151
|
Zonnino A, Farrens AJ, Ress D, Sergi F. Measurement of stretch-evoked brainstem function using fMRI. Sci Rep 2021; 11:12544. [PMID: 34131162 PMCID: PMC8206209 DOI: 10.1038/s41598-021-91605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
Knowledge on the organization of motor function in the reticulospinal tract (RST) is limited by the lack of methods for measuring RST function in humans. Behavioral studies suggest the involvement of the RST in long latency responses (LLRs). LLRs, elicited by precisely controlled perturbations, can therefore act as a viable paradigm to measure motor-related RST activity using functional Magnetic Resonance Imaging (fMRI). Here we present StretchfMRI, a novel technique developed to study RST function associated with LLRs. StretchfMRI combines robotic perturbations with electromyography and fMRI to simultaneously quantify muscular and neural activity during stretch-evoked LLRs without loss of reliability. Using StretchfMRI, we established the muscle-specific organization of LLR activity in the brainstem. The observed organization is partially consistent with animal models, with activity primarily in the ipsilateral medulla for flexors and in the contralateral pons for extensors, but also includes other areas, such as the midbrain and bilateral pontomedullary contributions.
Collapse
Affiliation(s)
- Andrea Zonnino
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Andria J Farrens
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77020, USA
| | - Fabrizio Sergi
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
152
|
Nolan AL, Petersen C, Iacono D, Mac Donald CL, Mukherjee P, van der Kouwe A, Jain S, Stevens A, Diamond BR, Wang R, Markowitz AJ, Fischl B, Perl DP, Manley GT, Keene CD, Diaz-Arrastia R, Edlow BL. Tractography-Pathology Correlations in Traumatic Brain Injury: A TRACK-TBI Study. J Neurotrauma 2021; 38:1620-1631. [PMID: 33412995 PMCID: PMC8165468 DOI: 10.1089/neu.2020.7373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diffusion tractography magnetic resonance imaging (MRI) can infer changes in network connectivity in patients with traumatic brain injury (TBI), but the pathological substrates of disconnected tracts have not been well defined because of a lack of high-resolution imaging with histopathological validation. We developed an ex vivo MRI protocol to analyze tract terminations at 750-μm isotropic resolution, followed by histopathological evaluation of white matter pathology, and applied these methods to a 60-year-old man who died 26 days after TBI. Analysis of 74 cerebral hemispheric white matter regions revealed a heterogeneous distribution of tract disruptions. Associated histopathology identified variable white matter injury with patchy deposition of amyloid precursor protein (APP), loss of neurofilament-positive axonal processes, myelin dissolution, astrogliosis, microgliosis, and perivascular hemosiderin-laden macrophages. Multiple linear regression revealed that tract disruption strongly correlated with the density of APP-positive axonal swellings and neurofilament loss. Ex vivo diffusion MRI can detect tract disruptions in the human brain that reflect axonal injury.
Collapse
Affiliation(s)
- Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Cathrine Petersen
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California, USA
| | - Diego Iacono
- Department of Pathology, Uniformed Services University (USU), Bethesda, Maryland, USA
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University (USU), Bethesda, Maryland, USA
- DoD/USU Brain Tissue Repository (BTR) & Neuropathology Core, Uniformed Services University (USU), Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, Maryland, USA
- Complex Neurodegenerative Disorders, Motor Neuron Disorders Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, San Diego, California, USA
| | - Allison Stevens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bram R. Diamond
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ruopeng Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amy J. Markowitz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Health Sciences and Technology, Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University (USU), Bethesda, Maryland, USA
- DoD/USU Brain Tissue Repository (BTR) & Neuropathology Core, Uniformed Services University (USU), Bethesda, Maryland, USA
| | - Geoffrey T. Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian L. Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
153
|
Restoring VTA DA neurons excitability accelerates emergence from sevoflurane general anesthesia of anxiety state. Biochem Biophys Res Commun 2021; 565:21-28. [PMID: 34090206 DOI: 10.1016/j.bbrc.2021.05.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022]
Abstract
Preoperative anxiety is common and often comes with a higher probability of worse recovery. However, the neurological mechanism of the effect of preoperative anxiety on general anesthesia and subsequent awakening remains unknown. In this study, we report an anxious state results in delayed awakening in anxiety model mice from sevoflurane general anesthesia. More profound inhibition of DA neurons in the VTA contributes to delayed awakening. Optogenetic stimulation of VTA DA neurons can reverse the delay. The results indicate that VTA DA neurons may be involved in the delay in awakening from general anesthesia caused by anxiety.
Collapse
|
154
|
Coley EJ, Mayer EA, Osadchiy V, Chen Z, Subramanyam V, Zhang Y, Hsiao EY, Gao K, Bhatt R, Dong T, Vora P, Naliboff B, Jacobs JP, Gupta A. Early life adversity predicts brain-gut alterations associated with increased stress and mood. Neurobiol Stress 2021; 15:100348. [PMID: 34113697 PMCID: PMC8170500 DOI: 10.1016/j.ynstr.2021.100348] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Alterations in the brain-gut system have been implicated in various disease states, but little is known about how early-life adversity (ELA) impacts development and adult health as mediated by brain-gut interactions. We hypothesize that ELA disrupts components of the brain-gut system, thereby increasing susceptibility to disordered mood. In a sample of 128 healthy adult participants, a history of ELA and current stress, depression, and anxiety were assessed using validated questionnaires. Fecal metabolites were measured using liquid chromatography tandem mass spectrometry-based untargeted metabolomic profiling. Functional brain connectivity was evaluated by magnetic resonance imaging. Sparse partial least squares-discriminant analysis, controlling for sex, body mass index, age, and diet was used to predict brain-gut alterations as a function of ELA. ELA was correlated with four gut-regulated metabolites within the glutamate pathway (5-oxoproline, malate, urate, and glutamate gamma methyl ester) and alterations in functional brain connectivity within primarily sensorimotor, salience, and central executive networks. Integrated analyses revealed significant associations between these metabolites, functional brain connectivity, and scores for perceived stress, anxiety, and depression. This study reveals a novel association between a history of ELA, alterations in the brain-gut axis, and increased vulnerability to negative mood and stress. Results from the study raise the hypothesis that select gut-regulated metabolites may contribute to the adverse effects of critical period stress on neural development via pathways related to glutamatergic excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Elena J.L. Coley
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA,David Geffen School of Medicine, University of California, Los Angeles, USA,Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA,UCLA Microbiome Center, Los Angeles, CA, USA
| | - Vadim Osadchiy
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA,David Geffen School of Medicine, University of California, Los Angeles, USA,Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zixi Chen
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA
| | - Vishvak Subramanyam
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA
| | - Yurui Zhang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA
| | - Elaine Y. Hsiao
- David Geffen School of Medicine, University of California, Los Angeles, USA,UCLA Microbiome Center, Los Angeles, CA, USA,Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kan Gao
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural University, PR China
| | - Ravi Bhatt
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA,Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - Tien Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA,David Geffen School of Medicine, University of California, Los Angeles, USA,Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA,UCLA Microbiome Center, Los Angeles, CA, USA,Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Priten Vora
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA
| | - Bruce Naliboff
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA,David Geffen School of Medicine, University of California, Los Angeles, USA,Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA
| | - Jonathan P. Jacobs
- David Geffen School of Medicine, University of California, Los Angeles, USA,Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA,UCLA Microbiome Center, Los Angeles, CA, USA,Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, USA,David Geffen School of Medicine, University of California, Los Angeles, USA,Vatche and Tamar Manoukian Division of Digestive Diseases, Los Angeles, CA, USA,UCLA Microbiome Center, Los Angeles, CA, USA,Corresponding author. Oppenheimer Family Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA CHS, 42-210 MC737818 10833 Le Conte Avenue, USA.
| |
Collapse
|
155
|
Levinson M, Podvalny E, Baete SH, He BJ. Cortical and subcortical signatures of conscious object recognition. Nat Commun 2021; 12:2930. [PMID: 34006884 PMCID: PMC8131711 DOI: 10.1038/s41467-021-23266-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
The neural mechanisms underlying conscious recognition remain unclear, particularly the roles played by the prefrontal cortex, deactivated brain areas and subcortical regions. We investigated neural activity during conscious object recognition using 7 Tesla fMRI while human participants viewed object images presented at liminal contrasts. Here, we show both recognized and unrecognized images recruit widely distributed cortical and subcortical regions; however, recognized images elicit enhanced activation of visual, frontoparietal, and subcortical networks and stronger deactivation of the default-mode network. For recognized images, object category information can be decoded from all of the involved cortical networks but not from subcortical regions. Phase-scrambled images trigger strong involvement of inferior frontal junction, anterior cingulate cortex and default-mode network, implicating these regions in inferential processing under increased uncertainty. Our results indicate that content-specific activity in both activated and deactivated cortical networks and non-content-specific subcortical activity support conscious recognition. Cortical and subcortical neural activity supporting conscious object recognition has not yet been well defined. Here, the authors describe these networks and show recognition-related category information can be decoded from widespread cortical activity but not subcortical activity.
Collapse
Affiliation(s)
- Max Levinson
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Ella Podvalny
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Steven H Baete
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA. .,Department of Radiology, New York University School of Medicine, New York, NY, USA. .,Department of Neurology, New York University School of Medicine, New York, NY, USA. .,Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
156
|
Li R, Hu C, Wang L, Liu D, Liu D, Liao W, Xiao B, Chen H, Feng L. Disruption of functional connectivity among subcortical arousal system and cortical networks in temporal lobe epilepsy. Brain Imaging Behav 2021; 14:762-771. [PMID: 30617780 DOI: 10.1007/s11682-018-0014-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Growing evidence has demonstrated widespread brain network alterations in temporal lobe epilepsy (TLE). However, the relatively accurate portrait of the subcortical-cortical relationship for impaired consciousness in TLE remains unclear. We proposed that consciousness-impairing seizures may invade subcortical arousal system and corresponding cortical regions, resulting in functional abnormalities and information flow disturbances between subcortical and cortical networks. We performed resting-state fMRI in 26 patients with TLE and 30 matched healthy controls. All included patients were diagnosed with impaired awareness during focal temporal lobe seizures. Functional connectivity density was adopted to determine whether local or distant network alterations occurred in TLE, and Granger causality analysis (GCA) was utilized to assess the direction and magnitude of causal influence among these altered brain networks further. Patients showed increased local functional connectivity in several arousal structures, such as the midbrain, thalamus, and cortical regions including bilateral prefrontal cortex (PFC), left superior temporal pole, left posterior insula, and cerebellum (P < 0.05, FDR corrected). GCA analysis revealed that the casual effects among these regions in patients were significantly sparser than those in controls (P < 0.05, uncorrected), including decreased excitatory and inhibitory effects among the midbrain, thalamus and PFC, and decreased inhibitory effect from the cerebellum to PFC. These findings suggested that consciousness-impairing seizures in TLE are associated with functional alterations and disruption of information process between the subcortical arousal system and cortical network. Understanding the functional networks and innervation pathway involved in TLE can provide insights into the mechanism underlying seizure-related loss of consciousness.
Collapse
Affiliation(s)
- Rong Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Chongyu Hu
- Department of Neurology, Hunan Provincial People's Hospital, Changsha, 410005, People's Republic of China
| | - Liangcheng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Ding Liu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, People's Republic of China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
| |
Collapse
|
157
|
Holtbernd F, Romanzetti S, Oertel WH, Knake S, Sittig E, Heidbreder A, Maier A, Krahe J, Wojtala J, Dogan I, Schulz JB, Schiefer J, Janzen A, Reetz K. Convergent patterns of structural brain changes in rapid eye movement sleep behavior disorder and Parkinson's disease on behalf of the German rapid eye movement sleep behavior disorder study group. Sleep 2021; 44:5911473. [PMID: 32974664 DOI: 10.1093/sleep/zsaa199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/08/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Rapid eye movement sleep behavior disorder (RBD) is considered a prodromal state of Parkinson's disease (PD). We aimed to characterize patterns of structural brain changes in RBD and PD patients using multimodal MRI. METHODS A total of 30 patients with isolated RBD, 29 patients with PD, and 56 age-matched healthy controls (HC) underwent MRI at 3T, including tensor-based morphometry, diffusion tensor imaging, and assessment of cortical thickness. RESULTS RBD individuals showed increased volume of the right caudate nucleus compared with HC, and higher cerebellar volume compared with both PD subjects and HC. Similar to PD subjects, RBD patients displayed increased fractional anisotropy (FA) in the corticospinal tracts, several tracts mainly related to non-motor function, and reduced FA of the corpus callosum compared with HC. Further, RBD subjects showed higher FA in the cerebellar peduncles and brainstem compared with both, PD patients and HC. PD individuals exhibited lower than normal volume in the basal ganglia, midbrain, pedunculopontine nuclei, and cerebellum. In contrast, volume in PD subjects was increased in the thalamus compared with both HC and RBD subjects. CONCLUSIONS We found convergent patterns of structural brain alterations in RBD and PD patients compared with HC. The changes observed suggest a co-occurrence of neurodegeneration and compensatory mechanisms that fail with emerging PD pathology. Our findings strengthen the hypothesis of RBD and PD constituting a continuous disease spectrum.
