151
|
Mancarella S, Potireddy S, Wang Y, Gao H, Gandhirajan RK, Autieri M, Scalia R, Cheng Z, Wang H, Madesh M, Houser SR, Gill DL. Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle. FASEB J 2012; 27:893-906. [PMID: 23159931 DOI: 10.1096/fj.12-215293] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Ca(2+)-sensing stromal interaction molecule (STIM) proteins are crucial Ca(2+) signal coordinators. Cre-lox technology was used to generate smooth muscle (sm)-targeted STIM1-, STIM2-, and double STIM1/STIM2-knockout (KO) mouse models, which reveal the essential role of STIM proteins in Ca(2+) homeostasis and their crucial role in controlling function, growth, and development of smooth muscle cells (SMCs). Compared to Cre(+/-) littermates, sm-STIM1-KO mice showed high mortality (50% by 30 d) and reduced bodyweight. While sm-STIM2-KO was without detectable phenotype, the STIM1/STIM double-KO was perinatally lethal, revealing an essential role of STIM1 partially rescued by STIM2. Vascular and intestinal smooth muscle tissues from sm-STIM1-KO mice developed abnormally with distended, thinned morphology. While depolarization-induced aortic contraction was unchanged in sm-STIM1-KO mice, α1-adrenergic-mediated contraction was 26% reduced, and store-dependent contraction almost eliminated. Neointimal formation induced by carotid artery ligation was suppressed by 54%, and in vitro PDGF-induced proliferation was greatly reduced (79%) in sm-STIM1-KO. Notably, the Ca(2+) store-refilling rate in STIM1-KO SMCs was substantially reduced, and sustained PDGF-induced Ca(2+) entry was abolished. This defective Ca(2+) homeostasis prevents PDGF-induced NFAT activation in both contractile and proliferating SMCs. We conclude that STIM1-regulated Ca(2+) homeostasis is crucial for NFAT-mediated transcriptional control required for induction of SMC proliferation, development, and growth responses to injury.-Mancarella, S., Potireddy, S., Wang, Y., Gao, H., Gandhirajan, K., Autieri, M., Scalia, R., Cheng, Z., Wang, H., Madesh, M., Houser, S. R., Gill, D. L. Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle.
Collapse
Affiliation(s)
- Salvatore Mancarella
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Yuan M, Li J, Lv J, Mo X, Yang C, Chen X, Liu Z, Liu J. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca2+ mobilization. Toxicol Appl Pharmacol 2012. [DOI: 10.10.1016/j.taap.2012.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
153
|
Lysophosphatidic acid promotes cell migration through STIM1- and Orai1-mediated Ca2+(i) mobilization and NFAT2 activation. J Invest Dermatol 2012; 133:793-802. [PMID: 23096711 PMCID: PMC3572452 DOI: 10.1038/jid.2012.370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lysophosphatidic acid (LPA) enhances cell migration and promotes wound healing in vivo, but the intracellular signaling pathways regulating these processes remain incompletely understood. Here we investigated the involvement of agonist-induced Ca2+ entry and STIM1 and Orai1 proteins in regulating nuclear factor of activated T cell (NFAT) signaling and LPA-induced keratinocyte cell motility. As monitored by Fluo-4 imaging, stimulation with 10 μℳ LPA in 60 μℳ Ca2+o evoked Ca2+i transients owing to store release, whereas addition of LPA in physiological 1.2 mℳ Ca2+o triggered store release coupled to extracellular Ca2+ entry. Store-operated Ca2+ entry (SOCE) was blocked by the SOCE inhibitor diethylstilbestrol (DES), STIM1 silencing using RNA interference (RNAi), and expression of dominant/negative Orai1R91W. LPA induced significant NFAT activation as monitored by nuclear translocation of green fluorescent protein-tagged NFAT2 and a luciferase reporter assay, which was impaired by DES, expression of Orai1R91W, and inhibition of calcineurin using cyclosporin A (CsA). By using chemotactic migration assays, LPA-induced cell motility was significantly impaired by STIM1, CsA, and NFAT2 knockdown using RNAi. These data indicate that in conditions relevant to epidermal wound healing, LPA induces SOCE and NFAT activation through Orai1 channels and promotes cell migration through a calcineurin/NFAT2-dependent pathway.
Collapse
|
154
|
MCGAHON MARYK, MCKEE JONATHAN, DASH DURGAP, BROWN EOIN, SIMPSON DAVIDA, CURTIS TIMOTHYM, McGEOWN JAMESG, SCHOLFIELD CHARLESN. Pharmacological Profiling of Store-Operated Ca2+Entry in Retinal Arteriolar Smooth Muscle. Microcirculation 2012; 19:586-97. [DOI: 10.1111/j.1549-8719.2012.00192.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
155
|
Schäfer C, Rymarczyk G, Ding L, Kirber MT, Bolotina VM. Role of molecular determinants of store-operated Ca(2+) entry (Orai1, phospholipase A2 group 6, and STIM1) in focal adhesion formation and cell migration. J Biol Chem 2012; 287:40745-57. [PMID: 23043102 DOI: 10.1074/jbc.m112.407155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Store-operated Ca(2+) entry is important for cell migration. RESULTS This study presents characterization of localization and roles of Orai1, STIM1, and PLA2g6 in adhesion dynamics during cell migration. CONCLUSION Orai1 and PLA2g6 are involved in adhesion formation at the front, whereas STIM1 participates in both adhesion formation and disassembly. SIGNIFICANCE Results uncovered new parameters of Orai1, STIM1, and PLA2g6 involvement in cell migration. Store-operated Ca(2+) entry and its major determinants are known to be important for cell migration, but the mechanism of their involvement in this complex process is unknown. This study presents a detailed characterization of distinct roles of Orai1, STIM1, and PLA2g6 in focal adhesion (FA) formation and migration. Using HEK293 cells, we discovered that although molecular knockdown of Orai1, STIM1, or PLA2g6 resulted in a similar reduction in migration velocity, there were profound differences in their effects on number, localization, and lifetime of FAs. Knockdown of STIM1 caused an increase in lifetime and number of FAs, their redistribution toward lamellae region, and an increase in cell tail length. In contrast, the number of FAs in Orai1- or PLA2g6-deficient cells was significantly reduced, and FAs accumulated closer to the leading edge. Assembly rate and Vinculin phosphorylation of FAs was similarly reduced in Orai1, PLA2g6, or STIM1-deficient cells. Although Orai1 and PLA2g6 accumulated and co-localized at the leading edge, STIM1 distribution was more complex. We found STIM1 protrusions in lamellipodia, which co-localized with FAs, whereas major accumulation could be seen in central and retracting parts of the cell. Interestingly, knockdown of Orai1 and PLA2g6 produced similar and non-additive effect on migration, whereas knockdown of STIM1 simultaneously with either Orai1 or PLA2g6 produced additional inhibition. Together these data suggest that although Orai1, PLA2g6, and STIM1 play major roles in formation of new FAs at the leading edge, STIM1 may also be involved in Orai1- and PLA2g6-independent disassembly of FAs in the back of cells.
Collapse
Affiliation(s)
- Claudia Schäfer
- Ion Channel and Calcium Signaling Unit, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
156
|
Spinelli AM, González-Cobos JC, Zhang X, Motiani RK, Rowan S, Zhang W, Garrett J, Vincent PA, Matrougui K, Singer HA, Trebak M. Airway smooth muscle STIM1 and Orai1 are upregulated in asthmatic mice and mediate PDGF-activated SOCE, CRAC currents, proliferation, and migration. Pflugers Arch 2012; 464:481-92. [PMID: 23014880 DOI: 10.1007/s00424-012-1160-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
Airway smooth muscle cell (ASMC) remodeling contributes to the structural changes in the airways that are central to the clinical manifestations of asthma. Ca(2+) signals play an important role in ASMC remodeling through control of ASMC migration and hypertrophy/proliferation. Upregulation of STIM1 and Orai1 proteins, the molecular components of the store-operated Ca(2+) entry (SOCE) pathway, has recently emerged as an important mediator of vascular remodeling. However, the potential upregulation of STIM1 and Orai1 in asthmatic airways remains unknown. An important smooth muscle migratory agonist with major contributions to ASMC remodeling is the platelet-derived growth factor (PDGF). Nevertheless, the Ca(2+) entry route activated by PDGF in ASMC remains elusive. Here, we show that STIM1 and Orai1 protein levels are greatly upregulated in ASMC isolated from ovalbumin-challenged asthmatic mice, compared to control mice. Furthermore, we show that PDGF activates a Ca(2+) entry pathway in rat primary ASMC that is pharmacologically reminiscent of SOCE. Molecular knockdown of STIM1 and Orai1 proteins inhibited PDGF-activated Ca(2+) entry in these cells. Whole-cell patch clamp recordings revealed the activation of Ca(2+) release-activated Ca(2+) (CRAC) current by PDGF in ASMC. These CRAC currents were abrogated upon either STIM1 or Orai1 knockdown. We show that either STIM1 or Orai1 knockdown significantly inhibited ASMC proliferation and chemotactic migration in response to PDGF. These results implicate STIM1 and Orai1 in PDGF-induced ASMC proliferation and migration and suggest the potential use of STIM1 and Orai1 as targets for ASMC remodeling during asthma.
