151
|
Ding F, Ma Z, Liu F, Lu L, Sun D, Gao H, Wang X, Sui X, Luo X, Jin R, Yang J. Comparison of the Rheological Properties and Structure of Fat Derivatives Generated via Different Mechanical Processing Techniques: Coleman Fat, Nanofat, and Stromal Vascular Fraction-Gel. Facial Plast Surg Aesthet Med 2021; 24:391-396. [PMID: 34672779 DOI: 10.1089/fpsam.2021.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Importance: Coleman fat, nanofat, and stromal vascular fraction-gel (SVF-gel) are three widely used fat derivatives. However, their rheological properties and structure remain unknown. Objectives: To disclose the rheological properties and structure of three different fat derivatives. Design, Settings, and Participants: Fat tissues obtained from eight different donors were processed into three separate groups: Coleman fat, nanofat, and SVF-gel (n = 8); their viscoelastic properties and structure were determined. Intervention: Oscillation measurements were performed in the context of serrated 25-mm parallel-plate geometry with a 1.2-mm gap at 25°C. In addition, fat samples were fixed using a patented protocol and observed under scanning electron microscopy. Main Outcomes and Measures: Comparison of the viscoelastic properties, microstructure, and particle size. Results: At 0.77 Hz, the elastic modulus of SVF-gel, Coleman fat, and nanofat was 201.6 ± 0.74, 69.94 ± 15.61, and 34.89 ± 3.484 Pa, respectively; their viscosity was 44.06 ± 3.038, 15.37 ± 2.0380, and 7.516 ± 0.7250 mPa, respectively. The particle size of SVF-gel, Coleman fat, and nanofat was 106.0 ± 4.796, 86.93 ± 3.597, and 12.61 ± 7.603 μm, respectively. Conclusion and Relevance: Mechanical processing may impact graft efficacy. The characterization of the rheological properties and structure of different fat derivatives in this study may help surgeons select the better type of tissue for a given intervention; however, further studies are still required.
Collapse
Affiliation(s)
- Feixue Ding
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Zhongsheng Ma
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Fei Liu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Lin Lu
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Di Sun
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Hongjian Gao
- Electron Microscopy Core Laboratory, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Xi Wang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Xusong Luo
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Rui Jin
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Jun Yang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
152
|
Qiu H, Jiang Y, Chen C, Wu K, Wang H. The Effect of Different Diameters of Fat Converters on Adipose Tissue and Its Cellular Components: Selection for Preparation of Nanofat. Aesthet Surg J 2021; 41:NP1734-NP1744. [PMID: 33769461 DOI: 10.1093/asj/sjab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nanofat is an autologous product prepared mechanically from harvested fat. In nanofat grafting, converters are employed for mechanical emulsification to facilitate fat injection. To date, the study of different converters has received scant attention regarding whether they affect the characteristics of nanofat in terms of the practical applications and indications. OBJECTIVES The authors set out to investigate the influence of different internal diameters of converters on biological functionality of nanofat during shuffling. METHODS The 3-dimensional finite element method was employed to simulate the process of mechanical emulsification of fat and to research the stress with 5 different converters (3.76 mm, 2.00 mm, 1.20 mm, 1.00 mm, 0.80 mm). An assessment of the morphology of emulsified fat was conducted. Isolated stromal vascular fraction (SVF) was analyzed for cellular components, number, and viability through flowcytometry and live/ dead staining. Adipocytic and angiogenic differentiation assay allowed assessment of differentiation capacity of the SVF. RESULTS The smaller the aperture of the converter, the greater the mechanical force on adipose tissue during mechanical emulsification, showing the different macroscopic and microscopic structure of the emulsified fat. No difference in viability or ratio of endothelial progenitor cells and other cells was found. Angiogenic and adipogenic differentiation capacity of the SVF significantly changed in 5 different converters. CONCLUSIONS The mechanical emulsification from different apertures of converters exerts different effects of adipose tissue structure, cell content, and multipotency differentiation but not its viability. Converters with different apertures can be selected according to clinical needs.
Collapse
Affiliation(s)
- He Qiu
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu,China
| | - Yichen Jiang
- Department of General Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqinng,China
| | - Chang Chen
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu,China
| | - Kelun Wu
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu,China
| | - Hang Wang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu,China
| |
Collapse
|
153
|
Hanson SE. Commentary on: The Effect of Different Diameters of Fat Converters on Adipose Tissue and Its Cellular Components: Selection for Preparation of Nanofat. Aesthet Surg J 2021; 41:NP1745-NP1746. [PMID: 34291280 DOI: 10.1093/asj/sjab295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Summer E Hanson
- Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| |
Collapse
|
154
|
Yang Z, Jin S, He Y, Zhang X, Han X, Li F. Comparison of Microfat, Nanofat, and Extracellular Matrix/Stromal Vascular Fraction Gel for Skin Rejuvenation: Basic Research and Clinical Applications. Aesthet Surg J 2021; 41:NP1557-NP1570. [PMID: 33507247 DOI: 10.1093/asj/sjab033] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Over the past 2 decades, fat grafting has been extensively applied in the field of tissue regeneration. OBJECTIVES The aim of this study was to investigate the therapeutic potential of microfat, nanofat, and extracellular matrix/stromal vascular fraction gel (SVF-gel) in skin rejuvenation. METHODS Microfat was harvested by a cannula with multiple 0.8-mm smooth side holes and processed with a fat stirrer to remove fibers. Nanofat and SVF-gel were prepared according to previously reported methods, and their structure and viability were evaluated. Then, SVF cells from the 3 types of samples were isolated and characterized, and the cell viability was compared. RESULTS The microstructure of the 3 samples showed distinct differences. The microfat group showed a diameter of 100 to 120.0 μm under the microscope and presented a botryoid shape under calcein acetoxymethyl (calcein-AM)/propidium iodide staining. Scanning electron microscopy analysis showed that the microfat maintained an integral histologic structure. In the nanofat group, no viable adipocytes and no normal histologic structure were observed, but high levels of free lipids were noted. The SVF-gel group showed uniform dispersion of cells with different sizes and parts of the adipose histologic structure. Cell count and culture revealed that the number of viable SVF cells decreased distinctly in the nanofat group compared with the microfat group. In contrast, the number of viable SVF cells in the SVF-gel group increased moderately. Clinical applications with microfat showed marked improvements in skin wrinkles. CONCLUSIONS Microfat can preserve the integrity of the histologic structure and presents the advantages of subcutaneous volumetric restoration and improvement of skin quality in skin rejuvenation compared with the nanofat and SVF-gel. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Zhibin Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’sRepublic of China
| | - Shengyang Jin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’sRepublic of China
| | - Yu He
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’sRepublic of China
| | - Xinyu Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’sRepublic of China
| | - Xuefeng Han
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’sRepublic of China
| | - Facheng Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’sRepublic of China
| |
Collapse
|
155
|
Diet (Fat-free) Fat Grafting: The Truth behind the Mechanical Stromal Cell Transfers. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3854. [PMID: 34646722 PMCID: PMC8500557 DOI: 10.1097/gox.0000000000003854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 10/29/2022]
|
156
|
Cantarella G, Mazzola RF. In Reference to "Augmentation of Scarred Vocal Folds With Centrifuged and Emulsified Autologous Fat Grafts". Otolaryngol Head Neck Surg 2021; 165:605. [PMID: 34597160 DOI: 10.1177/0194599821991481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
157
|
Tanios E, Ahmed TM, Shafik EA, Sherif MF, Sayed D, Gaber N, Hassan Y. Efficacy of adipose-derived stromal vascular fraction cells in the management of chronic ulcers: a randomized clinical trial. Regen Med 2021; 16:975-988. [PMID: 34596433 DOI: 10.2217/rme-2020-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Cell therapy is a promising method for improving healing in chronic ulcers through delivery of isolated adipose-derived stromal vascular fraction. Objectives: This study investigates the autologous stem cell yield of adipose tissue and its efficacy in chronic ulcers compared with conventional methods. Methods: This study was a randomized controlled trial. After the study design and protocol were established and ethical committee approval was obtained, we enrolled 100 patients divided into study and control groups. In the study group, we performed debridement and autologous stem cell injection every 3 weeks. The control group was treated with debridement and conventional dressing. Assessments included clinical and histological parameters. Results: The study group showed improved healing. Conclusion: Using autologous adipose-derived stromal vascular fraction cells is an effective treatment method for chronic ulcers. This study was registered on the Pan-African Clinical Trial Registry and the number of the registry was PACTR201709002519185.
