151
|
Abstract
BACKGROUND AND PURPOSE The small G protein rhoA and its downstream effector rho-kinase are both expressed in vascular cells and are involved in several cellular processes. One of these processes is the regulation of the phosphorylation state of myosin light chain in vascular muscle and thus, the development of force. Recently, considerable evidence for increased activity of this pathway in cerebral and noncerebral vessels has been reported in several cardiovascular diseases associated with increased vascular tone. SUMMARY OF REVIEW The main aim of this brief review is to summarize current evidence for the involvement of rhoA/rho-kinase signaling in dysfunction of the cerebral circulation in disease states, such as cerebral vasospasm, hypertension, diabetes, and ischemic brain injury. We will also briefly consider the novel hypothesis that augmented activity of endothelial rho-kinase decreases nitric oxide production and contributes to increased vascular tone in disease and the possibility of this action being a key therapeutic target of statins (inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase) in cerebral and noncerebral arteries. CONCLUSIONS Considerable evidence indicates that rhoA/rho-kinase activity is commonly increased in cerebral vascular disease, not only in vascular muscle, but also in the endothelium and possibly in inflammatory cells and neurons.
Collapse
|
152
|
Chen X, Pavlish K, Zhang HY, Benoit JN. Effects of chronic portal hypertension on agonist-induced actin polymerization in small mesenteric arteries. Am J Physiol Heart Circ Physiol 2006; 290:H1915-21. [PMID: 16339838 DOI: 10.1152/ajpheart.00643.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of arterial smooth muscle to respond to vasoconstrictor stimuli is reduced in chronic portal hypertension (PHT). Additional evidence supports the existence of a postreceptor defect in vascular smooth muscle excitation contraction coupling. However, the nature of this defect is unclear. Recent studies have shown that vasoconstrictor stimuli induce actin polymerization in smooth muscle and that the associated increase in F-actin is necessary for force development. In the present study we have tested the hypothesis that impaired actin polymerization contributes to reduced vasoconstrictor function in small mesenteric arteries derived from rats with chronic prehepatic PHT. In vitro studies were conducted on small mesenteric artery vessel rings isolated from normal and PHT rats. Isometric tension responses to incremental concentrations of phenylephrine were significantly reduced in PHT arteries. The ability to polymerize actin in portal hypertensive mesenteric arteries stimulated by phenylephrine was attenuated compared with control. Inhibition of cAMP-dependent protein kinase (PKA) restored agonist-induced actin polymerization of arteries from PHT rats to normal levels. Depolymerization of actin in arteries from normal rats reduced maximal contractile force but not myosin phosphorylation, suggesting a key role for the dynamic regulation of actin polymerization in the maintenance of vascular smooth muscle contraction. We conclude that reductions in agonist-induced maximal force development of PHT vascular smooth muscle is due, in part, to impaired actin polymerization, and prolonged PKA activation may underlie these changes.
Collapse
Affiliation(s)
- Xuesong Chen
- Deparment of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | | | | | | |
Collapse
|
153
|
Maneen MJ, Hannah R, Vitullo L, DeLance N, Cipolla MJ. Peroxynitrite diminishes myogenic activity and is associated with decreased vascular smooth muscle F-actin in rat posterior cerebral arteries. Stroke 2006; 37:894-9. [PMID: 16456123 DOI: 10.1161/01.str.0000204043.18592.0d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE This study investigated the effect of peroxynitrite (ONOO-) on pressure-induced myogenic activity and vascular smooth muscle (VSM) actin of isolated posterior cerebral arteries (PCAs). METHODS Histochemical staining of nitrotyrosine (NT) was used to demonstrate the presence of ONOO- in the cerebrovasculature after 1 hour of middle cerebral artery occlusion with 30 minutes of reperfusion. To determine the effect of ONOO- on pressure-induced myogenic activity, third-order PCAs from nonischemic animals were isolated and mounted in an arteriograph chamber. Diameter in response to changes in pressure was determined in the absence and presence of ONOO- (10(-8) to 10(-4) mol/L). Filamentous actin (F-actin) and globular actin (G-actin) were quantified using confocal microscopy in PCAs with and without exposure to ONOO-. RESULTS NT staining of vascular cells was greater in ischemic brain versus sham animals (56+/-3% versus 35+/-3%; P<0.01). Addition of low concentrations of ONOO- (< or =10(-6) mol/L) to isolated PCAs caused constriction from 129+/-16 microm to 115+/-15 microm (P<0.01), whereas concentrations >10(-6) mol/L caused dilation of spontaneous tone and loss of myogenic activity in the physiological range of 50 to 125 mm Hg, increasing diameter from 130+/-6 to 201+/-5 microm at 75 mm Hg (P<0.01). In addition, the diminished myogenic activity was associated with a 4.5-fold decrease in F-actin content of VSM and a 27% increase in G-actin content (P<0.01). CONCLUSIONS This study demonstrates that ONOO- affects the myogenic activity of cerebral arteries and causes F-actin depolymerization in VSM, a consequence that could promote vascular damage during reperfusion injury and further brain injury.
Collapse
Affiliation(s)
- Matthew J Maneen
- Department of Neurology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
154
|
Choi I, Lee K, Kim M, Lee M, Park K. Differential activation of stress-responsive signalling proteins associated with altered loading in a rat skeletal muscle. J Cell Biochem 2005; 96:1231-43. [PMID: 16149053 DOI: 10.1002/jcb.20616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Skeletal muscle undergoes a significant reduction in tension upon unloading. To explore intracellular signalling mechanisms underlying this phenomenon, we investigated twitch tension, the ratio of actin/myosin filaments, and activities of key signalling molecules in rat soleus muscle during a 3-week hindlimb suspension and 2-week reloading. Twitch tension and myofilament ratio (actin/myosin) gradually decreased during unloading but progressively recovered to initial levels during reloading. To study the involvement of stress-responsive signalling proteins during these changes, the activities of protein kinase C alpha (PKCalpha) and three mitogen-activated protein kinases (MAPKs)--c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38 MAPK--were examined using immunoblotting and immune complex kinase assays. PKCalpha phosphorylation correlated positively with the tension (Pearson's r = 0.97, P < 0.001) and the myofilament ratio (r = 0.83, P < 0.01) over the entire unloading and reloading period. Treatment of the soleus muscle with a PKC activator resulted in a similar paralleled increment in both PKCalpha phosphorylation and the alpha-sarcomeric actin expression. The three MAPKs differed in the pattern of activation in that JNK activity peaked only for the first hours of reloading, whereas ERK and p38 MAPK activities remained elevated during reloading. These results suggest that PKCalpha may play a pivotal role in converting loading stress to intracellular changes in contractile proteins that determine muscle tension. Differential activation of MAPKs may also help alleviate muscle damage, modulate energy transport and/or regulate the expression of contractile proteins upon altered loading.
