that this signaling was not active in SSCs in vitro and in most spermatogonia in vivo. Nonetheless, a pan-Wnt antagonist significantly reduced SSC activity in vitro, suggesting that some Wnt molecules exist in our serum-free culture system and contribute to SSC maintenance. Here, we report that Wnt5a promotes SSC activity. We found that Wnt5a-expressing fibroblasts supported SSC activity better than those not expressing Wnt5a in culture, and that recombinant Wnt5a stimulated SSC maintenance. Furthermore, Wnt5a promoted SSC survival in the absence of feeder cells, and this effect was abolished by inhibiting the Jun N-terminal kinase cascade. In addition, Wnt5a blocked β-catenin-dependent signaling. We detected the expression of Wnt5a and potential Wnt5a receptors in Sertoli cells and stem/progenitor spermatogonia, respectively. These results indicate that Wnt5a is a cell-extrinsic factor that supports SSC self-renewal through β-catenin-independent mechanisms.
Collapse
Affiliation(s)
- Jonathan R Yeh
- Department of Obstetrics and Gynecology and Division of Experimental Medicine, McGill University, Montreal, QC H3A 1A1, Canada
| | | | | |
Collapse
|
167
|
Gouk SS, Jason Loh YF, Kumar SD, Watson PF, Kuleshova LL. Cryopreservation of mouse testicular tissue: prospect for harvesting spermatogonial stem cells for fertility preservation. Fertil Steril 2011; 95:2399-403. [DOI: 10.1016/j.fertnstert.2011.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/03/2011] [Accepted: 03/10/2011] [Indexed: 01/15/2023]
|
168
|
Fujihara M, Kim SM, Minami N, Yamada M, Imai H. Characterization and in vitro culture of male germ cells from developing bovine testis. J Reprod Dev 2011; 57:355-64. [PMID: 21289464 DOI: 10.1262/jrd.10-185m] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The transition from male primitive germ cells (gonocytes) to type A spermatogonia in the neonatal testis is the initial process and a crucial process in spermatogenesis. However, in large domestic animals, the physiological and biochemical characteristics of germ cells during the developmental processes remain largely unknown. In this study, we characterized bovine germ cells in the developing testis from the neonatal stage to the adult stage. The binding of the lectin Dolichos biflorus agglutinin (DBA) and the expression of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) were restricted to gonocytes in the neonatal testis and spermatogonia in the adult testis. Gonocytes also expressed a germ cell marker (VASA) and stem cell markers (NANOG and OCT3/4), while the expressions of these markers in the adult testis were restricted to differentiated spermatic cells and were rarely expressed in spermatogonia. We subsequently utilized these markers to characterize gonocytes and spermatogonia after culture in vitro. Spermatogonia that were collected from the adult testis formed colonies in vitro only for one week. On the other hand, gonocytes from the neonatal testis could proliferate and form colonies after every passage for 1.5 months in culture. These colonies retained undifferentiated states of gonocytes as confirmed by the expression of both germ cell and stem cell markers. Moreover, a transplantation assay using immunodeficient mice testes showed that long-term cultured cells derived from gonocytes were able to colonize in the recipient testis. These results indicated that bovine gonocytes could maintain germ cell and stem cell potential in vitro.
Collapse
Affiliation(s)
- Mayako Fujihara
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
169
|
Oatley MJ, Kaucher AV, Racicot KE, Oatley JM. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod 2011; 85:347-56. [PMID: 21543770 DOI: 10.1095/biolreprod.111.091330] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Continual spermatogenesis at a quantitatively normal level is required to sustain male fertility. The foundation of this process relies on maintenance of an undifferentiated spermatogonial population consisting of spermatogonial stem cells (SSCs) that self-renew as well as transient amplifying progenitors produced by differentiation. In mammals, type A(single) spermatogonia form the SSC population, but molecular markers distinguishing these from differentiating progenitors are undefined and knowledge of mechanisms regulating their functions is limited. We show that in the mouse male germline the transcriptional repressor ID4 is expressed by a subpopulation of undifferentiated spermatogonia and selectively marks A(single) spermatogonia. In addition, we found that ID4 expression is up-regulated in isolated SSC-enriched fractions by stimulation from GDNF, a key growth factor driving self-renewal. In mice lacking ID4 expression, quantitatively normal spermatogenesis was found to be impaired due to progressive loss of the undifferentiated spermatogonial population during adulthood. Moreover, reduction of ID4 expression by small interfering RNA treatment abolished the ability of wild-type SSCs to expand in vitro during long-term culture without affecting their survival. Collectively, these results indicate that ID4 is a distinguishing marker of SSCs in the mammalian germline and plays an important role in the regulation of self-renewal.