Collapse
Affiliation(s)
- Emil Tanios
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| | - Tohamy M Ahmed
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| | - Engy A Shafik
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | | | - Douaa Sayed
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | - Noha Gaber
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, 71111, Egypt
| | - Youssef Hassan
- Plastic Surgery Department, Faculty of Medicine, Assiut University, 71111, Egypt
| |
Collapse
|
158
|
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand age-related changes to the face and neck and pertinent anatomy and discuss important aspects of fat graft harvesting, processing, and infiltration. 2. Recognize key differences between common techniques for fat processing and infiltration and develop a plan for patients based on site-specific facial anatomical zones. 3. Appreciate the utility of fat grafting as an adjunct to other facial rejuvenating procedures such as face lift and blepharoplasty procedures and list the potential complications from fat grafting to the face and neck. SUMMARY Fat grafting to the face and neck aids in volume restoration, thereby addressing soft-tissue atrophy associated with the aging face, acquired conditions, or congenital malformations. Often, fat grafting may sufficiently restore facial volume alone or in conjunction with other facial rejuvenation procedures. Facial/neck fat grafting requires a systematic and thoughtful approach, with special care to atraumatic technique. This CME article covers the principles and techniques for modern facial fat grafting to the face and neck. Increasing data support the ability of autologous fat to produce significant and sustainable appearance-related changes. The authors follow the general principles of the Coleman technique for facial fat grafting and have observed tremendous success over the years. Other techniques for facial fat grafting are also discussed including microfat and nanofat processing. As the understanding of facial fat compartments continues to evolve, the authors may better predict fat grafting outcomes following augmentation. Finally, the technique described as "lipotumescence" has been successfully used in the breast and other regions of the body that have radiation damage and is discussed in this article specifically for the face and neck.
Collapse
|
159
|
Three states of stromal cells-solid, liquid, and aerosol-and innovative delivery methods not previously reported. Arch Plast Surg 2021; 48:549-552. [PMID: 34583444 PMCID: PMC8490114 DOI: 10.5999/aps.2021.00311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Clinical applications of stromal cells obtained mechanically from adipose tissue are quite popular methods. However, generally accepted protocols still do not exist. In this study, three new delivery methods using different protocols are presented as innovative methods in accordance with an approach called “Indication-based protocols.” In mechanical methods, before cutting the fat tissue with ultra-sharp blades, which we define as “Adinizing,” mixing it with different liquids such as saline or plasma provides the stromal cells in liquid form with high number and viability as a final product. At the same time, since stromal cells and extracellular matrix are preserved by mechanical methods, it was deemed appropriate to use the term total stromal cells (TOST) instead of stromal vascular fraction for this final product, unlike the product obtained with the enzyme. TOST can be combined with plasma and used for dermal filling in “solid” form. In addition to this filling effect, it will also cause a change in the tissue regeneratively. Finally, the stromal cells obtained from liquid can be applied clinically in aerosol form with the help of nebulizer. We believe that three innovative delivery methods can be used successfully in the treatment of many clinical situations in the future.
Collapse
|
160
|
Righesso R, Piccinini PS, Uebel CO. A Combined Approach for Fast Nanofat Microneedling. J Cutan Aesthet Surg 2021; 14:248-255. [PMID: 34566373 PMCID: PMC8423193 DOI: 10.4103/jcas.jcas_142_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Lipofilling is currently a fundamental component of rhytidoplasty and fat harvesting has become a common procedure. Tonnard introduced the concept of nanofat grafting, a revolutionary milestone, in which adipocytes are mechanically separated from the stromal vascular fraction and the latter is injected, adding the possibility of cellular therapies to the surgical field. Later, Verpaele et al. published a report using a new device to apply this nanofat in a uniform manner, which they termed nanofat needling. The device has 24 microneedles of 1.5 mm length and is applied as a stamp, in a tapping motion. The same manufacturer offers a similar model with 64 microneedles, 1.0 mm length, and available as a roller. Objectives We sought to evaluate the combination of the above-mentioned microneedling devices to achieve faster nanofat delivery. Materials and Methods A prospective evaluation of patients undergoing a combined nanofat microneedling approach for skin rejuvenation and scar revision, using both a stamp device as well as a roller, was performed in a private practice setting, from January 2019 to January 2020. Patient satisfaction, complications, and surgical time were evaluated. Results We applied this combination treatment to over 100 treatment areas in 86 patients over a 12-month period, with a short operative time, no increase in complications, consistent results, and good patient satisfaction. Conclusions We recommend the use of this new device in association with the original one, in order to decrease the procedure time. We designate this strategy "fast nanofat microneedling."