Collapse
Affiliation(s)
- Amy M Spinelli
- Center for Cardiovascular Sciences, Albany Medical College, Mail Code 8, 47 New Scotland Ave, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Yoshida J, Iwabuchi K, Matsui T, Ishibashi T, Masuoka T, Nishio M. Knockdown of stromal interaction molecule 1 (STIM1) suppresses store-operated calcium entry, cell proliferation and tumorigenicity in human epidermoid carcinoma A431 cells. Biochem Pharmacol 2012; 84:1592-603. [PMID: 23022228 DOI: 10.1016/j.bcp.2012.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 12/01/2022]
Abstract
Store-operated calcium (Ca(2+)) entry (SOCE) is important for cellular activities such as gene transcription, cell cycle progression and proliferation in most non-excitable cells. Stromal interaction molecule 1 (STIM1), a newly identified Ca(2+)-sensing protein, monitors the depletion of endoplasmic reticulum (ER) Ca(2+) stores and activates store-operated Ca(2+) channels at the plasma membrane to induce SOCE. To investigate the possible roles of STIM1 in tumor growth in relation to SOCE, we established STIM1 knockdown (KD) clones of human epidermoid carcinoma A431 cells by RNA interference. Thapsigargin, an inhibitor of ER Ca(2+)-ATPase, -induced and phospholipase C-coupled receptor agonist-induced SOCEs were reduced in two STIM1 KD clones compared to a negative control clone. Re-expression of a KD-resistant full-length STIM1, but not a Ca(2+) release-activated Ca(2+) channel activation domain (CAD)-deleted STIM1 mutant, in the KD clone restored the amplitude of SOCE, suggesting the specificity of the STIM1 knockdown. The cell growth of the STIM1 KD clones was slower than that of the negative control clone. DNA synthesis assessed by BrdU incorporation, as well as EGF-stimulated EGF receptor activation, decreased in the STIM1 KD clones. Xenograft growth of the STIM1 KD clones was significantly retarded compared with that of the negative control. Cell migration was attenuated in the STIM1 KD clone and the STIM1 silencing effect was reversed by transient re-expression of the full-length STIM1 but not CAD-deletion mutant. These results indicate that STIM1 plays an important role in SOCE, cell-growth and tumorigenicity in human epidermoid carcinoma A431cells, suggesting the potential use of STIM1-targeting agents for treating epidermoid carcinoma.
Collapse
Affiliation(s)
- Junko Yoshida
- Departments of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | | | | | |
Collapse
|
158
|
Motiani RK, Zhang X, Harmon KE, Keller RS, Matrougui K, Bennett JA, Trebak M. Orai3 is an estrogen receptor α-regulated Ca²⁺ channel that promotes tumorigenesis. FASEB J 2012; 27:63-75. [PMID: 22993197 DOI: 10.1096/fj.12-213801] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) encoded by Orai1 proteins is a ubiquitous Ca(2+)-selective conductance involved in cellular proliferation and migration. We recently described up-regulation of Orai3 channels that selectively mediate SOCE in estrogen receptor α-expressing (ERα(+)) breast cancer cells. However, the connection between ERα and Orai3 and the role of Orai3 in tumorigenesis remain unknown. Here, we show that ERα knockdown decreases Orai3 mRNA (by ∼63%) and protein (by ∼44%) with no effect on Orai1. ERα knockdown decreases Orai3-mediated SOCE (by ∼43%) and the corresponding Ca(2+) release-activated Ca(2+) (CRAC) current (by ∼42%) in ERα(+) MCF7 cells. The abrogation of SOCE in MCF7 cells on ERα knockdown can be rescued by ectopic expression of Orai3. ERα activation increased Orai3 expression and SOCE in MCF7 cells. Epidermal growth factor (EGF) and thrombin stimulate Ca(2+) influx into MCF7 cells through Orai3. Orai3 knockdown inhibited SOCE-dependent phosphorylation of extracellular signal-regulated kinase (ERK1/2; by ∼44%) and focal adhesion kinase (FAK; by ∼46%) as well as transcriptional activity of nuclear factor for activated T cells (NFAT; by ∼49%). Significantly, Orai3 knockdown selectively decreased anchorage-independent growth (by ∼58%) and Matrigel invasion (by ∼44%) of ERα(+) MCF7 cells with no effect on ERα(-) MDA-MB231 cells. Moreover, Orai3 knockdown inhibited ERα(+) cell tumorigenesis in immunodeficient mice (∼66% reduction in tumor volume). These data establish Orai3 as an ERα-regulated channel and a potential selective therapeutic target for ERα(+) breast cancers.
Collapse
Affiliation(s)
- Rajender K Motiani
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
159
|
Suganuma N, Ito S, Aso H, Kondo M, Sato M, Sokabe M, Hasegawa Y. STIM1 regulates platelet-derived growth factor-induced migration and Ca2+ influx in human airway smooth muscle cells. PLoS One 2012; 7:e45056. [PMID: 22984609 PMCID: PMC3439366 DOI: 10.1371/journal.pone.0045056] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
It is suggested that migration of airway smooth muscle (ASM) cells plays an important role in the pathogenesis of airway remodeling in asthma. Increases in intracellular Ca(2+) concentrations ([Ca(2+)](i)) regulate most ASM cell functions related to asthma, such as contraction and proliferation. Recently, STIM1 was identified as a sarcoplasmic reticulum (SR) Ca(2+) sensor that activates Orai1, the Ca(2+) channel responsible for store-operated Ca(2+) entry (SOCE). We investigated the role of STIM1 in [Ca(2+)](i) and cell migration induced by platelet-derived growth factor (PDGF)-BB in human ASM cells. Cell migration was assessed by a chemotaxis chamber assay. Human ASM cells express STIM1, STIM2, and Orai1 mRNAs. SOCE activated by thapsigargin, an inhibitor of SR Ca(2+)-ATPase, was significantly blocked by STIM1 siRNA and Orai1 siRNA but not by STIM2 siRNA. PDGF-BB induced a transient increase in [Ca(2+)](i) followed by sustained [Ca(2+)](i) elevation. Sustained increases in [Ca(2+)](i) due to PDGF-BB were significantly inhibited by a Ca(2+) chelating agent EGTA or by siRNA for STIM1 or Orai1. The numbers of migrating cells were significantly increased by PDGF-BB treatment for 6 h. Knockdown of STIM1 and Orai1 by siRNA transfection inhibited PDGF-induced cell migration. Similarly, EGTA significantly inhibited PDGF-induced cell migration. In contrast, transfection with siRNA for STIM2 did not inhibit the sustained elevation of [Ca(2+)](i) or cell migration induced by PDGF-BB. These results demonstrate that STIM1 and Orai1 are essential for PDGF-induced cell migration and Ca(2+) influx in human ASM cells. STIM1 could be an important molecule responsible for airway remodeling.
Collapse
Affiliation(s)
- Nobukazu Suganuma
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Hiromichi Aso
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
160
|
Kawanabe Y, Takahashi M, Jin X, Abdul-Majeed S, Nauli AM, Sari Y, Nauli SM. Cilostazol prevents endothelin-induced smooth muscle constriction and proliferation. PLoS One 2012; 7:e44476. [PMID: 22957074 PMCID: PMC3434142 DOI: 10.1371/journal.pone.0044476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/08/2012] [Indexed: 01/15/2023] Open
Abstract
Cilostazol is a phosphodiesterase inhibitor that has been shown to inhibit platelet activation. Endothelin is known to be the most potent endogenous growth promoting and vasoactive peptide. In patients and animal models with stroke, the level of circulating endothelin increases and complicates the recovery progress contributed by vascular constriction (an immediate pathology) and vascular proliferation (a long-term pathology). However, the effects of cilostazol on endothelin have not been explored. To demonstrate the dual-antagonizing effects of cilostazol on vasoconstriction and cell proliferation induced by endothelin, we used primary culture of mouse vascular smooth muscle cells in vitro, mouse femoral artery ex vivo, and intracranial basilar artery ex vivo. We show that the dual-inhibition effects of cilostazol are mediated by blocking endothelin-induced extracellular calcium influx. Although cilostazol does not inhibit endothelin-induced intraorganellar calcium release, blockade of extracellular calcium influx is sufficient to blunt endothelin-induced vasoconstriction. We also show that cilostazol inhibits endothelin-induced cellular proliferation by blocking extracellular calcium influx. Inhibition of cAMP-dependent protein kinase (PKA) can block anti-proliferation activity of cilostazol, confirming the downstream role of PKA in cellular proliferation. To further demonstrate the selectivity of the dual-antagonizing effects of cilostazol, we used a different phosphodiesterase inhibitor. Interestingly, sildenafil inhibits endothelin-induced vasoconstriction but not cellular proliferation in smooth muscle cells. For the first time, we show selective dual-antagonizing effects of cilostazol on endothelin. We propose that cilostazol is an excellent candidate to treat endothelin-associated diseases, such as stroke.
Collapse
Affiliation(s)
- Yoshifumi Kawanabe
- Department of Pharmacology, The University of Toledo, Toledo, Ohio, United States of America
| | - Maki Takahashi
- Department of Pharmacology, The University of Toledo, Toledo, Ohio, United States of America
| | - Xingjian Jin
- Department of Pharmacology, The University of Toledo, Toledo, Ohio, United States of America
| | - Shakila Abdul-Majeed
- Department of Pharmacology, The University of Toledo, Toledo, Ohio, United States of America
| | - Andromeda M. Nauli
- Department of Health Sciences, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Youssef Sari
- Department of Pharmacology, The University of Toledo, Toledo, Ohio, United States of America
| | - Surya M. Nauli
- Department of Pharmacology, The University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
161
|
Pangburn TO, Georgiou K, Bates FS, Kokkoli E. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12816-30. [PMID: 22827285 DOI: 10.1021/la300874z] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polymersomes, polymeric vesicles that self-assemble in aqueous solutions from block copolymers, have been avidly investigated in recent years as potential drug delivery agents. Past work has highlighted peptide-functionalized polymersomes as a highly promising targeted delivery system. However, few reports have investigated the ability of polymersomes to operate as gene delivery agents. In this study, we report on the encapsulation and delivery of siRNA inside of peptide-functionalized polymersomes composed of poly(1,2-butadiene)-b-poly(ethylene oxide). In particular, PR_b peptide-functionalized polymer vesicles are shown to be a promising system for siRNA delivery. PR_b is a fibronectin mimetic peptide targeting specifically the α(5)β(1) integrin. The Orai3 gene was targeted for siRNA knockdown, and PR_b-functionalized polymer vesicles encapsulating siRNA were found to specifically decrease cell viability of T47D breast cancer cells to a certain extent, while preserving viability of noncancerous MCF10A breast cells. siRNA delivery by PR_b-functionalized polymer vesicles was compared to that of a current commercial siRNA transfection agent, and produced less dramatic decreases in cancer cell viability, but compared favorably in regards to the relative toxicity of the delivery systems. Finally, delivery and vesicle release of a fluorescent encapsulate by PR_b-functionalized polymer vesicles was visualized by confocal microscopy, and colocalization with cellular endosomes and lysosomes was assessed by organelle staining. Polymersomes were observed to primarily release their encapsulate in the early endosomal intracellular compartments, and data may suggest some escape to the cytosol. These results represent a promising first generation model system for targeted delivery of siRNA.