Collapse
Affiliation(s)
- Florian Holtbernd
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine 4 (INM-4), Juelich Research Center, Juelich, Germany
| | - Sandro Romanzetti
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | | | - Susanne Knake
- Department of Neurology, Philipps-University Marburg, Marburg, Germany.,CMBB, Center for Mind, Brain and Behavior, University Hospital Marburg, Marburg, Germany
| | - Elisabeth Sittig
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Anna Heidbreder
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany.,Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Andrea Maier
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Janna Krahe
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Jennifer Wojtala
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Imis Dogan
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Jörg Bernhard Schulz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | | | - Annette Janzen
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Aachen, Germany.,JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
158
|
Admission Features Associated With Paroxysmal Sympathetic Hyperactivity After Traumatic Brain Injury: A Case-Control Study. Crit Care Med 2021; 49:e989-e1000. [PMID: 34259439 DOI: 10.1097/ccm.0000000000005076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Paroxysmal sympathetic hyperactivity occurs in a subset of critically ill traumatic brain injury patients and has been associated with worse outcomes after traumatic brain injury. The goal of this study was to identify admission risk factors for the development of paroxysmal sympathetic hyperactivity in traumatic brain injury patients. DESIGN Retrospective case-control study of age- and Glasgow Coma Scale-matched traumatic brain injury patients. SETTING Neurotrauma ICU at the R. Adams Cowley Shock Trauma Center of the University of Maryland Medical System, January 2016 to July 2018. PATIENTS Critically ill adult traumatic brain injury patients who underwent inpatient monitoring for at least 14 days were included. Cases were identified based on treatment for paroxysmal sympathetic hyperactivity with institutional first-line therapies and were confirmed by retrospective tabulation of established paroxysmal sympathetic hyperactivity diagnostic and severity criteria. Cases were matched 1:1 by age and Glasgow Coma Scale to nonparoxysmal sympathetic hyperactivity traumatic brain injury controls, yielding 77 patients in each group. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Admission characteristics independently predictive of paroxysmal sympathetic hyperactivity included male sex, higher admission systolic blood pressure, and initial CT evidence of diffuse axonal injury, intraventricular hemorrhage/subarachnoid hemorrhage, complete cisternal effacement, and absence of contusion. Paroxysmal sympathetic hyperactivity cases demonstrated significantly worse neurologic outcomes upon hospital discharge despite being matched for injury severity at admission. CONCLUSIONS Several anatomical, epidemiologic, and physiologic risk factors for clinically relevant paroxysmal sympathetic hyperactivity can be identified on ICU admission. These features help characterize paroxysmal sympathetic hyperactivity as a clinical-pathophysiologic phenotype associated with worse outcomes after traumatic brain injury.
Collapse
|
159
|
Parsons N, Outsikas A, Parish A, Clohesy R, D'Aprano F, Toomey F, Advani S, Poudel GR. Modelling the Anatomic Distribution of Neurologic Events in Patients with COVID-19: A Systematic Review of MRI Findings. AJNR Am J Neuroradiol 2021; 42:1190-1195. [PMID: 33888458 DOI: 10.3174/ajnr.a7113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurologic events have been reported in patients with coronavirus disease 2019 (COVID-19). However, a model-based evaluation of the spatial distribution of these events is lacking. PURPOSE Our aim was to quantitatively evaluate whether a network diffusion model can explain the spread of small neurologic events. DATA SOURCES The MEDLINE, EMBASE, Scopus, and LitCovid data bases were searched from January 1, 2020, to July 19, 2020. STUDY SELECTION Thirty-five case series and case studies reported 317 small neurologic events in 123 unique patients with COVID-19. DATA ANALYSIS Neurologic events were localized to gray or white matter regions of the Illinois Institute of Technology (gray-matter and white matter) Human Brain Atlas using radiologic images and descriptions. The total proportion of events was calculated for each region. A network diffusion model was implemented, and any brain regions showing a significant association (P < .05, family-wise error-corrected) between predicted and measured events were considered epicenters. DATA SYNTHESIS Within gray matter, neurologic events were widely distributed, with the largest number of events (∼10%) observed in the bilateral superior temporal, precentral, and lateral occipital cortices, respectively. Network diffusion modeling showed a significant association between predicted and measured gray matter events when the spread of pathology was seeded from the bilateral cerebellum (r = 0.51, P < .001, corrected) and putamen (r = 0.4, P = .02, corrected). In white matter, most events (∼26%) were observed within the bilateral corticospinal tracts. LIMITATIONS The risk of bias was not considered because all studies were either case series or case studies. CONCLUSIONS Transconnectome diffusion of pathology via the structural network of the brain may contribute to the spread of neurologic events in patients with COVID-19.
Collapse
Affiliation(s)
- N Parsons
- From the Cognitive Neuroscience Unit (N.P.).,School of Psychology (N.P., A.O., A.P., R.C.)
| | - A Outsikas
- School of Psychology (N.P., A.O., A.P., R.C.)
| | - A Parish
- School of Psychology (N.P., A.O., A.P., R.C.)
| | - R Clohesy
- School of Psychology (N.P., A.O., A.P., R.C.)
| | - F D'Aprano
- Melbourne School of Psychological Sciences (F.D.), The University of Melbourne, Melbourne, Australia.,Department of Neurology (F.D.), Royal Melbourne Hospital, Melbourne, Australia
| | - F Toomey
- School of Medicine (F.T.), Deakin University, Melbourne, Australia
| | - S Advani
- Social Behavioural Research Branch (S.A.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - G R Poudel
- Department of Health Sciences (G.R.P.), Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
| |
Collapse
|
160
|
Gottlieb E, Egorova N, Khlif MS, Khan W, Werden E, Pase MP, Howard M, Brodtmann A. Regional neurodegeneration correlates with sleep-wake dysfunction after stroke. Sleep 2021; 43:5813630. [PMID: 32249910 DOI: 10.1093/sleep/zsaa054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Sleep-wake disruption is a key modifiable risk factor and sequela of stroke. The pathogenesis of poststroke sleep dysfunction is unclear. It is not known whether poststroke sleep pathology is due to focal infarction to sleep-wake hubs or to accelerated poststroke neurodegeneration in subcortical structures after stroke. We characterize the first prospective poststroke regional brain volumetric and whole-brain, fiber-specific, white matter markers of objectively measured sleep-wake dysfunction. We hypothesized that excessively long sleep (>8 h) duration and poor sleep efficiency (<80%) measured using the SenseWear Armband 3-months poststroke (n = 112) would be associated with reduced regional brain volumes of a priori-selected sleep-wake regions of interest when compared to healthy controls with optimal sleep characteristics (n = 35). We utilized a novel technique known as a whole-brain fixel-based analysis to investigate the fiber-specific white matter differences in participants with long sleep duration. Stroke participants with long sleep (n = 24) duration exhibited reduced regional volumes of the ipsilesional thalamus and contralesional amygdala when compared with controls. Poor sleep efficiency after stroke (n = 29) was associated with reduced ipsilesional thalamus, contralesional hippocampus, and contralesional amygdala volumes. Whole-brain fixel-based analyses revealed widespread macrostructural degeneration to the corticopontocerebellar tract in stroke participants with long sleep duration, with fiber reductions of up to 40%. Neurodegeneration to subcortical structures, which appear to be vulnerable to accelerated brain volume loss after stroke, may drive sleep-wake deficiencies poststroke, independent of lesion characteristics and confounding comorbidities. We discuss these findings in the context of the clinicopathological implications of sleep-related neurodegeneration and attempt to corroborate previous mechanistic-neuroanatomical findings.
Collapse
Affiliation(s)
- Elie Gottlieb
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia
| | - Natalia Egorova
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia
| | - Mohamed S Khlif
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia
| | - Wasim Khan
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia.,Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience (IoPPN), King's College, London, UK
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia.,Harvard T.H. Chan School of Public Health, Harvard University, MA
| | - Mark Howard
- University of Melbourne, Melbourne, Victoria, Australia.,Austin Health, Heidelberg, Victoria, Australia.,Institute for Breathing and Sleep, Heidelberg, Victoria, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
161
|
Rouleau N, Murugan NJ, Kaplan DL. Toward Studying Cognition in a Dish. Trends Cogn Sci 2021; 25:294-304. [PMID: 33546973 PMCID: PMC7946736 DOI: 10.1016/j.tics.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Bioengineered neural tissues help advance our understanding of neurodevelopment, regeneration, and neural disease; however, it remains unclear whether they can replicate higher-order functions including cognition. Building upon technical achievements in the fields of biomaterials, tissue engineering, and cell biology, investigators have generated an assortment of artificial brain structures and cocultured circuits. Though they have displayed basic electrochemical signaling, their capacities to generate minimal patterns of information processing suggestive of high-order cognitive analogues have not yet been explored. Here, we review the current state of neural tissue engineering and consider the possibility of a study of cognition in vitro. We adopt a practical definition of minimal cognition, anticipate problems of measurement, and discuss solutions toward a study of cognition in a dish.
Collapse
Affiliation(s)
- Nicolas Rouleau
- Department of Psychology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, Canada, P6A 2G4; Department of Biomedical Engineering, Tufts University, Science and Technology Center, 4 Colby Street, Medford, MA 02155, USA
| | - Nirosha J Murugan
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, Ontario, Canada, P6A 2G4
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science and Technology Center, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
162
|
Jang SH, Kim SH, Seo JP. Long-term recovery from a minimally responsive state with recovery of an injured ascending reticular activating system: A case report. Medicine (Baltimore) 2021; 100:e23933. [PMID: 33655907 PMCID: PMC7939211 DOI: 10.1097/md.0000000000023933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023] Open
Abstract
We report on a patient with hypoxic-ischemic brain injury (HI-BI) who showed recovery from a minimally consciousness state over 6 years concurrent with recovery of an injured ascending reticular activating system (ARAS), which was demonstrated on diffusion tensor tractography (DTT).A 31-year-old female patient, who suffered from HI-BI, showed impaired consciousness with a minimally conscious state: intermittently obeying simple motor tasks, such as "please grasp my hand." Her consciousness showed recovery with the passage of time; rapid recovery was observed during the recent 2 years.In the upper ARAS, the neural connectivity to both the basal forebrain and prefrontal cortex had increased on 8-year DTT compared with 1.5-year DTT. In the lower dorsal and ventral ARAS, no significant change was observed between 1.5 and 8 years DTTs.Recovery of an injured ARAS was demonstrated in a patient who showed recovery from a minimally consciousness state over 6 years following HI-BI. Our results suggest the brain target areas for recovery of impaired awareness in patients with disorders of consciousness.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation
| | - Seong Ho Kim
- Department of Neurosurgery, College of Medicine, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do
| | - Jeong Pyo Seo
- Department of Physical Therapy, College of Health Sciences, Dankook University, Cheonan, Chungnam, Republic of Korea
| |
Collapse
|
163
|
González HFJ, Narasimhan S, Johnson GW, Wills KE, Haas KF, Konrad PE, Chang C, Morgan VL, Rubinov M, Englot DJ. Role of the Nucleus Basalis as a Key Network Node in Temporal Lobe Epilepsy. Neurology 2021; 96:e1334-e1346. [PMID: 33441453 PMCID: PMC8055321 DOI: 10.1212/wnl.0000000000011523] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To determine whether the nucleus basalis of Meynert (NBM) may be a key network structure of altered functional connectivity in temporal lobe epilepsy (TLE), we examined fMRI with network-based analyses. METHODS We acquired resting-state fMRI in 40 adults with TLE and 40 matched healthy control participants. We calculated functional connectivity of NBM and used multiple complementary network-based analyses to explore the importance of NBM in TLE networks without biasing our results by our approach. We compared patients to controls and examined associations of network properties with disease metrics and neurocognitive testing. RESULTS We observed marked decreases in connectivity between NBM and the rest of the brain in patients with TLE (0.91 ± 0.88, mean ± SD) vs controls (1.96 ± 1.13, p < 0.001, t test). Larger decreases in connectivity between NBM and fronto-parietal-insular regions were associated with higher frequency of consciousness-impairing seizures (r = -0.41, p = 0.008, Pearson). A core network of altered nodes in TLE included NBM ipsilateral to the epileptogenic side and bilateral limbic structures. Furthermore, normal community affiliation of ipsilateral NBM was lost in patients, and this structure displayed the most altered clustering coefficient of any node examined (3.46 ± 1.17 in controls vs 2.23 ± 0.93 in patients). Abnormal connectivity between NBM and subcortical arousal community was associated with modest neurocognitive deficits. Finally, a logistic regression model incorporating connectivity properties of ipsilateral NBM successfully distinguished patients from control datasets with moderately high accuracy (78%). CONCLUSIONS These results suggest that while NBM is rarely studied in epilepsy, it may be one of the most perturbed network nodes in TLE, contributing to widespread neural effects in this disabling disorder.