Collapse
Affiliation(s)
- Inho Choi
- Department of Life Science, College of Liberal Arts and Science, Yonsei University, Wonju, Republic of Korea.
| | | | | | | | | |
Collapse
|
155
|
Tang DD, Bai Y, Gunst SJ. Silencing of p21-activated kinase attenuates vimentin phosphorylation on Ser-56 and reorientation of the vimentin network during stimulation of smooth muscle cells by 5-hydroxytryptamine. Biochem J 2005; 388:773-83. [PMID: 15766329 PMCID: PMC1183456 DOI: 10.1042/bj20050065] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vimentin intermediate filaments undergo spatial reorganization in endothelial cells and fibroblasts in response to stimulation with platelet-derived growth factor and epidermal growth factor. In the present study, the vimentin network exhibited a curved filamentous structure in unstimulated smooth muscle cells. Vimentin filaments became straight and were arranged along the long axis of cells upon stimulation with 5-hydroxytryptamine (5-HT; serotonin). Stimulation of smooth muscle cells with 5-HT also induced phosphorylation of vimentin on Ser-56. Treatment of cells with small interfering RNA selectively down-regulated the expression of PAK1 (p21-activated kinase 1) without affecting the content of smooth muscle alpha-actin. The silencing of PAK1 inhibited the site-specific phosphorylation and spatial rearrangement of the vimentin network in response to stimulation with 5-HT. Neither the disruption of stress fibres by cytochalasin D nor the inhibition of protein tyrosine phosphorylation affects the spatial reorganization of vimentin intermediate filaments in response to stimulation with 5-HT. In addition, stimulation of smooth muscle cells with 5-HT increased the ratio of soluble to insoluble vimentin. PAK1 silencing attenuated increases in the ratio of soluble to insoluble vimentin upon stimulation with 5-HT. These results suggest that the PAK-mediated site-specific phosphorylation of vimentin may play a role in regulating the reorganization of vimentin intermediate filaments during stimulation of smooth muscle cells with 5-HT.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, ME-424, Albany, NY 12208, USA.
| | | | | |
Collapse
|
156
|
Abstract
Smooth muscles develop isometric force over a very wide range of cell lengths. The molecular mechanisms of this phenomenon are undefined, but are described as reflecting "mechanical plasticity" of smooth muscle cells. Plasticity is defined here as a persistent change in cell structure or function in response to a change in the environment. Important environmental stimuli that trigger muscle plasticity include chemical (e.g., neurotransmitters, autacoids, and cytokines) and external mechanical signals (e.g., applied stress and strain). Both kinds of signals are probably transduced by ionic and protein kinase signaling cascades to alter gene expression patterns and changes in the cytoskeleton and contractile system. Defining the signaling mechanisms and effector proteins mediating phenotypic and mechanical plasticity of smooth muscles is a major goal in muscle cell biology. Some of the signaling cascades likely to be important include calcium-dependent protein kinases, small GTPases (Rho, Rac, cdc42), Rho kinase, protein kinase C (PKC), Src family tyrosine kinases, mitogen-activated protein (MAP) kinases, and p21 activated protein kinases (PAK). There are many potential targets for these signaling cascades including nuclear processes, metabolic pathways, and structural components of the cytoskeleton. There is growing appreciation of the dynamic nature of the actin cytoskeleton in smooth muscles and the necessity for actin remodeling to occur during contraction. The actin cytoskeleton serves many functions that are probably critical for muscle plasticity including generation and transmission of force vectors, determination of cell shape, and assembly of signal transduction machinery. Evidence is presented showing that actin filaments are dynamic and that actin-associated proteins comprising the contractile element and actin attachment sites are necessary for smooth muscle contraction.Key words: integrin, muscle mechanics, paxillin, Rho, HSP27.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557-0270, USA.
| |
Collapse
|
157
|
Gokina NI, Park KM, McElroy-Yaggy K, Osol G. Effects of Rho kinase inhibition on cerebral artery myogenic tone and reactivity. J Appl Physiol (1985) 2005; 98:1940-8. [PMID: 15626753 DOI: 10.1152/japplphysiol.01104.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several recent studies have implicated the RhoA-Rho kinase pathway in arterial myogenic behavior. The goal of this study was to determine the effects of Rho kinase inhibition (Y-27632) on cerebral artery calcium and diameter responses as a function of transmural pressure. Excised segments of rat posterior cerebral arteries (100–200 μm) were cannulated and pressurized in an arteriograph at 37°C. Increasing pressure from 10 to 60 mmHg triggered an elevation of cytosolic calcium concentration ([Ca2+]i) from 113 ± 9 to 199 ± 12 nM and development of myogenic tone. Further elevation of pressure to 120 mmHg induced only a minor additional increase in [Ca2+]iand constriction. Y-27632 (0.3–10 μM) inhibited myogenic tone in a concentration-dependent manner at 60 and 120 mmHg with comparable efficacy; conversely, sensitivity was decreased at 120 vs. 60 mmHg (50% inhibitory concentration: 2.5 ± 0.3 vs. 1.4 ± 0.1 μM; P < 0.05). Dilation was accompanied by further increases in [Ca2+]iand an enhancement of Ca2+oscillatory activity. Y-27632 also effectively dilated the vessels permeabilized with α-toxin in a concentration-dependent manner. However, dilator effects of Y-27632 at low concentrations were larger at 60 vs. 100 mmHg. In summary, the results support a significant role for RhoA-Rho kinase pathway in cerebral artery mechanotransduction of pressure into sustained vasoconstriction (myogenic tone and reactivity) via mechanisms that augment smooth muscle calcium sensitivity. Potential downstream events may involve inhibition of myosin phosphatase and/or stimulation of actin polymerization, both of which are associated with increased smooth muscle force production.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics and Gynecology, The University of Vermont, College of Medicine, Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
158
|
Zhang W, Wu Y, Du L, Tang DD, Gunst SJ. Activation of the Arp2/3 complex by N-WASp is required for actin polymerization and contraction in smooth muscle. Am J Physiol Cell Physiol 2005; 288:C1145-60. [PMID: 15625304 DOI: 10.1152/ajpcell.00387.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractile stimulation has been shown to initiate actin polymerization in smooth muscle tissues, and this actin polymerization is required for active tension development. We evaluated whether neuronal Wiskott-Aldrich syndrome protein (N-WASp)-mediated activation of the actin-related proteins 2 and 3 (Arp2/3) complex regulates actin polymerization and tension development initiated by muscarinic stimulation in canine tracheal smooth muscle tissues. In vitro, the COOH-terminal CA domain of N-WASp acts as an inhibitor of N-WASp-mediated actin polymerization; whereas the COOH-terminal VCA domain of N-WASp is constitutively active and is sufficient by itself to catalyze actin polymerization. Plasmids encoding EGFP-tagged wild-type N-WASp, the N-WASp VCA and CA domains, or enhanced green fluorescent protein (EGFP) were introduced into tracheal smooth muscle strips by reversible permeabilization, and the tissues were incubated for 2 days to allow for expression of the proteins. Expression of the CA domain inhibited actin polymerization and tension development in response to ACh, whereas expression of the wild-type N-WASp, the VCA domain, or EGFP did not. The increase in myosin light-chain (MLC) phosphorylation in response to contractile stimulation was not affected by expression of either the CA or VCA domain of N-WASp. Stimulation of the tissues with ACh increased the association of the Arp2/3 complex with N-WASp, and this association was inhibited by expression of the CA domain. The results demonstrate that 1) N-WASp-mediated activation of the Arp2/3 complex is necessary for actin polymerization and tension development in response to muscarinic stimulation in tracheal smooth muscle and 2) these effects are independent of the regulation of MLC phosphorylation.
Collapse
Affiliation(s)
- Wenwu Zhang
- Dept. of Cellular and Integrative Physiology, Indiana Univ. School of Medicine, 635 Barnhill Drive, MS374, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
159
|
Dubroca C, You D, Lévy BI, Loufrani L, Henrion D. Involvement of RhoA/Rho kinase pathway in myogenic tone in the rabbit facial vein. Hypertension 2005; 45:974-9. [PMID: 15837833 PMCID: PMC2231527 DOI: 10.1161/01.hyp.0000164582.63421.2d] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myogenic tone (MT), a fundamental stretch-sensitive vasoconstrictor property of resistance arteries and veins, is a key determinant of local blood flow regulation. We evaluated the pathways involved in MT development. The role of the RhoA/Rho kinase, p38 MAP kinase, and HSP27 in MT was investigated in the rabbit facial vein (RFV), previously shown to possess MT at a pressure level equivalent to 20 mm Hg. Venous MT is poorly understood, although venous diseases affect a large proportion of the population. Stretched RFV are characterized by a temperature-sensitive MT, which is normal at 39 degrees C but fails to develop at 33 degrees C. This allows for the discrimination of the pathways involved in MT from the multiple pathways activated by stretch. Isolated RFV segments were mounted in organ baths and stretched. Temperature was then set at 33 degrees C or 39 degrees C. MT was associated to the translocation of RhoA to the plasma membrane and the Rho kinase inhibitor Y27632 decreased stretch-induced MT by 93.1+/-4.9%. MT was also associated to an increase in p38 (131.0+/-12.5% at 39 degrees C versus 100% at 33 degrees C) and HSP27 phosphorylation (196.1+/-13.3% versus 100%), and the p38 MAP kinase inhibitor SB203580 decreased MT by 36.5+/-8.1%. (39 degrees C, compared with RFV stretched at 33 degrees C). Finally, phosphorylation of p38 was blocked by Y27632 and HSP27 phosphorylation was inhibited by SB203580 and Y27632. Thus, MT and the associated p38 and HSP27 phosphorylation seem to depend on RhoA/Rho kinase activation in stretch RFV.
