151
|
Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev 2014; 36:114-36. [PMID: 24375928 PMCID: PMC3873844 DOI: 10.1093/epirev/mxt010] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/20/2022] Open
Abstract
To assess the joint relationships among body mass index, menopausal status, and breast cancer according to breast cancer subtype and estrogen-progestin medication use, we conducted a meta-analysis of 89 epidemiologic reports published in English during 1980-2012 identified through a systematic search of bibliographic databases. Pooled analysis yielded a summary risk ratio of 0.78 (95% confidence interval (CI): 0.67, 0.92) for hormone receptor-positive premenopausal breast cancer associated with obesity (body mass index (weight (kg)/height (m)(2)) ≥30 compared with <25). Obesity was associated with a summary risk ratio of 1.39 (95% CI: 1.14, 1.70) for receptor-positive postmenopausal breast cancer. For receptor-negative breast cancer, the summary risk ratios of 1.06 (95% CI: 0.70, 1.60) and 0.98 (95% CI: 0.78, 1.22) associated with obesity were null for both premenopausal and postmenopausal women, respectively. Elevated postmenopausal breast cancer risk ratios associated with obesity were limited to women who never took estrogen-progestin therapy, with risk ratios of 1.42 (95% CI: 1.30, 1.55) among never users and 1.18 (95% CI: 0.98, 1.42) among users; too few studies were available to examine this relationship according to receptor subtype. Future research is needed to confirm whether obesity is unrelated to receptor-negative breast cancer in populations of postmenopausal women with low prevalence of hormone medication use.
Collapse
Affiliation(s)
| | | | | | | | - Amy Trentham-Dietz
- Correspondence to Dr. Amy Trentham-Dietz, University of Wisconsin, 610 Walnut Street, WARF Room 307, Madison, WI 53726 (e-mail: )
| |
Collapse
|
152
|
Rudolph A, Hein R, Lindström S, Beckmann L, Behrens S, Liu J, Aschard H, Bolla MK, Wang J, Truong T, Cordina-Duverger E, Menegaux F, Brüning T, Harth V, Severi G, Baglietto L, Southey M, Chanock SJ, Lissowska J, Figueroa JD, Eriksson M, Humpreys K, Darabi H, Olson JE, Stevens KN, Vachon CM, Knight JA, Glendon G, Mulligan AM, Ashworth A, Orr N, Schoemaker M, Webb PM, Guénel P, Brauch H, Giles G, García-Closas M, Czene K, Chenevix-Trench G, Couch FJ, Andrulis IL, Swerdlow A, Hunter DJ, Flesch-Janys D, Easton DF, Hall P, Nevanlinna H, Kraft P, Chang-Claude J. Genetic modifiers of menopausal hormone replacement therapy and breast cancer risk: a genome-wide interaction study. Endocr Relat Cancer 2013; 20:875-87. [PMID: 24080446 PMCID: PMC3863710 DOI: 10.1530/erc-13-0349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Women using menopausal hormone therapy (MHT) are at increased risk of developing breast cancer (BC). To detect genetic modifiers of the association between current use of MHT and BC risk, we conducted a meta-analysis of four genome-wide case-only studies followed by replication in 11 case-control studies. We used a case-only design to assess interactions between single-nucleotide polymorphisms (SNPs) and current MHT use on risk of overall and lobular BC. The discovery stage included 2920 cases (541 lobular) from four genome-wide association studies. The top 1391 SNPs showing P values for interaction (Pint) <3.0 × 10(-3) were selected for replication using pooled case-control data from 11 studies of the Breast Cancer Association Consortium, including 7689 cases (676 lobular) and 9266 controls. Fixed-effects meta-analysis was used to derive combined Pint. No SNP reached genome-wide significance in either the discovery or combined stage. We observed effect modification of current MHT use on overall BC risk by two SNPs on chr13 near POMP (combined Pint≤8.9 × 10(-6)), two SNPs in SLC25A21 (combined Pint≤4.8 × 10(-5)), and three SNPs in PLCG2 (combined Pint≤4.5 × 10(-5)). The association between lobular BC risk was potentially modified by one SNP in TMEFF2 (combined Pint≤2.7 × 10(-5)), one SNP in CD80 (combined Pint≤8.2 × 10(-6)), three SNPs on chr17 near TMEM132E (combined Pint≤2.2×10(-6)), and two SNPs on chr18 near SLC25A52 (combined Pint≤4.6 × 10(-5)). In conclusion, polymorphisms in genes related to solute transportation in mitochondria, transmembrane signaling, and immune cell activation are potentially modifying BC risk associated with current use of MHT. These findings warrant replication in independent studies.