Collapse
Affiliation(s)
- Melissa J Oatley
- Center for Reproductive Biology and Health, Department of Dairy and Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
170
|
Kubota H, Wu X, Goodyear SM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties. FASEB J 2011; 25:2604-14. [PMID: 21525489 DOI: 10.1096/fj.10-175802] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3850 Baltimore Ave., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
171
|
Panda RP, Barman HK, Mohapatra C. Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology 2011; 76:241-51. [PMID: 21496900 DOI: 10.1016/j.theriogenology.2011.01.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/18/2011] [Accepted: 01/29/2011] [Indexed: 01/25/2023]
Abstract
The in vitro culture system for spermatogonial stem cells (SSCs) is a powerful tool for exploring molecular mechanisms of male gametogenesis and gene manipulation. Very little information is available for fish SSC biology. Our aim was to isolate highly pure SSCs from the testis of commercially important farmed carp, Labeo rohita. The minced testis of L. rohita was dissociated with collagenase. Dissociated cells purified by two-step Ficoll gradient centrifugation followed by magnetic activated cell sorting (MACS) using Thy1.2 (CD90.2) antibody dramatically heightened recovery rate for spermatogonial cells. The purified cells were cultured in vitro conditions for more than two months in L-15 media containing 10% fetal bovine serum (FBS), 1% carp serum, and other nutrients. The proliferative cells were dividing as validated by 5-bromo-2'-deoxyuridine (BrdU) incorporation assay and formed colonies/clumps with the typical characteristics of SSCs A majority of enriched cell population represented a Vasa(+), Pou5f1/pou5f1(+), Ssea-1(+), Tra-1-81(+), plzf(+), Gfrα1/gfrα1(-), and c-Kit/c-kit(-) as detected by immunocytochemical and/or quantitative real-time polymerase chain reaction (RT-PCR) analyses. Thus, Thy1(+) SSCs were enriched with greater efficiency from the mixed population of testicular cells of L. rohita. A population of enriched spermatogonial cells could be cultured in an undifferentiated state. The isolated SSCs could provide avenue for undertaking research on basic and applied reproductive biology.
Collapse
Affiliation(s)
- R P Panda
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
172
|
Yamaguchi K, Fujisawa M. Anticancer chemotherapeutic agents and testicular dysfunction. Reprod Med Biol 2011; 10:81-87. [PMID: 29699084 DOI: 10.1007/s12522-011-0080-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/27/2011] [Indexed: 01/15/2023] Open
Abstract
The improvement of the survival rates of various cancer patients has resulted in increased focus on the long-term complications of treatment. Most anticancer chemotherapeutic agents are gonadotoxic, and sterility is therefore one of the most common complications for cancer survivors. The degree of gonadal dysfunction induced by anticancer chemotherapeutic agents seems to be drug specific and dose related. Following the development of new chemotherapeutic agents that have high benefit-to-risk ratios, sufficient sperm can be acquired by collection of ejaculated semen after the treatment in relatively many cases, and assisted reproductive techniques enable conceptions with even severe spermatogenesis dysfunction. However, anticancer chemotherapeutic agents have consistently exhibited the potential to induce permanent azoospermia. Cryopreservation of semen, which is currently the only proven successful option for future fertility preservation in male cancer patients, should certainly be recommended before cancer therapy. However, to date, no established effective methods have shown the capability to protect gonadal function from anticancer treatment in prepubertal cancer patients.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Division of Urology, Department of Organs Therapeutics, Faculty of Medicine Kobe University Graduate School of Medicine 7-5-1 Kusunoki-Cho, Chuo-Ku 650-0017 Kobe Japan
| | - Masato Fujisawa
- Division of Urology, Department of Organs Therapeutics, Faculty of Medicine Kobe University Graduate School of Medicine 7-5-1 Kusunoki-Cho, Chuo-Ku 650-0017 Kobe Japan
| |
Collapse
|
173
|
Reprogramming of adult human testicular cells by four transcription factors (OCT4, SOX2, KLF4, and C-MYC). Reprod Med Biol 2011; 10:105-112. [PMID: 29699086 DOI: 10.1007/s12522-011-0077-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/12/2011] [Indexed: 01/01/2023] Open
Abstract
Purpose Induced pluripotent stem (iPS) cells have been generated from mouse and human fibroblasts by several groups; however, transplanted mouse iPS cells can cause teratomas, depending on their tissue of origin. Therefore, human iPS cells are preferable, and various tissues are being evaluated for their potential to generate human iPS cells. Methods We examined whether adult human testicular tissue had undergone reprogramming by introducing four transcription factors, OCT4, SOX2, KLF4, and C-MYC, using lentiviral vectors. Results We obtained embryonic stem (ES)-like cells derived from human testicular tissue by introducing four cDNAs, encoding the transcription factors OCT4, SOX2, KLF4, and C-MYC, using lentiviral vectors. We showed that DAZL and VASA were expressed in testicular cells but down-regulated in ES-like cells, indicating that the cells had undergone reprogramming. ES-like cells could develop tumors, which is a hallmark of pluripotency, when SCID mice were injected with these cells. Conclusions We induced iPS cells from adult human testicular tissue by introducing four transcription factors, OCT4, SOX2, KLF4, and C-MYC, using lentiviral vectors. Future studies on these cells may elucidate the causes of male infertility, and eventually lead to treatments with autologous testicular tissue-derived iPS cells.
Collapse
|
174
|
Yang Y, Honaramooz A. Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod Fertil Dev 2011; 23:496-505. [DOI: 10.1071/rd10042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 11/01/2010] [Indexed: 12/24/2022] Open
Abstract
Gonocytes are the only type of germ cells present in the postnatal testis and give rise to spermatogonial stem cells. Purification of gonocytes has important implications for the study and manipulation of these cells and may provide insights for the ongoing investigation of the male germline stem cells. To obtain a pure population of gonocytes from piglet testis cells, a wide range of Nycodenz concentrations were investigated for density gradient centrifugation. We also examined differential plating of testis cells for various culture durations with different extracellular matrix (ECM) components (fibronectin, poly-d-lysine, poly-l-lysine, laminin and collagen Types I and IV). Gonocytes were highly enriched in pellets of testis cells after using 17% Nycodenz centrifugation to a purity of 81 ± 9%. After culturing testis cells on plates precoated with different ECM components for 120 min, the proportion of gonocytes increased among non-adherent cells (suspended in the medium), with fibronectin or poly-d-lysine resulting in the greatest (up to 85%) and laminin in the lowest (54%) gonocyte proportion. Combining the most promising ECM coatings (fibronectin and poly-d-lysine) and further extension of their culture duration to 240 min did not improve final gonocyte purity. However, centrifugation with 17% Nycodenz followed by differential plating with fibronectin and poly-d-lysine coating further purified gonocytes among the collected cells to >90%. These results provide a simple, quick and efficient approach for obtaining highly enriched populations of piglet gonocytes for use in the study and manipulation of these germline stem cells.