Collapse
Affiliation(s)
- Todd O Pangburn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | |
Collapse
|
162
|
Smedlund K, Bah M, Vazquez G. On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. Cardiovasc Hematol Agents Med Chem 2012; 10:265-74. [PMID: 22827251 PMCID: PMC3465809 DOI: 10.2174/187152512802651051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 05/05/2023]
Abstract
In endothelium, calcium (Ca(2+)) influx through plasma membrane Ca(2+)-permeable channels plays a fundamental role in several physiological functions and in the pathogenesis of cardiovascular disease. Current knowledge on the influence of Ca(2+) influx in signaling events associated to endothelial dysfunction has grown significantly over recent years, particularly after identification of members of the Transient Receptor Potential Canonical (TRPC) family of channel forming proteins as prominent mediators of Ca(2+) entry in endothelial cells. Among TRPC members TRPC3 has been at the center of many of these physiopathological processes. Progress in elucidating the mechanism/s underlying regulation of endothelial TRPC3 and characterization of signaling events downstream TRPC3 activation are of most importance to fully appreciate the role of this peculiar cation channel in cardiovascular disease and its potential use as a therapeutic target. In this updated review we focus on TRPC3 channels, revising and discussing current knowledge on channel expression and regulation in endothelium and the roles of TRPC3 in cardiovascular disease in relation to endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - G. Vazquez
- Correspondence to: Guillermo Vazquez, PhD, Department of Physiology and Pharmacology, UTHSC Mailstop 1800, Toledo OH 43614 USA. FAX: 419 383 2871;
| |
Collapse
|
163
|
Yuan M, Li J, Lv J, Mo X, Yang C, Chen X, Liu Z, Liu J. Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca²⁺ mobilization. Toxicol Appl Pharmacol 2012; 264:462-9. [PMID: 22959927 DOI: 10.1016/j.taap.2012.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 12/11/2022]
Abstract
Mast cells play a key role in the pathogenesis of asthma and are a promising target for therapeutic intervention in asthma. This study investigated the effects of polydatin (PD), a resveratrol glucoside, on mast cell degranulation upon cross-linking of the high-affinity IgE receptors (FcεRI), as well as the anti-allergic activity of PD in vivo. Herein, we demonstrated that PD treatment for 30 min suppressed FcεRI-mediated mast cell degranulation in a dose-dependent manner. Concomitantly, PD significantly decreased FcεRI-mediated Ca²⁺ increase in mast cells. The suppressive effects of PD on FcεRI-mediated Ca²⁺ increase were largely inhibited by using LaCl₃ to block the Ca²⁺ release-activated Ca²⁺ channels (CRACs). Furthermore, PD significantly inhibited Ca²⁺ entry through CRACs evoked by thapsigargin (TG). Knocking down protein expression of Orai1, the pore-forming subunit of CRACs, significantly decreased PD suppression of FcεRI-induced intracellular Ca²⁺ influx and mast cell degranulation. In a mouse model of mast cell-dependent passive cutaneous anaphylaxis (PCA), in vivo PD administration suppressed mast cell degranulation and inhibited anaphylaxis. Taken together, our data indicate that PD stabilizes mast cells by suppressing FcεRI-induced Ca²⁺ mobilization mainly through inhibiting Ca²⁺ entry via CRACs, thus exerting a protective effect against PCA.
Collapse
Affiliation(s)
- Meichun Yuan
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One 2012; 7:e43859. [PMID: 22952790 PMCID: PMC3428288 DOI: 10.1371/journal.pone.0043859] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
The migration of T lymphocytes is an essential part of the adaptive immune response as T cells circulate around the body to carry out immune surveillance. During the migration process T cells polarize, forming a leading edge at the cell front and a uropod at the cell rear. Our interest was in studying the involvement of ion channels in the migration of activated human T lymphocytes as they modulate intracellular Ca(2+) levels. Ca(2+) is a key regulator of cellular motility. To this purpose, we created protein surfaces made of the bio-polymer PNMP and coated with ICAM-1, ligand of LFA-1. The LFA-1 and ICAM-1 interaction facilitates T cell movement from blood into tissues and it is critical in immune surveillance and inflammation. Activated human T lymphocytes polarized and migrated on ICAM-1 surfaces by random walk with a mean velocity of ∼6 µm/min. Confocal microscopy indicated that Kv1.3, CRAC, and TRPM4 channels positioned in the leading-edge, whereas KCa3.1 and TRPM7 channels accumulated in the uropod. The localization of KCa3.1 and TRPM7 at the uropod was associated with oscillations in intracellular Ca(2+) levels that we measured in this cell compartment. Further studies with blockers against Kv1.3 (ShK), KCa3.1 (TRAM-34), CRAC (SKF-96365), TRPM7 (2-APB), and TRPM4 (glibenclamide) indicated that blockade of KCa3.1 and TRPM7, and not Kv1.3, CRAC or TRPM4, inhibits the T cell migration. The involvement of TRPM7 in cell migration was confirmed with siRNAs against TRPM7. Downregulation of TRPM7 significantly reduced the number of migrating T cells and the mean velocity of the migrating T cells. These results indicate that KCa3.1 and TRPM7 selectively localize at the uropod of migrating T lymphocytes and are key components of the T cell migration machinery.
Collapse
Affiliation(s)
- Zerrin Kuras
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yeo-Heung Yun
- Department of Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Ameet A. Chimote
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Laura Conforti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
165
|
Martinsen A, Baeyens N, Yerna X, Morel N. Rho kinase regulation of vasopressin-induced calcium entry in vascular smooth muscle cell: comparison between rat isolated aorta and cultured aortic cells. Cell Calcium 2012; 52:413-21. [PMID: 22883550 DOI: 10.1016/j.ceca.2012.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023]
Abstract
In addition to its role in artery contraction, Rho kinase (ROCK) is reported to be involved in the Ca(2+) response to vasoconstrictor agonist in rat aorta. However the signaling pathway mediated by ROCK had not been investigated so far and it was not known whether ROCK also contributed to Ca(2+) signaling in cultured vascular smooth muscle cells (VSMC), which undergo profound phenotypic changes. Our results showed that in VSMC, ROCK inhibition by Y-27632 or H-1152 had no effect on the Ca(2+) response to vasopressin, while in aorta the vasopressin-induced Ca(2+) entry was significantly decreased. The inhibition of myosin light chain kinase (MLCK) by ML-7 depressed the vasopressin-induced Ca(2+) signal in aorta but not in VSMC. The difference in ROCK sensitivity of vasopressin-induced Ca(2+) entry between aorta and VSMC was not related to an alteration of the RhoA/ROCK pathway. However, MLCK expression and activity were depressed in cultured cells compared to aorta. We concluded that the regulation of vasopressin-induced Ca(2+) entry by ROCK in aorta could involve the myosin cytoskeleton and could be prevented by the downregulation of MLCK in VSMC. These results underline the important differences in Ca(2+) regulation between whole tissue and cultured cells.
Collapse
|
166
|
Berna-Erro A, Galan C, Dionisio N, Gomez LJ, Salido GM, Rosado JA. Capacitative and non-capacitative signaling complexes in human platelets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1242-51. [DOI: 10.1016/j.bbamcr.2012.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 11/25/2022]
|
167
|
Store-independent pathways for cytosolic STIM1 clustering in the regulation of store-operated Ca(2+) influx. Biochem Pharmacol 2012; 84:1024-35. [PMID: 22842488 DOI: 10.1016/j.bcp.2012.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/08/2012] [Accepted: 07/16/2012] [Indexed: 02/07/2023]
Abstract
STIM1 is a Ca(2+) sensing molecule. Once the Ca(2+) stores are depleted, STIM1 moves towards the plasma membrane (PM) (translocation), forms puncta (clustering), and triggers store-operated Ca(2+) entry (SOCE). Although this process has been regarded as a main mechanism for store-operated Ca(2+) channel activation, the STIM1 clustering is still unclear. Here we discovered a new phenomenon of STIM1 clustering, which is not triggered by endoplasmic reticulum (ER) Ca(2+) depletion. STIM1 subplasmalemmal translocation and clustering can be induced by ER Ca(2+) store depletion with thapsigargin (TG), G-protein-coupled receptor activator trypsin and ryanodine receptor (RyR) agonists caffeine and 4-chloro-3-ethylphenol (4-CEP) in the HEK293 cells stably transfected with STIM1-EYFP. The STIM1 clustering induced by TG was more sustained than that induced by trypsin and RyR agonists. Interestingly, 4-CEP-induced STIM1 clustering also happened in the cytosol without ER Ca(2+) store depletion. Application of some pharmacological regulators including flufenamic acid, 2-APB, and carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) at concentrations without affecting ER Ca(2+) store also evoked cytosolic STIM1 clustering. However, the direct store-operated ORAI channel blockers (SKF-96365, Gd(3+) and diethylstilbestrol) or the signaling pathway inhibitors (genistein, wortmannin, Y-27632, forskolin and GF109203X) did not change the STIM1 movement. Disruption of cytoskeleton by colchicine and cytochalasin D also showed no effect on STIM1 movement. We concluded that STIM1 clustering and translocation are two dynamic processes that can be pharmacologically dissociated. The ER Ca(2+) store-independent mechanism for STIM1 clustering is a new alternative mechanism for regulating store-operated channel activity, which could act as a new pharmacological target.