Collapse
Affiliation(s)
- Ronaldo Righesso
- Brazilian Society of Plastic Surgery, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Salomao Piccinini
- Brazilian Society of Plastic Surgery, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Oscar Uebel
- Brazilian Society of Plastic Surgery, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
161
|
Jin X, Zhang Y, Zhang X, Li Y, Xu M, Liu K, Ru J, Ma C, Yao Y, He Y, Gao J. An Adipose-Derived Injectable Sustained-Release Collagen Scaffold of Adipokines Prepared Through a Fast Mechanical Processing Technique for Preventing Skin Photoaging in Mice. Front Cell Dev Biol 2021; 9:722427. [PMID: 34631708 PMCID: PMC8497903 DOI: 10.3389/fcell.2021.722427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet A (UVA) radiation is the major contributor to skin photoaging, associated with increased collagen degradation and reactive oxygen species (ROS) expression. Adipokines have been proven as promising therapeutic agents for skin photoaging. However, adipokine therapy is generally limited by the short in vivo release duration and biological instability. Therefore, developing a treatment that provides a sustained release of adipokines and enhanced therapeutic effects is desirable. In this study, we developed a novel mechanical processing technique to extract adipose tissue-derived ECM components, named the "adipose collagen fragment" (ACF). The physical characterization, injectability, collagen components, residual DNA/RNA and adipokine release pattern of ACF were identified in vitro. L929 cells were treated with ACF or phosphate-buffered saline for 24 h after UVA irradiation in vitro. The expression of senescence-associated xβ-galactosidase (SA-β-gal), ROS and antioxidase were investigated. Then, we evaluated its therapeutic efficacy by injecting ACF and phosphate-buffered saline, as a control, into the dermis of photoaging nude mice and harvesting skin samples at weeks 1, 2, and 4 after treatment for assessment. The content of adipokines released from ACF was identified in vivo. The collagen synthesis and collagen degradation in ACF implants were evaluated by immune staining. Dermal thickness, fibroblast expression, collagen synthesis, ROS level, antioxidase expression, capillary density, and apoptotic cell number were evaluated by histological assessment, immune staining, and polymerase chain reaction in the skin samples. We demonstrated that ACF is the concentrated adipose extracellular matrix collagen fragment without viable cells and can be injected through fine needles. The lower expression of SA-β-gal, ROS and higher expression of antioxidase were observed in the ACF-treated group. ACF undergoes collagen degradation and promotes neocollagen synthesis in ACF implants. Meanwhile, ACF serves as a sustained-release system of adipokines and exhibits a significantly higher therapeutic effect on mouse skin photoaging by enhancing angiogenesis, antioxidant abilities, antiapoptotic activities, and collagen synthesis through sustainedly releasing adipokines. To sum up, ACF is an adipokines-enriched, sustained-release extracellular matrix collagen scaffold that can prevent UVA-induced skin photoaging in mice. ACF may serve as a novel autologous skin filler for skin rejuvenation applications in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yao Yao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
162
|
Hsiao HY, Lai CY, Liu JW, Yu YY, Chang FCS, Huang JJ. Fate of Fat Grafting In Vivo and In Vitro: Does the Suction-Assisted Lipectomy Device Matter? Aesthet Surg J 2021; 41:NP1323-NP1336. [PMID: 34043750 DOI: 10.1093/asj/sjab231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Recently, there has been increasing research interest in identifying the effect of liposuction procedures on fat graft survival in order to clarify whether different harvest techniques affect the quality of fat grafts. OBJECTIVES The aim of this study was to investigate the effect of 2 liposuction methods on the survival and regeneration potential of grafted fat tissue. The proliferation and differentiation potentials of adipose-derived stem cells (ASCs) isolated by both methods was also investigated. METHODS Fat grafts were collected from patients who underwent liposuction procedures by 2 different methods: traditional suction-assisted liposuction (TSAL) and vibration amplification of sound energy at resonance (VASER). One portion of the lipoaspirates was implanted into the subcutaneous layer of nu mice for 4 and 12 weeks. ASCs were isolated from the other portion of the lipoaspirate and subjected to proliferation and differentiation assays. RESULTS Although in vivo fat grafting presented similar adipose tissue survival for the 2 different liposuction methods, more angiogenesis and less fibrosis was observed in the VASER group based on histologic evaluation. Furthermore, VASER-derived ASCs presented better quality in terms of cell differentiation capacity. CONCLUSIONS The in vivo study confirmed better graft angiogenesis with less inflammation, apoptosis, and scar formation in the VASER group. ASCs harvested with VASER exhibited increased differentiation capacity compared with those obtained by TSAL, and represent an excellent source for fat grafting and regenerative medicine.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Jia-Wei Liu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yuan-Yuan Yu
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Frank Chun-Shin Chang
- Division of Craniofacial Surgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jung-Ju Huang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
163
|
Bicer A, Ercin BS, Gürler T, Yiğittürk G, Uyanikgil Y, Cetin EO. Possibility of Taking an Offensive Stance in Extravasation Injury: Effects of Fat Injection in Vesicant (Doxorubicin) Induced Skin Necrosis Model in Rats. J INVEST SURG 2021; 35:801-808. [PMID: 34402353 DOI: 10.1080/08941939.2021.1966142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Extravasation injuries are one of the most feared complications of intravenous drug administration. The most common drugs associated with extravasation injury include chemotherapy agents and contrast media. Natural course of vesicant extravasation is discomfort, pain, swelling, inflammation, and ultimately skin ulceration. While diligence is the principle approach in prevention, immediate bed-side measures are as important in controlling the extent of tissue damage. Various options, either medical or interventional are next steps in treatment of the condition including antidotes, volume dilution, flushing, suction, hyperbaric oxygen therapy, and surgery. MATERIALS AND METHODS 12 male Wistar albino rats were divided into two groups; one group received fat injections following subdermal doxorubicin infiltration in their right thighs, while other group received saline injection following subdermal doxorubicin infiltration in their right thighs for dilution. Left thighs of both groups were left untreated following subdermal doxorubicin infiltration. Total area of necrosis, as well as resultant epidermal thicknesses were assessed. Histological analyses were conducted using modified Verhofstad scoring system for comparison. RESULTS Mean necrotic area was significantly smaller in the fat injection group compared to other groups. Median Verhofstad score was lesser in the fat injection group as well. Median epidermal thickness, on the other hand, was greater in the fat injection group. CONCLUSION Injection of fat grafts following vesicant extravasation might be beneficial in preventing the progression of tissue damage, if employed early.