Collapse
|
175
|
Schmidt JA, Abramowitz LK, Kubota H, Wu X, Niu Z, Avarbock MR, Tobias JW, Bartolomei MS, Brinster RL. In vivo and in vitro aging is detrimental to mouse spermatogonial stem cell function. Biol Reprod 2010; 84:698-706. [PMID: 21191109 DOI: 10.1095/biolreprod.110.088229] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The development of techniques to maintain the spermatogonial stem cell (SSC) in vivo and in vitro for extended periods essentially allows for the indefinite continuation of an individual germline. Recent evidence indicates that the aging of male reproductive function is due to failure of the SSC niche. SSCs are routinely cultured for 6 mo, and no apparent effect of culture over this period has been observed. To determine the effects of SSC aging, we utilized an in vitro culture system, followed by quantitative transplantation experiments. After culture for 6 mo, SSCs that had been aged in vivo for 1500 days had a slower proliferation rate than SSCs that were aged in vivo to 8 or 300 days. Examination of methylation patterns revealed no apparent difference in DNA methylation between SSCs that were aged 8, 300, or 1500 days before culture. Long-term culture periods resulted in a loss of stem cell potential without an obvious change in the visual appearance of the culture. DNA microarray analysis of in vivo- and in vitro-aged SSCs identified the differential expression of several genes important for SSC function, including B-cell CLL/lymphoma 6, member B (Bcl6b), Lim homeobox protein 1 (Lhx1), and thymus cell antigen 1, theta (Thy1). Collectively, these data indicate that, although both in vitro and in vivo aging are detrimental to SSC function, in vitro aging results in greater loss of function, potentially due to a decrease in core SSC self-renewal gene expression and an increase in germ cell differentiation gene expression.
Collapse
Affiliation(s)
- Jonathan A Schmidt
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Oatley MJ, Racicot KE, Oatley JM. Sertoli cells dictate spermatogonial stem cell niches in the mouse testis. Biol Reprod 2010; 84:639-45. [PMID: 21084712 DOI: 10.1095/biolreprod.110.087320] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sustained spermatogenesis in adult males relies on the activity of spermatogonial stem cells (SSCs). In general, tissue-specific stem cell populations such as SSCs are influenced by contributions of support cells that form niche microenvironments. Previous studies have provided indirect evidence that several somatic cell populations and the interstitial vasculature influence SSC functions, but an individual orchestrator of niches has not been described. In this study, functional transplantation of SSCs, in combination with experimental alteration of Sertoli cell content by polythiouracil (PTU)-induced transient hypothyroidism, was used to explore the relationship of Sertoli cells with SSCs in testes of adult mice. Transplantation of SSCs from PTU-treated donor mice into seminiferous tubules of normal recipient mice revealed a greater than 3-fold increase in SSCs compared to those from testes of non-PTU-treated donors. In addition, use of PTU-treated mice as recipients for transplantation of SSCs from normal donors revealed a greater than 3-fold increase of accessible niches compared to those of testes of non-PTU treated recipient mice with normal numbers of Sertoli cells. Importantly, the area of seminiferous tubules bordered by interstitial tissue and percentage of seminiferous tubules associated with blood vessels was found to be no different in testes of PTU-treated mice compared to controls, indicating that neither the vasculature nor interstitial support cell populations influenced the alteration of niche number. Collectively, these results provide direct evidence that Sertoli cells are the key somatic cell population dictating the number of SSCs and niches in mammalian testes.
Collapse
Affiliation(s)
- Melissa J Oatley
- Department of Dairy and Animal Science, The Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
177
|
Affiliation(s)
- Makoto C Nagano
- Department of Obstetrics and Gynecology, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
178
|
Honaramooz A, Yang Y. Recent advances in application of male germ cell transplantation in farm animals. Vet Med Int 2010; 2011. [PMID: 20953408 PMCID: PMC2952800 DOI: 10.4061/2011/657860] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 01/15/2023] Open
Abstract
Transplantation of isolated germ cells from a fertile donor male into the seminiferous tubules of infertile recipients can result in donor-derived sperm production. Therefore, this system represents a major development in the study of spermatogenesis and a unique functional assay to determine the developmental potential and relative abundance of spermatogonial stem cells in a given population of testis cells. The application of this method in farm animals has been the subject of an increasing number of studies, mostly because of its potential as an alternative strategy in producing transgenic livestock with higher efficiency and less time and capital requirement than the current methods. This paper highlights the salient recent research on germ cell transplantation in farm animals. The emphasis is placed on the current status of the technique and examination of ways to increase its efficiency through improved preparation of the recipient animals as well as isolation, purification, preservation, and transgenesis of the donor germ cells.
Collapse
Affiliation(s)
- Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5B4
| | | |
Collapse
|
179
|
Abstract
This article will provide an updated review of spermatogonial stem cells and their role in maintaining the spermatogenic lineage. Experimental tools used to study spermatogonial stem cells (SSCs) will be described, along with research using these tools to enhance our understanding of stem cell biology and spermatogenesis. Increased knowledge about the biology of SSCs improves our capacity to manipulate these cells for practical application. The chapter concludes with a discussion of future directions for fundamental investigation and practical applications of SSCs.