Collapse
Affiliation(s)
- Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca Hein
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- PMV Research Group at the Department of Child and Adolescent Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Sara Lindström
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Lars Beckmann
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Foundation for Quality and Efficiency in Health Care (IQWIG), Cologne, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Hugues Aschard
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jean Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Thérèse Truong
- INSERM (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France
- Unité Mixte de Recherche Scientifique (UMRS) 1018, University Paris-Sud, Villejuif, France
| | - Emilie Cordina-Duverger
- INSERM (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France
- Unité Mixte de Recherche Scientifique (UMRS) 1018, University Paris-Sud, Villejuif, France
| | - Florence Menegaux
- INSERM (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France
- Unité Mixte de Recherche Scientifique (UMRS) 1018, University Paris-Sud, Villejuif, France
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | - Volker Harth
- Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany
| | - The GENICA Network
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
- Institute for Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
- Institute of Pathology, University of Bonn, Germany
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Germany
| | - Gianluca Severi
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Australia
| | - Laura Baglietto
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Australia
| | - Melissa Southey
- Department of Pathology, The University of Melbourne, Australia
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Keith Humpreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Janet E. Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kristen N. Stevens
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Celine M. Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Julia A. Knight
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Gord Glendon
- Ontario Cancer Genetics Network, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anna Marie Mulligan
- Laboratory Medicine Program, University Health Network; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Alan Ashworth
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Nicholas Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Minouk Schoemaker
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, Sutton, Surrey, UK
| | - Penny M. Webb
- Queensland Institute of Medical Research, Brisbane, Australia
| | | | - AOCS Management Group
- Queensland Institute of Medical Research, Brisbane, Australia
- Peter MacCallum Cancer Center, Melbourne, Australia
| | - Pascal Guénel
- INSERM (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France
- Unité Mixte de Recherche Scientifique (UMRS) 1018, University Paris-Sud, Villejuif, France
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Germany
| | - Graham Giles
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Australia
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
- Sections of Epidemiology and Genetics, Institute of Cancer Research and Breakthrough Breast Cancer Research Centre, London, United Kingdom
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Irene L. Andrulis
- Ontario Cancer Genetics Network, Fred A. Litwin Center for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Swerdlow
- Division of Breast Cancer Research, The Institute of Cancer Research, Sutton, Surrey, UK
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, UK
| | - David J. Hunter
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Peter Kraft
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
153
|
Sarrel PM. Mortality toll due to avoiding estrogen therapy in hysterectomized women: estimates for 2002 – 2011. Climacteric 2013; 16:718-9. [PMID: 24228834 DOI: 10.3109/13697137.2013.850194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
154
|
Dittus K, Geller B, Weaver DL, Kerlikowske K, Zhu W, Hubbard R, Braithwaite D, O'Meara ES, Miglioretti DL. Impact of mammography screening interval on breast cancer diagnosis by menopausal status and BMI. J Gen Intern Med 2013; 28:1454-62. [PMID: 23760741 PMCID: PMC3797353 DOI: 10.1007/s11606-013-2507-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/18/2013] [Accepted: 04/30/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Controversy remains regarding the frequency of screening mammography. Women with different risks for developing breast cancer because of body mass index (BMI) may benefit from tailored recommendations. OBJECTIVE To determine the impact of mammography screening interval for women who are normal weight (BMI < 25), overweight (BMI 25-29.9), or obese (BMI ≥ 30), stratified by menopausal status. DESIGN Two cohorts selected from the Breast Cancer Surveillance Consortium. Patient and mammography data were linked to pathology databases and tumor registries. PARTICIPANTS The cohort included 4,432 women aged 40-74 with breast cancer; the false-positive analysis included a cohort of 553,343 women aged 40-74 without breast cancer. MAIN MEASURES Stage, tumor size and lymph node status by BMI and screening interval (biennial vs. annual). Cumulative probability of false-positive recall or biopsy by BMI and screening interval. Analyses were stratified by menopausal status. KEY RESULTS Premenopausal obese women undergoing biennial screening had a non-significantly increased odds of a tumor size > 20 mm relative to annual screeners (odds ratio [OR] = 2.07; 95 % confidence interval [CI] 0.997 to 4.30). Across all BMI categories from normal to obese, postmenopausal women with breast cancer did not present with higher stage, larger tumor size or node positive tumors if they received biennial rather than annual screening. False-positive recall and biopsy recommendations were more common among annually screened women. CONCLUSION The only negative outcome identified for biennial vs. annual screening was a larger tumor size (> 20 mm) among obese premenopausal women. Since annual mammography does not improve stage at diagnosis compared to biennial screening and false-positive recall/biopsy rates are higher with annual screening, women and their primary care providers should weigh the harms and benefits when deciding on annual versus biennial screening.