Collapse
Affiliation(s)
- Caroline Dubroca
- Biologie et physiologie moléculaire du vaisseau
INSERM : U541Hôpital Lariboisière
41, boulevard de la chapelle
75475 Paris Cedex 10,FR
| | - Dong You
- Biologie et physiologie moléculaire du vaisseau
INSERM : U541Hôpital Lariboisière
41, boulevard de la chapelle
75475 Paris Cedex 10,FR
| | - Bernard I. Lévy
- Biologie et physiologie moléculaire du vaisseau
INSERM : U541Hôpital Lariboisière
41, boulevard de la chapelle
75475 Paris Cedex 10,FR
| | - Laurent Loufrani
- CRMC, Circulations régionales et micro circulation
CNRS : UMR6188Université d'AngersUER de Médecine
rue Haute de Reculée
49045 ANGERS CEDEX 01,FR
| | - Daniel Henrion
- CRMC, Circulations régionales et micro circulation
CNRS : UMR6188Université d'AngersUER de Médecine
rue Haute de Reculée
49045 ANGERS CEDEX 01,FR
- * Correspondence should be adressed to: Daniel Henrion
| |
Collapse
|
160
|
Kalapesi FB, Tan JCH, Coroneo MT. Stretch-activated channels: a mini-review. Are stretch-activated channels an ocular barometer? Clin Exp Ophthalmol 2005; 33:210-7. [PMID: 15807835 DOI: 10.1111/j.1442-9071.2005.00981.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All cells are subject to physical forces by virtue of their position in a dynamically changing environment. This review outlines the various putative 'mechanosensors', or sensors of pressure cells possess, and discusses in particular the role stretch-activated membrane channels play in pressure recognition and transduction. The widespread occurrence of these channels is discussed and these 'mechanosensors' are related to pressure-related diseases, in particular, glaucoma.
Collapse
Affiliation(s)
- Freny B Kalapesi
- Department of Ophthalmology, Prince of Wales Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
161
|
Dubroca C, Lacombe P, Domenga V, Maciazek J, Levy B, Tournier-Lasserve E, Joutel A, Henrion D. Impaired vascular mechanotransduction in a transgenic mouse model of CADASIL arteriopathy. Stroke 2004; 36:113-7. [PMID: 15569862 PMCID: PMC2234452 DOI: 10.1161/01.str.0000149949.92854.45] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE CADASIL is an inherited small-vessel disease responsible for lacunar strokes and cognitive impairment. The disease is caused by highly stereotyped mutations in Notch3, the expression of which is highly restricted to vascular smooth muscle cells (VSMCs). The underlying vasculopathy is characterized by degeneration of VSMCs and the accumulation of granular osmiophilic material (GOM) and Notch3 protein within the cell surface of these cells. In this study, we assessed early functional changes related to the expression of mutant Notch3 in resistance arteries. METHODS Vasomotor function was examined in vitro in arteries from transgenic mice that express a mutant Notch3 in VSMC. Tail artery segments from transgenic and normal wild-type male mice were mounted on small-vessel arteriographs, and reactivity to mechanical (flow and pressure) forces and pharmacological stimuli were determined. Mice were studied at 10 to 11 months of age when VSMC degeneration, GOM deposits, and Notch3 accumulation were not yet present. RESULTS Passive arterial diameter, contraction to phenylephrine, and endothelium-dependent relaxation to acetylcholine were unaffected in transgenic mice. By contrast, flow-induced dilation was significantly decreased and pressure-induced myogenic tone significantly increased in arteries from transgenic mice compared with wild-type mice. CONCLUSIONS This is the first study to our knowledge providing evidence that mutant Notch3 impairs selectively the response of resistance arteries to flow and pressure. The data suggest an early role of vascular dysfunction in the pathogenic process of the disease.
Collapse
Affiliation(s)
- Caroline Dubroca
- Biologie et physiologie moléculaire du vaisseau
INSERM : U541Hôpital Lariboisière
41, boulevard de la chapelle
75475 Paris Cedex 10,FR
| | - Pierre Lacombe
- Génétique des maladies vasculaires
INSERM : E365IFR6Université Paris-Nord - Paris XIIIFaculté de médecine Lariboisière Saint-Louis
10 avenue de Verdun
Paris 75010,FR
| | - Valérie Domenga
- Génétique des maladies vasculaires
INSERM : E365IFR6Université Paris-Nord - Paris XIIIFaculté de médecine Lariboisière Saint-Louis
10 avenue de Verdun
Paris 75010,FR
| | - Jacqueline Maciazek
- Génétique des maladies vasculaires
INSERM : E365IFR6Université Paris-Nord - Paris XIIIFaculté de médecine Lariboisière Saint-Louis
10 avenue de Verdun
Paris 75010,FR
| | - Bernard Levy
- Biologie et physiologie moléculaire du vaisseau
INSERM : U541Hôpital Lariboisière
41, boulevard de la chapelle
75475 Paris Cedex 10,FR
| | - Elisabeth Tournier-Lasserve
- Génétique des maladies vasculaires
INSERM : E365IFR6Université Paris-Nord - Paris XIIIFaculté de médecine Lariboisière Saint-Louis
10 avenue de Verdun
Paris 75010,FR
- Service d'anatomie et cytologie pathologiques
AP-HPHôpital LariboisièreUniversité Denis Diderot - Paris VIIParis,FR
| | - Anne Joutel
- Génétique des maladies vasculaires
INSERM : E365IFR6Université Paris-Nord - Paris XIIIFaculté de médecine Lariboisière Saint-Louis
10 avenue de Verdun
Paris 75010,FR
- Service d'anatomie et cytologie pathologiques
AP-HPHôpital LariboisièreUniversité Denis Diderot - Paris VIIParis,FR
- * Correspondence should be adressed to: Anne Joutel
| | - Daniel Henrion
- CRMC, Circulations régionales et micro circulation
CNRS : UMR6188Université d'AngersUER de Médecine
rue Haute de Reculée
49045 ANGERS CEDEX 01,FR
| |
Collapse
|
162
|
Bongalon S, Dai YP, Singer CA, Yamboliev IA. PDGF and IL-1β Upregulate Cofilin and LIMK2 in Canine Cultured Pulmonary Artery Smooth Muscle Cells. J Vasc Res 2004; 41:412-21. [PMID: 15467300 DOI: 10.1159/000081247] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 07/27/2004] [Indexed: 01/02/2023] Open
Abstract
Actin cytoskeleton reorganization is regulated by various actin-binding proteins. Cofilin is the principal filament-depolymerizing protein, whose activity is reduced upon phosphorylation by LIMK. Thus, LIMK and cofilin comprise a signal transduction module regulating actin turnover and myogenic tone in healthy vasculature. Novel functions of smooth muscle cells (SMCs) in the hypertensive pulmonary artery, such as increased motility and proliferation, are supported by the actin cytoskeleton. We therefore hypothesized that bioactive peptides that affect these SMC functions may also result in an upregulation of LIMK and cofilin expression. Semiquantitative RT-PCR and immunoblotting indicated that LIMK2 and cofilin mRNA and protein expression is upregulated in canine pulmonary artery SMCs (PASMCs) exposed to PDGF or IL-1beta (10 ng/ml). Inhibition of ERK MAPKs (U-0126, 10 muM) or p38 MAPK (PD-169316, 10 muM), but not PI3Ks (LY-294002, 50 muM), reduced LIMK2 and cofilin gene expression stimulated by PDGF or IL-1beta. Inhibition of ROCK (Y-27632, 10 muM) reduced only the IL-1beta-stimulated LIMK2 and cofilin expression. These novel observations in PASMCs indicate that LIMK2 and cofilin expression can be induced by PDGF or IL-1beta. This parallel upregulation of LIMK2 and cofilin may have potentially broad functional significance for the progress of pulmonary artery disease.