Collapse
Affiliation(s)
- Hernán F J González
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA.
| | - Saramati Narasimhan
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Graham W Johnson
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Kristin E Wills
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Kevin F Haas
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Peter E Konrad
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Catie Chang
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Victoria L Morgan
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Mikail Rubinov
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| | - Dario J Englot
- From the Departments of Biomedical Engineering (H.F.J.G., G.W.J., P.E.K., C.C., V.L.M., M.R., D.J.E.) and Electrical Engineering and Computer Science (C.C., V.L.M., M.R., D.J.E.), Vanderbilt University; Departments of Neurological Surgery (S.N., K.E.W., P.E.K., D.J.E.), Radiology and Radiological Sciences (V.L.M., D.J.E.), and Neurology (K.F.H.) and Vanderbilt University Institute of Imaging Science (H.F.J.G., S.N., G.W.J., K.E.W., C.C., V.L.M., D.J.E.), Vanderbilt University Medical Center, Nashville, TN; and Department of Psychology (M.R.), Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
| |
Collapse
|
164
|
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17:135-156. [PMID: 33318675 PMCID: PMC7734616 DOI: 10.1038/s41582-020-00428-x] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15-20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electrophysiological therapies that are creating new opportunities to improve the lives of patients with DoC.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
165
|
Li R, Ryu JH, Vincent P, Springer M, Kluger D, Levinsohn EA, Chen Y, Chen H, Blumenfeld H. The pulse: transient fMRI signal increases in subcortical arousal systems during transitions in attention. Neuroimage 2021; 232:117873. [PMID: 33647499 DOI: 10.1016/j.neuroimage.2021.117873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
Studies of attention emphasize cortical circuits for salience monitoring and top-down control. However, subcortical arousal systems have a major influence on dynamic cortical state. We hypothesize that task-related increases in attention begin with a "pulse" in subcortical arousal and cortical attention networks, which are reflected indirectly through transient fMRI signals. We conducted general linear model and model-free analyses of fMRI data from two cohorts and tasks with mixed block and event-related design. 46 adolescent subjects at our center and 362 normal adults from the Human Connectome Project participated. We identified a core shared network of transient fMRI increases in subcortical arousal and cortical salience/attention networks across cohorts and tasks. Specifically, we observed a transient pulse of fMRI increases both at task block onset and with individual task events in subcortical arousal areas including midbrain tegmentum, thalamus, nucleus basalis and striatum; cortical-subcortical salience network regions including the anterior insula/claustrum and anterior cingulate cortex/supplementary motor area; in dorsal attention network regions including dorsolateral frontal cortex and inferior parietal lobule; as well as in motor regions including cerebellum, and left hemisphere hand primary motor cortex. The transient pulse of fMRI increases in subcortical and cortical arousal and attention networks was consistent across tasks and study populations, whereas sustained activity in these same networks was more variable. The function of the transient pulse in these networks is unknown. However, given its anatomical distribution, it could participate in a neuromodulatory surge of activity in multiple parallel neurotransmitter systems facilitating dynamic changes in conscious attention.
Collapse
Affiliation(s)
- Rong Li
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jun Hwan Ryu
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Peter Vincent
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Max Springer
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Dan Kluger
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Erik A Levinsohn
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Yu Chen
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Huafu Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Hal Blumenfeld
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Departments of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Departments of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States.
| |
Collapse
|
166
|
Hosp JA, Reisert M, von Kageneck C, Rijntjes M, Weiller C. Approximation to pain-signaling network in humans by means of migraine. Hum Brain Mapp 2021; 42:766-779. [PMID: 33112461 PMCID: PMC7814755 DOI: 10.1002/hbm.25261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Nociceptive signals are processed within a pain-related network of the brain. Migraine is a rather specific model to gain insight into this system. Brain networks may be described by white matter tracts interconnecting functionally defined gray matter regions. Here, we present an overview of the migraine-related pain network revealed by this strategy. Based on diffusion tensor imaging data from subjects in the Human Connectome Project (HCP) database, we used a global tractography approach to reconstruct white matter tracts connecting brain regions that are known to be involved in migraine-related pain signaling. This network includes an ascending nociceptive pathway, a descending modulatory pathway, a cortical processing system, and a connection between pain-processing and modulatory areas. The insular cortex emerged as the central interface of this network. Direct connections to visual and auditory cortical association fields suggest a potential neural basis of phono- or photophobia and aura phenomena. The intra-axonal volume (Vintra ) as a measure of fiber integrity based on diffusion microstructure was extracted using an innovative supervised machine learning approach in form of a Bayesian estimator. Self-reported pain levels of HCP subjects were positively correlated with tract integrity in subcortical tracts. No correlation with pain was found for the cortical processing systems.
Collapse
Affiliation(s)
- Jonas Aurel Hosp
- Faculty of Medicine, Department of Neurology and NeuroscienceMedical Center – University of FreiburgFreiburgGermany
| | - Marco Reisert
- Faculty of Medicine, Department of Stereotactic and Functional NeurosurgeryUniversity of FreiburgFreiburgGermany
- Department of Medical PhysicsFreiburg University Medical CenterFreiburgGermany
| | - Charlotte von Kageneck
- Faculty of Medicine, Department of Neurology and NeuroscienceMedical Center – University of FreiburgFreiburgGermany
| | - Michel Rijntjes
- Faculty of Medicine, Department of Neurology and NeuroscienceMedical Center – University of FreiburgFreiburgGermany
| | - Cornelius Weiller
- Faculty of Medicine, Department of Neurology and NeuroscienceMedical Center – University of FreiburgFreiburgGermany
| |
Collapse
|
167
|
Reisert M, Weiller C, Hosp JA. Displaying the autonomic processing network in humans - a global tractography approach. Neuroimage 2021; 231:117852. [PMID: 33582271 DOI: 10.1016/j.neuroimage.2021.117852] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Regulation of the internal homeostasis is modulated by the central autonomic system. So far, the view of this system is determined by animal and human research focusing on cortical and subcortical grey substance regions. To provide an overview based on white matter architecture, we used a global tractography approach to reconstruct a network of tracts interconnecting brain regions that are known to be involved in autonomic processing. Diffusion weighted imaging data were obtained from subjects of the human connectome project (HCP) database. Resulting tracts are in good agreement with previous studies assuming a division of the central autonomic system into a cortical (CAN) and a subcortical network (SAN): the CAN consist of three subsystems that encompass all cerebral lobes and overlap within the insular cortex: a parieto-anterior-temporal pathway (PATP), an occipito-posterior-temporo-frontal pathway (OPTFP) and a limbic pathway. The SAN on the other hand connects the hypothalamus to the periaqueductal grey and locus coeruleus, before it branches into a dorsal and a lateral part that target autonomic nuclei in the rostral medulla oblongata. Our approach furthermore reveals how the CAN and SAN are interconnected: the hypothalamus can be considered as the interface-structure of the SAN, whereas the insula is the central hub of the CAN. The hypothalamus receives input from prefrontal cortical fields but is also connected to the ventral apex of the insular cortex. Thus, a holistic view of the central autonomic system could be created that may promote the understanding of autonomic signaling under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- M Reisert
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medical Physics, Freiburg University Medical Center, Freiburg, Germany
| | - C Weiller
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - J A Hosp
- Clinic of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
168
|
Ur Özçelik E, Kurt E, Şirin NG, Eryürek K, Ulaşoglu Yıldız Ç, Harı E, Ay U, Bebek N, Demiralp T, Baykan B. Functional connectivity disturbances of ascending reticular activating system and posterior thalamus in juvenile myoclonic epilepsy in relation with photosensitivity: A resting-state fMRI study. Epilepsy Res 2021; 171:106569. [PMID: 33582535 DOI: 10.1016/j.eplepsyres.2021.106569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Juvenile myoclonic epilepsy (JME) is typified by the occurrence of myoclonic seizures after awakening, though another common trait is myoclonic seizures triggered by photic stimulation. We aimed to investigate the functional connectivity (FC) of nuclei in the ascending reticular activating system (ARAS), thalamus and visual cortex in JME with and without photosensitivity. METHODS We examined 29 patients with JME (16 photosensitive (PS), 13 non- photosensitive-(NPS)) and 28 healthy controls (HCs) using resting-state functional magnetic resonance imaging (rs-fMRI). Seed-to-voxel FC analyses were performed using 25 seeds, including the thalamus, visual cortex, and ARAS nuclei. RESULTS Mesencephalic reticular formation seed revealed significant hyperconnectivity between the bilateral paracingulate gyrus and anterior cingulate cortex in JME group, and in both JME-PS and JME-NPS subgroups compared to HCs (pFWE-corr < 0.001; pFWE-corr < 0.001; pFWE-corr = 0.002, respectively). Locus coeruleus seed displayed significant hyperconnectivity with the bilateral lingual gyri, intracalcarine cortices, occipital poles and left occipital fusiform gyrus in JME-PS group compared to HCs (pFWE-corr <0.001). Additionally, locus coeruleus seed showed significant hyperconnectivity in JME-PS group compared to JME-NPS group with a cluster corresponding to the bilateral lingual gyri and right intracalcarine cortex (pFWE-corr < 0.001). Lastly, the right posterior nuclei of thalamus revealed significant hyperconnectivity with the right superior lateral occipital cortex in JME-PS group compared to HCs (pFWE-corr < 0.002). CONCLUSIONS In JME, altered functional connectivity of the arousal networks might contribute to the understanding of myoclonia after awakening, whereas increased connectivity of posterior thalamus might explain photosensitivity.