Collapse
Affiliation(s)
- Kim Dittus
- Departments of Hematology/Oncology, University of Vermont, College of Medicine, Given E-214 89, Beaumont Ave, Burlington, VT, 05405, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Zhou Z, Zheng L, Wei D, Ye M, Li X. Muscular strength measurements indicate bone mineral density loss in postmenopausal women. Clin Interv Aging 2013; 8:1451-9. [PMID: 24187494 PMCID: PMC3810326 DOI: 10.2147/cia.s48447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background The literature is inconsistent and inconclusive on the relationship between bone mineral density (BMD) and muscular strength in postmenopausal women. Objective To evaluate the relationship between isokinetically and isometrically determined muscle strength and BMD in postmenopausal women of different age groups. Methods Healthy postmenopausal women (n = 293; mean age, 54.22 ± 3.85 years) were enrolled in this study. They were grouped by age according to World Health Organization life expectancy: 45–50 years, 51–53 years, 54–56 years, 57–59 years, and 60–64 years. Total BMD, L2–4 BMD, and femoral neck BMD were measured by dual-energy X-ray bone densitometry; isokinetic and isometric muscle strength of the right hip and trunk muscles were measured during contractile exercise. Stepwise regression analysis was used to examine the relationships between BMD and strength measures, controlling for subject age and years since menopause. Results Results of stepwise regression showed that hip extensor and flexor strength at 120°/second and back extend strength at 30°/second accounted for 26% total BMD variance among menopausal subjects, 19% L2–4 BMD variance, and 15% femoral neck BMD variance; in postmenopausal women of different age groups, hip extensor and flexor strength at 120°/second and back extend strength at 30°/second accounted for 25%–35% total BMD variance. Conclusion Different optimal strength measurements were identified for different age groups. Age-appropriate testing mode can improve detection of osteoporotic fracture risk in early menopause by determining muscular strength reduction related to BMD loss. This may enable early initiation of preventative therapies.
Collapse
Affiliation(s)
- Zhixiong Zhou
- School of Physical Education and Coaching Science, Capital University of Physical Education and Sports, Beijing, People's Republic of China ; Graduate School, Beijing Sport University, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
156
|
Abstract
Vulvar and vaginal atrophy (VVA) is a chronic, progressive medical condition prevalent among postmenopausal women, which produces symptoms such as dyspareunia, vaginal dryness, and vaginal irritation. Currently, the only prescription options are systemic and vaginal estrogen therapies that may be limited by concerns about long-term safety and breast cancer risk. Ospemifene is a tissue-selective estrogen agonist/antagonist (a selective estrogen receptor modulator) recently approved by the US Food and Drug Administration for treatment of dyspareunia, a symptom of VVA, due to menopause. Ospemifene, the first nonestrogen oral treatment for this indication, may provide an alternative to treatment with estrogen. Animal models with ospemifene suggest an inhibitory effect on growth of malignant breast tissue, but animal data cannot necessarily be extrapolated to humans. Clinical trials, including 3 long-term studies assessing the overall safety of ospemifene, support that ospemifene is generally well tolerated, with beneficial effects on the vagina, neutral effects on the breast, and minimal effects on the endometrium.