Collapse
Affiliation(s)
- Ahmet Bicer
- Department of Plastic Surgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Burak Sercan Ercin
- Department of Plastic, Reconstructive and Aesthetic surgery, Bahcesehir University, Istanbul, Turkey.,Department of Plastic, Reconstructive and Aesthetic surgery, Medicalpark Pendik Hospital, Istanbul, Turkey
| | - Tahir Gürler
- Department of Plastic Surgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gürkan Yiğittürk
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Stem Cell, Ege University, Health Science Institue, Izmir, Turkey.,Cord Blood, Cell and Tissue Research and Application Centre, Ege University, Izmir, Turkey
| | - Emel Oyku Cetin
- Department of Pharmaceutical Technology, Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
164
|
Stachura A, Paskal W, Pawlik W, Mazurek MJ, Jaworowski J. The Use of Adipose-Derived Stem Cells (ADSCs) and Stromal Vascular Fraction (SVF) in Skin Scar Treatment-A Systematic Review of Clinical Studies. J Clin Med 2021; 10:3637. [PMID: 34441935 PMCID: PMC8396936 DOI: 10.3390/jcm10163637] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, lipofilling became a popular scar treatment method. Its beneficial outcomes have been partly attributed to the regenerative capacity of adipose-derived stem cells (ADSCs), suspended in an extracellular matrix-the stromal vascular fraction (SVF). The aim of this review was to verify if existing data support the clinical use of ADSC-related interventions in scar treatment. A systematic search of the literature was performed in July 2020 in five databases (Medline, Cochrane, Web of Science, Scopus and Embase). Articles written in English, except for reviews, letters and editorials, were identified and screened for eligibility. We looked for reports of any outcomes in scars treated with ADSCs or SVF. Data from selected articles were extracted and the quality of each study was assessed. Five hundred and fourteen studies were identified in the primary search, of which nineteen were eventually included in the systematic review. Extracted data pointed to beneficial microscopic, functional and aesthetic outcomes in a total of 665 patients. Six studies included comparative interventions-platelet-rich plasma or CO2 fractional laser. Collected data give low-to-average quality evidence for beneficial effects of ADSC-related interventions in scar treatment. Some studies suggest that these interventions are noninferior to PRP or fractional CO2 laser.
Collapse
Affiliation(s)
- Albert Stachura
- Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Timeless Plastic Surgery Clinic, 02-091 Warsaw, Poland; (M.J.M.); (J.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Wiktor Paskal
- Center for Preclinical Research, Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Timeless Plastic Surgery Clinic, 02-091 Warsaw, Poland; (M.J.M.); (J.J.)
| | - Weronika Pawlik
- Faculty of Medicine and Dentistry, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Maciej J. Mazurek
- Timeless Plastic Surgery Clinic, 02-091 Warsaw, Poland; (M.J.M.); (J.J.)
- West Pomeranian Center for Severe Burns and Plastic Surgery, 72-300 Gryfice, Poland
- Plastic Surgery Department, Centre for Postgraduate Medical Education, 02-091 Warsaw, Poland
| | - Janusz Jaworowski
- Timeless Plastic Surgery Clinic, 02-091 Warsaw, Poland; (M.J.M.); (J.J.)
| |
Collapse
|
165
|
Laschke MW, Menger MD. The simpler, the better: tissue vascularization using the body's own resources. Trends Biotechnol 2021; 40:281-290. [PMID: 34404555 DOI: 10.1016/j.tibtech.2021.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Tissue regeneration is crucially dependent on sufficient vascularization. In regenerative medicine, this can be effectively achieved by autologous vascularization strategies using the body's own resources. These strategies include the administration of blood-derived factor preparations, adipose tissue-based vascularization, and the in situ engineering of vascularized tissue. Due to their simplicity, the translation of these strategies into clinical practice is easier in terms of feasibility, safety requirements, and regulatory hurdles compared with complex and time-consuming procedures involving intensive cell manipulation. Hence, they are close to clinical application or are already being used to successfully treat patients by distinct personalized medicine concepts.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany.
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| |
Collapse
|
166
|
Menkes S, SidAhmed-Mezi M, Meningaud JP, Benadiba L, Magalon G, Hersant B. Microfat and Nanofat Grafting in Genital Rejuvenation. Aesthet Surg J 2021; 41:1060-1067. [PMID: 32386063 DOI: 10.1093/asj/sjaa118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genitourinary syndrome of menopause (GSM) is a major problem in many post- or perimenopausal women. Lipofilling has long been considered to be an effective technique for restoring volume, but the discovery of its trophic proprieties has made it the most widely utilized method in regenerative medicine. OBJECTIVES The authors aimed to assess the safety and efficacy of microfat and nanofat grafting for vulvovaginal rejuvenation. METHODS Women with GSM who met the inclusion criteria were enrolled. Women received microfat in the labia majora and nanofat in the vagina; follow-up was conducted 1, 3, 6, 12, and 18 months. The vaginal health index (VHI) and Female Sexual Distress (FSD) were utilized to assess improvement in vulvovaginal atrophy, orgasm, and sexual desire posttreatment. RESULTS Fifty women were included; their average age was 53 years (range, 45-63 years). The VHI score significantly increased at 1 and 3 months after treatment (P < 0.0001). Moreover, the average FSD score showed a significant improvement at 1 and 3 months posttreatment. This score stabilized from 6 to 12 months but showed further improvement at 18 months. At 6 months posttreatment, for both scales, data pertaining to 80% of patients appeared normalized. There was a particular benefit noted for dryness and dyspareunia. At 18 months, the results remained stable for all of patients. No major side effects were observed. CONCLUSIONS There are now many ways to rejuvenate the intimate sphere, but microfat and nanofat grafting seem to offer good results with an autologous procedure. Their utilization appears promising for genital rejuvenation. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
| | - Mounia SidAhmed-Mezi
- Department of Maxillofacial and Plastic & Reconstructive Surgery, Henri Mondor Hospital, Créteil, France
| | - Jean Paul Meningaud
- Department of Maxillofacial and Plastic & Reconstructive Surgery, Henri Mondor Hospital, Créteil, France
| | - Laurent Benadiba
- Department of Maxillofacial and Plastic & Reconstructive Surgery, Henri Mondor Hospital, Créteil, France
| | - Guy Magalon
- Plastic Surgery Department, Assistance Publique Hôpitaux de Marseille (APHM), Aix Marseille University, Marseille, France
| | - Barbara Hersant
- Department of Maxillofacial and Plastic & Reconstructive Surgery, Henri Mondor Hospital, Créteil, France
| |
Collapse
|
167
|
Rageh MA, El-Khalawany M, Ibrahim SMA. Autologous nanofat injection in treatment of scars: A clinico-histopathological study. J Cosmet Dermatol 2021; 20:3198-3204. [PMID: 34357682 DOI: 10.1111/jocd.14363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Scars are the unfortunate outcome of most injuries and some diseases. Its psychological impact on patients can deeply affect their quality of life. AIM The aim of this study was to evaluate the efficacy of autologous nanofat injection in improving the aesthetic outcome of scars, combined with histopathological correlation of the response. PATIENTS AND METHODS Thirty patients with scars of different etiologies undergone one session of nanofat injection and evaluation was done 6 months after the session. Efficacy of treatment was assessed clinically using Vancouver scar scale by two independent blinded dermatologists and histopathologically using image analysis system. RESULTS The age of enrolled patients ranged from 18 to 40 years old. There was a statistically significant improvement on the total Vancouver scar scale regarding the height and pliability of the scars. Pathological evaluation showed an increase in epidermal thickness, increased number and density of collagen and elastic fibers along with neovascularization. CONCLUSION Evidenced by clinical and pathological improvement, autologous nanofat injection is an effective strategy for treating scars of different etiologies.