Collapse
Affiliation(s)
- Shaner Bongalon
- Department of Pharmacology, Center of Biomedical Research Excellence, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
163
|
Albinsson S, Nordström I, Hellstrand P. Stretch of the vascular wall induces smooth muscle differentiation by promoting actin polymerization. J Biol Chem 2004; 279:34849-55. [PMID: 15184395 DOI: 10.1074/jbc.m403370200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Stretch of the vascular wall by the intraluminal blood pressure stimulates protein synthesis and contributes to the maintenance of the smooth muscle contractile phenotype. The expression of most smooth muscle specific genes has been shown to be regulated by serum response factor and stimulated by increased actin polymerization. Hence we hypothesized that stretch-induced differentiation is promoted by actin polymerization. Intact mouse portal veins were cultured under longitudinal stress and compared with unstretched controls. In unstretched veins the rates of synthesis of several proteins associated with the contractile/cytoskeletal system (alpha-actin, calponin, SM22alpha, tropomyosin, and desmin) were dramatically lower than in stretched veins, whereas other proteins (beta-actin and heat shock proteins) were synthesized at similar rates. The cytoskeletal proteins gamma-actin and vimentin were weakly stretch-sensitive. Inhibition of Rho-associated kinase by culture of stretched veins with Y-27632 produced similar but weaker effects compared with the absence of mechanical stress. Induction of actin polymerization by jasplakinolide increased SM22alpha synthesis in unstretched veins to the level in stretched veins. Stretch stimulated Rho activity and phosphorylation of the actin-severing protein cofilin-2, although both effects were slow in onset (Rho-GTP, >15 min; cofilin-P, >1 h). Cofilin-2 phosphorylation of stretched veins was inhibited by Y-27632. The F/G-actin ratio after 24 h of culture was significantly greater in stretched than in unstretched veins, as shown by both ultracentrifugation and confocal imaging with phalloidin/DNase I labeling. The results show that stretch of the vascular wall stimulates increased actin polymerization, activating synthesis of smooth muscle-specific proteins. The effect is partially, but probably not completely, mediated via Rho-associated kinase and cofilin downstream of Rho.
Collapse
Affiliation(s)
- Sebastian Albinsson
- Division of Molecular and Cellular Physiology, Department of Physiological Sciences, Biomedical Center, Lund University, SE-221 84 Lund, Sweden
| | | | | |
Collapse
|
164
|
Abstract
A conspicuous long-term consequence of hypertension is a thickening of the arterial wall, which many suggest returns the circumferential wall stress toward its normal value. This thickening results from an increase in smooth muscle and extracellular matrix, with the associated growth and remodeling processes depending on a host of regulatory signals that likely include the altered mechanical environment. Although the precise mechanotransduction pathways remain unknown, we propose that vasoconstriction may be an early response of the arterial wall to a step-change in pressure. In particular, computations suggest that such a response can decrease the magnitude and transmural gradients of the pressure-induced wall stresses and return the mean wall shear stress toward its homeostatic value. Such an initial 'compensatory vasoconstriction' could also help set into motion subsequent growth and remodeling responses due to growth regulatory characteristics of the vasoactive molecules (e.g., nitric oxide, endothelin-1, angiotensin-II). Although the consequences of growth and remodeling have been the focus of prior biomechanical and histological studies, early responses dictate subsequent developments and therefore deserve increased attention in vascular biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Jay D Humphrey
- Department of Biomedical Engineering and M.E. DeBakey Institute, Texas A&M University, 233 Zachry Engineering Center, College Station, TX 77843-3120, USA.
| | | |
Collapse
|
165
|
Abstract
In the rat heart the actin-bound nucleotide contained both ATP and ADP. The ratio of bound ATP to bound ADP depended on the functional state of the heart; it was higher in hearts stopped reversibly in diastole (low Ca(2+), high Mg(2+), or high K(+)), than in stimulated (inotropic agents or pacing) hearts. Immunoblotting and gel electrophoresis showed the existence of G-actin (30% of total actin) in the cytoplasm of the heart. Pure actin was isolated from rat hearts: in G-actin the bound nucleotide readily exchanged with ATP or ADP, and in F-actin the bound nucleotide did not exchange with ATP or ADP. The free and bound nucleotides were separated in the intact heart by extraction with 75% methanol at -15 degrees C. In rat hearts perfused with (32)P-labeled orthophosphate the actin-bound nucleotide rapidly exchanged with the cytoplasmic ATP. The full exchange of the bound ATP was immediate, whereas the full exchange of the bound ADP was slower. The full exchange of the bound ATP was independent of the heartbeat frequency, whereas the full exchange of the bound ADP was frequency dependent. The data suggest that the transformation of actin monomer-ATP to actin polymer-ADP is a part of the normal contraction-relaxation cycle of the rat heart.
Collapse
Affiliation(s)
- Michael Bárány
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
166
|
Opazo Saez A, Zhang W, Wu Y, Turner CE, Tang DD, Gunst SJ. Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane. Am J Physiol Cell Physiol 2004; 286:C433-47. [PMID: 14576084 DOI: 10.1152/ajpcell.00030.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoskeletal reorganization of the smooth muscle cell in response to contractile stimulation may be an important fundamental process in regulation of tension development. We used confocal microscopy to analyze the effects of cholinergic stimulation on localization of the cytoskeletal proteins vinculin, paxillin, talin and focal adhesion kinase (FAK) in freshly dissociated tracheal smooth muscle cells. All four proteins were localized at the membrane and throughout the cytoplasm of unstimulated cells, but their concentration at the membrane was greater in acetylcholine (ACh)-stimulated cells. Antisense oligonucleotides were introduced into tracheal smooth muscle tissues to deplete paxillin protein, which also inhibited contraction in response to ACh. In cells dissociated from paxillin-depleted muscle tissues, redistribution of vinculin to the membrane in response to ACh was prevented, but redistribution of FAK and talin was not inhibited. Muscle tissues were transfected with plasmids encoding a paxillin mutant containing a deletion of the LIM3 domain (paxillin LIM3 dl 444–494), the primary determinant for targeting paxillin to focal adhesions. Expression of paxillin LIM3 dl in muscle tissues also inhibited contractile force and prevented cellular redistribution of paxillin and vinculin to the membrane in response to ACh, but paxillin LIM3 dl did not inhibit increases in intracellular Ca2+or myosin light chain phosphorylation. Our results demonstrate that recruitment of paxillin and vinculin to smooth muscle membrane is necessary for tension development and that recruitment of vinculin to the membrane is regulated by paxillin. Vinculin and paxillin may participate in regulating the formation of linkages between the cytoskeleton and integrin proteins that mediate tension transmission between the contractile apparatus and the extracellular matrix during smooth muscle contraction.