Collapse
Affiliation(s)
| | | | - Kyle E. Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, 204 Craft Avenue, Pittsburgh, PA, USA
| |
Collapse
|
180
|
Jung YH, Gupta MK, Oh SH, Uhm SJ, Lee HT. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells. Exp Cell Res 2010; 316:747-61. [DOI: 10.1016/j.yexcr.2009.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 11/27/2009] [Accepted: 11/30/2009] [Indexed: 01/05/2023]
|
181
|
Reding SC, Stepnoski AL, Cloninger EW, Oatley JM. THY1 is a conserved marker of undifferentiated spermatogonia in the pre-pubertal bull testis. Reproduction 2010; 139:893-903. [PMID: 20154176 DOI: 10.1530/rep-09-0513] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The undifferentiated spermatogonial population consists of stem and progenitor germ cells which function to provide the foundation for spermatogenesis. The stem cell component, termed spermatogonial stem cells (SSCs), is capable of self-renewal and differentiation. These unique attributes have made them a target for novel technologies to enhance reproductive function in males. With bulls, culture and transplantation of SSCs have the potential to enhance efficiency of cattle production and provide a novel avenue to generate transgenic animals. Isolation of SSCs is an essential component for the development of these techniques. In rodents and non-human primates, undifferentiated spermatogonia and SSCs express the surface marker THY1. The hypothesis tested in this study was that THY1 is a conserved marker of the undifferentiated spermatogonial population in bulls. Flow cytometric analyses showed that the THY1+ cell fraction comprises a rare sub-population in testes of pre-pubertal bulls. Immunocytochemical analyses of the isolated THY1+ fraction for expression of VASA showed that this cell population is comprised mostly of germ cells. Additionally, expression of the undifferentiated spermatogonial specific transcription factor promyelocytic leukemia zinc finger (PLZF, ZBTB16) protein was found to be enriched in the isolated THY1+ testis cell fraction. Lastly, xenogeneic transplantation of bull testis cells into seminiferous tubules of immunodeficient mice resulted in greater than sixfold more colonies from isolated THY1+ cells compared to the unselected total testis cell population indicating SSC enrichment. Collectively, these results demonstrate that THY1 is a marker of undifferentiated spermatogonia in testes of pre-pubertal bulls, and isolation of THY1+ cells results in their enrichment from the total testis cell population.
Collapse
Affiliation(s)
- Suzanne C Reding
- Department of Dairy and Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
182
|
Antonangeli F, Giampietri C, Petrungaro S, Filippini A, Ziparo E. Expression profile of a 400-bp Stra8 promoter region during spermatogenesis. Microsc Res Tech 2010; 72:816-22. [PMID: 19378319 DOI: 10.1002/jemt.20724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although numerous markers have been helpful in isolating and enriching spermatogonial stem cells (SSCs), such as Thy-1 and GFR alpha-1, no specific marker for this cell type has been identified so far. A 400-bp regulatory region of the stimulated by retinoic acid gene 8 (Stra8) promoter was reported to direct gene expression into SSCs and we have recently generated a new transgenic mouse model harboring the enhanced green fluorescent protein (EGFP) downstream of this Stra8 promoter. In this study, a detailed analysis of the EGFP expression pattern in the testis was carried out, showing that the transgene was expressed in meiotic and postmeiotic germ cells and not in undifferentiated germ cells. These findings were supported by confocal microscopy and flow cytometric analyses, and do not agree with the previous report concerning the 400-bp Stra8 promoter activity.
Collapse
Affiliation(s)
- Fabrizio Antonangeli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
183
|
Wyns C, Curaba M, Vanabelle B, Van Langendonckt A, Donnez J. Options for fertility preservation in prepubertal boys. Hum Reprod Update 2010; 16:312-28. [DOI: 10.1093/humupd/dmp054] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
184
|
Kaul G, Kaur J, Rafeeqi TA. Ultrasound Guided Transplantation of Enriched and Cryopreserved Spermatogonial Cell Suspension in Goats. Reprod Domest Anim 2009; 45:e249-54. [DOI: 10.1111/j.1439-0531.2009.01549.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
185
|
Wu Z, Luby-Phelps K, Bugde A, Molyneux LA, Denard B, Li WH, Süel GM, Garbers DL. Capacity for stochastic self-renewal and differentiation in mammalian spermatogonial stem cells. ACTA ACUST UNITED AC 2009; 187:513-24. [PMID: 19948499 PMCID: PMC2779229 DOI: 10.1083/jcb.200907047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian spermatogenesis is initiated and sustained by spermatogonial stem cells (SSCs) through self-renewal and differentiation. The basic question of whether SSCs have the potential to specify self-renewal and differentiation in a cell-autonomous manner has yet to be addressed. Here, we show that rat SSCs in ex vivo culture conditions consistently give rise to two distinct types of progeny: new SSCs and differentiating germ cells, even when they have been exposed to virtually identical microenvironments. Quantitative experimental measurements and mathematical modeling indicates that fate decision is stochastic, with constant probability. These results reveal an unexpected ability in a mammalian SSC to specify both self-renewal and differentiation through a self-directed mechanism, and further suggest that this mechanism operates according to stochastic principles. These findings provide an experimental basis for autonomous and stochastic fate choice as an alternative strategy for SSC fate bifurcation, which may also be relevant to other stem cell types.