Collapse
Affiliation(s)
- Emel Ur Özçelik
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Istanbul, Turkey; Department of Neurology, Istanbul Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, Neurosurgery, University of Health Sciences, Zuhuratbaba Mahallesi, Dr. Tevfik Sağlam Cad. 25/2, 34147, Bakırkoy, Istanbul, Turkey.
| | - Elif Kurt
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Millet Cad, 34093, Çapa, Istanbul, Turkey.
| | - Nermin Görkem Şirin
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Istanbul, Turkey.
| | - Kardelen Eryürek
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Millet Cad, 34093, Çapa, Istanbul, Turkey; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Çiğdem Ulaşoglu Yıldız
- Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Emre Harı
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Millet Cad, 34093, Çapa, Istanbul, Turkey; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Ulaş Ay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Millet Cad, 34093, Çapa, Istanbul, Turkey; Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Nerses Bebek
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Istanbul, Turkey.
| | - Tamer Demiralp
- Hulusi Behçet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, Millet Cad, 34093, Capa, Istanbul, Turkey; Department of Physiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Capa, Istanbul, Turkey.
| | - Betül Baykan
- Departments of Neurology and Clinical Neurophysiology, Istanbul University, Istanbul Faculty of Medicine, Millet Cad, 34093, Istanbul, Turkey.
| |
Collapse
|
169
|
The manifestation of individual differences in sensitivity to punishment during resting state is modulated by eye state. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:144-155. [PMID: 33432544 DOI: 10.3758/s13415-020-00856-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2020] [Indexed: 11/08/2022]
Abstract
Structural and functional neuroimaging studies have shown that brain areas associated with fear and anxiety (defensive system areas) are modulated by individual differences in sensitivity to punishment (SP). However, little is known about how SP is related to brain functional connectivity and the factors that modulate this relationship. In this study, we investigated whether a simple methodological manipulation, such as performing a resting state with eyes open or eyes closed, can modulate the manifestation of individual differences in SP. To this end, we performed an exploratory fMRI resting state study in which a group of participants (n = 88) performed a resting state with eyes closed and another group (n = 56) performed a resting state with eyes open. All participants completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire. Seed-based functional connectivity analyses were performed in the amygdala, hippocampus, and periaqueductal gray (PAG). Our results showed that the relationship between SP and left amygdala-precuneus and left hippocampus-precuneus functional connectivity was modulated by eye state. Moreover, in the eyes open group, SP was negatively related to the functional connectivity between the PAG and amygdala and between the PAG and left hippocampus, and it was positively related to the functional connectivity between the amygdala and hippocampus. Together, our results may suggest underlying differences in the connectivity between anxiety-related areas based on eye state, which in turn would affect the manifestation of individual differences in SP.
Collapse
|
170
|
Pincherle A, Rossi F, Jöhr J, Dunet V, Ryvlin P, Oddo M, Schiff N, Diserens K. Early discrimination of cognitive motor dissociation from disorders of consciousness: pitfalls and clues. J Neurol 2021; 268:178-188. [PMID: 32754829 PMCID: PMC7815538 DOI: 10.1007/s00415-020-10125-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
Bedside assessment of consciousness and awareness after a severe brain injury might be hampered by confounding clinical factors (i.e., pitfalls) interfering with the production of behavioral or motor responses to external stimuli. Despite the use of validated clinical scales, a high misdiagnosis rate is indeed observed. We retrospectively analyzed a cohort of 49 patients with severe brain injury admitted to an acute neuro-rehabilitation program. Patients' behavior was assessed using the Motor Behavior Tool and Coma Recovery Scale Revised. All patients underwent systematic assessment for pitfalls including polyneuropathy and/or myopathy and/or myelopathy, major cranial nerve palsies, non-convulsive status epilepticus, aphasia (expressive or comprehensive), cortical blindness, thalamic involvement and frontal akinetic syndrome. A high prevalence (75%) of pitfalls potentially interfering with sensory afference (polyneuropathy, myopathy, myelopathy, and sensory aphasia), motor efference (polyneuropathy, myopathy, motor aphasia, and frontal akinetic syndrome), and intrinsic brain activity (thalamic involvement and epilepsy) was found. Nonetheless, the motor behavior tool identified residual cognition (i.e. a cognitive motor dissociation condition) regardless of the presence of these pitfalls in 70% of the patients diagnosed as unresponsive using the Coma Recovery Scale Revised. On one hand, pitfalls might contribute to misdiagnosis. On the other, it could be argued that they are clues for diagnosing cognitive motor dissociation rather than true disorders of consciousness given their prominent effect on the sensory-motor input-output balance.
Collapse
Affiliation(s)
- Alessandro Pincherle
- Acute Neuro-rehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Bâtiment Champ de l'Air, Rue du Bugnon 21, 1011, Lausanne, Switzerland.
- Neurology Unit, Department of Medicine, Hopitaux Robert Schuman, Luxembourg, Luxembourg.
| | - Frederic Rossi
- Acute Neuro-rehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Bâtiment Champ de l'Air, Rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Jane Jöhr
- Acute Neuro-rehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Bâtiment Champ de l'Air, Rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe Ryvlin
- Acute Neuro-rehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Bâtiment Champ de l'Air, Rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Mauro Oddo
- Intensive Care Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Karin Diserens
- Acute Neuro-rehabilitation Unit, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Bâtiment Champ de l'Air, Rue du Bugnon 21, 1011, Lausanne, Switzerland
| |
Collapse
|
171
|
Jiang X, Ma X, Geng Y, Zhao Z, Zhou F, Zhao W, Yao S, Yang S, Zhao Z, Becker B, Kendrick KM. Intrinsic, dynamic and effective connectivity among large-scale brain networks modulated by oxytocin. Neuroimage 2020; 227:117668. [PMID: 33359350 DOI: 10.1016/j.neuroimage.2020.117668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/06/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The neuropeptide oxytocin is a key modulator of social-emotional behavior and its intranasal administration can influence the functional connectivity of brain networks involved in the control of attention, emotion and reward reported in humans. However, no studies have systematically investigated the effects of oxytocin on dynamic or directional aspects of functional connectivity. The present study employed a novel computational framework to investigate these latter aspects in 15 oxytocin-sensitive regions using data from randomized placebo-controlled between-subject resting state functional MRI studies incorporating 200 healthy subjects. In order to characterize the temporal dynamics, the 'temporal state' was defined as a temporal segment of the whole functional MRI signal which exhibited a similar functional interaction pattern among brain regions of interest. Results showed that while no significant effects of oxytocin were found on brain temporal state related characteristics (including temporal state switching frequency, probability of transitions between neighboring states, and averaged dwell time on each state) oxytocin extensively (n = 54 links) modulated effective connectivity among the 15 regions. The effects of oxytocin were primarily characterized by increased effective connectivity both between and within emotion, reward, salience, attention and social cognition processing networks and their interactions with the default mode network. Top-down control over emotional processing regions such as the amygdala was particularly affected. Oxytocin also increased effective homotopic interhemispheric connectivity in almost all these regions. Additionally, the effects of oxytocin on effective connectivity were sex-dependent, being more extensive in males. Overall, these findings suggest that modulatory effects of oxytocin on both within- and between-network interactions may underlie its functional influence on social-emotional behaviors, although in a sex-dependent manner. These findings may be of particular relevance to potential therapeutic use of oxytocin in psychiatric disorders associated with social dysfunction, such as autism spectrum disorder and schizophrenia, where directionality of treatment effects on causal interactions between networks may be of key importance .
Collapse
Affiliation(s)
- Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaole Ma
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yayuan Geng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiying Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shimin Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhongbo Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
172
|
Gao J, Skouras S, Leung HK, Wu BWY, Wu H, Chang C, Sik HH. Repetitive Religious Chanting Invokes Positive Emotional Schema to Counterbalance Fear: A Multi-Modal Functional and Structural MRI Study. Front Behav Neurosci 2020; 14:548856. [PMID: 33328917 PMCID: PMC7732428 DOI: 10.3389/fnbeh.2020.548856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction During hard times, religious chanting/praying is widely practiced to cope with negative or stressful emotions. While the underlying neural mechanism has not been investigated to a sufficient extent. A previous event-related potential study showed that religious chanting could significantly diminish the late-positive potential induced by negative stimuli. However, the regulatory role of subcortical brain regions, especially the amygdala, in this process remains unclear. This multi-modal MRI study aimed to further clarify the neural mechanism underlying the effectiveness of religious chanting for emotion regulation. Methodology Twenty-one participants were recruited for a multi-modal MRI study. Their age range was 40–52 years, 11 were female and all participants had at least 1 year of experience in religious chanting. The participants were asked to view neutral/fearful pictures while practicing religious chanting (i.e., chanting the name of Buddha Amitābha), non-religious chanting (i.e., chanting the name of Santa Claus), or no chanting. A 3.0 T Philips MRI scanner was used to collect the data and SPM12 was used to analyze the imaging data. Voxel-based morphometry (VBM) was used to explore the potential hemispheric asymmetries in practitioners. Results Compared to non-religious chanting and no chanting, higher brain activity was observed in several brain regions when participants performed religious chanting while viewing fearful images. These brain regions included the fusiform gyrus, left parietal lobule, and prefrontal cortex, as well as subcortical regions such as the amygdala, thalamus, and midbrain. Importantly, significantly more activity was observed in the left than in the right amygdala during religious chanting. VBM showed hemispheric asymmetries, mainly in the thalamus, putamen, hippocampus, amygdala, and cerebellum; areas related to skill learning and biased memory formation. Conclusion This preliminary study showed that repetitive religious chanting may induce strong brain activity, especially in response to stimuli with negative valence. Practicing religious chanting may structurally lateralize a network of brain areas involved in biased memory formation. These functional and structural results suggest that religious chanting helps to form a positive schema to counterbalance negative emotions. Future randomized control studies are necessary to confirm the neural mechanism related to religious chanting in coping with stress and negative emotions.
Collapse
Affiliation(s)
- Junling Gao
- Buddhism and Science Research Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong
| | - Stavros Skouras
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Hang Kin Leung
- Buddhism and Science Research Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong
| | - Bonnie Wai Yan Wu
- Buddhism and Science Research Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong
| | - Huijun Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Hin Hung Sik
- Buddhism and Science Research Lab, Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
173
|
Stroman PW, Warren HJM, Ioachim G, Powers JM, McNeil K. A comparison of the effectiveness of functional MRI analysis methods for pain research: The new normal. PLoS One 2020; 15:e0243723. [PMID: 33315886 PMCID: PMC7735591 DOI: 10.1371/journal.pone.0243723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Studies of the neural basis of human pain processing present many challenges because of the subjective and variable nature of pain, and the inaccessibility of the central nervous system. Neuroimaging methods, such as functional magnetic resonance imaging (fMRI), have provided the ability to investigate these neural processes, and yet commonly used analysis methods may not be optimally adapted for studies of pain. Here we present a comparison of model-driven and data-driven analysis methods, specifically for the study of human pain processing. Methods are tested using data from healthy control participants in two previous studies, with separate data sets spanning the brain, and the brainstem and spinal cord. Data are analyzed by fitting time-series responses to predicted BOLD responses in order to identify significantly responding regions (model-driven), as well as with connectivity analyses (data-driven) based on temporal correlations between responses in spatially separated regions, and with connectivity analyses based on structural equation modeling, allowing for multiple source regions to explain the signal variations in each target region. The results are assessed in terms of the amount of signal variance that can be explained in each region, and in terms of the regions and connections that are identified as having BOLD responses of interest. The characteristics of BOLD responses in identified regions are also investigated. The results demonstrate that data-driven approaches are more effective than model-driven approaches for fMRI studies of pain.
Collapse
Affiliation(s)
- Patrick W. Stroman
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Physics, Queen’s University, Kingston, Ontario, Canada
- * E-mail:
| | - Howard J. M. Warren
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Gabriela Ioachim
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Jocelyn M. Powers
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| | - Kaitlin McNeil
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Royal Military College of Canada, Kingston, Ontario, Canada
| |
Collapse
|
174
|
Diffuse neural coupling mediates complex network dynamics through the formation of quasi-critical brain states. Nat Commun 2020; 11:6337. [PMID: 33303766 PMCID: PMC7729877 DOI: 10.1038/s41467-020-19716-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023] Open
Abstract
The biological mechanisms that allow the brain to balance flexibility and integration remain poorly understood. A potential solution may lie in a unique aspect of neurobiology, which is that numerous brain systems contain diffuse synaptic connectivity. Here, we demonstrate that increasing diffuse cortical coupling within a validated biophysical corticothalamic model traverses the system through a quasi-critical regime in which spatial heterogeneities in input noise support transient critical dynamics in distributed subregions. The presence of quasi-critical states coincides with known signatures of complex, adaptive brain network dynamics. Finally, we demonstrate the presence of similar dynamic signatures in empirical whole-brain human neuroimaging data. Together, our results establish that modulating the balance between local and diffuse synaptic coupling in a thalamocortical model subtends the emergence of quasi-critical brain states that act to flexibly transition the brain between unique modes of information processing.