Collapse
Affiliation(s)
- Mahmoud A Rageh
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Khalawany
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
168
|
Crowley JS, Liu A, Dobke M. Regenerative and stem cell-based techniques for facial rejuvenation. Exp Biol Med (Maywood) 2021; 246:1829-1837. [PMID: 34102897 PMCID: PMC8381699 DOI: 10.1177/15353702211020701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review discusses the most novel ideas and modalities being incorporated into facial rejuvenation. Recent innovative techniques include the use of regenerative stem cell techniques and regeneration supportive modalities such as nano-technology or gene therapies. This review aims to investigate approaches that are less well known and lacking established evidence in order to proactively study these techniques prior to them becoming popularized. These applications and relevant research were reviewed in the context of both surgical and non-surgical modalities in clinical practice. Future directions include the concept of "precision cosmetic medicine" utilizing gene editing and cellular therapies to tailor rejuvenation techniques based on each individual's genetic make-up and therefore needs.
Collapse
Affiliation(s)
- J Sarah Crowley
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| | - Amy Liu
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| | - Marek Dobke
- Department of Surgery, Division of Plastic Surgery,
UC San Diego School of Medicine, San Diego, CA 92103-8890
| |
Collapse
|
169
|
Huang R, Jiao H, Fan J, Liu L, Tian J, Gan C, Yang Z, Zhang T, Zeng Y, Su Z. Nanofat Injection for the Treatment of Depressed Facial Scars. Aesthetic Plast Surg 2021; 45:1762-1771. [PMID: 33635346 DOI: 10.1007/s00266-021-02178-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with depressed facial scars complain of their negative effects. However, the efficacy of optional treatment techniques is never completely adequate. This study aimed to assess the efficacy of nanofat injection in the improvement of depressed facial scars. METHODS This retrospective study included patients who underwent depressed facial scar filling with nanofat between November 2017 and January 2020. The FACE-Q scale was sent to patients for feedback regarding satisfaction. Evaluations of the results were also performed by three plastic surgeons. RESULTS Among the 52 included patients, 44 patients (29 women and 15 men) completed the questionnaire. Obvious and stable effects were usually acquired 3 months after surgery. Temporary erythema appeared at the injection site to varying degrees, lasting 2 to 3 weeks in 93% of the patients. No other serious postoperative complications were observed in the injection area. The FACE-Q outcomes showed that patients who completed injection therapy more than 1 year prior were significantly more satisfied with the decision to undergo this therapy than those who completed the treatment less than 1 year prior. Furthermore, according to the physicians' evaluations, 91% of patients experienced improvement in scar appearance after treatment. CONCLUSIONS The low rate of injection-site complications and the safety of this procedure both support the current implementation of nanofat in the treatment of depressed facial scars. The results of the physicians' evaluations and patient satisfaction surveys confirmed the stable effect of nanofat injection in the treatment of depressed facial scars. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Rong Huang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Hu Jiao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China.
| | - Jincai Fan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Liqiang Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Jia Tian
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Cheng Gan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Zengjie Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Tiran Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Yan Zeng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Zhiguo Su
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33, Badachu Road, Shijingshan District, Beijing, 100144, China
| |
Collapse
|
170
|
van Dongen JA, Boxtel JV, Willemsen JC, Brouwer LA, Vermeulen KM, Tuin AJ, Harmsen MC, van der Lei B, Stevens HP. The Addition of Tissue Stromal Vascular Fraction to Platelet-Rich Plasma Supplemented Lipofilling Does Not Improve Facial Skin Quality: A Prospective Randomized Clinical Trial. Aesthet Surg J 2021; 41:NP1000-NP1013. [PMID: 33687052 DOI: 10.1093/asj/sjab109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lipofilling has become popular as a treatment to improve aging-related skin characteristics (eg, wrinkles, pigmentation spots, pores, or rosacea). Different additives such as platelet-rich plasma (PRP) or stromal vascular fraction (SVF) have been combined with lipofilling to increase the therapeutic effect of adipose-derived stromal cells (ASCs). OBJECTIVES The aim of this study was to examine the hypothesis that mechanically isolated SVF augments the therapeutic effect of PRP-supplemented lipofilling to improve facial skin quality. METHODS This prospective, double-blind, placebo-controlled, randomized trial was conducted between 2016 and 2019. In total, 28 female subjects were enrolled; 25 completed the follow-up. All patients received PRP-supplemented lipofilling with either mechanically isolated SVF or saline. SVF was isolated by fractionation of adipose tissue (tSVF). Results were evaluated by changes in skin elasticity and transepidermal water loss, changes in skin-aging-related features, ie, superficial spots, wrinkles, skin texture, pores, vascularity, and pigmentation, as well as patient satisfaction (FACE-Q), recovery, and number of complications up to 1 year postoperative. RESULTS The addition of tSVF to PRP-supplemented lipofilling did not improve skin elasticity, transepidermal water loss, or skin-aging-related features. No improvement in patient satisfaction with overall facial appearance or facial skin quality was seen when tSVF was added to PRP-supplemented lipofilling. CONCLUSIONS In comparison to PRP-supplemented lipofilling, PRP-supplemented lipofilling combined with tSVF does not improve facial skin quality or patient satisfaction in a healthy population. PRP-supplemented lipofilling combined with tSVF can be considered a safe procedure. LEVEL OF EVIDENCE: 2
Collapse
Affiliation(s)
| | - Joeri V Boxtel
- Catharina Hospital Eindhoven, Eindhoven, the Netherlands
| | - Joep C Willemsen
- Albert Schweitzer Hospital Dordrecht, Dordrecht, the Netherlands
| | - Linda A Brouwer
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Karin M Vermeulen
- Department of Epidemiology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Aartje Jorien Tuin
- Department of Maxillofacial Surgery, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen and University Medical Center of Groningen, Groningen, the Netherlands
| | | |
Collapse
|
171
|
Rohani Ivari J, Mahdipour E. Adipose tissue versus stem cell-derived small extracellular vesicles to enhance the healing of acute burns. Regen Med 2021; 16:629-641. [PMID: 34259030 DOI: 10.2217/rme-2020-0199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: Proper healing of extensive burns remains a healthcare challenge. In the present study, we proposed a distinct therapeutic application of adipose tissue and small extracellular vesicles isolated from human menstrual blood-derived mesenchymal stem cells (MenSC) small extracellular vesicles (sEVs) to enhance the repair of third-degree burn injury. Materials & methods: Mouse model of third-degree burn was used. Adipose tissue in the form of nano-fat (NF) and MenSC-sEVs was injected subcutaneously at the site of injuries. Results: NF and sEVs were capable of enhancing wound closure and increasing neoangiogenesis. NF was also effective in accelerating the formation of granulation tissue and boosting the thickness of the new epithelial layer. Conclusion: This study demonstrates the effectiveness of NF and MenSC-sEVs as promising therapeutic approaches to facilitate the repair of skin burns.