Collapse
Affiliation(s)
- Anabelle Opazo Saez
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
167
|
Herrera AM, Martinez EC, Seow CY. Electron microscopic study of actin polymerization in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1161-8. [PMID: 14751850 DOI: 10.1152/ajplung.00298.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Actin polymerization as part of the normal smooth muscle response to various stimuli has been reported. The actin dynamics are believed to be necessary for cytoskeletal remodeling in smooth muscle in its adaptation to external stress and strain and for maintenance of optimal contractility. We have shown in our previous studies in airway smooth muscle that myosins polymerized in response to contractile activation as well as to adaptation at longer cell lengths. We postulated that the same response could be elicited from actins under the same conditions. In the present study, actin filament formation was quantified electron microscopically in cell cross sections. Nanometer resolution allowed us to examine regional distribution of filaments in a cell cross section. Airway smooth muscle bundles were fixed in relaxed and activated states at two lengths; muscle preparations were also fixed after a period of oscillatory strain, a condition known to cause depolymerization of myosin filaments. The results indicate that contractile activation and increased cell length nonsynergistically enhanced actin polymerization; the extent of actin polymerization was substantially less than that of myosin polymerization. Oscillatory strain increased thin filament formation. Although thin filament density was found higher in cytoplasmic areas near dense bodies, contractile activation did not preferentially enhance actin polymerization in these areas. It is concluded that actin thin filaments are dynamic structures whose length and number are regulated by the cell in response to changes in extracellular environment and that polymerization and depolymerization of thin filaments occur uniformly across the whole cell cross section.
Collapse
Affiliation(s)
- Ana M Herrera
- Department of Pathology, Laboratory Medicine, James Hogg iCapture Centre for Cardiovascular and Pulmonary Research, St. Paul Hospital/Providence Health Care, University of British Columbia, Vancouver, BC, Canada V6Z 1Y6.
| | | | | |
Collapse
|
168
|
McGregor E, Kempster L, Wait R, Gosling M, Dunn MJ, Powell JT. F-actin capping (CapZ) and other contractile saphenous vein smooth muscle proteins are altered by hemodynamic stress: a proteonomic approach. Mol Cell Proteomics 2003; 3:115-24. [PMID: 14612593 DOI: 10.1074/mcp.m300046-mcp200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased force generation and smooth muscle remodeling follow the implantation of saphenous vein as an arterial bypass graft. Previously, we characterized and mapped 129 proteins in human saphenous vein medial smooth muscle using two-dimensional (2-D) PAGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Here, we focus on actin filament remodeling in response to simulated arterial flow. Human saphenous vein was exposed to simulated venous or arterial flow for 90 min in vitro, and the contractile medial smooth muscle was dissected out and subjected to 2-D gel electrophoresis using a non-linear immobilized pH 3-10 gradient in the first dimension. Proteins were analyzed quantitatively using PDQuest 2-D software. The actin polymerization inhibitor cytochalasin B (1 microm) prevented increases in force generation after 90 min of simulated arterial flow. At this time point, there were several consistent changes in actin filament-associated protein expression (seven paired vein samples). The heat shock protein HSP27, identified as a three-spot charge train, showed a 1.6-fold increase in abundance (p = 0.01), but with reduced representation of the phosphorylated Ser(82) and Ser(15)Ser(82) isoforms (p = 0.018). The abundance of actin-capping protein alpha2 subunit CapZ had decreased 3-fold, p = 0.04. A 19-kDa proteolytic fragment of actin increased 2-fold, p = 0.04. For the four-spot charge train of gelsolin, there was reduced representation of the more acidic isoforms, p = 0.022. The abundance of other proteins associated with actin filaments, including cofilin and destrin, remained unchanged after arterial flow. Actin filament remodeling with differential expression and/or post-translational modification of proteins involved in capping the barbed end of actin filaments, HSP27 and CapZ, is an early response of contractile saphenous vein smooth muscle cells to hemodynamic stress. The observed changes would favor the generation of contractile stress fibers.
Collapse
Affiliation(s)
- Emma McGregor
- Department of Vascular Surgery, Imperial College School of Medicine at Charing Cross Hospital, St. Dunstan's Road, London W6 8RP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
169
|
Ott C, Iwanciw D, Graness A, Giehl K, Goppelt-Struebe M. Modulation of the expression of connective tissue growth factor by alterations of the cytoskeleton. J Biol Chem 2003; 278:44305-11. [PMID: 12951326 DOI: 10.1074/jbc.m309140200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of the cytoskeletal architecture was shown to regulate the expression of CTGF (connective tissue growth factor, CCN2). The microtubule disrupting agents nocodazole and colchicine strongly up-regulated CTGF expression, which was prevented upon stabilization of the microtubules by paclitaxel. As a consequence of microtubule disruption, RhoA was activated and the actin stress fibers were stabilized. Both effects were related to CTGF induction. Overexpression of constitutively active RhoA induced CTGF synthesis. Interference with RhoA signaling by simvastatin, toxinB, C3 toxin, and Y27632 prevented up-regulation of CTGF. Likewise, direct disintegration of the actin cytoskeleton by latrunculin B interfered with nocodazole-mediated up-regulation of CTGF expression. Disassembly of actin fibers by cytochalasin D, however, unexpectedly increased CTGF expression indicating that the content of F-actin per se was not the major determinant for CTGF gene expression. Given the fact that cytochalasin D sequesters G-actin, a decrease in G-actin increased CTGF, while increased levels of G-actin corresponded to reduced CTGF expression. These data link alterations in the microtubule and actin cytoskeleton to the expression of CTGF and provide a molecular basis for the observation that CTGF is up-regulated in cells exposed to mechanical stress.
Collapse
Affiliation(s)
- Christian Ott
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Loschgestrasse 8, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
170
|
Kolyada AY, Riley KN, Herman IM. Rho GTPase signaling modulates cell shape and contractile phenotype in an isoactin-specific manner. Am J Physiol Cell Physiol 2003; 285:C1116-21. [PMID: 14532019 DOI: 10.1152/ajpcell.00177.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho family small GTPases (Rho, Rac, and Cdc42) play an important role in cell motility, adhesion, and cell division by signaling reorganization of the actin cytoskeleton. Here, we report an isoactin-specific, Rho GTPase-dependent signaling cascade in cells simultaneously expressing smooth muscle and nonmuscle actin isoforms. We transfected primary cultures of microvascular pericytes, cells related to vascular smooth muscle cells, with various Rho-related and Rho-specific expression plasmids. Overexpression of dominant positive Rho resulted in the formation of nonmuscle actin-containing stress fibers. At the same time, α-vascular smooth muscle actin (αVSMactin) containing stress fibers were disassembled, resulting in a dramatic reduction in cell size. Rho activation also yielded a disassembly of smooth muscle myosin and nonmuscle myosin from stress fibers. Overexpression of wild-type Rho had similar but less dramatic effects. In contrast, dominant negative Rho and C3 exotransferase or dominant positive Rac and Cdc42 expression failed to alter the actin cytoskeleton in an isoform-specific manner. The loss of smooth muscle contractile protein isoforms in pericyte stress fibers, together with a concomitant decrease in cell size, suggests that Rho activation influences “contractile” phenotype in an isoactin-specific manner. This, in turn, should yield significant alteration in microvascular remodeling during developmental and pathologic angiogenesis.
Collapse
Affiliation(s)
- Alexey Y Kolyada
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | | | | |
Collapse
|
171
|
Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol 2003; 285:H1590-9. [PMID: 12805022 DOI: 10.1152/ajpheart.00376.2003] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study evaluated the role of endothelial intermediate conductance calcium-sensitive potassium channels (IKCa) in the mechanism of endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in pressurized cerebral arteries. Male rat middle cerebral arteries (MCA) were mounted in an isolated vessel chamber, pressurized (85 mmHg), and luminally perfused (100 microl/min). Artery diameter was measured simultaneously with either endothelial intracellular Ca2+ concentration ([Ca2+]i; fura-2) or changes in endothelial membrane potential [4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS)]. Nitric oxide synthase and cyclooxygenase inhibitors were present throughout. Luminal application of UTP produced EDHF-mediated dilations that correlated with significant endothelial hyperpolarization. The dilation and endothelial hyperpolarization were virtually abolished by inhibitors of IKCa channels but not by selective inhibitors of small or large conductance KCa channels (apamin and iberiotoxin, respectively). Additionally, direct stimulation of endothelial IKCa channels with 1-ethyl-2-benzimidazolinone (1-EBIO) produced endothelial hyperpolarization and vasodilatation that were blocked by inhibitors of IKCa channels. 1-EBIO hyperpolarized the endothelium but did not affect endothelial [Ca2+]i. We conclude that the mechanism of EDHF-mediated dilations in cerebral arteries requires stimulation of endothelial IKCa channels to promote endothelial hyperpolarization and subsequent vasodilatation.