Collapse
|
175
|
Li Z, Zhou J, Lan L, Cheng S, Sun R, Gong Q, Wintermark M, Zeng F, Liang F. Concurrent brain structural and functional alterations in patients with migraine without aura: an fMRI study. J Headache Pain 2020; 21:141. [PMID: 33287704 PMCID: PMC7720576 DOI: 10.1186/s10194-020-01203-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES To explore the possible concurrent brain functional and structural alterations in patients with migraine without aura (MwoA) patients compared to healthy subjects (HS). METHODS Seventy-two MwoA patients and forty-six HS were recruited. 3D-T1 and resting state fMRI data were collected during the interictal period for MwoA and HS. Voxel-based morphometry (VBM) for structure analysis and regional homogeneity (Reho) for fMRI analysis were applied. The VBM and Reho maps were overlapped to determine a possible brain region with concurrent functional and structural alteration in MwoA patients. Further analysis of resting state functional connectivity (FC) alteration was applied with this brain region as the seed. RESULTS Compared with HS, MwoA patients showed decreased volume in the bilateral superior and inferior colliculus, periaqueductal gray matter (PAG), locus ceruleus, median raphe nuclei (MRN) and dorsal pons medulla junction. MwoA patients showed decreased Reho values in the middle occipital gyrus and inferior occipital gyrus, and increased Reho values in the MRN. Only a region in the MRN showed both structural and functional alteration in MwoA patients. Pearson correlation analysis showed that there was no association between volume or Reho values of the MRN and headache frequency, headache intensity, disease duration, self-rating anxiety scale or self-rating depression scale in MwoA patients. Resting state functional connectivity (FC) with the MRN as the seed showed that MwoA patients had increased FC between the MRN and PAG. CONCLUSIONS MRN are involved in the pathophysiology of migraine during the interictal period. This study may help to better understand the migraine symptoms. TRIAL REGISTRATION NCT01152632 . Registered 27 June 2010.
Collapse
Affiliation(s)
- Zhengjie Li
- Acupuncture & Tuina School / The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, Sichuan, China
- Radiology Department, Stanford University, Stanford, California, 94305, USA
| | - Jun Zhou
- Acupuncture & Tuina School / The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, Sichuan, China
| | - Lei Lan
- Acupuncture & Tuina School / The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, Sichuan, China
| | - Shirui Cheng
- Acupuncture & Tuina School / The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, Sichuan, China
| | - Ruirui Sun
- Acupuncture & Tuina School / The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Max Wintermark
- Radiology Department, Stanford University, Stanford, California, 94305, USA
| | - Fang Zeng
- Acupuncture & Tuina School / The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, Sichuan, China.
| | - Fanrong Liang
- Acupuncture & Tuina School / The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, Sichuan, China.
| |
Collapse
|
176
|
Abstract
The differential diagnosis for the comatose patient is includes structural abnormality, seizure, encephalitis, metabolic derangements, and toxicologic etiologies. Identifying and treating the underlying pathology in a timely manner is critical for the patient's outcome. We provide a structured approach to taking a history and performing a physical examination for this patient population. We discuss diagnostic testing and treatment methodologies for each of the common causes of coma. Our current understanding of the mechanisms of coma is insufficient to accurately predict the patient's clinical trajectory and more work needs to be done to investigate potential treatments for this often fatal disorder.
Collapse
Affiliation(s)
- Anna Karpenko
- Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | - Joshua Keegan
- Dartmouth Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
| |
Collapse
|
177
|
Charvet CJ, Palani A, Kabaria P, Takahashi E. Evolution of Brain Connections: Integrating Diffusion MR Tractography With Gene Expression Highlights Increased Corticocortical Projections in Primates. Cereb Cortex 2020; 29:5150-5165. [PMID: 30927350 DOI: 10.1093/cercor/bhz054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Diffusion MR tractography permits investigating the 3D structure of cortical pathways as interwoven paths across the entire brain. We use high-resolution scans from diffusion spectrum imaging and high angular resolution diffusion imaging to investigate the evolution of cortical pathways within the euarchontoglire (i.e., primates, rodents) lineage. More specifically, we compare cortical fiber pathways between macaques (Macaca mulatta), marmosets (Callithrix jachus), and rodents (mice, Mus musculus). We integrate these observations with comparative analyses of Neurofilament heavy polypeptide (NEFH) expression across the cortex of mice and primates. We chose these species because their phylogenetic position serves to trace the early evolutionary history of the human brain. Our comparative analysis from diffusion MR tractography, cortical white matter scaling, and NEFH expression demonstrates that the examined primates deviate from mice in possessing increased long-range cross-cortical projections, many of which course across the anterior to posterior axis of the cortex. Our study shows that integrating gene expression data with diffusion MR data is an effective approach in identifying variation in connectivity patterns between species. The expansion of corticocortical pathways and increased anterior to posterior cortical integration can be traced back to an extension of neurogenetic schedules during development in primates.
Collapse
Affiliation(s)
| | - Arthi Palani
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Medical Sciences in the College of Arts and Sciences, Boston University, Boston, MA 02215, USA
| | - Priya Kabaria
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
178
|
Zhang S, Zhornitsky S, Wang W, Dhingra I, Le TM, Li CSR. Cue-elicited functional connectivity of the periaqueductal gray and tonic cocaine craving. Drug Alcohol Depend 2020; 216:108240. [PMID: 32853997 PMCID: PMC7606798 DOI: 10.1016/j.drugalcdep.2020.108240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Withdrawal from chronic cocaine use leads to anxiety and dysphoria that may perpetuate habitual drug use. The pain circuit is widely implicated in the processing and manifestations of negative emotions. Numerous studies have focused on characterizing reward circuit dysfunction but relatively little is known about the pain circuit response during cocaine withdrawal. METHODS Here we examined the activity and connectivity of the periaqueductal gray (PAG), a hub of the pain circuit, during cocaine cue exposure in 52 recently abstinent cocaine dependent participants (CD, 42 men). Imaging data were processed with published routines, and the results were evaluated at a corrected threshold. RESULTS CD showed higher activation of the PAG and connectivity of the PAG with the ventromedial prefrontal cortex (vmPFC) during cocaine as compared to neutral cue exposure. PAG-vmPFC connectivity was positively and negatively correlated with tonic cocaine craving, as assessed by the Cocaine Craving Questionnaire, in male and female CD, respectively, and the sex difference was confirmed by a slope test. Granger causality analyses showed that the PAG Granger caused vmPFC time series in men and the reverse was true in women, substantiating sex differences in the directional interactions of the PAG and vmPFC. CONCLUSION The findings provide the first evidence in humans implicating the PAG circuit in cocaine withdrawal and cocaine craving and advance our understanding of the role of the pain circuit and negative reinforcement in sustaining habitual drug use in cocaine addiction.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Thang M. Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT,Department of Neuroscience, Yale University School of Medicine, New Haven, CT,Interdepartmental Neuroscience Program, Yale University, New Haven, CT
| |
Collapse
|
179
|
Parsons N, Outsikas A, Parish A, Clohesy R, Thakkar N, D'Aprano F, Toomey F, Advani S, Poudel G. Modelling the Anatomical Distribution of Neurological Events in COVID-19 Patients: A Systematic Review. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33106811 DOI: 10.1101/2020.10.21.20215640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Neuropathology caused by the coronavirus disease 2019 (COVID-19) has been reported across several studies. The characterisation of the spatial distribution of these pathology remains critical to assess long and short-term neurological sequelae of COVID-19. To this end, Mathematical models can be used to characterise the location and aetiologies underlying COVID-19-related neuropathology. Method We performed a systematic review of the literature to quantify the locations of small neurological events identified with magnetic resonance imaging (MRI) among COVID-19 patients. Neurological events were localised into the Desikan-Killiany grey and white matter atlases. A mathematical network diffusion model was then used to test whether the spatial distribution of neurological events could be explained via a linear spread through the structural connectome of the brain. Findings We identified 35 articles consisting of 123 patients that assessed the spatial distribution of small neurological events among COVID-19 patients. Of these, 91 patients had grey matter changes, 95 patients had white matter changes and 72 patients had confirmed cerebral microbleeds. White matter events were observed within 14 of 42 white matter bundles from the IIT atlas. The highest proportions (26%) of events were observed within the bilateral corticospinal tracts. The splenium and middle of the corpus callosum were affected in 14% and 9% of the cases respectively. Grey matter events were spatially distributed in the 41 brain regions within the Desikan-Killiany atlas. The highest proportions (∼10%) of the events were observed in areas including the bilateral superior temporal, precentral, and lateral occipital cortices. Sub-cortical events were most frequently identified in the Pallidum. The application of a mathematical network diffusion model suggested that the spatial pattern of the small neurological events in COVID-19 can be modelled with a linear diffusion of spread from epicentres in the bilateral cerebellum and basal ganglia (Pearson's r =0.41, p <0.001, corrected). Interpretation To our knowledge, this is the first study to systematically characterise the spatial distribution of small neurological events in COVID-19 patients and test whether the spatial distribution of these events can be explained by a linear diffusion spread model. The location of neurological events is consistent with commonly identified neurological symptoms including alterations in conscious state among COVID-19 patients that require brain imaging. Given the prevalence and severity of these manifestations, clinicians should carefully monitor neurological symptoms within COVID-19 patients and their potential long-term sequelae .
Collapse
|
180
|
The relationship between consciousness and the ascending reticular activating system in patients with traumatic brain injury. BMC Neurol 2020; 20:375. [PMID: 33054716 PMCID: PMC7556972 DOI: 10.1186/s12883-020-01942-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background We investigated the relationship between consciousness and the ascending reticular activating system (ARAS) by using diffusion tensor tractography (DTT) in patients with traumatic brain injury (TBI). Methods Twenty-six patients with TBI and 13 healthy control subjects were recruited for this study. Glasgow Coma Scale (GCS) scores were used for evaluation of subject consciousness state at the chronic stage of TBI (at DTT scanning), According to the GCS score, the patient group was divided into two subgroups: A (14 patients;impaired consciousness: GCS score < 15, and B (12 patients;intact consciousness;GCS score = 15). Fractional anisotropy (FA) and tract volume (TV) values were assessed in the lower dorsal and upper ARAS. Results The FA values of the lower dorsal ARAS and the upper ARAS in patient subgroup A were significantly lower than those in patient subgroup B and the control group(p < 0.05). However, the FA and TV values for the lower dorsal ARAS and the upper ARAS were not significantly different between patient subgroup B and the control group(p > 0.05). The FA value of the lower dorsal ARAS(r = 0.473,p < 0.05) and the TV of upper ARAS(r = 0.484,p < 0.05) had moderate positive correlations with the GCS score. The FA value of the upper ARAS had a strong positive correlation with the GCS score of the patient group(r = 0.780,p < 0.05). Conclusions We detected a close relationship between consciousness at the chronic stage of TBI and injuries of the lower dorsal and upper ARAS (especially, the upper ARAS) in patients who showed impaired consciousness at the onset of TBI. We believe that our results can be useful during the development of therapeutic strategies for patients with impaired consciousness following TBI. Trial registration YUMC 2019–06–032-003. Retrospectively registered 06 Jun 2020.