Collapse
Affiliation(s)
- Zhuoru Wu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
186
|
He Z, Kokkinaki M, Dym M. Signaling molecules and pathways regulating the fate of spermatogonial stem cells. Microsc Res Tech 2009; 72:586-95. [PMID: 19263492 DOI: 10.1002/jemt.20698] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process that involves the division and differentiation of spermatogonial stem cells (SSCs) into mature spermatozoa. SSCs are a subpopulation of type A spermatogonia resting on the basement membrane in the mammalian testis. Self-renewal and differentiation of SSCs are the foundation of normal spermatogenesis, and thus a better understanding of molecular mechanisms and signaling pathways in the SSCs is of paramount importance for the regulation of spermatogenesis and may eventually lead to novel targets for male contraception as well as for gene therapy of male infertility and testicular cancer. Uncovering the molecular mechanisms is also of great interest to a better understanding of SSC aging and for developing novel therapeutic strategies for degenerative diseases in view of the recent work demonstrating the pluripotent potential of the SSC. Progress has recently been made in elucidating the signaling molecules and pathways that determine cell fate decisions of SSCs. In this review, we first address the morphological features, phenotypic characteristics, and the potential of SSCs, and then we focus on the recent advances in defining the key signaling molecules and crucial signaling pathways regulating self-renewal and differentiation of SSCs. The association of aberrant expression of signaling molecules and cascades with abnormal spermatogenesis and testicular cancer are also discussed. Finally, we point out potential future directions to pursue in research on signaling pathways of SSCs.
Collapse
Affiliation(s)
- Zuping He
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
187
|
Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, Wu TJ, Wu YC, Hung YC, Chang CC, Ling TY. Pluripotency of mouse spermatogonial stem cells maintained by IGF‐1‐dependent pathway. FASEB J 2009; 23:2076-2087. [DOI: 10.1096/fj.08-121939] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Yen-Hua Huang
- Department of BiochemistryTaipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical SciencesSchool of MedicineTaipeiTaiwan
- Center for Reproductive MedicineTaipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Cheng-Chieh Chin
- Department of BiochemistryTaipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical SciencesSchool of MedicineTaipeiTaiwan
| | - Hong-Nerng Ho
- Division of Reproductive Endocrinology and InfertilityDepartment of Obstetrics and GynecologyCollege of Medicine and HospitalNational Taiwan UniversityTaipeiTaiwan
- Graduate Institute of ImmunologyTaipeiTaiwan
| | - Chuan-Kai Chou
- National Laboratory Animal CenterNational Applied Research LaboratoriesTaipeiTaiwan
| | - Chia-Ning Shen
- Stem Cell ProgramGenomic Research CenterInstitute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Hung-Chih Kuo
- Stem Cell ProgramGenomic Research CenterInstitute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
| | - Tsai-Jung Wu
- Department of BiochemistryTaipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical SciencesSchool of MedicineTaipeiTaiwan
| | - Yu-Chih Wu
- Department of BiochemistryTaipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical SciencesSchool of MedicineTaipeiTaiwan
- Graduate Institute of Life SciencesNational Defense Medical CenterTaipeiTaiwan
| | - Yu-Ching Hung
- National Laboratory Animal CenterNational Applied Research LaboratoriesTaipeiTaiwan
| | - Chih-Cheng Chang
- Department of BiochemistryTaipei Medical University HospitalTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical SciencesSchool of MedicineTaipeiTaiwan
| | - Thai-Yen Ling
- Institute of PharmacologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
188
|
Zheng K, Wu X, Kaestner KH, Wang PJ. The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC DEVELOPMENTAL BIOLOGY 2009; 9:38. [PMID: 19563657 PMCID: PMC2719617 DOI: 10.1186/1471-213x-9-38] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 06/29/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Life-long production of spermatozoa depends on spermatogonial stem cells. Spermatogonial stem cells exist among the most primitive population of germ cells - undifferentiated spermatogonia. Transplantation experiments have demonstrated the functional heterogeneity of undifferentiated spermatogonia. Although the undifferentiated spermatogonia can be topographically divided into As (single), Apr (paired), and Aal (aligned) spermatogonia, subdivision of this primitive cell population using cytological markers would greatly facilitate characterization of their functions. RESULTS In the present study, we show that LIN28, a pluripotency factor, is specifically expressed in undifferentiated spermatogonia (As, Apr, and Aal) in mouse. Ngn3 also specifically labels undifferentiated spermatogonia. We used Ngn3-GFP knockin mice, in which GFP expression is under the control of all Ngn3 transcription regulatory elements. Remarkably, Ngn3-GFP is only expressed in approximately 40% of LIN28-positive As (single) cells. The percentage of Ngn3-GFP-positive clusters increases dramatically with the chain length of interconnected spermatogonia. CONCLUSION Our study demonstrates that LIN28 specifically marks undifferentiated spermatogonia in mice. These data, together with previous studies, suggest that the LIN28-expressing undifferentiated spermatogonia exist as two subpopulations: Ngn3-GFP-negative (high stem cell potential) and Ngn3-GFP-positive (high differentiation commitment). Furthermore, Ngn3-GFP-negative cells are found in chains of Ngn3-GFP-positive spermatogonia, suggesting that cells in the Aal spermatogonia could revert to a more primitive state.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
189
|
Luo J, Megee S, Dobrinski I. Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J Cell Physiol 2009; 220:460-8. [PMID: 19388011 DOI: 10.1002/jcp.21789] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Asymmetric division of germline stem cells in vertebrates was proposed a century ago; however, direct evidence for asymmetric division of mammalian spermatogonial stem cells (SSCs) has been scarce. Here, we report that ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) is expressed in type A (A(s), A(pr), and A(al)) spermatogonia located at the basement membrane (BM) of seminiferous tubules at high and low levels, but not in differentiated germ cells distant from the BM. Asymmetric segregation of UCH-L1 was associated with self-renewal versus differentiation divisions of SSCs as defined by co-localization of UCH-L1(high) and PLZF, a known determinant of undifferentiated SSCs, versus co-localization of UCH-L1(low/-) with proteins expressed during SSC differentiation (DAZL, DDX4, c-KIT). In vitro, gonocytes/spermatogonia frequently underwent asymmetric divisions characterized by unequal segregation of UCH-L1 and PLZF. Importantly, we could also demonstrate asymmetric segregation of UCH-L1 and PLZF in situ in seminiferous tubules. Expression level of UCH-L1 in the immature testis where spermatogenesis was not complete was not affected by the location of germ cells relative to the BM, whereas UCH-L1-positive spermatogonia were exclusively located at the BM in the adult testis. Asymmetric division of SSCs appeared to be affected by interaction with supporting somatic cells and extracelluar matrix. These findings for the first time provide direct evidence for existence of asymmetric division during SSCs self-renewal and differentiation in mammalian spermatogenesis.