Collapse
Affiliation(s)
- Sean P Marrelli
- Baylor College of Medicine, Department of Anesthesiology, One Baylor Plaza, Suite 434-D, Houston, TX 77030, USA.
| | | | | |
Collapse
|
172
|
Tang DD, Tan J. Downregulation of profilin with antisense oligodeoxynucleotides inhibits force development during stimulation of smooth muscle. Am J Physiol Heart Circ Physiol 2003; 285:H1528-36. [PMID: 12805028 DOI: 10.1152/ajpheart.00188.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actin-regulatory protein profilin has been shown to regulate the actin cytoskeleton and the motility of nonmuscle cells. To test the hypothesis that profilin plays a role in regulating smooth muscle contraction, profilin antisense or sense oligodeoxynucleotides were introduced into the canine carotid smooth muscle by a method of reversible permeabilization, and these strips were incubated for 2 days for protein downregulation. The treatment of smooth muscle strips with profilin antisense oligodeoxynucleotides inhibited the expression of profilin; it did not influence the expression of actin, myosin heavy chain, and metavinculin/vinculin. Profilin sense did not affect the expression of these proteins in smooth muscle tissues. Force generation in response to stimulation with norepinephrine or KCl was significantly lower in profilin antisense-treated muscle strips than in profilin sense-treated strips or in muscle strips not treated with oligodeoxynucleotides. The depletion of profilin did not attenuate increases in phosphorylation of the 20-kDa regulatory light chain of myosin (MLC20) in response to stimulation with norepinephrine or KCl. The increase in F-actin/G-actin ratio during contractile stimulation was significantly inhibited in profilin-deficient smooth muscle strips. These results suggest that profilin is a necessary molecule of signaling cascades that regulate carotid smooth muscle contraction, but that it does not modulate MLC20 phosphorylation during contractile stimulation. Profilin may play a role in the regulation of actin polymerization or organization in response to contractile stimulation of smooth muscle.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, IN 46202, USA.
| | | |
Collapse
|
173
|
Gunst SJ, Tang DD, Opazo Saez A. Cytoskeletal remodeling of the airway smooth muscle cell: a mechanism for adaptation to mechanical forces in the lung. Respir Physiol Neurobiol 2003; 137:151-68. [PMID: 14516723 DOI: 10.1016/s1569-9048(03)00144-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Airway smooth muscle is continuously subjected to mechanical forces caused by changes in lung volume during breathing. These mechanical oscillations have profound effects on airway smooth muscle contractility both in vivo and in vitro. Alterations in airway smooth muscle properties in response to mechanical forces may result from adaptive changes in the organization of the actin cytoskeleton. Recent advances suggest that in airway smooth muscle, two cytosolic signaling proteins that associate with focal adhesion complexes, focal adhesion kinase (FAK) and paxillin, are involved in transducing external mechanical signals. FAK and paxillin regulate changes in the organization of the actin cytoskeleton and the activation of contractile proteins. Actin is in a dynamic state in airway smooth muscle and undergoes polymerization and depolymerization during the contraction-relaxation cycle. The organization of the cytoskeletal proteins, vinculin, talin, and alpha-actinin, which mediate linkages between actin filaments and transmembrane integrins, is also regulated by contractile stimulation in airway smooth muscle. The fluidity of the cytoskeletal structure of the airway smooth muscle cell may be fundamental to its ability to adapt and respond to the mechanical forces imposed on it in the lung during breathing.
Collapse
Affiliation(s)
- Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | | | | |
Collapse
|
174
|
Hill MA, Potocnik SJ, Martinez-Lemus LA, Meininger GA. Delayed arteriolar relaxation after prolonged agonist exposure: functional remodeling involving tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 2003; 285:H849-56. [PMID: 12714327 DOI: 10.1152/ajpheart.00986.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although arteriolar contraction is dependent on Ca2+-induced myosin phosphorylation, other mechanisms including Ca2+ sensitization and time-dependent phenomena such as cytoskeletal and cellular reorganization may contribute to contractile events. We hypothesized that if arteriolar smooth muscle exhibits time-dependent behavior this may be manifested in differences in relaxation after short- and long-term exposure to contractile agonists. Studies were conducted in isolated arterioles pressurized to 70 mmHg. In initial experiments (n = 10), rate of relaxation was measured after acute (5 min) or prolonged (4 h) exposure to 5 microM norepinephrine (NE). Prolonged exposure to NE resulted in significantly (P < 0.05) increased time for relaxation in physiological salt solution. Rapid relaxation of vessels exposed to NE for 4 h was observed after superfusion with 0 mM Ca2+ buffer, indicating that the alteration in relaxation was reversible and Ca2+ dependent. A similarly impaired dilation was not observed with 4-h exposure to KCl (75 mM). To determine mechanisms contributing to the effects of prolonged NE exposure, studies were performed in the presence of the microtubule depolymerizing agent demecolcine (10 microM) or a series of tyrosine phosphorylation inhibitors. Although demecolcine caused significant vasoconstriction (P < 0.05) and potentiated NE vasoconstriction, it did not prevent the effect of long-term NE exposure on relaxation. Genistein, although having no effect on acute NE-induced contraction, concentration-dependently inhibited prolonged NE constriction. Similarly, Src (PP1) and p42/44 MAP kinase (PD-98059) inhibitors prevented maintenance of long-term NE contraction. The data indicate that prolonged exposure to NE induces biochemical alterations that impair relaxation after removal of the agonist. The contractile effects are Ca2+ dependent and involve tyrosine phosphorylation but do not appear to involve the polymerization state of the microtubule network.
Collapse
Affiliation(s)
- Michael A Hill
- Microvascular Biology Group, School of Medical Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | | | | |
Collapse
|
175
|
Gunst SJ, Fredberg JJ. The first three minutes: smooth muscle contraction, cytoskeletal events, and soft glasses. J Appl Physiol (1985) 2003; 95:413-25. [PMID: 12794100 DOI: 10.1152/japplphysiol.00277.2003] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smooth muscle exhibits biophysical characteristics and physiological behaviors that are not readily explained by present paradigms of cytoskeletal and cross-bridge mechanics. There is increasing evidence that contractile activation of the smooth muscle cell involves an array of cytoskeletal processes that extend beyond cross-bridge cycling and the sliding of thick and thin filaments. We review here the evidence suggesting that the biophysical and mechanical properties of the smooth muscle cell reflect the integrated interactions of an array of highly dynamic cytoskeletal processes that both react to and transform the dynamics of cross-bridge interactions over the course of the contraction cycle. The activation of the smooth muscle cell is proposed to trigger dynamic remodeling of the actin filament lattice within cellular microdomains in response to local mechanical and pharmacological events, enabling the cell to adapt to its external environment. As the contraction progresses, the cytoskeletal lattice stabilizes, solidifies, and forms a rigid structure well suited for transmission of tension generated by the interaction of myosin and actin. The integrated molecular transitions that occur within the contractile cycle are interpreted in the context of microscale agitation mechanisms and resulting remodeling events within the intracellular microenvironment. Such an interpretation suggests that the cytoskeleton may behave as a glassy substance whose mechanical function is governed by an effective temperature.