Collapse
Affiliation(s)
- Sarah L Berga
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
157
|
Panay N, Fenton A. Advances in menopause research – what does the next decade hold? Climacteric 2013; 16 Suppl 1:3-4. [DOI: 10.3109/13697137.2013.816915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
158
|
Sarrel PM, Njike VY, Vinante V, Katz DL. The mortality toll of estrogen avoidance: an analysis of excess deaths among hysterectomized women aged 50 to 59 years. Am J Public Health 2013; 103:1583-8. [PMID: 23865654 DOI: 10.2105/ajph.2013.301295] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES We examined the effect of estrogen avoidance on mortality rates among hysterectomized women aged 50 to 59 years. METHODS We derived a formula to relate the excess mortality among hysterectomized women aged 50 to 59 years assigned to placebo in the Women's Health Initiative randomized controlled trial to the entire population of comparable women in the United States, incorporating the decline in estrogen use observed between 2002 and 2011. RESULTS Over a 10-year span, starting in 2002, a minimum of 18 601 and as many as 91 610 postmenopausal women died prematurely because of the avoidance of estrogen therapy (ET). CONCLUSIONS ET in younger postmenopausal women is associated with a decisive reduction in all-cause mortality, but estrogen use in this population is low and continuing to fall. Our data indicate an associated annual mortality toll in the thousands of women aged 50 to 59 years. Informed discussion between these women and their health care providers about the effects of ET is a matter of considerable urgency.
Collapse
Affiliation(s)
- Philip M Sarrel
- Departments of Obstetrics and Gynecology and Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | |
Collapse
|
159
|
Long-term mortality associated with oophorectomy compared with ovarian conservation in the nurses' health study. Obstet Gynecol 2013; 121:709-716. [PMID: 23635669 DOI: 10.1097/aog.0b013e3182864350] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To report long-term mortality after oophorectomy or ovarian conservation at the time of hysterectomy in subgroups of women based on age at the time of surgery, use of estrogen therapy, presence of risk factors for coronary heart disease, and length of follow-up. METHODS This was a prospective cohort study of 30,117 Nurses' Health Study participants undergoing hysterectomy for benign disease. Multivariable adjusted hazard ratios for death from coronary heart disease, stroke, breast cancer, epithelial ovarian cancer, lung cancer, colorectal cancer, total cancer, and all causes were determined comparing bilateral oophorectomy (n=16,914) with ovarian conservation (n=13,203). RESULTS Over 28 years of follow-up, 16.8% of women with hysterectomy and bilateral oophorectomy died from all causes compared with 13.3% of women who had ovarian conservation (hazard ratio 1.13, 95% confidence interval 1.06-1.21). Oophorectomy was associated with a lower risk of death from ovarian cancer (four women with oophorectomy compared with 44 women with ovarian conservation) and, before age 47.5 years, a lower risk of death from breast cancer. However, at no age was oophorectomy associated with a lower risk of other cause-specific or all-cause mortality. For women younger than 50 years at the time of hysterectomy, bilateral oophorectomy was associated with significantly increased mortality in women who had never used estrogen therapy but not in past and current users: assuming a 35-year lifespan after oophorectomy: number needed to harm for all-cause death=8, coronary heart disease death=33, and lung cancer death=50. CONCLUSIONS Bilateral oophorectomy is associated with increased mortality in women aged younger than 50 years who never used estrogen therapy and at no age is oophorectomy associated with increased survival. LEVEL OF EVIDENCE I.