Collapse
|
168
|
MEF2 is regulated by CaMKIIδ2 and a HDAC4-HDAC5 heterodimer in vascular smooth muscle cells. Biochem J 2012; 444:105-14. [PMID: 22360269 DOI: 10.1042/bj20120152] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
VSMCs (vascular smooth muscle cells) dedifferentiate from the contractile to the synthetic phenotype in response to acute vascular diseases such as restenosis and chronic vascular diseases such as atherosclerosis, and contribute to growth of the neointima. We demonstrated previously that balloon catheter injury of rat carotid arteries resulted in increased expression of CaMKII (Ca(2+)/calmodulin-dependent protein kinase) IIδ(2) in the medial wall and the expanding neointima [House and Singer (2008) Arterioscler. Thromb. Vasc. Biol. 28, 441-447]. These findings led us to hypothesize that increased expression of CaMKIIδ(2) is a positive mediator of synthetic VSMCs. HDAC (histone deacetylase) 4 and HDAC5 function as transcriptional co-repressors and are regulated in a CaMKII-dependent manner. In the present paper, we report that endogenous HDAC4 and HDAC5 in VSMCs are activated in a Ca(2+)- and CaMKIIδ(2)-dependent manner. We show further that AngII (angiotensin II)- and PDGF (platelet-derived growth factor)-dependent phosphorylation of HDAC4 and HDAC5 is reduced when CaMKIIδ(2) expression is suppressed or CaMKIIδ(2) activity is attenuated. The transcriptional activator MEF2 (myocyte-enhancer factor 2) is an important determinant of VSMC phenotype and is regulated in an HDAC-dependent manner. In the present paper, we report that stimulation of VSMCs with ionomycin or AngII potentiates MEF2's ability to bind DNA and increases the expression of established MEF2 target genes Nur77 (nuclear receptor 77) (NR4A1) and MCP1 (monocyte chemotactic protein 1) (CCL2). Suppression of CaMKIIδ(2) attenuates increased MEF2 DNA-binding activity and up-regulation of Nur77 and MCP1. Finally, we show that HDAC5 is regulated by HDAC4 in VSMCs. Suppression of HDAC4 expression and activity prevents AngII- and PDGF-dependent phosphorylation of HDAC5. Taken together, these results illustrate a mechanism by which CaMKIIδ(2) mediates MEF2-dependent gene transcription in VSMCs through regulation of HDAC4 and HDAC5.
Collapse
|
169
|
Angermann JE, Forrest AS, Greenwood IA, Leblanc N. Activation of Ca2+-activated Cl- channels by store-operated Ca2+ entry in arterial smooth muscle cells does not require reverse-mode Na+/Ca2+ exchange. Can J Physiol Pharmacol 2012; 90:903-21. [PMID: 22734601 DOI: 10.1139/y2012-081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The main purpose of this study was to characterize the stimulation of Ca(2+)-activated Cl(-) (Cl(Ca)) by store-operated Ca(2+) entry (SOCE) channels in rabbit pulmonary arterial smooth muscle cells (PASMCs) and determine if this process requires reverse-mode Na(+)/Ca(2+) exchange (NCX). In whole-cell voltage clamped PASMCs incubated with 1 μmol/L nifedipine (Nif) to inhibit Ca(2+) channels, 30 μmol/L cyclopiazonic acid (CPA), a SERCA pump inhibitor, activated a nonselective cation conductance permeable to Na(+) (I(SOC)) during an initial 1-3 s step, ranging from-120 to +60 mV, and Ca(2+)-activated Cl(-) current (I(Cl(Ca))) during a second step to +90 mV that increased with the level of the preceding hyperpolarizing step. Niflumic acid (100 μmol/L), a Cl(Ca) channel blocker, abolished I(Cl(Ca)) but had no effect on I(SOC), whereas the I(SOC) blocker SKF-96365 (50 μmol/L) suppressed both currents. Dual patch clamp and Fluo-4 fluorescence measurements revealed the appearance of CPA-induced Ca(2+) transients of increasing magnitude with increasing hyperpolarizing steps, which correlated with I(Cl(Ca)) amplitude. The absence of Ca(2+) transients at positive potentials following a hyperpolarizing step combined with the observation that SOCE-stimulated I(Cl(Ca)) was unaffected by the NCX blocker KB-R7943 (1 μmol/L) suggest that the SOCE/Cl(Ca) interaction does not require reverse-mode NCX in our conditions.
Collapse
Affiliation(s)
- Jeff E Angermann
- School of Community Health Sciences, University of Nevada, Reno, 89557, USA
| | | | | | | |
Collapse
|
170
|
Davis FM, Peters AA, Grice DM, Cabot PJ, Parat MO, Roberts-Thomson SJ, Monteith GR. Non-stimulated, agonist-stimulated and store-operated Ca2+ influx in MDA-MB-468 breast cancer cells and the effect of EGF-induced EMT on calcium entry. PLoS One 2012; 7:e36923. [PMID: 22666335 PMCID: PMC3364242 DOI: 10.1371/journal.pone.0036923] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/17/2012] [Indexed: 12/30/2022] Open
Abstract
In addition to their well-defined roles in replenishing depleted endoplasmic reticulum (ER) Ca2+ reserves, molecular components of the store-operated Ca2+ entry pathway regulate breast cancer metastasis. A process implicated in cancer metastasis that describes the conversion to a more invasive phenotype is epithelial-mesenchymal transition (EMT). In this study we show that EGF-induced EMT in MDA-MB-468 breast cancer cells is associated with a reduction in agonist-stimulated and store-operated Ca2+ influx, and that MDA-MB-468 cells prior to EMT induction have a high level of non-stimulated Ca2+ influx. The potential roles for specific Ca2+ channels in these pathways were assessed by siRNA-mediated silencing of ORAI1 and transient receptor potential canonical type 1 (TRPC1) channels in MDA-MB-468 breast cancer cells. Non-stimulated, agonist-stimulated and store-operated Ca2+ influx were significantly inhibited with ORAI1 silencing. TRPC1 knockdown attenuated non-stimulated Ca2+ influx in a manner dependent on Ca2+ influx via ORAI1. TRPC1 silencing was also associated with reduced ERK1/2 phosphorylation and changes in the rate of Ca2+ release from the ER associated with the inhibition of the sarco/endoplasmic reticulum Ca2+-ATPase (time to peak [Ca2+]CYT = 188.7±34.6 s (TRPC1 siRNA) versus 124.0±9.5 s (non-targeting siRNA); P<0.05). These studies indicate that EMT in MDA-MB-468 breast cancer cells is associated with a pronounced remodeling of Ca2+ influx, which may be due to altered ORAI1 and/or TRPC1 channel function. Our findings also suggest that TRPC1 channels in MDA-MB-468 cells contribute to ORAI1-mediated Ca2+ influx in non-stimulated cells.
Collapse
Affiliation(s)
- Felicity M. Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Amelia A. Peters
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Desma M. Grice
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter J. Cabot
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
171
|
Abstract
Stromal interaction molecules (STIM1 and STIM2) are single pass transmembrane proteins located mainly in the endoplasmic reticulum (ER). STIM proteins contain an EF-hand in their N-termini that faces the lumen side of the ER allowing them to act as ER calcium (Ca(2+)) sensors. STIM1 has been recognized as central to the activation of the highly Ca(2+) selective store-operated Ca(2+) (SOC) entry current mediated by the Ca(2+) release-activated Ca(2+) (CRAC) channel; CRAC channels are formed by tetramers of the plasma membrane (PM) protein Orai1. Physiologically, the production of inositol 1,4,5-trisphosphate (IP(3)) upon stimulation of phospholipase C-coupled receptors and the subsequent emptying of IP(3)-sensitive ER Ca(2+) stores are sensed by STIM1 molecules which aggregate and move closer to the PM to interact physically with Orai1 channels and activate Ca(2+) entry. Orai1 has two homologous proteins encoded by separate genes, Orai2 and Orai3. Other modes of receptor-regulated Ca(2+) entry into cells are store-independent; for example, arachidonic acid activates a highly Ca(2+) selective store-independent channel formed by heteropentamers of Orai1 and Orai3 and regulated by the PM pool of STIM1. Here, I will discuss results pertaining to the roles of STIM and Orai proteins in smooth muscle Ca(2+) entry pathways and their role in vascular remodelling.
Collapse
Affiliation(s)
- Mohamed Trebak
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
172
|
Yang C, Mo X, Lv J, Liu X, Yuan M, Dong M, Li L, Luo X, Fan X, Jin Z, Liu Z, Liu J. Lipopolysaccharide enhances FcεRI-mediated mast cell degranulation by increasing Ca2+ entry through store-operated Ca2+ channels: implications for lipopolysaccharide exacerbating allergic asthma. Exp Physiol 2012; 97:1315-27. [PMID: 22581748 DOI: 10.1113/expphysiol.2012.065854] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipopolysaccharide (LPS) can exacerbate asthma; however, the mechanisms are not fully understood. This study investigated the effect of LPS on antigen-stimulated mast cell degranulation and the underlying mechanisms. We found that LPS enhanced degranulation in RBL-2H3 cells and mouse peritoneal mast cells upon FcεRI activation, in a dose- and time-dependent manner. Parallel to the alteration of degranulation, LPS increased FcεRI-activated Ca(2+) mobilization, as well as Ca(2+) entry through store-operated calcium channels (SOCs) evoked by thapsigargin. Blocking Ca(2+) entry through SOCs completely abolished LPS enhancement of mast cell degranulation. Consistent with functional alteration of SOCs, LPS increased mRNA and protein levels of Orai1 and STIM1, two major subunits of SOCs, in a time-dependent manner. In addition, LPS increased the mRNA level of Toll-like receptor 4 (TLR4) in a time-dependent manner. Blocking TLR4 with Cli-095 inhibited LPS, increasing transcription and expression of SOC subunits. Concomitantly, the effect of LPS enhancement of Ca(2+) mobilization and mast cell degranulation was largely reduced by Cli-095. Administration of LPS (1 μg) in vivo aggravated airway hyperreactivity and inflammatory reactions in allergic asthmatic mice. Histamine levels in serum and bronchoalveolar lavage fluid were increased by LPS treatment. In addition, Ca(2+) mobilization was enhanced in peritoneal mast cells isolated from LPS-treated asthmatic mice. Taken together, these results imply that LPS enhances mast cell degranulation, which potentially contributes to LPS exacerbating allergic asthma. Lipopolysaccharide increases Ca(2+) entry through SOCs by upregulating transcription and expression of SOC subunits, mainly through interacting with TLR4 in mast cells, resulting in enhancement of mast cell degranulation upon antigen stimulation.