Collapse
Affiliation(s)
- Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
176
|
Zeidan A, Nordström I, Albinsson S, Malmqvist U, Swärd K, Hellstrand P. Stretch-induced contractile differentiation of vascular smooth muscle: sensitivity to actin polymerization inhibitors. Am J Physiol Cell Physiol 2003; 284:C1387-96. [PMID: 12734104 DOI: 10.1152/ajpcell.00508.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signaling mechanisms for stretch-dependent growth and differentiation of vascular smooth muscle were investigated in mechanically loaded rat portal veins in organ culture. Stretch-dependent protein synthesis was found to depend on endogenous release of angiotensin II. Autoradiography after [(35)S]methionine incorporation revealed stretch-dependent synthesis of several proteins, of which SM22 and actin were particularly prominent. Inhibition of RhoA activity by cell-permeant C3 toxin increased tissue mechanical compliance and reduced stretch-dependent extracellular signal-regulated kinase (ERK)1/2 activation, growth, and synthesis of actin and SM22, suggesting a role of the actin cytoskeleton. In contrast, inhibition of Rho-associated kinase by Y-27632 did not reduce ERK1/2 phosphorylation or actin and SM22 synthesis and did not affect tissue mechanical compliance but still inhibited overall growth. The actin polymerization inhibitors latrunculin B and cytochalasin D both inhibited growth and caused increased tissue compliance. Whereas latrunculin B concentration-dependently reduced actin and SM22 synthesis, cytochalasin D did so at low (10(-8) M) but not at high (10(-6) M) concentration. The results show that stretch stabilizes the contractile smooth muscle phenotype. Stretch-dependent differentiation marker expression requires an intact cytoskeleton for stretch sensing, control of protein expression via the level of unpolymerized G-actin, or both.
Collapse
Affiliation(s)
- Asad Zeidan
- Division of Molecular and Cellular Physiology, Department of Physiological Sciences, Biomedical Center, Lund University, SE-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
177
|
Goldman J, Zhong L, Liu SQ. Degradation of alpha-actin filaments in venous smooth muscle cells in response to mechanical stretch. Am J Physiol Heart Circ Physiol 2003; 284:H1839-47. [PMID: 12531720 DOI: 10.1152/ajpheart.00470.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical stretch has been shown to induce the degradation of alpha-actin filaments in smooth muscle cells (SMC) of experimental vein grafts. Here, we investigate the possible role of ERK1/2 and p38 MAPK in regulating this process using an ex vivo venous culture model that simulates an experimental vein graft. An exposure of a vein to arterial pressure induced a significant increase in the medial circumferential strain, which induced rapid alpha-actin filament disruption, followed by degradation. The percentage of SMC alpha-actin filament coverage was reduced significantly under arterial pressure (91 +/- 1%, 43 +/- 13%, 51 +/- 5%, 28 +/- 3%, and 19 +/- 5% at 1, 6, 12, 24, and 48 h, respectively), whereas it did not change significantly in specimens under venous pressure at theses times. The degradation of SMC alpha-actin filaments paralleled an increase in the relative activity of caspase 3 (3.0 +/- 0.7- and 1.7 +/- 0.4-fold increase relative to the control level at 6 and 12 h, respectively) and a decrease in SMC density (from the control level of 1,368 +/- 66 cells/mm(2) at time 0 to 1,205 +/- 90, 783 +/- 129, 845 +/- 61, 637 +/- 55, and 432 +/- 125 cells/mm(2) at 1, 6, 12, 24, and 48 h of exposure to arterial pressure, respectively). Treatment with a p38 MAPK inhibitor (SB-203580) significantly reduced the stretch-induced activation of caspase 3 at 6 h (from 3.0 +/- 0.7- to 2.2 +/- 0.3-fold) in conjunction with a significant rescue of alpha-actin filament degradation (from 43 +/- 13% to 69 +/- 15%) at the same time. Treatment with an inhibitor for the ERK1/2 activator (PD-98059), however, did not induce a significant change in the activity of caspase 3 or the percentage of SMC alpha-actin filament coverage. These results suggest that p38 MAPK and caspase 3 may mediate stretch-dependent degradation of alpha-actin filaments in vascular SMCs.
Collapse
Affiliation(s)
- Jeremy Goldman
- Biomedical Engineering Department, Northwestern University, 2145 North Sheridan Road, Evanston, IL 60208-3107, USA.
| | | | | |
Collapse
|
178
|
Osol G, Brekke JF, McElroy-Yaggy K, Gokina NI. Myogenic tone, reactivity, and forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ Physiol 2002; 283:H2260-7. [PMID: 12388265 DOI: 10.1152/ajpheart.00634.2002] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic behavior, prevalent in resistance arteries and arterioles, involves arterial constriction in response to intravascular pressure. This process is often studied in vitro by using cannulated, pressurized arterial segments from different regional circulations. We propose a comprehensive model for myogenicity that consists of three interrelated but dissociable phases: 1) the initial development of myogenic tone (MT), 2) myogenic reactivity to subsequent changes in pressure (MR), and 3) forced dilatation at high transmural pressures (FD). The three phases span the physiological range of transmural pressures (e.g., MT, 40-60 mmHg; MR, 60-140 mmHg; FD, >140 mmHg in cerebral arteries) and are characterized by distinct changes in cytosolic calcium ([Ca(2+)](i)), which do not parallel arterial diameter or wall tension, and therefore suggest the existence of additional regulatory mechanisms. Specifically, the development of MT is accompanied by a substantial (200%) elevation in [Ca(2+)](i) and a reduction in lumen diameter and wall tension, whereas MR is associated with relatively small [Ca(2+)](i) increments (<20% over the entire pressure range) despite considerable increases in wall tension and force production but little or no change in diameter. FD is characterized by a significant additional elevation in [Ca(2+)](i) (>50%), complete loss of force production, and a rapid increase in wall tension. The utility of this model is that it provides a framework for comparing myogenic behavior of vessels of different size and anatomic origin and for investigating the underlying cellular mechanisms that govern vascular smooth muscle mechanotransduction and contribute to the regulation of peripheral resistance.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics and Gynecology, University of Vermont College of Medicine, Burlington 05405, USA.
| | | | | | | |
Collapse
|
179
|
Coulson RJ, Chesler NC, Vitullo L, Cipolla MJ. Effects of ischemia and myogenic activity on active and passive mechanical properties of rat cerebral arteries. Am J Physiol Heart Circ Physiol 2002; 283:H2268-75. [PMID: 12388247 DOI: 10.1152/ajpheart.00542.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Passive (papaverine induced) and active (spontaneous pressure induced) biomechanical properties of ischemic and nonischemic rat middle cerebral arteries (MCAs) were studied under pressurized conditions in vitro. Ischemic (1 h of occlusion), contralateral, and sham-operated control MCAs were isolated from male Wistar rats (n = 22) and pressurized using an arteriograph system that allowed control of transmural pressure (TMP) and measurement of lumen diameter and wall thickness. Three mechanical stiffness parameters were computed: overall passive stiffness (beta), pressure-dependent modulus changes (E(inc,p)), and smooth muscle cell (SMC) activity-dependent changes (E(inc,a)). The beta-value for ischemic vessels was increased compared with sham vessels (13.9 +/- 1.7 vs. 9.1 +/- 1.4, P < 0.05), indicating possible short-term remodeling due to ischemia. E(inc,p) increased with pressure in the passive vessels (P < 0.05) but remained relatively constant in the active vessels for all vessel types, indicating that pressure-induced SMC contractile activity (i.e., myogenic reactivity) in cerebral arteries leads to the maintenance of a constant elastic modulus within the autoregulatory pressure range. E(inc,a) increased with pressure for all conditions, signifying that changes in stiffness are influenced by SMC activity and vascular tone.