Collapse
|
160
|
Long B, Liu FW, Bristow RE. Disparities in uterine cancer epidemiology, treatment, and survival among African Americans in the United States. Gynecol Oncol 2013; 130:652-9. [PMID: 23707671 DOI: 10.1016/j.ygyno.2013.05.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The objective of this article is to comprehensively review the scientific literature and summarize the available data regarding the outcome disparities of African American women with uterine cancer. METHODS Literature on disparities in uterine cancer was systematically reviewed using the PubMed search engine. Articles from 1992 to 2012 written in English were reviewed. Search terms included endometrial cancer, uterine cancer, racial disparities, and African American. RESULTS Twenty-four original research articles with a total of 366,299 cases of endometrial cancer (337,597 Caucasian and 28,702 African American) were included. Compared to Caucasian women, African American women comprise 7% of new endometrial cancer cases, while accounting for approximately 14% of endometrial cancer deaths. They are diagnosed with later stage, higher-grade disease, and poorer prognostic histologic types compared to their Caucasian counterparts. They also suffer worse outcomes at every stage, grade, and for every histologic type. The cause of increased mortality is multifactorial. African American and white women have varying incidence of comorbid conditions, genetic susceptibility to malignancy, access to care and health coverage, and socioeconomic status; however, the most consistent contributors to incidence and mortality disparities are histology and socioeconomics. More robust genetic and molecular profile studies are in development to further explain histologic differences. CONCLUSIONS Current studies suggest that histologic and socioeconomic factors explain much of the disparity in endometrial cancer incidence and mortality between white and African American patients. Treatment factors likely contributed historically to differences in mortality; however, studies suggest most women now receive equal care. Molecular differences may be an important factor to explain the racial inequities. Coupled with a sustained commitment to increasing access to appropriate care, on-going research in biologic mechanisms underlying histopathologic differences will help address and reduce the number of African American women who disproportionately suffer and die from endometrial malignancy.
Collapse
Affiliation(s)
- B Long
- Department of Obstetrics and Gynecology, University of California at Irvine Medical Center, Orange, CA, USA
| | | | | |
Collapse
|
161
|
Abstract
The media attention surrounding the publication of the initial results of WHI in 2002 led to fear and confusion regarding the use of hormonal therapy (HT) after menopause. This led to a dramatic reduction in prescriptions for HT in the United States and around the world. Although in 2002 it was stated that the results pertained to all women receiving HT, subsequent studies from the Women's Health Initiative (WHI) and others clearly showed that younger women and those close to menopause had a very beneficial risk-to-benefit ratio. Indeed, the results showed similar protective effects for coronary disease and a reduction in mortality that had been shown in earlier observational studies, which had also focused on younger symptomatic women. In younger women, the increased number of cases of venous thrombosis and ischemic stroke was low, rendering them "rare" events using World Health Organization nomenclature. Breast cancer rates were also low and were found to be decreased with estrogen alone. In women receiving estrogen and progestogen for the first time in the WHI, breast cancer rates did not increase significantly for 7 years. Other data suggest that other regimens and the use of other progestogens may also be safer. It has been argued that in the 10 years since WHI, many women have been denied HT, including those with severe symptoms, and that this has significantly disadvantaged a generation of women. Some reports have also suggested an increased rate of osteoporotic fractures since the WHI. Therefore, the question is posed as to whether we have now come full circle in our understanding of the use of HT in younger women. Although it is appropriate to treat women with symptoms at the onset of menopause, because there is no proven therapy for primary prevention, in some women the use of HT for this role may at least be entertained.
Collapse
Affiliation(s)
- Roger A Lobo
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
162
|
Davies E, Mangongi NP, Carter CL. Is Timing Everything? A Meeting Report of the Society for Women's Health Research Roundtable on Menopausal Hormone Therapy. J Womens Health (Larchmt) 2013; 22:303-11. [DOI: 10.1089/jwh.2013.4386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Erika Davies
- Scientific Affairs, Society for Women's Health Research (SWHR), Washington, District of Columbia
| | | | - Christine L. Carter
- Scientific Affairs, Society for Women's Health Research (SWHR), Washington, District of Columbia
| |
Collapse
|
163
|
Pines A. Climacteric Commentaries. Climacteric 2013; 16:293-302. [DOI: 10.3109/13697137.2013.769834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
164
|
Hein R, Flesch-Janys D, Dahmen N, Beckmann L, Lindström S, Schoof N, Czene K, Mittelstraß K, Illig T, Seibold P, Behrens S, Humphreys K, Li J, Liu J, Olson JE, Wang X, Hankinson SE, Truong T, Menegaux F, Dos Santos Silva I, Johnson N, Chen ST, Yu JC, Ziogas A, Kataja V, Kosma VM, Mannermaa A, Anton-Culver H, Shen CY, Brauch H, Peto J, Guénel P, Kraft P, Couch FJ, Easton DF, Hall P, Chang-Claude J. A genome-wide association study to identify genetic susceptibility loci that modify ductal and lobular postmenopausal breast cancer risk associated with menopausal hormone therapy use: a two-stage design with replication. Breast Cancer Res Treat 2013; 138:529-542. [PMID: 23423446 DOI: 10.1007/s10549-013-2443-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/31/2013] [Indexed: 11/26/2022]