Collapse
Affiliation(s)
- Jinping Luo
- Department of Clinical Studies, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | | | | |
Collapse
|
190
|
Stukenborg JB, Schlatt S, Simoni M, Yeung CH, Elhija MA, Luetjens CM, Huleihel M, Wistuba J. New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod 2009; 15:521-9. [PMID: 19561342 DOI: 10.1093/molehr/gap052] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Culture and differentiation of male germ cells has been performed for various purposes in the past. To date, none of the studies aimed at in vitro spermatogenesis has resulted in a sufficient number of mature gametes. Numerous studies have revealed worthy pieces of information, building up a body of information on conditions that are required to maintain and mature male germ cells in vitro. In this review, we report on previously published and unpublished experiments addressing murine germ cell differentiation in three-dimensional (3D) in vitro culture systems. In a systematic set of experiments, we examined the influence of two different matrices (soft agar and methylcellulose) as well as the need for gonadotrophin support. For the first time, we demonstrate that pre-meiotic male germ cells [revealed by the absence of meiotic marker expression (e.g. Boule)] obtained from immature mice pass through meiosis in vitro. After several weeks of culture, we obtained morphologically normal spermatozoa embedded in the matrix substance. Complete maturation relied on support from somatic testicular cells and the presence of gonadotrophins but appeared independent from the matrix in a 3D culture environment. Further research efforts are required to reveal the applicability of this culture technique for human germ cells and the functionality of the spermatozoa for generating offspring.
Collapse
Affiliation(s)
- Jan-Bernd Stukenborg
- Institute of Reproductive and Regenerative Biology of the Centre of Reproductive Medicine and Andrology, University Münster, Domagkstrasse 11 48129, Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Oatley JM, Oatley MJ, Avarbock MR, Tobias JW, Brinster RL. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 2009; 136:1191-9. [PMID: 19270176 DOI: 10.1242/dev.032243] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-renewal and differentiation of spermatogonial stem cells (SSCs) provide the foundation for testis homeostasis, yet mechanisms that control their functions in mammals are poorly defined. We used microarray transcript profiling to identify specific genes whose expressions are augmented in the SSC-enriched Thy1(+) germ cell fraction of mouse pup testes. Comparisons of gene expression in the Thy1(+) germ cell fraction with the Thy1-depleted testis cell population identified 202 genes that are expressed 10-fold or higher in Thy1(+) cells. This database provided a mining tool to investigate specific characteristics of SSCs and identify novel mechanisms that potentially influence their functions. These analyses revealed that colony stimulating factor 1 receptor (Csf1r) gene expression is enriched in Thy1(+) germ cells. Addition of recombinant colony stimulating factor 1 (Csf1), the specific ligand for Csf1r, to culture media significantly enhanced the self-renewal of SSCs in heterogeneous Thy1(+) spermatogonial cultures over a 63-day period without affecting total germ cell expansion. In vivo, expression of Csf1 in both pre-pubertal and adult testes was localized to clusters of Leydig cells and select peritubular myoid cells. Collectively, these results identify Csf1 as an extrinsic stimulator of SSC self-renewal and implicate Leydig and myoid cells as contributors of the testicular stem cell niche in mammals.
Collapse
Affiliation(s)
- Jon M Oatley
- Department of Dairy and Animal Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
192
|
Golestaneh N, Beauchamp E, Fallen S, Kokkinaki M, Uren A, Dym M. Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction 2009; 138:151-62. [PMID: 19419993 DOI: 10.1530/rep-08-0510] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spermatogonial stem cells (SSCs) self-renew throughout life to produce progenitor cells that are able to differentiate into spermatozoa. However, the mechanisms underlying the cell fate determination between self-renewal and differentiation have not yet been delineated. Culture conditions and growth factors essential for self-renewal and proliferation of mouse SSCs have been investigated, but no information is available related to growth factors that affect fate determination of human spermatogonia. Wnts form a large family of secreted glycoproteins, the members of which are involved in cell proliferation, differentiation, organogenesis, and cell migration. Here, we show that Wnts and their receptors Fzs are expressed in mouse spermatogonia and in the C18-4 SSC line. We demonstrate that WNT3A induces cell proliferation, morphological changes, and cell migration in C18-4 cells. Furthermore, we show that beta-catenin is activated during testis development in 21-day-old mice. In addition, our study demonstrates that WNT3A sustained adult human embryonic stem (ES)-like cells derived from human germ cells in an undifferentiated stage, expressing essential human ES cell transcription factors. These results demonstrate for the first time that Wnt/beta-catenin pathways, especially WNT3A, may play an important role in the regulation of mouse and human spermatogonia.