Collapse
Affiliation(s)
- Chengbin Yang
- State Key Laboratory of Respiratory Disease for Allergy, Shengzhen University, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Orai1 calcium channels in the vasculature. Pflugers Arch 2012; 463:635-47. [PMID: 22402985 PMCID: PMC3323825 DOI: 10.1007/s00424-012-1090-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Orai1 was discovered in T cells as a calcium-selective channel that is activated by store depletion. Recent studies suggest that it is expressed and functionally important also in blood vessels, not only because haematopoietic cells can incorporate in the vascular wall but also because Orai1 is expressed and functional in vascular smooth muscle cells and endothelial cells. This article summarises the arising observations in this new area of vascular research and debates underlying issues and challenges for future investigations. The primary focus is on vascular smooth muscle cells and endothelial cells. Specific topics include Orai1 expression; Orai1 roles in store-operated calcium entry and ionic currents of store-depleted cells; blockade of Orai1-related signals by Synta 66 and other pharmacology; activation or regulation of Orai1-related signals by physiological substances and compartments; stromal interaction molecules and the relationship of Orai1 to other ion channels, transporters and pumps; transient receptor potential canonical channels and their contribution to store-operated calcium entry; roles of Orai1 in vascular tone, remodelling, thrombus formation and inflammation; and Orai2 and Orai3. Overall, the observations suggest the existence of an additional, previously unrecognised, calcium channel of the vascular wall that is functionally important particularly in remodelling but probably also in certain vasoconstrictor contexts.
Collapse
|
174
|
Chuang TY, Au LC, Wang LC, Ho LT, Yang DM, Juan CC. Potential effect of resistin on the ET-1-increased reactions of blood pressure in rats and Ca2+ signaling in vascular smooth muscle cells. J Cell Physiol 2012; 227:1610-8. [PMID: 21678413 DOI: 10.1002/jcp.22878] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Resistin and endothelin-1 (ET-1) are upregulated in people with type II diabetes mellitus, central obesity, and hypertension. ET-1 signaling is involved in Ca(2+)-contraction coupling and related to blood pressure regulation. The aim of this study is to investigate the role of resistin on ET-1-increased blood pressure and Ca(2+) signaling. The blood pressure and cytosolic Ca(2+) of vascular smooth muscle cells (VSMCs) of Sprague-Dawley rats were detected. The data demonstrated that resistin accelerated and prolonged ET-1-induced increases in blood pressure and had significant effects on ET-1-increased Ca(2+) reactions. Resistin-enhanced ET-1-increased Ca(2+) reactions were reversed by blockers of store-operated Ca(2+) entry (SOCE) and extracellular-signal-regulated kinase (ERK). The endogenous expression of Orai and stromal interaction molecular (STIM) were characterized in the VSMCs. Furthermore, resistin-enhanced ET-1 Ca(2+) reactions and the resistin-dependent activation of SOCE were abolished under STIM1-siRNA treatment, indicating that STIM1 plays an important role in resistin-enhanced ET-1 Ca(2+) reactions in VSMCs. Resistin appears to exert effects on ET-1-induced Ca(2+) increases by enhancing the activity of ERK-dependent SOCE (STIM1-partcipated), and may accelerate and prolong ET-1-increased blood pressure via the same pathway.
Collapse
Affiliation(s)
- Tung-Yueh Chuang
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
175
|
Woo JS, Cho CH, Lee KJ, Kim DH, Ma J, Lee EH. Hypertrophy in skeletal myotubes induced by junctophilin-2 mutant, Y141H, involves an increase in store-operated Ca2+ entry via Orai1. J Biol Chem 2012; 287:14336-48. [PMID: 22389502 DOI: 10.1074/jbc.m111.304808] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Junctophilins (JPs) play an important role in the formation of junctional membrane complexes (JMC) in striated muscle by physically linking the transverse-tubule and sarcoplasmic reticulum (SR) membranes. Researchers have found five JP2 mutants in humans with hypertrophic cardiomyopathy. Among these, Y141H and S165F are associated with severely altered Ca(2+) signaling in cardiomyocytes. We previously reported that S165F also induced both hypertrophy and altered intracellular Ca(2+) signaling in mouse skeletal myotubes. In the present study, we attempted to identify the dominant-negative role(s) of Y141H in primary mouse skeletal myotubes. Consistent with S165F, Y141H led to hypertrophy and altered Ca(2+) signaling (a decrease in the gain of excitation-contraction coupling and an increase in the resting level of myoplasmic Ca(2+)). However, unlike S165F, neither ryanodine receptor 1-mediated Ca(2+) release from the SR nor the phosphorylation of the mutated JP2 by protein kinase C was related to the altered Ca(2+) signaling by Y141H. Instead, abnormal JMC and increased SOCE via Orai1 were found, suggesting that the hypertrophy caused by Y141H progressed differently from S165F. Therefore JP2 can be linked to skeletal muscle hypertrophy via various Ca(2+) signaling pathways, and SOCE could be one of the causes of altered Ca(2+) signaling observed in muscle hypertrophy.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | |
Collapse
|
176
|
Abstract
Store-operate Ca2+ channels gate Ca2+ entry into the cytoplasm in response to the depletion of Ca2+ from endoplasmic reticulum Ca2+ stores. The major molecular components of store-operated Ca2+ entry are STIM (stromal-interacting molecule) 1 (and in some instances STIM2) that serves as the endoplasmic reticulum Ca2+ sensor, and Orai (Orai1, Orai2 and Orai3) which function as pore-forming subunits of the store-operated channel. It has been known for some time that store-operated Ca2+ entry is shut down during cell division. Recent work has revealed complex mechanisms regulating the functions and locations of both STIM1 and Orai1 in dividing cells.
Collapse
Affiliation(s)
- Jeremy T Smyth
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute-NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
177
|
Chang WC, Lee CH, Hirota T, Wang LF, Doi S, Miyatake A, Enomoto T, Tomita K, Sakashita M, Yamada T, Fujieda S, Ebe K, Saeki H, Takeuchi S, Furue M, Chen WC, Chiu YC, Chang WP, Hong CH, Hsi E, Juo SHH, Yu HS, Nakamura Y, Tamari M. ORAI1 genetic polymorphisms associated with the susceptibility of atopic dermatitis in Japanese and Taiwanese populations. PLoS One 2012; 7:e29387. [PMID: 22253717 PMCID: PMC3258251 DOI: 10.1371/journal.pone.0029387] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/28/2011] [Indexed: 02/03/2023] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease. Multiple genetic and environmental factors are thought to be responsible for susceptibility to AD. In this study, we collected 2,478 DNA samples including 209 AD patients and 729 control subjects from Taiwanese population and 513 AD patients and 1027 control subject from Japanese population for sequencing and genotyping ORAI1. A total of 14 genetic variants including 3 novel single-nucleotide polymorphisms (SNPs) in the ORAI1 gene were identified. Our results indicated that a non-synonymous SNP (rs3741596, Ser218Gly) associated with the susceptibility of AD in the Japanese population but not in the Taiwanese population. However, there is another SNP of ORAI1 (rs3741595) associated with the risk of AD in the Taiwanese population but not in the Japanese population. Taken together, our results indicated that genetic polymorphisms of ORAI1 are very likely to be involved in the susceptibility of AD.
Collapse
Affiliation(s)
- Wei-Chiao Chang
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Resources, Research, and Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (W-C. Chang); (TH)
| | - Chih-Hung Lee
- Department of Dermatology, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tomomitsu Hirota
- Laboratory for Respiratory Diseases, Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
- * E-mail: (W-C. Chang); (TH)
| | - Li-Fang Wang
- Department of Dermatology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Satoru Doi
- Department of Pediatric Allergy, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Osaka, Japan
| | | | - Tadao Enomoto
- NPO Japan Health Promotion Supporting Network, Wakayama, Japan
| | - Kaori Tomita
- Division of Otorhinolaryngology Head and Neck Surgery, University of Fukui, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology Head and Neck Surgery, University of Fukui, Fukui, Japan
| | - Takechiyo Yamada
- Division of Otorhinolaryngology Head and Neck Surgery, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, University of Fukui, Fukui, Japan
| | | | - Hidehisa Saeki
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Takeuchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Wei-Chiao Chen
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Chiu
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei Pin Chang
- Department of Healthcare Management, Yuanpei University, HsinChu, Taiwan
| | - Chien-Hui Hong
- Department of Dermatology, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Edward Hsi
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Suh-Hang Hank Juo
- Department of Medical Genetics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mayumi Tamari
- Laboratory for Respiratory Diseases, Center for Genomic Medicine, The Institute of Physical and Chemical Research (RIKEN), Kanagawa, Japan
| |
Collapse
|
178
|
Bogeski I, Al-Ansary D, Qu B, Niemeyer BA, Hoth M, Peinelt C. Pharmacology of ORAI channels as a tool to understand their physiological functions. Expert Rev Clin Pharmacol 2012; 3:291-303. [PMID: 22111611 DOI: 10.1586/ecp.10.23] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Store-operated Ca(2+) entry is a major Ca(2+) entry mechanism that is present in most cell types. In immune cells, store-operated Ca(2+) entry is almost exclusively mediated by Ca(2+) release-activated Ca(2+) (CRAC) channels. Ca(2+) entry through these channels and the corresponding cytosolic Ca(2+) signals are required for many immune cell functions, including all aspects of T-cell activation. ORAI proteins are the molecular correlates for the CRAC channels. The three human members, ORAI1, ORAI2 and ORAI3, are activated through the stromal interaction molecules (STIM)1 and 2 following depletion of endoplasmic reticulum Ca(2+) stores. Different combinations of STIM and ORAI can form different CRAC channels with distinct biophysical properties. In this article, we review and discuss mechanistic and functional implications of two important CRAC/ORAI inhibitors, 2-APB and BTP2, and the antibiotic G418 that has also been reported to interfere with ORAI channel function. The use of pharmacological tools should help to assign distinct physiological and pathophysiological functions to different STIM-ORAI protein complexes.