Collapse
Affiliation(s)
- Jalil Rohani Ivari
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1696700, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 1696700, Iran
| |
Collapse
|
172
|
Hedén P, Fischer S. Comparison of Fat Repositioning Versus Onlay Segmental Fat Grafting in Lower Blepharoplasty. Aesthet Surg J 2021; 41:NP717-NP727. [PMID: 33595637 DOI: 10.1093/asj/sjab070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lower blepharoplasty is one of the most challenging procedures in aesthetic surgery. In particular, blending the lid-cheek junction and correction of the tear trough are prone to failure and unsatisfactory outcomes. OBJECTIVES The aim of this study was to combine lower eyelid blepharoplasty with a novel technique of autologous fat grafting, commonly called segmental fat grafting, and to analyze the safety and efficacy of this approach. METHODS A retrospective analysis of 339 lower blepharoplasties was performed to compare the novel technique of segmental fat grafting to traditional fat transposition during lower blepharoplasty. Outcomes were assessed objectively by several measurements as well as via online survey of 148 invited experts in plastic surgery. Statistical analysis included t test for unpaired and paired samples as well as 1-way analysis of variance for matched data. RESULTS There were no differences in baseline characteristics and comorbidities between study groups. After a mean follow-up of 12.9 months (range, 5-120 months), the group that underwent segmental fat grafting had a significant reduction in tear trough width compared compared with the group receiving lower blepharoplasty with fat transposition. Based on an expert (blinded) online survey, segmental fat grafting was superior or equal in 47% and 35% of cases, respectively. Complications (4%) and revision surgeries (9%) did not differ significantly between study groups. CONCLUSIONS The novel technique of transplantation of a segmental fat graft during lower blepharoplasty is a safe and effective way to overcome tear trough deformity and blend the lid-cheek junction. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Per Hedén
- Karolinska Institutet, Solna, Sweden
| | | |
Collapse
|
173
|
Gentile P, Sterodimas A, Calabrese C, Garcovich S. Systematic review: Advances of fat tissue engineering as bioactive scaffold, bioactive material, and source for adipose-derived mesenchymal stem cells in wound and scar treatment. Stem Cell Res Ther 2021; 12:318. [PMID: 34078470 PMCID: PMC8173738 DOI: 10.1186/s13287-021-02397-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fat tissue (FT) has been used for many years in regenerative surgery as a bioactive material through the lipofilling/fat graft (F-GRF)-nano-fat technique, as a bioactive scaffold when it was enriched with adipose-derived mesenchymal stem cells (AD-MSCs) contained in the stromal vascular fraction (SVF), and as a direct source of AD-MSCs used in wound healing (WH) and scar treatment (ST). This systematic review aims to describe the advances in FT engineering applied to regenerative surgery (from bench to clinic), through the use of AD-MSCs, SVF contained in F-GRF in WH and ST. The work has been performed by assessing in the selected studies autologous graft of AD-MSCs, SVF, and F-GRF compared to any control for ST and WH. The protocol was developed following the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov , Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, SVF, and F-GRF use in WH and ST in which FT was used as bioactive material-scaffold and source of AD-MSCs. Of the 714 articles initially identified, 453 articles focusing on regenerative strategies in WH and ST were selected and, consequently, only 84 articles that apparently related to AD-MSC, SVF, and F-GRF were analyzed. Of these, 61 articles identified as pre-clinical, experimental, and in vitro, and 5 articles identified as a comment and systematic review were excluded. Only 18 original articles which strictly and exclusively focused on autologous AD-MSCs, SVF, and F-GRF in ST and WH were analyzed. The included studies had to match predetermined criteria according to the PICOS (patients, intervention, comparator, outcomes, and study design) approach. The identified studies described microscopic and clinical outcomes in patients treated with AD-MSCs, SVF, and F-GRF. Collected data confirmed the safety and efficacy of FT both as bioactive material-scaffold and source of AD-MSCs in WH and ST without major side effects.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, “Tor Vergata” University, Via Courmayeur, 102, 00133 Rome, Italy
- Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201 Geneva, Switzerland
| | - Aris Sterodimas
- Department of Plastic and Reconstructive Surgery, Metropolitan General Hospital, 18547 Athens, Greece
| | | | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
174
|
Vasilyev VS, Korchazhkina NB, Mikhailova AA, Nadelyaeva II, Vasilyev SA, Vasilyev IS, Vasilyev YS, Teryushkova ZI, Kazantsev IB, Vasilyeva ES, Kotenko KV. [Modern technologies of regenerative rehabilitation in the treatment of patients with abnormal scars]. Khirurgiia (Mosk) 2021:7-14. [PMID: 34032783 DOI: 10.17116/hirurgia20210627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To evaluate an efficacy of lipoaspirate-based products in pathologic scarring management. MATERIAL AND METHODS There were 118 patients with external scars. Depending on scar type, localization and need for soft tissue augmentation, three different methods were used for lipoaspirate-based product preparation: 15-minute sedimentation, centrifugation at 1200 g for 3 minutes and emulsification with a channel diameter of 1.2 mm. Results were assessed using the Manchester Scar Scale (MSS) and photographing. RESULTS According to MSS analysis, the following results were obtained: before treatment - 11.6 (9.3-13.3) scores, 3 months after treatment - 6.5 (5.1-7.2) scores, 6 months after treatment - 5.2 (4.5-6.1) scores. Significant differences were obtained for baseline values and both control points. Stable results were obtained in long-term follow-up period (12-24 months). No major adverse effects were observed. Minor complications were registered in 10.1% of patients. CONCLUSION Injections of lipoaspirate-based products is an effective option for the treatment of patients with pathologic scarring. This approach is intermediate between conservative and conventional surgical treatment.