Collapse
Affiliation(s)
- Nady Golestaneh
- Departments of, Biochemistry and Molecular and Cellular Biology Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3900 Reservoir Road, Northwest, Washington, District of Columbia 20057, USA
| | | | | | | | | | | |
Collapse
|
193
|
Kobayashi H, Nagao K, Nakajima K, Miura K, Ishii N. Thy-1 + cells isolated from adult human testicular tissues express human embryonic stem cell genes OCT3/4 and NANOG and may include spermatogonial stem cells. Reprod Med Biol 2009; 8:71-77. [PMID: 29699310 DOI: 10.1007/s12522-009-0014-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/31/2009] [Indexed: 01/15/2023] Open
Abstract
Purpose Spermatogonial stem cells (SSCs) are self-renewing cells whose progeny are committed to differentiate into spermatozoa; this is a life-long process in male mammals. There are several methods for obtaining enriched populations of mouse SSCs, and immunological separation using surface antigens is a commonly used technique. The study of human SSCs is much less advanced. Methods We used biopsied human testicular tissues [obstructive azoospermia patients (n = 5) and patients who underwent a testis biopsy as part of an evaluation for infertility (n = 7)] to obtain Thy-1+ cells. Thy-1-a glycosyl phosphatidylinositol-anchored surface antigen-is a marker uniquely expressed on SSCs that is used to isolate SSC-enriched cell populations in mice. The Thy-1+ cells from human testicular tissues were cultured in a basic system consisting of serum-free medium and mitotically inactivated STO (SIM mouse embryo-derived thioguanine- and ouabain-resistant) cell feeders with added growth factors: glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), and GDNF-family receptor α1 (GFRα-1). Results The Thy-1+ cells were maintained in vitro using this system for 1 week. The Thy-1+ cells expressed OCT3/4 and alkaline phosphatase, like mouse SSCs. They also expressed NANOG. Thy-1+ cells injected into nude mice did not cause tumor formation over a period of at least 6 months. Conclusions These results support the possibility that the Thy-1+ cell population included human SSCs, and that Thy-1 may be a marker for human SSCs.
Collapse
Affiliation(s)
- Hideyuki Kobayashi
- Department of Urology Toho University School of Medicine 6-11-1 Omori-Nishi, Ota-ku 143-8541 Tokyo Japan
| | - Koichi Nagao
- Department of Urology Toho University School of Medicine 6-11-1 Omori-Nishi, Ota-ku 143-8541 Tokyo Japan
| | - Koichi Nakajima
- Department of Urology Toho University School of Medicine 6-11-1 Omori-Nishi, Ota-ku 143-8541 Tokyo Japan
| | - Kazukiyo Miura
- Department of Urology Toho University School of Medicine 6-11-1 Omori-Nishi, Ota-ku 143-8541 Tokyo Japan
| | - Nobuhisa Ishii
- Department of Urology Toho University School of Medicine 6-11-1 Omori-Nishi, Ota-ku 143-8541 Tokyo Japan
| |
Collapse
|
194
|
Tanaka K, Okamoto S, Ishikawa Y, Tamura H, Hara T. DDX1 is required for testicular tumorigenesis, partially through the transcriptional activation of 12p stem cell genes. Oncogene 2009; 28:2142-51. [PMID: 19398953 DOI: 10.1038/onc.2009.89] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytogenetic analysis has identified 12p gain as the most frequent abnormality in human testicular germ cell tumors (TGCTs). It has been suggested that amplification and overexpression of stem cell-associated genes, including cyclin-D2, on the human chromosome 12p region are involved in germ cell tumorigenesis. By subtractive cDNA analysis, we identified Ddx1, a member of the DEAD-box protein family, as a gene predominantly expressed in the primordial germ cells of mouse embryos. Knockdown of Ddx1 in a mouse spermatogonia-derived cell line, GC-1spg, by short interference RNA repressed the expression of cyclin-D2, CD9 and GDF3 genes. In the mouse cyclin-D2 gene, a genomic DNA region between -348 and -329 was responsible for transcriptional activation by DDX1 based on reporter and gel shift assays. Similarly, DDX1 knockdown in the human TGCT cell line NEC8 repressed the expression of stem cell-associated genes localized on chromosome 12p13.3, including cyclin-D2, CD9 and NANOG. DDX1-knocked-down TGCT cells could not form solid tumors in nude mice. Furthermore, in situ hybridization revealed that DDX1 mRNA was produced in both seminoma and nonseminoma types of human TGCT samples. We conclude that DDX1 is a critical factor for testicular tumorigenesis.