Collapse
|
181
|
Edlow BL, Barra ME, Zhou DW, Foulkes AS, Snider SB, Threlkeld ZD, Chakravarty S, Kirsch JE, Chan ST, Meisler SL, Bleck TP, Fins JJ, Giacino JT, Hochberg LR, Solt K, Brown EN, Bodien YG. Personalized Connectome Mapping to Guide Targeted Therapy and Promote Recovery of Consciousness in the Intensive Care Unit. Neurocrit Care 2020; 33:364-375. [PMID: 32794142 PMCID: PMC8336723 DOI: 10.1007/s12028-020-01062-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/18/2020] [Indexed: 01/05/2023]
Abstract
There are currently no therapies proven to promote early recovery of consciousness in patients with severe brain injuries in the intensive care unit (ICU). For patients whose families face time-sensitive, life-or-death decisions, treatments that promote recovery of consciousness are needed to reduce the likelihood of premature withdrawal of life-sustaining therapy, facilitate autonomous self-expression, and increase access to rehabilitative care. Here, we present the Connectome-based Clinical Trial Platform (CCTP), a new paradigm for developing and testing targeted therapies that promote early recovery of consciousness in the ICU. We report the protocol for STIMPACT (Stimulant Therapy Targeted to Individualized Connectivity Maps to Promote ReACTivation of Consciousness), a CCTP-based trial in which intravenous methylphenidate will be used for targeted stimulation of dopaminergic circuits within the subcortical ascending arousal network (ClinicalTrials.gov NCT03814356). The scientific premise of the CCTP and the STIMPACT trial is that personalized brain network mapping in the ICU can identify patients whose connectomes are amenable to neuromodulation. Phase 1 of the STIMPACT trial is an open-label, safety and dose-finding study in 22 patients with disorders of consciousness caused by acute severe traumatic brain injury. Patients in Phase 1 will receive escalating daily doses (0.5-2.0 mg/kg) of intravenous methylphenidate over a 4-day period and will undergo resting-state functional magnetic resonance imaging and electroencephalography to evaluate the drug's pharmacodynamic properties. The primary outcome measure for Phase 1 relates to safety: the number of drug-related adverse events at each dose. Secondary outcome measures pertain to pharmacokinetics and pharmacodynamics: (1) time to maximal serum concentration; (2) serum half-life; (3) effect of the highest tolerated dose on resting-state functional MRI biomarkers of connectivity; and (4) effect of each dose on EEG biomarkers of cerebral cortical function. Predetermined safety and pharmacodynamic criteria must be fulfilled in Phase 1 to proceed to Phase 2A. Pharmacokinetic data from Phase 1 will also inform the study design of Phase 2A, where we will test the hypothesis that personalized connectome maps predict therapeutic responses to intravenous methylphenidate. Likewise, findings from Phase 2A will inform the design of Phase 2B, where we plan to enroll patients based on their personalized connectome maps. By selecting patients for clinical trials based on a principled, mechanistic assessment of their neuroanatomic potential for a therapeutic response, the CCTP paradigm and the STIMPACT trial have the potential to transform the therapeutic landscape in the ICU and improve outcomes for patients with severe brain injuries.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Megan E Barra
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA
| | - David W Zhou
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrea S Foulkes
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel B Snider
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary D Threlkeld
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA, USA
| | - Sourish Chakravarty
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John E Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Suk-Tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Steven L Meisler
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas P Bleck
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph J Fins
- Division of Medical Ethics and Consortium for the Advanced Study of Brain Injury (CASBI), Weill Cornell Medical College, New York, NY, USA
- The Rockefeller University, New York, NY, USA
- Solomon Center for Health Law and Policy, Yale Law School, New Haven, CT, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Leigh R Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Veterans Affairs RR&D Center for Neurorestoration and Neurotechnology, VA Medical Center, Providence, RI, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yelena G Bodien
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
182
|
Rushmore RJ, Wilson-Braun P, Papadimitriou G, Ng I, Rathi Y, Zhang F, O’Donnell LJ, Kubicki M, Bouix S, Yeterian E, Lemaire JJ, Calabrese E, Johnson GA, Kikinis R, Makris N. 3D Exploration of the Brainstem in 50-Micron Resolution MRI. Front Neuroanat 2020; 14:40. [PMID: 33071761 PMCID: PMC7538715 DOI: 10.3389/fnana.2020.00040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
The brainstem, a structure of vital importance in mammals, is currently becoming a principal focus in cognitive, affective, and clinical neuroscience. Midbrain, pontine and medullary structures serve as the conduit for signals between the forebrain and spinal cord, are the epicenter of cranial nerve-circuits and systems, and subserve such integrative functions as consciousness, emotional processing, pain, and motivation. In this study, we parcellated the nuclear masses and the principal fiber pathways that were visible in a high-resolution T2-weighted MRI dataset of 50-micron isotropic voxels of a postmortem human brainstem. Based on this analysis, we generated a detailed map of the human brainstem. To assess the validity of our maps, we compared our observations with histological maps of traditional human brainstem atlases. Given the unique capability of MRI-based morphometric analysis in generating and preserving the morphology of 3D objects from individual 2D sections, we reconstructed the motor, sensory and integrative neural systems of the brainstem and rendered them in 3D representations. We anticipate the utilization of these maps by the neuroimaging community for applications in basic neuroscience as well as in neurology, psychiatry, and neurosurgery, due to their versatile computational nature in 2D and 3D representations in a publicly available capacity.
Collapse
Affiliation(s)
- Richard Jarrett Rushmore
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Peter Wilson-Braun
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - George Papadimitriou
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Isaac Ng
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
| | - Yogesh Rathi
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Fan Zhang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory for Mathematics and Imaging, Brigham and Women’s Hospital, Boston, MA, United States
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lauren Jean O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Laboratory for Mathematics and Imaging, Brigham and Women’s Hospital, Boston, MA, United States
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Marek Kubicki
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
| | - Edward Yeterian
- Department of Psychology, Colby College, Waterville, ME, United States
| | - Jean-Jacques Lemaire
- Service de Neurochirurgie, CHU Clermont-Ferrand, Universite Clermont Auvergne, CNRS, SIGMA Clermont, Clermont-Ferrand, France
| | - Evan Calabrese
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States
| | - G. Allan Johnson
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States
| | - Ron Kikinis
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women’s Hospital, Boston, MA, United States
- Computer Science Department, University of Bremen, Institutsleiter, Fraunhofer MEVIS, Bremen, Germany
| | - Nikos Makris
- Departments of Psychiatry and Neurology, Center for Morphometric Analysis, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Psychiatric Neuroimaging Laboratory, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
183
|
Martino M, Magioncalda P, El Mendili MM, Droby A, Paduri S, Schiavi S, Petracca M, Inglese M. Depression is associated with disconnection of neurotransmitter-related nuclei in multiple sclerosis. Mult Scler 2020; 27:1102-1111. [PMID: 32907463 DOI: 10.1177/1352458520948214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Depression is frequently associated with multiple sclerosis (MS). However, the biological background underlying such association is poorly understood. OBJECTIVE Investigating the functional connections of neurotransmitter-related brainstem nuclei, along with their relationship with white matter (WM) microstructure, in MS patients with depressive symptomatology (MS-D) and without depressive symptomatology (MS-nD). METHODS Combined resting-state functional magnetic resonance imaging (fMRI) and diffusion-weighted MRI (dMRI) study on 50 MS patients, including 19 MS-D and 31 MS-nD patients, along with 37 healthy controls (HC). Main analyses performed are (1) comparison between groups of raphe nuclei (RN)-related functional connectivity (FC); (2) correlation between RN-related FC and whole brain dMRI-derived fractional anisotropy (FA) map; and (3) comparison between groups of FA in the RN-related WM area. RESULTS (1) RN-related FC was reduced in MS-D when compared to MS-nD and HC; (2) RN-related FC positively correlated with FA in a WM cluster mainly encompassing thalamic/basal ganglia regions, including the fornix; and (3) FA in such WM area was reduced in MS-D. CONCLUSION Depressive symptomatology in MS is specifically associated to a functional disconnection of neurotransmitter-related nuclei, which in turn may be traced to a distinct spatial pattern of WM alterations mainly involving the limbic network.
Collapse
Affiliation(s)
- Matteo Martino
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Magioncalda
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan/Brain and Consciousness Research Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan/Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | | | - Amgad Droby
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swetha Paduri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy/Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Section of Neurology, University of Genoa, Genoa, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA/Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Neurology, University of Genoa, Genoa, Italy/Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| |
Collapse
|
184
|
Washington SD, Rayhan RU, Garner R, Provenzano D, Zajur K, Addiego FM, VanMeter JW, Baraniuk JN. Exercise alters brain activation in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Commun 2020; 2:fcaa070. [PMID: 32954325 PMCID: PMC7425336 DOI: 10.1093/braincomms/fcaa070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Gulf War Illness affects 25-30% of American veterans deployed to the 1990-91 Persian Gulf War and is characterized by cognitive post-exertional malaise following physical effort. Gulf War Illness remains controversial since cognitive post-exertional malaise is also present in the more common Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. An objective dissociation between neural substrates for cognitive post-exertional malaise in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome would represent a biological basis for diagnostically distinguishing these two illnesses. Here, we used functional magnetic resonance imaging to measure neural activity in healthy controls and patients with Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome during an N-back working memory task both before and after exercise. Whole brain activation during working memory (2-Back > 0-Back) was equal between groups prior to exercise. Exercise had no effect on neural activity in healthy controls yet caused deactivation within dorsal midbrain and cerebellar vermis in Gulf War Illness relative to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients. Further, exercise caused increased activation among Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients within the dorsal midbrain, left operculo-insular cortex (Rolandic operculum) and right middle insula. These regions-of-interest underlie threat assessment, pain, interoception, negative emotion and vigilant attention. As they only emerge post-exercise, these regional differences likely represent neural substrates of cognitive post-exertional malaise useful for developing distinct diagnostic criteria for Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
Collapse
Affiliation(s)
- Stuart D Washington
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - Rakib U Rayhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Adams Building Rm 2420, 520 W Street NW, Washington, DC 20059, USA
| | - Richard Garner
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - Destie Provenzano
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - Kristina Zajur
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - Florencia Martinez Addiego
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - John W VanMeter
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA.,Department of Physiology and Biophysics, Howard University College of Medicine, Adams Building Rm 2420, 520 W Street NW, Washington, DC 20059, USA.,Center for Functional and Molecular Imaging, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - James N Baraniuk
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| |
Collapse
|
185
|
Edlow BL, Snider SB. Author response: Disruption of the ascending arousal network in acute traumatic disorders of consciousness. Neurology 2020; 95:234. [DOI: 10.1212/wnl.0000000000010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
186
|
Tang H, Zhu Q, Li W, Qin S, Gong Y, Wang H, Shioda S, Li S, Huang J, Liu B, Fang Y, Liu Y, Wang S, Guo Y, Xia Q, Guo Y, Xu Z. Neurophysiology and Treatment of Disorders of Consciousness Induced by Traumatic Brain Injury: Orexin Signaling as a Potential Therapeutic Target. Curr Pharm Des 2020; 25:4208-4220. [PMID: 31663471 DOI: 10.2174/1381612825666191029101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause disorders of consciousness (DOC) by impairing the neuronal circuits of the ascending reticular activating system (ARAS) structures, including the hypothalamus, which are responsible for the maintenance of the wakefulness and awareness. However, the effectiveness of drugs targeting ARAS activation is still inadequate, and novel therapeutic modalities are urgently needed. METHODS The goal of this work is to describe the neural loops of wakefulness, and explain how these elements participate in DOC, with emphasis on the identification of potential new therapeutic options for DOC induced by TBI. RESULTS Hypothalamus has been identified as a sleep/wake center, and its anterior and posterior regions have diverse roles in the regulation of the sleep/wake function. In particular, the posterior hypothalamus (PH) possesses several types of neurons, including the orexin neurons in the lateral hypothalamus (LH) with widespread projections to other wakefulness-related regions of the brain. Orexins have been known to affect feeding and appetite, and recently their profound effect on sleep disorders and DOC has been identified. Orexin antagonists are used for the treatment of insomnia, and orexin agonists can be used for narcolepsy. Additionally, several studies demonstrated that the agonists of orexin might be effective in the treatment of DOC, providing novel therapeutic opportunities in this field. CONCLUSION The hypothalamic-centered orexin has been adopted as the point of entry into the system of consciousness control, and modulators of orexin signaling opened several therapeutic opportunities for the treatment of DOC.