Collapse
Affiliation(s)
- V S Vasilyev
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | | | - A A Mikhailova
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | - I I Nadelyaeva
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | - S A Vasilyev
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | - I S Vasilyev
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | - Yu S Vasilyev
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | | | - I B Kazantsev
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | - E S Vasilyeva
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| | - K V Kotenko
- Petrovsky Russian Scientific Center of Surgery, Moscow, Russia
| |
Collapse
|
175
|
Abstract
One of the earliest reported cases of autologous fat grafting (AFG) was by Neuber in 1893 and consisted of the transfer of small lobules of fat from the upper arm for cicatrical depression of the face. He advocated the use of smaller grafts, noting that pieces larger than the size of a bean would form cysts. In 1895, Czerny excised a lumbar lipoma and transplanted it to the chest for breast reconstruction. Since these early reports, the knowledge base around AFG has expanded exponentially, as illustrated by the other papers within this special topic. As we embark on the next phase of AFG in the clinical setting, there are several directions which are near-clinical translation. This paper discusses future directions in fat grafting that build on optimization of our current techniques as clinical indications expand, such as supplementing purified lipoaspirate and the associated regulatory burden, or deconstructing adipose tissue to selectively use adipose graft components for a variety of regenerative indications.
Collapse
Affiliation(s)
- Summer E Hanson
- Department of Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| |
Collapse
|
176
|
Crowley JS, Kream E, Fabi S, Cohen SR. Facial Rejuvenation With Fat Grafting and Fillers. Aesthet Surg J 2021; 41:S31-S38. [PMID: 34002771 DOI: 10.1093/asj/sjab014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Facial rejuvenation requires a multi-modality approach to address the sun damage, volume loss, and thinning of skin that occurs with aging. With age, the collagen fibrils that provide strength become fragmented and fibroblasts connections become weak, leading to skin laxity and loss of youthful skin. Fillers can lead to a more youthful appearance by providing volumetric support. Synthetic fillers such as hyaluronic acid products, calcium hydroxyapatite, polylactic acid, and polymethylmethacralate have bio-stimulatory affects, ranging from small effects on fibroblast production to prolonged stimulatory effects on dermal thickness and blood supply. Fat grafting is also an ideal technique for facial rejuvenation because it is readily available, natural, and has regenerative effects. This review describes a new technique of fat grafting for the face called Injectable Tissue Replacement and Regeneration that specifically addresses the different anatomic compartments of the face with volume loss. With this brief review, we aim to evaluate the currents trends of fat grafting and fillers in the management of facial rejuvenation, including the cellular changes that occur with facial aging, the bio-stimulatory effects of fillers, and the anatomic replacement of tissue with fat grafting. >Level of Evidence: 4.
Collapse
Affiliation(s)
- J Sarah Crowley
- Division of Plastic Surgery, University of California San Diego, San Diego, CA, USA
| | - Elizabeth Kream
- Department of Dermatology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Sabrina Fabi
- Division of Dermatology, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
177
|
Moak TN, Ebersole TG, Tandon D, Tenenbaum M. Assessing Clinical Outcomes in Autologous Fat Grafting: A Current Literature Review. Aesthet Surg J 2021; 41:S50-S60. [PMID: 34002770 DOI: 10.1093/asj/sjab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autologous fat grafting, first described in the 1890s, has since undergone many modifications to optimize safety and efficacy. These changes have resulted in the technique that we now consider standard of care, one that is applied to reconstruction and cosmetic enhancement of the breast and the face both independently and in conjunction with surgical treatment. There is a growing body of evidence that this application has positive outcomes for patient satisfaction, surgeon satisfaction, and overall aesthetic appearance. This article summarizes the body of literature regarding these outcomes, reviews complications of fat grafting in the face and breast, and discusses controversies including radiologic imaging changes and longevity of grafting. Level of Evidence: 4.
Collapse
Affiliation(s)
- Teri N Moak
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO, USA
| | - Trina G Ebersole
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO, USA
| | - Damini Tandon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO, USA
| | - Marissa Tenenbaum
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Barnes Jewish Hospital, Washington University, St. Louis, MO, USA
| |
Collapse
|
178
|
Sun W, Li T, Yao H, Kang L, Dong F. Effects of concentrated growth factor and nanofat on aging skin of nude mice induced by D-galactose. Physiol Res 2021; 70:425-435. [PMID: 33982585 DOI: 10.33549/physiolres.934640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This investigation studied the effect of concentrated growth factor and nanofat on aging skin of nude mice induced by D-galactose. BALB/c mice were randomly divided into five groups: 5 mice in the control group were fed normally without any intervention, 9 mice were treated with concentrated growth factor (CGF), 9 mice were treated with nanofat (NF), 9 mice were treated with CGF+NF, and 9 mice in the model group (no treatment after subcutaneous injection of D-galactose). Relevant indicators are measured and recorded. In skin and serum, SOD and GSH content in the model group were significantly lower than those in other groups (P<0.05), and the MDA of the three treatment groups was significantly lower than that of the model group (P<0.05). Compared with the control group, the contents of total collagen, type I collagen and type III collagen in the NF group and model group were decreased in different degrees (P<0.05); the contents of elastin and elastic fiber in the skin of nude mice in the model group and NF group were significantly decreased. Compared with the model group, he number of CD31 and VEGF in the treatment group was significantly increased (P<0.01); the skin AGE content of three treatment groups was significantly lower (P<0.05). These findings suggest that concentrated growth factor and nanofat may have a significant effect on delaying aging skin induced by D-galactose in nude mice.