Abstract
Menopausal hormone therapy (MHT) is associated with an elevated risk of breast cancer in postmenopausal women. To identify genetic loci that modify breast cancer risk related to MHT use in postmenopausal women, we conducted a two-stage genome-wide association study (GWAS) with replication. In stage I, we performed a case-only GWAS in 731 invasive breast cancer cases from the German case-control study Mammary Carcinoma Risk Factor Investigation (MARIE). The 1,200 single nucleotide polymorphisms (SNPs) showing the lowest P values for interaction with current MHT use (within 6 months prior to breast cancer diagnosis), were carried forward to stage II, involving pooled case-control analyses including additional MARIE subjects (1,375 cases, 1,974 controls) as well as 795 cases and 764 controls of a Swedish case-control study. A joint P value was calculated for a combined analysis of stages I and II. Replication of the most significant interaction of the combined stage I and II was performed using 5,795 cases and 5,390 controls from nine studies of the Breast Cancer Association Consortium (BCAC). The combined stage I and II yielded five SNPs on chromosomes 2, 7, and 18 with joint P values <6 × 10(-6) for effect modification of current MHT use. The most significant interaction was observed for rs6707272 (P = 3 × 10(-7)) on chromosome 2 but was not replicated in the BCAC studies (P = 0.21). The potentially modifying SNPs are in strong linkage disequilibrium with SNPs in TRIP12 and DNER on chromosome 2 and SETBP1 on chromosome 18, previously linked to carcinogenesis. However, none of the interaction effects reached genome-wide significance. The inability to replicate the top SNP × MHT interaction may be due to limited power of the replication phase. Our study, however, suggests that there are unlikely to be SNPs that interact strongly enough with MHT use to be clinically significant in European women.
Collapse
Affiliation(s)
- Rebecca Hein
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; PMV Research Group at the Department of Child and Adolescent Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology, Clinical Cancer Registry, University Cancer Center and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lars Beckmann
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Foundation for Quality and Efficiency in Health Care (IQWIG), Cologne, Germany
| | - Sara Lindström
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard, School Of Public Health, Boston, MA 02138, USA; Department of Biostatistics, Harvard School Of Public Health, Boston, MA 02138, USA
| | - Nils Schoof
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kirstin Mittelstraß
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich, Munich, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Center Munich, Munich, Germany; Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Petra Seibold
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Sabine Behrens
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jingmei Li
- Human,Genetics, Genome Institute of Singapore, 60 Biopolis St, Singapore 138672, Singapore
| | - Jianjun Liu
- Human,Genetics, Genome Institute of Singapore, 60 Biopolis St, Singapore 138672, Singapore
| | - Janet E Olson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Susan E Hankinson
- Department of Epidemiology, Harvard, School Of Public Health, Boston, MA 02138, USA
| | - Thérèse Truong
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France; University Paris-Sud, UMRS 1018, Villejuif, France
| | - Florence Menegaux
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France; University Paris-Sud, UMRS 1018, Villejuif, France
| | - Isabel Dos Santos Silva
- Department of Non-Communicable, Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Shou-Tung Chen
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Argyrios Ziogas
- Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA
| | - Vesa Kataja
- School of Medicine, Institute of Clinical Medicine, Oncology, Biocenter Kuopio, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland; Cancer Center, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland; Biocenter Kuopio, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland; Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland; Biocenter Kuopio, Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland; Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan Biobank, Taipei, Taiwan
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute, of Clinical Pharmacology, Stuttgart, University of Tübingen, Tübingen, Germany
| | - Julian Peto
- Department of Non-Communicable, Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Pascal Guénel
- Inserm (National Institute of Health and Medical Research), CESP (Center for Research in Epidemiology and Population Health), U1018, Environmental Epidemiology of Cancer, Villejuif, France; University Paris-Sud, UMRS 1018, Villejuif, France
| | - Peter Kraft
- Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard School Of Public Health, Boston, MA 02138, USA; Department of Biostatistics, Harvard School Of Public Health, Boston, MA 02138, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Departments of Public Health and Primary Care and Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Chang-Claude
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology (C020), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| |
Collapse
|