Collapse
Affiliation(s)
- Ivan Bogeski
- Department of Biophysics, Saarland University, Homburg, Germany
| | | | | | | | | | | |
Collapse
|
179
|
Domínguez-Rodríguez A, Díaz I, Rodríguez-Moyano M, Calderón-Sánchez E, Rosado JA, Ordóñez A, Smani T. Urotensin-II signaling mechanism in rat coronary artery: role of STIM1 and Orai1-dependent store operated calcium influx in vasoconstriction. Arterioscler Thromb Vasc Biol 2012; 32:1325-32. [PMID: 22223729 DOI: 10.1161/atvbaha.111.243014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Human urotensin-II (UII) is considered the most potentendogenous vasoconstrictor discovered to date, although the precise mechanism activated downstream of its receptor UTS2R in blood vessels remains elusive. The aim of this study was to determine the role of the store operated Ca(2+) entry (SOCE) signaling pathway in UII-induced coronary artery vasoconstriction. METHODS AND RESULTS We used a combination of isometric tension measurement, Ca(2+) imaging, pharmacology, and molecular approaches to study UII-mediated rat coronary artery vasoconstriction and intracellular Ca(2+) mobilization in coronary smooth muscle cells. We found that UII promoted dose-dependent vasoconstriction and elicited Ca(2+) and Mn(2+) influx, which were sensitive to classical SOCE inhibitors. In addition, knockdown of either STIM1 or Orai1 essentially inhibited UII-mediated SOCE and prevented UII but not high-KCL evoked contraction in transfected coronary artery. Moreover, we found that Ca(2+)-independent phospholipase A(2)β was involved in UII effects and that is colocalized with STIM1 in different submembrane compartments. Importantly, STIM1 but not Orai1 downregulation inhibits significantly independent phospholipase A(2) activation. Furthermore, lysophosphatidylcholine, an independent phospholipase A(2) product, activated Orai1 but not STIM1-dependent contraction and SOCE. CONCLUSIONS Here, we demonstrated that different critical players of SOCE signaling pathway are required for UII-induced vasoconstriction of rat coronary artery.
Collapse
|
180
|
Putney JW, Tomita T. Phospholipase C signaling and calcium influx. Adv Biol Regul 2012; 52:152-64. [PMID: 21933679 PMCID: PMC3560308 DOI: 10.1016/j.advenzreg.2011.09.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 04/18/2023]
Affiliation(s)
- James W Putney
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
181
|
Calcium signaling in vascular smooth muscle cells: from physiology to pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:795-810. [PMID: 22453970 DOI: 10.1007/978-94-007-2888-2_35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclic variations in calcium (Ca(2+)) concentrations, through a process called excitation-contraction coupling, allow regulation of vascular smooth muscle cells contractility and thus modulation of vascular tone and blood pressure. As a second messenger, Ca(2+) also activates signaling cascades leading to transcription factors activation in a process called excitation-transcription coupling. Furthermore, recent evidences indicate an interaction between post-transcriptional regulation by microRNAs (miRNAs) and Ca(2+) signaling. All these actors, which are frequently altered in vascular diseases, will be reviewed here.
Collapse
|
182
|
|
183
|
Storch U, Forst AL, Philipp M, Gudermann T, Mederos y Schnitzler M. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem 2011; 287:3530-40. [PMID: 22157757 DOI: 10.1074/jbc.m111.283218] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration.
Collapse
Affiliation(s)
- Ursula Storch
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
184
|
Singer HA. Ca2+/calmodulin-dependent protein kinase II function in vascular remodelling. J Physiol 2011; 590:1349-56. [PMID: 22124148 DOI: 10.1113/jphysiol.2011.222232] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vascular smooth muscle (VSM) undergoes a phenotypic switch in response to injury, a process that contributes to pathophysiological vascular wall remodelling. VSM phenotype switching is a consequence of changes in gene expression, including an array of ion channels and pumps affecting spatiotemporal features of intracellular Ca(2+) signals. Ca(2+) signalling promotes vascular wall remodelling by regulating cell proliferation, motility, and/or VSM gene transcription, although the mechanisms are not clear. In this review, the functions of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in VSM phenotype switching and synthetic phenotype function are considered. CaMKII isozymes have complex structural and autoregulatory properties. Vascular injury in vivo results in rapid changes in CaMKII isoform expression with reduced expression of CaMKIIγ and upregulation of CaMKIIδ in medial wall VSM. SiRNA-mediated suppression of CaMKIIδ or gene deletion attenuates VSM proliferation and consequent neointimal formation. In vitro studies support functions for CaMKII in the regulation of cell proliferation, motility and gene expression via phosphorylation of CREB1 and HDACIIa/MEF2 complexes. These studies support the concept, and provide potential mechanisms, whereby Ca(2+) signalling through CaMKIIδ promotes VSM phenotype transitions and vascular remodelling.
Collapse
Affiliation(s)
- Harold A Singer
- Center for Cardiovascular Sciences, Albany Medical College (MC-8), 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
185
|
Guo RW, Yang LX, Li MQ, Pan XH, Liu B, Deng YL. Stim1- and Orai1-mediated store-operated calcium entry is critical for angiotensin II-induced vascular smooth muscle cell proliferation. Cardiovasc Res 2011; 93:360-70. [PMID: 22108917 DOI: 10.1093/cvr/cvr307] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Despite the fact that angiotensin (Ang) II is a critical regulator of the proliferation and migration of vascular smooth muscle cells (VSMCs), the effect of Ang II on VSMC proliferation has remained unclear. In this study, we determined whether Stim1- and Orai1-mediated store-operated calcium (Ca(2+)) entry (SOCE) plays a critical role in Ang II-induced VSMC proliferation and Ang II-accelerated neointimal growth after balloon injury of rat carotid arteries. METHODS AND RESULTS Knockdown of Stim1 and Orai1, putative calcium sensors/modulators, suppressed Ang II-mediated Ca(2+) entry and cell proliferation in synthetic VSMCs. Stim1 and Orai1 short interfering RNAs (siRNAs) decreased neointimal growth induced by Ang II in balloon-injured rat carotid arteries. Ang II significantly increased the expression of Stim1 and Orai1 in neointima. In addition, our results showed that receptor subtype-1 (AT1) significantly contributed to Ang II-induced Ca(2+) entry and proliferation of synthetic VSMCs. However, we found that transient receptor potential canonical 1 (Trpc1) had no effect on Ang II-induced SOCE or cell proliferation of synthetic VSMCs. CONCLUSIONS We show for the first time that Stim1- and Orai1-mediated SOCE may be critical for Ang II-induced VSMC proliferation. This provides important information with respect to targeting cardiovascular diseases under the enhanced renin-Ang system.
Collapse
Affiliation(s)
- Rui-wei Guo
- Department of Cardiology, Kunming General Hospital of Chengdu Military Area, Yunnan 650032, China
| | | | | | | | | | | |
Collapse
|
186
|
Yang B, Gwozdz T, Dutko-Gwozdz J, Bolotina VM. Orai1 and Ca2+-independent phospholipase A2 are required for store-operated Icat-SOC current, Ca2+ entry, and proliferation of primary vascular smooth muscle cells. Am J Physiol Cell Physiol 2011; 302:C748-56. [PMID: 22094335 DOI: 10.1152/ajpcell.00312.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is important for multiple functions of vascular smooth muscle cells (SMC), which, depending of their phenotype, can resemble excitable and nonexcitable cells. Similar to nonexcitable cells, Orai1 was found to mediate Ca(2+)-selective (CRAC-like) current and SOCE in dedifferentiated cultured SMC and smooth muscle-derived cell lines. However, the role of Orai1 in cation-selective store-operated channels (cat-SOC), which are responsible for SOCE in primary SMC, remains unclear. Here we focus on primary SMC, and assess the role of Orai1 and Ca(2+)-independent phospholipase A(2) (iPLA(2)β, or PLA2G6) in activation of cat-SOC current (I(cat-SOC)), SOCE, and SMC proliferation. Using molecular, electrophysiological, imaging, and functional approaches, we demonstrate that molecular knockdown of either Orai1 or iPLA(2)β leads to similar inhibition of the whole cell cat-SOC current and SOCE in primary aortic SMC and results in significant reduction in DNA synthesis and impairment of SMC proliferation. This is the first demonstration that Orai1 and iPLA(2)β are equally important for cat-SOC, SOCE, and proliferation of primary aortic SMC.
Collapse
Affiliation(s)
- Bo Yang
- Ion Channel and Calcium Signaling Unit, Boston Univ. School of Medicine, Boston, MA 02118-2393, USA
| | | | | | | |
Collapse
|
187
|
Matchkov VV, Kudryavtseva O, Aalkjaer C. Intracellular Ca2+ Signalling and Phenotype of Vascular Smooth Muscle Cells. Basic Clin Pharmacol Toxicol 2011; 110:42-8. [DOI: 10.1111/j.1742-7843.2011.00818.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
188
|
Ogawa A, Firth AL, Smith KA, Maliakal MV, Yuan JXJ. PDGF enhances store-operated Ca2+ entry by upregulating STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2011; 302:C405-11. [PMID: 22031597 DOI: 10.1152/ajpcell.00337.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet-derived growth factor (PDGF) and its receptor are known to be substantially elevated in lung tissues and pulmonary arterial smooth muscle cells (PASMC) isolated from patients and animals with pulmonary arterial hypertension. PDGF has been shown to phosphorylate and activate Akt and mammalian target of rapamycin (mTOR) in PASMC. In this study, we investigated the role of PDGF-mediated activation of Akt signaling in the regulation of cytosolic Ca(2+) concentration and cell proliferation. PDGF activated the Akt/mTOR pathway and, subsequently, enhanced store-operated Ca(2+) entry (SOCE) and cell proliferation in human PASMC. Inhibition of Akt attenuated the increase in cytosolic Ca(2+) concentration due to both SOCE and PASMC proliferation. This effect correlated with a significant downregulation of stromal interacting molecule (STIM) and Orai, proposed molecular correlates for SOCE in many cell types. The data from this study present a novel pathway for the regulation of Ca(2+) signaling and PASMC proliferation involving activation of Akt in response to upregulated expression of PDGF. Targeting this pathway may lead to the development of a novel therapeutic option for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aiko Ogawa
- Department of Clinical Science, National Hospital Organization Okayama Medical Center, Japan
| | | | | | | | | |
Collapse
|
189
|
Giachini FR, Lima VV, Hannan JL, Carneiro FS, Webb RC, Tostes RC. STIM1/Orai1-mediated store-operated Ca2+ entry: the tip of the iceberg. Braz J Med Biol Res 2011; 44:1080-7. [PMID: 22002090 DOI: 10.1590/s0100-879x2011007500133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/05/2011] [Indexed: 11/22/2022] Open
Abstract
Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.