Collapse
Affiliation(s)
- K Tanaka
- Stem Cell Project Group, The Tokyo Metropolitan Institute of Medical Science, Tokyo Metropolitan Organization for Medical Research, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
195
|
Kubota H, Avarbock MR, Schmidt JA, Brinster RL. Spermatogonial stem cells derived from infertile Wv/Wv mice self-renew in vitro and generate progeny following transplantation. Biol Reprod 2009; 81:293-301. [PMID: 19369648 DOI: 10.1095/biolreprod.109.075960] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Loss-of-function mutation of the Kit gene causes a severe defect in spermatogenesis that results in infertility due to the inability of its cognate ligand, KIT ligand (KITL), to stimulate spermatogonial proliferation and differentiation. Although self-renewal of mouse spermatogonial stem cells (SSCs) depends on glial cell line-derived neurotrophic factor (GDNF), there is no unequivocal evidence that SSCs with a KIT deficiency can self-renew in vivo or in vitro. In the testis of W(v)/W(v) mice, in which the KIT tyrosine kinase activity is impaired, spermatogonia with SSC phenotype were identified. When W(v)/W(v) spermatogonia were cultured in an SSC culture system supplemented with GDNF in a 10% O(2) atmosphere, they formed clumps and proliferated continuously. An atmosphere of 10% O(2) was better than 21% O(2) to support SSC self-renewal. When W(v)/W(v) clump-forming germ cells were transplanted into testes of infertile wild-type busulfan-treated mice, they colonized the seminiferous tubules but did not differentiate. However, when transplanted into the testes of infertile W/W(v) pups, they restored spermatogenesis and produced spermatozoa, and progeny were generated using microinsemination. These results clearly show that SSCs exist in W(v)/W(v) testes and that they proliferate in vitro similar to wild-type SSCs, indicating that a functional KIT protein is not required for SSC self-renewal. Furthermore, the results indicate that a defect of KIT/KITL signaling of W(v)/W(v) SSCs does not prevent spermatogonial differentiation and spermatogenesis in some recipient strains.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
196
|
Schmidt JA, Avarbock MR, Tobias JW, Brinster RL. Identification of glial cell line-derived neurotrophic factor-regulated genes important for spermatogonial stem cell self-renewal in the rat. Biol Reprod 2009; 81:56-66. [PMID: 19339709 DOI: 10.1095/biolreprod.108.075358] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis throughout the life of a male. Because SSCs of many species can colonize the mouse testis, and glial cell line-derived neurotrophic factor (GDNF) is responsible for stimulating SSC self-renewal in rodents, we reasoned that molecular mechanisms of SSC self-renewal are similar across species. GDNF-regulated genes have been identified in mouse SSCs; however, downstream targets of GDNF are unknown in other species. The objective of this work was to identify GDNF-regulated genes in rat SSCs and to define the biological significance of these genes for rat SSC self-renewal. We conducted microarray analysis on cultured rat germ cells enriched for SSCs in the presence and absence of GDNF. Many GDNF-regulated genes were identified, most notably, Bcl6b and Etv5, which are important for mouse SSC self-renewal. Bcl6b was the most highly regulated gene in both the rat and mouse. Additionally, we identified three novel GDNF-regulated genes in rat SSCs: Bhlhe40, Hoxc4, and Tec. Small interfering RNA treatment for Bcl6b, Etv5, Bhlhe40, Hoxc4, and Tec resulted in a decrease in SSC number, as determined by transplantation, without a change in total cell number within the culture. These data indicate that, like in the mouse SSC, Bcl6b and Etv5 are important for rat SSC self-renewal, suggesting that these genes may be important for SSCs in all mammals. Furthermore, identification of three novel GDNF-regulated genes in the rat SSC extends our knowledge of SSC activity and broadens the foundation for understanding this process in higher species, including humans.
Collapse
Affiliation(s)
- Jonathan A Schmidt
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
197
|
Efficiency of adult mouse spermatogonial stem cell colony formation under several culture conditions. In Vitro Cell Dev Biol Anim 2009; 45:281-9. [DOI: 10.1007/s11626-008-9169-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 12/16/2008] [Indexed: 01/15/2023]
|
198
|
Achieving high survival rate following cryopreservation after isolation of prepubertal mouse spermatogonial cells. J Assist Reprod Genet 2009; 26:143-9. [PMID: 19199023 DOI: 10.1007/s10815-009-9298-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 01/22/2009] [Indexed: 01/15/2023] Open
Abstract
PURPOSE Isolating spermatogonia cells with high purity and viability and achieving better survival rate following cryopreservation METHODS Isolating the cells by Magnetic Activating Cell Sorting (MACS) method using anti CD49f (alpha6 integrin) antibody and Dynabeads and freezing in DMSO-based freezing mediums containing three different FBS concentrations of 50%, 60% and 70%. RESULTS The mean (+/-SD) purity of the isolated cells was 92.52+/-3.57 (range 92.43-98.25). The cells frozen in group I, II and III had mean 39.60+/-1.48 (range 37.98-41.62), 89.05+/-3.83 (range 80.83-90.33) and 90.52+/-1.71 (range 89.07-92.52) viability, respectively. CONCLUSION Higher viable cell counts and purity can be attained by the use of alpha6 integrin and magnetic beads. After the thawing of spermatogonial cells, optimum viability was achieved in freezing media containing 60% FBS.
Collapse
|
199
|
|
200
|
Goel S, Fujihara M, Tsuchiya K, Takagi Y, Minami N, Yamada M, Imai H. Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro. Reprod Fertil Dev 2009; 21:696-708. [DOI: 10.1071/rd08176] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 03/08/2009] [Indexed: 01/15/2023] Open
Abstract
Gonocytes are progenitor-type germ cells that arise from primordial germ cells and differentiate further into spermatogonia, thereby initiating spermatogenesis. In the present study, freshly isolated gonocytes were found to have either weak or no expression of pluripotency determining transcription factors, such as POU5F1, SOX2 and C-MYC. Interestingly, the expression of these transcription factors, as well as other vital transcription factors, such as NANOG, KLF4 and DAZL, were markedly upregulated in cultured cells. Cells in primary cultures expressed specific germ cell and pluripotency markers, such as lectin Dolichos biflorus agglutinin (DBA), KIT, ZBTB16, stage-specific embryonic antigen (SSEA-1), NANOG and POU5F1. Using a monoclonal antibody to specifically identify porcine germ cells, the stem cell potential of fresh and cultured cells was determined with a testis xenotransplantation assay. Colonised porcine germ cells were detected only in mouse testes that were either transplanted with fresh testicular cells or with cells from primary cultures. Interestingly, testes transplanted with cells from primary cultures showed colonisation of germ cells in the interstitial space, reflecting their tumourigenic nature. The formation of teratomas with tissues originating from the three germinal layers following the subcutaneous injection of cells into nude mice from primary cultures confirmed their multipotency. The results of the present study may provide useful information for the establishment of multipotent germ stem cell lines from neonatal pig testis.
Collapse
|