Collapse
Affiliation(s)
- Rebecca J Coulson
- Department of Mechanical Engineering and Department of Neurology, The University of Vermont, Burlington 05405, USA
| | | | | | | |
Collapse
|
180
|
Abstract
Great advances have been made in the identification of the soluble angiogenic factors, insoluble extracellular matrix (ECM) molecules, and receptor signaling pathways that mediate control of angiogenesis--the growth of blood capillaries. This review focuses on work that explores how endothelial cells integrate these chemical signals with mechanical cues from their local tissue microenvironment so as to produce functional capillary networks that exhibit specialized form as well as function. These studies have revealed that ECM governs whether an endothelial cell will switch between growth, differentiation, motility, or apoptosis programs in response to a soluble stimulus based on its ability to mechanically resist cell tractional forces and thereby produce cell and cytoskeletal distortion. Transmembrane integrin receptors play a key role in this mechanochemical transduction process because they both organize a cytoskeletal signaling complex within the focal adhesion and preferentially focus mechanical forces on this site. Molecular filaments within the internal cytoskeleton--microfilaments, microtubules, and intermediate filaments--also contribute to the cell's structural and functional response to mechanical stress through their role as discrete support elements within a tensegrity-stabilized cytoskeletal array. Importantly, a similar form of mechanical control also has been shown to be involved in the regulation of contractility in vascular smooth muscle cells and cardiac myocytes. Thus, the mechanism by which cells perform mechanochemical transduction and the implications of these findings for morphogenetic control are discussed in the wider context of vascular development and cardiovascular physiology.
Collapse
Affiliation(s)
- Donald E Ingber
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Boston, Mass 02115, USA.
| |
Collapse
|
181
|
Cipolla MJ, Curry AB. Middle cerebral artery function after stroke: the threshold duration of reperfusion for myogenic activity. Stroke 2002; 33:2094-9. [PMID: 12154269 DOI: 10.1161/01.str.0000020712.84444.8d] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Myogenic activity of the cerebral arteries is an important contributor to autoregulation of cerebral blood flow. Previous studies have demonstrated that increasing periods of ischemia diminished the amount of myogenic tone in cerebral arteries. In the present study, we investigated the effect of different periods of postischemic reperfusion on the myogenic behavior of middle cerebral arteries (MCAs). We measured both the amount of spontaneous myogenic tone that developed at 75 mm Hg and the contractile response to increased transmural pressure (TMP), ie, myogenic reactivity. METHODS The MCA occlusion model was used in male Wistar rats (n=45) to induce 30 minutes of temporary ischemia, followed by different periods of reperfusion (0 or sham; 30 minutes; and 6, 12, 18, 20, and 22 hours), confirmed by laser Doppler flowmetry. MCAs were studied in vitro using an arteriograph system that allowed control of TMP and measurement of lumen diameter. After equilibration for 1 hour at 75 mm Hg, TMP was increased stepwise in 25-mm Hg increments to 125 mm Hg and lumen diameter measured at each pressure. The amount of spontaneous myogenic tone was determined in both ischemic and contralateral arteries for each reperfusion period and compared with the right and left MCAs in the sham group. Arteries were then fixed with 10% formalin pressurized in the arteriograph bath and stained for filamentous (F)-actin with fluorescently labeled phalloidin, a specific probe for F-actin. The amount of F-actin was quantified using confocal microscopy. RESULTS MCAs from the sham-operated control group possessed considerable myogenic tone (35%). However, the amount of tone in ischemic MCAs progressively diminished as the reperfusion duration increased. In addition, sham-operated control arteries responded myogenically to increases in TMP, decreasing diameter as pressure increased. There was a similar response in arteries exposed to 30 minutes and 6 hours of reperfusion, all producing a negative slope on the pressure-diameter curve; however, myogenic reactivity was diminished at the longer periods of reperfusion, producing a positive slope of the graph. The slopes of the pressure-diameter curves were as follows: -0.10+/--0.06 (sham), -0.07+/--0.12 (30 minutes), -0.08+/--0.11 (6 hours), +0.09+/-0.09 (12 hours), +0.25+/-0.16 (18 hours), +0.38+/-0.09 (20 hours), and +0.57+/-0.09 (22 hours). F-actin content was significantly less only in ischemic MCAs at 6 and 12 hours of reperfusion. CONCLUSIONS These results demonstrate that longer periods of reperfusion significantly diminish myogenic activity of MCAs. Understanding how different periods of ischemia and reperfusion affect the function of the cerebral circulation may promote more effective treatment of ischemic stroke.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurology, University of Vermont College of Medicine, Burlington, Vt 05405, USA.
| | | |
Collapse
|
182
|
Tang DD, Wu MF, Opazo Saez AM, Gunst SJ. The focal adhesion protein paxillin regulates contraction in canine tracheal smooth muscle. J Physiol 2002; 542:501-13. [PMID: 12122148 PMCID: PMC2316150 DOI: 10.1113/jphysiol.2002.021006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The adapter protein paxillin localizes to the focal adhesions of adherent cells and has been implicated in the regulation of cytoskeletal organization and cell motility. Paxillin undergoes tyrosine phosphorylation in response to the contractile stimulation of tracheal smooth muscle. We therefore hypothesized that paxillin may be involved in regulating smooth muscle contraction. Tracheal smooth muscle strips were treated with paxillin antisense oligonucleotides to inhibit the expression of paxillin protein selectively. Paxillin antisense or sense was introduced into muscle strips by reversible permeabilization and strips were incubated with antisense or sense for 3 days. Paxillin antisense selectively depressed paxillin expression, but it did not affect the expression of vinculin, focal adhesion kinase, myosin light chain kinase, myosin heavy chain or myosin light chain. Tension development in response to stimulation with ACh or KCl was markedly depressed in paxillin-depleted muscle strips. Active force and paxillin protein expression were restored by incubation of antisense-treated strips in the absence of oligonucleotides. The depletion of paxillin did not inhibit the increase in intracellular free Ca2+, myosin light chain phosphorylation or myosin ATPase activity in response to contractile stimulation. The concentration of G-actin was significantly lower in unstimulated paxillin-depleted smooth muscle tissues than in normal tissues. While stimulation with acetylcholine caused a decrease in G-actin in normal muscle strips, it caused little change in the G-actin concentration in paxillin-depleted muscle strips, suggesting that paxillin is necessary for normal actin dynamics in smooth muscle. We conclude that paxillin is required for active tension development in smooth muscle, but that it does not regulate increases in intracellular Ca2+, myosin light chain phosphorylation or myosin ATPase activity during contractile stimulation. Paxillin may be important in regulating actin filament dynamics and organization during smooth muscle contraction.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
183
|
Gokina NI, Osol G. Actin cytoskeletal modulation of pressure-induced depolarization and Ca(2+) influx in cerebral arteries. Am J Physiol Heart Circ Physiol 2002; 282:H1410-20. [PMID: 11893578 DOI: 10.1152/ajpheart.00441.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objective of this study was to examine the role of the actin cytoskeleton in the development of pressure-induced membrane depolarization and Ca(2+) influx underlying myogenic constriction in cerebral arteries. Elevating intraluminal pressure from 10 to 60 mmHg induced membrane depolarization, increased intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) and elicited myogenic constriction in both intact and denuded rat posterior cerebral arteries. Pretreatment with cytochalasin D (5 microM) or latrunculin A (3 microM) abolished constriction but enhanced the [Ca(2+)](i) response; similarly, acute application of cytochalasin D to vessels with tone, or in the presence of 60 mM K(+), elicited relaxation accompanied by an increase in [Ca(2+)](i). The effects of cytochalasin D were inhibited by nifedipine (3 microM), demonstrating that actin cytoskeletal disruption augments Ca(2+) influx through voltage-sensitive L-type Ca(2+) channels. Finally, pressure-induced depolarization was enhanced in the presence of cytochalasin D, further substantiating a role for the actin cytoskeleton in the modulation of ion channel function. Together, these results implicate vascular smooth muscle actin cytoskeletal dynamics in the control of cerebral artery diameter through their influence on membrane potential as well as via a direct effect on L-type Ca(2+) channels.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics and Gynecology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | |
Collapse
|