Collapse
Affiliation(s)
- F R Giachini
- Department of Physiology, Georgia Heath Science University, Augusta, GA, USA.
| | | | | | | | | | | |
Collapse
|
190
|
Schmidt EM, Münzer P, Borst O, Kraemer BF, Schmid E, Urban B, Lindemann S, Ruth P, Gawaz M, Lang F. Ion channels in the regulation of platelet migration. Biochem Biophys Res Commun 2011; 415:54-60. [PMID: 22005466 DOI: 10.1016/j.bbrc.2011.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/02/2011] [Indexed: 10/16/2022]
Abstract
Platelets have been shown to migrate and thus to invade the vascular wall. Platelet migration is stimulated by SDF-1. In other cell types, migration is dependent on Ca(2+) entry via Ca(2+) channels. Ca(2+) influx is sensitive to cell membrane potential which is maintained by K(+) channel activity and/or Cl(-) channel activity. The present study explored the role of ion channels in the regulation of SDF-1 induced migration. Platelets were isolated from human volunteers as well as from gene targeted mice lacking the Ca(2+) activated K(+) channel SK4 (sk4(-/-)) and their wild type littermates (sk4(+/+)). According to confocal microscopy human platelets expressed the Ca(2+) channel Orai1 and the Ca(2+)-activated K(+) channel K(Ca)3.1 (SK4). SDF-1 (100 ng/ml) stimulated migration in human platelets, an effect blunted by Orai1 inhibitors 2-aminoethoxydiphenyl borate 2-APB (10 μM) and SKF-96365 (10 μM), by unspecific K(+) channel inhibitor TEA (30 mM), by SK4 specific K(+) channel blocker clotrimazole (10 μM), but not by Cl(-) channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid NPPB (100 μM). Significant stimulation of migration by SDF-1 was further observed in sk4(+/+) platelets but was virtually absent in sk4(-/-) platelets. In conclusion, platelet migration requires activity of the Ca(2+) channel Orai1 and of the Ca(2+) activated K(+) channel SK4, but not of NPPB-sensitive Cl(-) channels.
Collapse
|
191
|
Shi J, Ju M, Abramowitz J, Large WA, Birnbaumer L, Albert AP. TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: comparative study of wild-type and TRPC1-/- mice. FASEB J 2011; 26:409-19. [PMID: 21968068 DOI: 10.1096/fj.11-185611] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ca(2+)-permeable cation channels consisting of canonical transient receptor potential 1 (TRPC1) proteins mediate Ca(2+) influx pathways in vascular smooth muscle cells (VSMCs), which regulate physiological and pathological functions. We investigated properties conferred by TRPC1 proteins to native single TRPC channels in acutely isolated mesenteric artery VSMCs from wild-type (WT) and TRPC1-deficient (TRPC1(-/-)) mice using patch-clamp techniques. In WT VSMCs, the intracellular Ca(2+) store-depleting agents cyclopiazonic acid (CPA) and 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM) both evoked channel currents, which had unitary conductances of ∼2 pS. In TRPC1(-/-) VSMCs, CPA-induced channel currents had 3 subconductance states of 14, 32, and 53 pS. Passive depletion of intracellular Ca(2+) stores activated whole-cell cation currents in WT but not TRPC1(-/-) VSMCs. Differential blocking actions of anti-TRPC antibodies and coimmunoprecipitation studies revealed that CPA induced heteromeric TRPC1/C5 channels in WT VSMCs and TRPC5 channels in TRPC1(-/-) VSMCs. CPA-evoked TRPC1/C5 channel activity was prevented by the protein kinase C (PKC) inhibitor chelerythrine. In addition, the PKC activator phorbol 12,13-dibutyrate (PDBu), a PKC catalytic subunit, and phosphatidylinositol-4,5-bisphosphate (PIP(2)) and phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) activated TRPC1/C5 channel activity, which was prevented by chelerythrine. In contrast, CPA-evoked TRPC5 channel activity was potentiated by chelerythrine, and inhibited by PDBu, PIP(2), and PIP(3). TRPC5 channels in TRPC1(-/-) VSMCs were activated by increasing intracellular Ca(2+) concentrations ([Ca(2+)](i)), whereas increasing [Ca(2+)](i) had no effect in WT VSMCs. We conclude that agents that deplete intracellular Ca(2+) stores activate native heteromeric TRPC1/C5 channels in VSMCs, and that TRPC1 subunits are important in determining unitary conductance and conferring channel activation by PKC, PIP(2), and PIP(3).
Collapse
Affiliation(s)
- Jian Shi
- Division of Biomedical Sciences, Cranmer St. George's, University of London, London, UK
| | | | | | | | | | | |
Collapse
|
192
|
Liu XR, Zhang MF, Yang N, Liu Q, Wang RX, Cao YN, Yang XR, Sham JSK, Lin MJ. Enhanced store-operated Ca²+ entry and TRPC channel expression in pulmonary arteries of monocrotaline-induced pulmonary hypertensive rats. Am J Physiol Cell Physiol 2011; 302:C77-87. [PMID: 21940663 DOI: 10.1152/ajpcell.00247.2011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pulmonary hypertension (PH) is associated with profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Previous studies show that canonical transient receptor potential (TRPC) genes are upregulated and store-operated Ca(2+) entry (SOCE) is augmented in PASMCs of chronic hypoxic rats and patients of pulmonary arterial hypertension (PAH). Here we further examine the involvement of TRPC and SOCE in PH with a widely used rat model of monocrotaline (MCT)-induced PAH. Rats developed severe PAH, right ventricular hypertrophy, and significant increase in store-operated TRPC1 and TRPC4 mRNA and protein in endothelium-denuded pulmonary arteries (PAs) 3 wk after MCT injection. Contraction of PA and Ca(2+) influx in PASMC evoked by store depletion using cyclopiazonic acid (CPA) were enhanced dramatically, consistent with augmented SOCE in the MCT-treated group. The time course of increase in CPA-induced contraction corresponded to that of TRPC1 expression. Endothelin-1 (ET-1)-induced vasoconstriction was also potentiated in PAs of MCT-treated rats. The response was partially inhibited by SOCE blockers, including Gd(3+), La(3+), and SKF-96365, as well as the general TRPC inhibitor BTP-2, suggesting that TRPC-dependent SOCE was involved. Moreover, the ET-1-induced contraction and Ca(2+) response in the MCT group were more susceptible to the inhibition caused by the various SOCE blockers. Hence, our study shows that MCT-induced PAH is associated with increased TRPC expression and SOCE, which are involved in the enhanced vascular reactivity to ET-1, and support the hypothesis that TRPC-dependent SOCE is an important pathway for the development of PH.
Collapse
Affiliation(s)
- Xiao-Ru Liu
- Department of Physiology and Pathophysiology, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Song MY, Makino A, Yuan JXJ. Role of reactive oxygen species and redox in regulating the function of transient receptor potential channels. Antioxid Redox Signal 2011; 15:1549-65. [PMID: 21126186 PMCID: PMC3151422 DOI: 10.1089/ars.2010.3648] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellular redox status, regulated by production of reactive oxygen species (ROS), greatly contributes to the regulation of vascular smooth muscle cell contraction, migration, proliferation, and apoptosis by modulating the function of transient receptor potential (TRP) channels in the plasma membrane. ROS functionally interact with the channel protein via oxidizing the redox-sensitive residues, whereas nitric oxide (NO) regulates TRP channel function by cyclic GMP/protein kinase G-dependent and -independent pathways. Based on the structural differences among different TRP isoforms, the effects of ROS and NO are also different. In addition to regulating TRP channels in the plasma membrane, ROS and NO also modulate Ca(2+) release channels (e.g., IP(3) and ryanodine receptors) on the sarcoplasmic/endoplasmic reticulum membrane. This review aims at briefly describing (a) the role of TRP channels in receptor-operated and store-operated Ca(2+) entry, and (b) the role of ROS and redox status in regulating the function and structure of TRP channels.
Collapse
Affiliation(s)
- Michael Y Song
- Biomedical Sciences Graduate Program, University of California-San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
194
|
Moreno C, Vaca L. SOC and now also SIC: store-operated and store-inhibited channels. IUBMB Life 2011; 63:856-63. [PMID: 21901816 DOI: 10.1002/iub.547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 07/02/2011] [Indexed: 12/19/2022]
Abstract
There is a specialized form of calcium influx that involves a close communication between endoplasmic reticulum and the channels at the plasma membrane. In one side store depletion activates channels known as store-operated channels (SOC), which are responsible of the well-studied store-operated calcium entry (SOCE). SOC comprises two different types of channels. Orai, which is exclusively activated by store depletion being the channel responsible of the calcium release-activated calcium current, and transient receptor potential canonical channel, which in contrast, is activated by store depletion only under specific conditions and carries nonselective cationic currents. On the other hand, it has been recently shown that store depletion also inhibits calcium channels. The first member identified, of what we named as store-inhibited channels (SIC), is the L-type voltage-gated calcium channel. Stores control both SOC and SIC by means of the multifunctional protein STIM1. The identification of SOC and SIC opens a new scenario for the role of store depletion in the modulation of different calcium entry pathways, which may satisfy different cellular processes.