Collapse
Affiliation(s)
- Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiumei Zhu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Wang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xia
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
187
|
Le TM, Zhornitsky S, Zhang S, Li CSR. Pain and reward circuits antagonistically modulate alcohol expectancy to regulate drinking. Transl Psychiatry 2020; 10:220. [PMID: 32636394 PMCID: PMC7341762 DOI: 10.1038/s41398-020-00909-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 02/02/2023] Open
Abstract
Expectancy of physical and social pleasure (PSP) promotes excessive drinking despite the potential aversive effects of misuse, suggesting an imbalance in the response to reward and pain in alcohol seeking. Here, we investigated the competing roles of the reward and pain circuits in PSP expectancy and problem drinking in humans. Using fMRI data during resting (n = 180) and during alcohol cue exposure (n = 71), we examined the antagonistic effects of the reward-related medial orbitofrontal cortex (mOFC) and pain-related periaqueductal gray (PAG) connectivities on PSP expectancy and drinking severity. The two regions' connectivity maps and strengths were characterized to assess their shared substrates and net relationship with PSP expectancy. We evaluated mediation and path models to further delineate how mOFC and PAG connectivities interacted through the shared substrates to differentially impact expectancy and alcohol use. During resting, whole-brain regressions showed mOFC connectivity in positive and PAG connectivity in negative association with PSP scores, with convergence in the precentral gyrus (PrCG). Notably, greater PAG-PrCG relative to mOFC-PrCG connectivity strength predicted lower PSP expectancy. During the alcohol cue exposure task, the net strength of the PAG vs. mOFC cue-elicited connectivity with the occipital cortex again negatively predicted PSP expectancy. Finally, mediation and path models revealed that the PAG and mOFC connectivities indirectly and antagonistically modulated problem drinking via their opposing influences on expectancy and craving. Thus, the pain and reward circuits exhibit functional antagonism such that the mOFC connectivity increases expectancy of drinking pleasure whereas the PAG serves to counter that effect.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
188
|
Serra L, Scocchia M, Meola G, D'Amelio M, Bruschini M, Silvestri G, Petrucci A, Di Domenico C, Caltagirone C, Koch G, Cercignani M, Petrosini L, Bozzali M. Ventral tegmental area dysfunction affects decision-making in patients with myotonic dystrophy type-1. Cortex 2020; 128:192-202. [DOI: 10.1016/j.cortex.2020.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/16/2019] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
|
189
|
Dexmedetomidine Activation of Dopamine Neurons in the Ventral Tegmental Area Attenuates the Depth of Sedation in Mice. Anesthesiology 2020; 133:377-392. [DOI: 10.1097/aln.0000000000003347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background
Dexmedetomidine induces a sedative response that is associated with rapid arousal. To elucidate the underlying mechanisms, the authors hypothesized that dexmedetomidine increases the activity of dopaminergic neurons in the ventral tegmental area, and that this action contributes to the unique sedative properties of dexmedetomidine.
Methods
Only male mice were used. The activity of ventral tegmental area dopamine neurons was measured by a genetically encoded Ca2+ indicator and patch-clamp recording. Dopamine neurotransmitter dynamics in the medial prefrontal cortex and nucleus accumbens were measured by a genetically encoded dopamine sensor. Ventral tegmental area dopamine neurons were inhibited or activated by a chemogenetic approach, and the depth of sedation was estimated by electroencephalography.
Results
Ca2+ signals in dopamine neurons in the ventral tegmental area increased after intraperitoneal injection of dexmedetomidine (40 μg/kg; dexmedetomidine, 16.917 [14.882; 21.748], median [25%; 75%], vs. saline, –0.745 [–1.547; 0.359], normalized data, P = 0.001; n = 6 mice). Dopamine transmission increased in the medial prefrontal cortex after intraperitoneal injection of dexmedetomidine (40 μg/kg; dexmedetomidine, 10.812 [9.713; 15.104], median [25%; 75%], vs. saline, –0.498 [–0.664; –0.355], normalized data, P = 0.001; n = 6 mice) and in the nucleus accumbens (dexmedetomidine, 8.543 [7.135; 11.828], median [25%; 75%], vs. saline, –0.329 [–1.220; –0.047], normalized data, P = 0.001; n = 6 mice). Chemogenetic inhibition or activation of ventral tegmental area dopamine neurons increased or decreased slow waves, respectively, after intraperitoneal injection of dexmedetomidine (40 μg/kg; delta wave: two-way repeated measures ANOVA, F[2, 33] = 8.016, P = 0.002; n = 12 mice; theta wave: two-way repeated measures ANOVA, F[2, 33] = 22.800, P < 0.0001; n = 12 mice).
Conclusions
Dexmedetomidine activates dopamine neurons in the ventral tegmental area and increases dopamine concentrations in the related forebrain projection areas. This mechanism may explain rapid arousability upon dexmedetomidine sedation.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
190
|
Wilson H, Pagano G, de Natale ER, Mansur A, Caminiti SP, Polychronis S, Middleton LT, Price G, Schmidt KF, Gunn RN, Rabiner EA, Politis M. Mitochondrial Complex 1, Sigma 1, and Synaptic Vesicle 2A in Early Drug-Naive Parkinson's Disease. Mov Disord 2020; 35:1416-1427. [PMID: 32347983 DOI: 10.1002/mds.28064] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dysfunction of mitochondrial energy generation may contribute to neurodegeneration, leading to synaptic loss in Parkinson's disease (PD). The objective of this study was to find cross-sectional and longitudinal changes in PET markers of synaptic vesicle protein 2A, sigma 1 receptor, and mitochondrial complex 1 in drug-naive PD patients. METHODS Twelve early drug-naive PD patients and 16 healthy controls underwent a 3-Tesla MRI and PET imaging to quantify volume of distribution of [11 C]UCB-J, [11 C]SA-4503, and [18 F]BCPP-EF for synaptic vesicle protein 2A, sigma 1 receptor, and mitochondrial complex 1, respectively. Nine PD patients completed approximately 1-year follow-up assessments. RESULTS Reduced [11 C]UCB-J volume of distribution in the caudate, putamen, thalamus, brain stem, and dorsal raphe and across cortical regions was observed in drug-naive PD patients compared with healthy controls. [11 C]UCB-J volume of distribution was reduced in the locus coeruleus and substantia nigra but did not reach statistical significance. No significant differences were found in [11 C]SA-4503 and [18 F]BCPP-EF volume of distribution in PD compared with healthy controls. Lower brain stem [11 C]UCB-J volume of distribution correlated with Movement Disorder Society Unified Parkinson's Disease Rating Scale part III and total scores. No significant longitudinal changes were identified in PD patients at follow-up compared with baseline. CONCLUSIONS Our findings represent the first in vivo evidence of mitochondrial, endoplasmic reticulum, and synaptic dysfunction in drug-naive PD patients. Synaptic dysfunction likely occurs early in disease pathophysiology and has relevance to symptomatology. Mitochondrial complex 1 and sigma 1 receptor pathology warrants further investigations in PD. Studies in larger cohorts with longer follow-up will determine the validity of these PET markers to track disease progression. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.,Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.,Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Ayla Mansur
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, London, UK.,Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| | - Silvia Paola Caminiti
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sotirios Polychronis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Lefkos T Middleton
- School of Public Health, Imperial College London, UK.,Public Health Directorate, Imperial College NHS Healthcare Trust, London, UK.,MINDMAPS Consortium, London, UK
| | - Geraint Price
- School of Public Health, Imperial College London, UK.,MINDMAPS Consortium, London, UK
| | | | - Roger N Gunn
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, London, UK.,Division of Brain Sciences, Department of Medicine, Imperial College London, UK.,MINDMAPS Consortium, London, UK
| | - Eugenii A Rabiner
- Invicro, Centre for Imaging Sciences, Hammersmith Hospital, London, UK.,MINDMAPS Consortium, London, UK.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, University of Exeter Medical School, London, UK.,Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.,MINDMAPS Consortium, London, UK
| |
Collapse
|
191
|
Snider SB, Hsu J, Darby RR, Cooke D, Fischer D, Cohen AL, Grafman JH, Fox MD. Cortical lesions causing loss of consciousness are anticorrelated with the dorsal brainstem. Hum Brain Mapp 2020. [DOI: 10.1002/hbm.24892#.xho8mgjbvfa.twitter] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Samuel B. Snider
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's HospitalHarvard Medical School Boston Massachusetts
| | - Joey Hsu
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
| | - R. Ryan Darby
- Department of NeurologyVanderbilt University Medical Center Nashville Tennessee
| | - Danielle Cooke
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
| | - David Fischer
- Departments of Neurology, Massachusetts General Hospital and Brigham and Women's HospitalHarvard Medical School Boston Massachusetts
| | - Alexander L. Cohen
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
- Department of NeurologyBoston Children's Hospital, Harvard Medical School Boston Massachusetts
| | - Jordan H. Grafman
- Rehabilitation Institute of Chicago Chicago Illinois
- Department of Physical Medicine and Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine and Department of Psychology, Weinberg College of Arts and SciencesNorthwestern University Chicago Illinois
| | - Michael D. Fox
- Berenson‐Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of NeurologyBeth Israel Deaconess Medical Center Boston Massachusetts
- Department of Neurology, Massachusetts General HospitalHarvard Medical School Boston Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging Charlestown Massachusetts
| |
Collapse
|
192
|
Abstract
Remarkable progress has come from whole-brain models linking anatomy and function. Paradoxically, it is not clear how a neuronal dynamical system running in the fixed human anatomical connectome can give rise to the rich changes in the functional repertoire associated with human brain function, which is impossible to explain through long-term plasticity. Neuromodulation evolved to allow for such flexibility by dynamically updating the effectivity of the fixed anatomical connectivity. Here, we introduce a theoretical framework modeling the dynamical mutual coupling between the neuronal and neurotransmitter systems. We demonstrate that this framework is crucial to advance our understanding of whole-brain dynamics by bidirectional coupling of the two systems through combining multimodal neuroimaging data (diffusion magnetic resonance imaging [dMRI], functional magnetic resonance imaging [fMRI], and positron electron tomography [PET]) to explain the functional effects of specific serotoninergic receptor (5-HT2AR) stimulation with psilocybin in healthy humans. This advance provides an understanding of why psilocybin is showing considerable promise as a therapeutic intervention for neuropsychiatric disorders including depression, anxiety, and addiction. Overall, these insights demonstrate that the whole-brain mutual coupling between the neuronal and the neurotransmission systems is essential for understanding the remarkable flexibility of human brain function despite having to rely on fixed anatomical connectivity.
Collapse
|
193
|
The Relation Between Loss of Consciousness, Severity of Traumatic Brain Injury, and Injury of Ascending Reticular Activating System in Patients With Traumatic Brain Injury. Am J Phys Med Rehabil 2020; 98:1067-1071. [PMID: 31206359 DOI: 10.1097/phm.0000000000001243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Loss of consciousness is an indicator of the severity of traumatic brain injury and the ascending reticular activating system has been considered as a main structure for consciousness. However, no study on the relation between loss of consciousness and ascending reticular activating system injury in traumatic brain injury has been reported. We investigated the relation between loss of consciousness, severity of traumatic brain injury, and ascending reticular activating system injury using diffusion tensor tractography. DESIGN One hundred twenty patients were recruited. Three components of ascending reticular activating system, fractional anisotropy, and tract volume were measured. RESULTS In lower dorsal and ventral ascending reticular activating system, fractional anisotropy and tract volume value in mild group were higher than those of moderate and severe groups, and there was no difference between moderate and severe groups. In upper ascending reticular activating system, fractional anisotropy value in mild group was higher than in moderate group, and it was higher than in moderate group than in severe group. Tract volume value in mild group was higher than in severe group. Loss of consciousness showed moderate negative correlations with tract volume value of lower dorsal ascending reticular activating system (r = -0.348), fractional anisotropy value of lower ventral ascending reticular activating system (r = -0.343), and fractional anisotropy value of upper ascending reticular activating system (r = -0.416). CONCLUSIONS Injury severity was different among the three traumatic brain injury groups in upper ascending reticular activating system but did not differ between moderate and severe groups in lower dorsal and ventral ascending reticular activating system.
Collapse
|
194
|
Avecillas-Chasin JM, Honey CR. Modulation of Nigrofugal and Pallidofugal Pathways in Deep Brain Stimulation for Parkinson Disease. Neurosurgery 2020; 86:E387-E397. [PMID: 31832650 DOI: 10.1093/neuros/nyz544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/13/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established surgical therapy for patients with Parkinson disease (PD). OBJECTIVE To define the role of adjacent white matter stimulation in the effectiveness of STN-DBS. METHODS We retrospectively evaluated 43 patients with PD who received bilateral STN-DBS. The volumes of activated tissue were analyzed to obtain significant stimulation clusters predictive of 4 clinical outcomes: improvements in bradykinesia, rigidity, tremor, and reduction of dopaminergic medication. Tractography of the nigrofugal and pallidofugal pathways was performed. The significant clusters were used to calculate the involvement of the nigrofugal and pallidofugal pathways and the STN. RESULTS The clusters predictive of rigidity and tremor improvement were dorsal to the STN with most of the clusters outside of the STN. These clusters preferentially involved the pallidofugal pathways. The cluster predictive of bradykinesia improvement was located in the central part of the STN with an extension outside of the STN. The cluster predictive of dopaminergic medication reduction was located ventrolateral and caudal to the STN. These clusters preferentially involved the nigrofugal pathways. CONCLUSION Improvements in rigidity and tremor mainly involved the pallidofugal pathways dorsal to the STN. Improvement in bradykinesia mainly involved the central part of the STN and the nigrofugal pathways ventrolateral to the STN. Maximal reduction in dopaminergic medication following STN-DBS was associated with an exclusive involvement of the nigrofugal pathways.
Collapse
Affiliation(s)
| | - Christopher R Honey
- Department of Surgery, Division of Neurosurgery, University of British Columbia, Vancouver, Canada
| |
Collapse
|
195
|
The Neurofunctional Basis of Affective Startle Modulation in Humans: Evidence From Combined Facial Electromyography and Functional Magnetic Resonance Imaging. Biol Psychiatry 2020; 87:548-558. [PMID: 31547934 DOI: 10.1016/j.biopsych.2019.07.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND The startle eye-blink is the cross-species translational tool to study defensive behavior in affective neuroscience with relevance to a broad range of neuropsychiatric conditions. It makes use of the startle reflex, a defensive response elicited by an immediate, unexpected sensory event, which is potentiated when evoked during threat and inhibited during safety. In contrast to skin conductance responses or pupil dilation, modulation of the startle reflex is valence specific. Rodent models implicate a modulatory pathway centering on the brainstem (i.e., nucleus reticularis pontis caudalis) and the centromedial amygdala as key hubs for flexibly integrating valence information into differential startle magnitude. Technical advances now allow for the investigation of this pathway using combined facial electromyography and functional magnetic resonance imaging in humans. METHODS We employed a multimethodological approach combining trial-by-trial facial eye-blink startle electromyography and brainstem- and amygdala-specific functional magnetic resonance imaging in humans. Validating the robustness and reproducibility of our findings, we provide evidence from two different paradigms (fear-potentiated startle, affect-modulated startle) in two independent studies (N = 43 and N = 55). RESULTS We provide key evidence for a conserved neural pathway for acoustic startle modulation between humans and rodents. Furthermore, we provide the crucial direct link between electromyography startle eye-blink magnitude and neural response strength. Finally, we demonstrate a dissociation between arousal-specific amygdala responding and triggered valence-specific amygdala responding. CONCLUSIONS We provide neurobiologically based evidence for the strong translational value of startle responding and argue that startle-evoked amygdala responding and its affective modulation may hold promise as an important novel tool for affective neuroscience and its clinical translation.
Collapse
|
196
|
Chen MC, Sorooshyari SK, Lin JS, Lu J. A Layered Control Architecture of Sleep and Arousal. Front Comput Neurosci 2020; 14:8. [PMID: 32116622 PMCID: PMC7028742 DOI: 10.3389/fncom.2020.00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep and wakefulness are promoted not by a single neural pathway but via wake or sleep-promoting nodes distributed across layers of the brain. We equate each layer with a brain region in proposing a layered subsumption model for arousal based on a computational architecture. Beyond the brainstem the layers include the diencephalon (hypothalamus, thalamus), basal ganglia, and cortex. In light of existing empirical evidence, we propose that each layer have sleep and wake computations driven by similar high-level architecture and processing units. Specifically, an interconnected wake-promoting system is suggested as driving arousal in each brain layer with the processing converging to produce the features of wakefulness. In contrast, sleep-promoting GABAergic neurons largely project to and inhibit wake-promoting neurons. We propose a general pattern of caudal wake-promoting and sleep-promoting neurons having a strong effect on overall behavior. However, while rostral brain layers have less influence on sleep and wake, through descending projections, they can subsume the activity of caudal brain layers to promote arousal. The two models presented in this work will suggest computations for the layering and hierarchy. Through dynamic system theory several hypotheses are introduced for the interaction of controllers and systems that correspond to the different populations of neurons at each layer. The models will be drawn-upon to discuss future experiments to elucidate the structure of the hierarchy that exists among the sleep-arousal architecture.
Collapse
Affiliation(s)
- Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,PureTech Health, Boston, MA, United States
| | | | - Jian-Sheng Lin
- Centre de Recherche en Neurosciences de Lyon, Bron, France
| | - Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
197
|
González HFJ, Goodale SE, Jacobs ML, Haas KF, Landman BA, Morgan VL, Englot DJ. Brainstem Functional Connectivity Disturbances in Epilepsy may Recover After Successful Surgery. Neurosurgery 2020; 86:417-428. [PMID: 31093673 PMCID: PMC7308661 DOI: 10.1093/neuros/nyz128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/20/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Focal seizures in temporal lobe epilepsy (TLE) are associated with widespread brain network perturbations and neurocognitive problems. OBJECTIVE To determine whether brainstem connectivity disturbances improve with successful epilepsy surgery, as recent work has demonstrated decreased brainstem connectivity in TLE that is related to disease severity and neurocognitive profile. METHODS We evaluated 15 adult TLE patients before and after (>1 yr; mean, 3.4 yr) surgery, and 15 matched control subjects using magnetic resonance imaging to measure functional and structural connectivity of ascending reticular activating system (ARAS) structures, including cuneiform/subcuneiform nuclei (CSC), pedunculopontine nucleus (PPN), and ventral tegmental area (VTA). RESULTS TLE patients who achieved long-term postoperative seizure freedom (10 of 15) demonstrated increases in functional connectivity between ARAS structures and fronto-parietal-insular neocortex compared to preoperative baseline (P = .01, Kruskal-Wallis), with postoperative connectivity patterns resembling controls' connectivity. No functional connectivity changes were detected in 5 patients with persistent seizures after surgery (P = .9, Kruskal-Wallis). Among seizure-free postoperative patients, larger increases in CSC, PPN, and VTA functional connectivity were observed in individuals with more frequent seizures before surgery (P < .05 for each, Spearman's rho). Larger postoperative increases in PPN functional connectivity were seen in patients with lower baseline verbal IQ (P = .03, Spearman's rho) or verbal memory (P = .04, Mann-Whitney U). No changes in ARAS structural connectivity were detected after successful surgery. CONCLUSION ARAS functional connectivity disturbances are present in TLE but may recover after successful epilepsy surgery. Larger increases in postoperative connectivity may be seen in individuals with more severe disease at baseline.
Collapse
Affiliation(s)
- Hernán F J González
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
| | - Sarah E Goodale
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Monica L Jacobs
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kevin F Haas
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria L Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical center, Nashville, Tennessee
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
198
|
Lench DH, Embry A, Hydar A, Hanlon CA, Revuelta G. Increased on-state cortico-mesencephalic functional connectivity in Parkinson disease with freezing of gait. Parkinsonism Relat Disord 2020; 72:31-36. [PMID: 32097881 DOI: 10.1016/j.parkreldis.2020.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The objective of this study was to evaluate ON-state resting state functional connectivity (FC) from the mesencephalic locomotor regions (MLR) to distributed sensorimotor cortical regions in patients with Freezing of Gait (FOG) and its association with gait performance. METHODS 54 individuals with PD were recruited for this study (50% of whom had FOG). All individuals received a resting state functional MRI in the ON state, and underwent a series of gait assessments during single and dual task conditions. FC with the MLR was calculated using a whole brain seed to voxel approach wherein the left and right MLR seeds were extracted from a published atlas. General linear regression was used to determine differences in connectivity between the individuals with ('freezers') and without ('non-freezers') FOG as well as the correlation between MLR connectivity and gait performance in the freezers. RESULTS Freezers had significantly higher MLR connectivity to a network of sensorimotor regions compared to non-freezers. Additionally, among the freezers, higher FC with these regions was related to longer single-task and dual-task performance. There were no regions in which non-freezers had higher connectivity than freezers (p < 0.05, FWE corrected clusters for all analyses). CONCLUSION These data support the hypothesis that freezers have significantly higher ON-state FC between the MLR and a network of cortical structures than non-freezers. Additionally, this elevated connectivity is directly related to worsening FOG severity. These data add to a theoretical foundation which suggests that cortical hyperconnectivity to the MLR is central to the underlying pathophysiology of FOG.
Collapse
Affiliation(s)
- Daniel H Lench
- Department of Psychiatry, College of Health Professions, Medical University of South Carolina, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, College of Health Professions, Medical University of South Carolina, Medical University of South Carolina, Charleston, SC, USA
| | - Aaron Embry
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Medical University of South Carolina, Charleston, SC, USA
| | - Alyssa Hydar
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Medical University of South Carolina, Charleston, SC, USA
| | - Colleen A Hanlon
- Department of Psychiatry, College of Health Professions, Medical University of South Carolina, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, College of Health Professions, Medical University of South Carolina, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, College of Health Professions, Medical University of South Carolina, Medical University of South Carolina, Charleston, SC, USA
| | - Gonzalo Revuelta
- Department of Neurology, College of Health Professions, Medical University of South Carolina, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
199
|
Meier LJ. Are the irreversibly comatose still here? The destruction of brains and the persistence of persons. JOURNAL OF MEDICAL ETHICS 2020; 46:99-103. [PMID: 31666298 DOI: 10.1136/medethics-2019-105618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
When an individual is comatose while parts of her brain remain functional, the question arises as to whether any mental characteristics are still associated with this brain, that is, whether the person still exists. Settling this uncertainty requires that one becomes clear about two issues: the type of functional loss that is associated with the respective profile of brain damage and the persistence conditions of persons. Medical case studies can answer the former question, but they are not concerned with the latter. Conversely, in the philosophical literature, various accounts of personal identity are discussed, but usually detached from any empirical basis. Only uniting the two debates and interpreting the real-life configurations of brain damage through the lens of the philosophical concepts enables one to make an informed judgment regarding the persistence of comatose persons. Especially challenging are cases in which three mental characteristics that normally occur together-wakefulness, awareness and memory storage-come apart. These shall be the focus of this paper.
Collapse
Affiliation(s)
- Lukas J Meier
- Department of Philosophy, University of St Andrews, St Andrews, UK
| |
Collapse
|
200
|
Lee TH, Kim SH, Katz B, Mather M. The Decline in Intrinsic Connectivity Between the Salience Network and Locus Coeruleus in Older Adults: Implications for Distractibility. Front Aging Neurosci 2020; 12:2. [PMID: 32082136 PMCID: PMC7004957 DOI: 10.3389/fnagi.2020.00002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/08/2020] [Indexed: 11/26/2022] Open
Abstract
We examined functional connectivity between the locus coeruleus (LC) and the salience network in healthy young and older adults to investigate why people become more prone to distraction with age. Recent findings suggest that the LC plays an important role in focusing processing on salient or goal-relevant information from multiple incoming sensory inputs (Mather et al., 2016). We hypothesized that the connection between LC and the salience network declines in older adults, and therefore the salience network fails to appropriately filter out irrelevant sensory signals. To examine this possibility, we used resting-state-like fMRI data, in which all task-related activities were regressed out (Fair et al., 2007; Elliott et al., 2019) and performed a functional connectivity analysis based on the time-course of LC activity. Older adults showed reduced functional connectivity between the LC and salience network compared with younger adults. Additionally, the salience network was relatively more coupled with the frontoparietal network than the default-mode network in older adults compared with younger adults, even though all task-related activities were regressed out. Together, these findings suggest that reduced interactions between LC and the salience network impairs the ability to prioritize the importance of incoming events, and in turn, the salience network fails to initiate network switching (e.g., Menon and Uddin, 2010; Uddin, 2015) that would promote further attentional processing. A chronic lack of functional connection between LC and salience network may limit older adults' attentional and executive control resources.
Collapse
Affiliation(s)
- Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Sun Hyung Kim
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, United States
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|