Collapse
Affiliation(s)
- Claudia Moreno
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, 04510 México DF, México
| | | |
Collapse
|
195
|
Shapovalov G, Lehen’kyi V, Skryma R, Prevarskaya N. TRP channels in cell survival and cell death in normal and transformed cells. Cell Calcium 2011; 50:295-302. [DOI: 10.1016/j.ceca.2011.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 12/29/2022]
|
196
|
Li J, McKeown L, Ojelabi O, Stacey M, Foster R, O'Regan D, Porter KE, Beech DJ. Nanomolar potency and selectivity of a Ca²⁺ release-activated Ca²⁺ channel inhibitor against store-operated Ca²⁺ entry and migration of vascular smooth muscle cells. Br J Pharmacol 2011; 164:382-93. [PMID: 21545575 PMCID: PMC3174418 DOI: 10.1111/j.1476-5381.2011.01368.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/16/2011] [Accepted: 02/28/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim was to advance the understanding of Orai proteins and identify a specific inhibitor of the associated calcium entry mechanism in vascular smooth muscle cells (VSMCs). EXPERIMENTAL APPROACH Proliferating VSMCs were cultured from human saphenous veins. Intracellular calcium was measured using fura-2, whole-cell current was recorded using patch-clamp and cell migration quantified in modified Boyden chambers. Subcellular protein localization was determined by microscopy. Isometric tension was recorded from mouse aortic rings. KEY RESULTS Molecular disruption and rescue experiments indicated the importance of Orai1 in calcium entry caused by store depletion evoked passively or by platelet-derived growth factor (PDGF), suggesting the presence of Ca(2+) release-activated Ca(2+) (CRAC) channels like those of the immune system. The CRAC channel blocker, S66, was a potent inhibitor of the VSMC signals, IC(50) 26 nM, which was almost two orders of magnitude greater than with leucocytes. S66 had no effect on PDGF- and ATP-evoked calcium release, overexpressed transient receptor potential canonical (TRPC)5 channels, native TRPC1/5-containing channels, stromal interaction molecule 1 clustering, non-selective cationic current evoked by store depletion and phenylephrine-evoked aortic contraction. S66 reduced PDGF-evoked VSMC migration while having only modest effects on cell proliferation and no effect on cell viability. CONCLUSIONS AND IMPLICATIONS The data suggest that Orai1 has a role in human VSMC migration, and that a CRAC channel inhibitor has high potency and selectivity for the associated calcium entry, suggesting a distinct characteristic of vascular CRAC channels and the potential for selective chemical suppression of vascular remodelling.
Collapse
Affiliation(s)
- Jing Li
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Lynn McKeown
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Ogooluwa Ojelabi
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Martin Stacey
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - Richard Foster
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- School of Chemistry, University of LeedsLeeds, UK
| | - David O'Regan
- Yorkshire Heart Centre, General Infirmary at LeedsLeeds, UK
| | - Karen E Porter
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Medicine & Health, University of LeedsLeeds, UK
| | - David J Beech
- Multidisciplinary Cardiovascular Research Centre, University of LeedsLeeds, UK
- Faculty of Biological Sciences, University of LeedsLeeds, UK
| |
Collapse
|
197
|
Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 2011; 108:15225-30. [PMID: 21876174 DOI: 10.1073/pnas.1103315108] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Store-operated Ca(2+) entry (SOCE) is the principal Ca(2+) entry mechanism in nonexcitable cells. Stromal-interaction molecule 1 (STIM1) is an endoplasmic reticulum Ca(2+) sensor that triggers SOCE activation. However, the role of STIM1 in regulating cancer progression remains controversial and its clinical relevance is unclear. Here we show that STIM1-dependent signaling is important for cervical cancer cell proliferation, migration, and angiogenesis. STIM1 overexpression in tumor tissue is noted in 71% cases of early-stage cervical cancer. In tumor tissues, the level of STIM1 expression is significantly associated with the risk of metastasis and survival. EGF-stimulated cancer cell migration requires STIM1 expression and EGF increases the interaction between STIM1 and Orai1 in juxta-membrane areas, and thus induces Ca(2+) influx. STIM1 involves the activation of Ca(2+)-regulated protease calpain, as well as Ca(2+)-regulated cytoplasmic kinase Pyk2, which regulate the focal-adhesion dynamics of migratory cervical cancer cells. Because of an increase of p21 protein levels and a decrease of Cdc25C protein levels, STIM1-silencing in cervical cancer cells significantly inhibits cell proliferation by arresting the cell cycle at the S and G2/M phases. STIM1 also regulates the production of VEGF in cervical cancer cells. Interference with STIM1 expression or blockade of SOCE activity inhibits tumor angiogenesis and growth in animal models, confirming the crucial role of STIM1-mediated Ca(2+) influx in aggravating tumor development in vivo. These results make STIM1-dependent signaling an attractive target for therapeutic intervention.
Collapse
|
198
|
Balghi H, Robert R, Rappaz B, Zhang X, Wohlhuter-Haddad A, Evagelidis A, Luo Y, Goepp J, Ferraro P, Roméo P, Trebak M, Wiseman PW, Thomas DY, Hanrahan JW. Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways. FASEB J 2011; 25:4274-91. [PMID: 21873556 DOI: 10.1096/fj.11-187682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR). The most common mutation, ΔF508, causes retention of CFTR in the endoplasmic reticulum (ER). Some CF abnormalities can be explained by altered Ca(2+) homeostasis, although it remains unknown how CFTR influences calcium signaling. This study examined the novel hypothesis that store-operated calcium entry (SOCE) through Orai1 is abnormal in CF. The significance of Orai1-mediated SOCE for increased interleukin-8 (IL-8) expression in CF was also investigated. CF and non-CF human airway epithelial cell line and primary cells (obtained at lung transplantation) were used in Ca(2+) imaging, electrophysiology, and fluorescence imaging experiments to explore differences in Orai1 function in CF vs. non-CF cells. Protein expression and localization was assessed by Western blots, cell surface biotinylation, ELISA, and image correlation spectroscopy (ICS). We show here that store-operated Ca(2+) entry (SOCE) is elevated in CF human airway epithelial cells (hAECs; ≈ 1.8- and ≈ 2.5-fold for total Ca(2+)(i) increase and Ca(2+) influx rate, respectively, and ≈ 2-fold increase in the I(CRAC) current) and is caused by increased exocytotic insertion (≈ 2-fold) of Orai1 channels into the plasma membrane, which is normalized by rescue of ΔF508-CFTR trafficking to the cell surface. Augmented SOCE in CF cells is a major factor leading to increased IL-8 secretion (≈ 2-fold). CFTR normally down-regulates the Orai1/stromal interaction molecule 1 (STIM1) complex, and loss of this inhibition due to the absence of CFTR at the plasma membrane helps to explain the potentiated inflammatory response in CF cells.
Collapse
Affiliation(s)
- Haouaria Balghi
- Department of Physiology, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Zhang W, Trebak M. STIM1 and Orai1: novel targets for vascular diseases? SCIENCE CHINA. LIFE SCIENCES 2011; 54:780-5. [PMID: 21786201 PMCID: PMC3164553 DOI: 10.1007/s11427-011-4206-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/12/2011] [Indexed: 01/20/2023]
Abstract
The past five years have witnessed the discovery of the endoplasmic reticulum calcium (Ca(2+)) sensor STIM1 and the plasma membrane Ca(2+) channel Orai1 as the bona fide molecular components of the store-operated Ca(2+) entry (SOCE) and the Ca(2+) release-activated Ca(2+) current (I (CRAC)). It has been known for two decades that SOCE and I (CRAC) are required for lymphocyte activation as evidenced by severe immunodeficient phenotypes in patients lacking I (CRAC). In recent years however, studies have uncovered expression of STIM1 and Orai1 proteins in various tissues and described additional roles for these proteins in physiological functions and pathophysiological conditions. Here, we will summarize novel findings pertaining to the role of STIM1 and Orai1 in the vascular system and discuss their potential use as targets in the therapy of vascular disease.
Collapse
Affiliation(s)
- Wei Zhang
- The Center for Cardiovascular Sciences, Albany Medical College, Albany NY 12208
| | - Mohamed Trebak
- The Center for Cardiovascular Sciences, Albany Medical College, Albany NY 12208
| |
Collapse
|
200
|
Capiod T. Cell proliferation, calcium influx and calcium channels. Biochimie 2011; 93:2075-9. [PMID: 21802482 DOI: 10.1016/j.biochi.2011.07.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/12/2011] [Indexed: 01/14/2023]
Abstract
Both increases in the basal cytosolic calcium concentration ([Ca(2+)](cyt)) and [Ca(2+)](cyt) transients play major roles in cell cycle progression, cell proliferation and division. Calcium transients are observed at various stages of cell cycle and more specifically during late G(1) phase, before and during mitosis. These calcium transients are mainly due to calcium release and reuptake by the endoplasmic reticulum (ER) and are observed over periods of hours in oocytes and mammalian cells. Calcium entry sustains the ER Ca(2+) load and thereby helps to maintain these calcium transients for such a long period. Calcium influx also controls cell growth and proliferation in several cell types. Various calcium channels are involved in this process and the tight relation between the expression and activity of cyclins and calcium channels also suggests that calcium entry may be needed only at particular stages of the cell cycle. Consistent with this idea, the expression of l-type and T-type calcium channels and SOCE amplitude fluctuate along the cell cycle. But, as calcium influx regulates several other transduction pathways, the presence of a specific connection to trigger activation of proliferation and cell division in mammalian cells will be discussed in this review.
Collapse
Affiliation(s)
- Thierry Capiod
- INSERM U807, Faculté de Médecine, 156 rue de Vaugirard, Paris, France.
| |
Collapse
|