Collapse
Affiliation(s)
- W Sun
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Hebei Medical University, Shijiazhuang, Hebei, China, Hebei Key Laboratory of Oral Medicine, Shijiazhuang, Hebei, China, Chang'an District, Shijiazhuang, Hebei, China.
| | | | | | | | | |
Collapse
|
179
|
Gentile P, Garcovich S. Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) against Ultraviolet (UV) Radiation Effects and the Skin Photoaging. Biomedicines 2021; 9:biomedicines9050532. [PMID: 34064624 PMCID: PMC8151305 DOI: 10.3390/biomedicines9050532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022] Open
Abstract
The skin is a natural barrier against the ultraviolet (UV) radiation of sunlight. The long-term and/or repetitive exposure to the sunlight and related UV radiation may change the skin structure, decreasing collagen production, promoting premature skin aging, which is termed "photoaging". The signs of photoaging include wrinkle formation, mottled pigmentation, and/or cancerous changes. For many years, adipose-derived mesenchymal stem cells (AD-MSCs) and fat grafting (F-GRF) have been used to combat photoaging signs, wrinkles, loss of elasticity, and face soft tissue defects. Several studies have analyzed in vitro actions of AD-MSCs against photoaging's effects, thanks to their migratory activity, paracrine actions, and related in vivo-ex vivo outcomes. In fact, AD-MSCs act against skin photoaging in vitro via activation of dermal fibroblast proliferation, antioxidant effect, and matrix metalloproteinases (MMPs) reduction. In vivo and ex vivo outcomes regard the local injection of AD-MSCs, F-GRF, and/or enriched-F-GRF with AD-MSCs directly in the wrinkles and the face's soft tissue defects. This concise review summarizes the most recent in vitro, in vivo and ex vivo outcomes and developments on the effects of AD-MSCs and F-GRF against photoaging.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, Plastic and Reconstructive Surgery, Medical School, “Tor Vergata” University, 00133 Rome, Italy
- Scientific Director of Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201 Geneva, Switzerland
- Correspondence: ; Tel.: +39-3388-5154-79
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
180
|
Yoon SH, Gao J, Xu L, Yu Z, Jiang T, Kang BK, Zhang R, Cao D. Effect of additive-assisted fat transplantation on fat graft survival rate: A preliminary experimental study based on a rabbit animal model. ANN CHIR PLAST ESTH 2021; 66:440-446. [PMID: 33966905 DOI: 10.1016/j.anplas.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Improving the survival rate of fat grafts is yet a difficult problem in the field of autologous fat transplantation. Prevailing methods such as making nanofat and SVF are time-consuming. Hence, the role of additives application in the improvement of fat graft survival during fat transplantation was considered and preliminarily evaluated in a rabbit animal model. METHODS A rabbit animal model was established where rabbit ears were injected with a mixture of 1.5mL of adipose tissue and 1mL of saline (group A), 1.5mL of adipose tissue and 1mL of botulinum toxin A (BoNTA) (group B), 1.5mL of adipose tissue and 1mL of prostaglandin E2 (groupC), 1.5mL of adipose tissue and 1mL of PDRN (group D) respectively. Then, the extents of neovascularization and inflammation were evaluated on the 7th, 14th, 28th, 42nd, 56th and 70th day after injection by ELISA assays and H&E and immunofluorescence staining. RESULTS The results showed that pre-treatment with BoNTA, prostaglandin E2 and PDRN improved graft volume and weight. The H&E and immunofluorescence staining revealed that BoNTA, prostaglandin E2 and PDRN improved the graft angiogenesis. Simultaneously, TNF-α expression level detected by ELISA was the lowest in the PDRN group. CONCLUSION Henceforth, the present preliminary study suggests that pre-transplantation treatment with BoNTA, prostaglandin E2 and PDRN can improve the fat graft angiogenesis and graft integrity, whereby the effect of adding PDRN may be significant.
Collapse
Affiliation(s)
- S H Yoon
- Department of plastic and reconstructive surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of medicine, 639, Zhizaoju road, 200011 Shanghai, China
| | - J Gao
- Department of plastic and reconstructive surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of medicine, 639, Zhizaoju road, 200011 Shanghai, China
| | - L Xu
- Department of plastic and reconstructive surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of medicine, 639, Zhizaoju road, 200011 Shanghai, China
| | - Z Yu
- Department of plastic and reconstructive surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of medicine, 639, Zhizaoju road, 200011 Shanghai, China
| | - T Jiang
- Department of plastic and reconstructive surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of medicine, 639, Zhizaoju road, 200011 Shanghai, China
| | - B K Kang
- Department of plastic and reconstructive surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of medicine, 639, Zhizaoju road, 200011 Shanghai, China
| | - R Zhang
- Department of plastic and reconstructive surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of medicine, 639, Zhizaoju road, 200011 Shanghai, China.
| | - D Cao
- Department of plastic and reconstructive surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University school of medicine, 639, Zhizaoju road, 200011 Shanghai, China.
| |
Collapse
|
181
|
Fat Grafting Improves Fibrosis and Scarring in Vulvar Lichen Sclerosus: Results From a Prospective Cohort Study. J Low Genit Tract Dis 2021; 24:305-310. [PMID: 32205767 DOI: 10.1097/lgt.0000000000000520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate the effect of lipotransfer in women presenting with fibrosis and scarring due to lichen sclerosus. MATERIALS AND METHODS This prospective cohort study included 33 women attending the vulvar clinic of a public hospital. Patients received one lipotransfer treatment. Validated measures were used prospectively to assess the sexual function (Female Sexual Function Index, Female Sexual Distress Scale); symptoms (visual analog scale for itching, burning, soreness), pain (Pain Anxiety Symptoms Scale 20); psychological status and quality of life (Hospital Anxiety and Depression Scale, Relationship Assessment Scale, Wound Management Questionnaire Revised); physician-based disease signs (Vulvar Architecture Severity Scale). Data were analyzed using paired t test with nonparametric Wilcoxon matched-pairs signed rank test and unpaired t test with nonparametric Mann-Whitney test (Prism6 Software). RESULTS The mean (SD) follow-up was 12.9 (3.5) months. Sexual function improved after treatment (p < .001), as well as the distress associated with sexuality (p < .0001). A significant improvement was reported in itching (p < .001), burning (p < .05), soreness (p < .001), and pain (p < .0001). Patients reported a significant improvement in romantic relationship (p < .05), anxiety (p < .0001), and depression (p < .0001). Improvement was not significant in the self-care associated with self-disgust assessment (p = .42). The clinical physician-based score showed an overall improvement in all the treated areas to lesser or greater extent. CONCLUSIONS The use of fat grafting in lichen sclerosus is promising. Further studies are required to rule out a potential placebo effect and to better understand the underlying molecular mechanism of action.
Collapse
|
182
|
Yang F, Ji Z, Peng L, Fu T, Liu K, Dou W, Li J, Li Y, Long Y, Zhang W. Efficacy, safety and complications of autologous fat grafting to the eyelids and periorbital area: A systematic review and meta-analysis. PLoS One 2021; 16:e0248505. [PMID: 33793573 PMCID: PMC8016360 DOI: 10.1371/journal.pone.0248505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background In recent years, autologous fat grafting (AFG), also known as fat transfer or lipofilling, has been widely performed for periorbital rejuvenation and defect correction, although the evidence regarding its efficacy and safety is still lacking. Besides, with respect to the periorbital region, it is invariably the earliest appearance area of the facial aging phenomenon. Therefore, a systematic review and meta-analysis is needed to evaluate the efficacy and safety of this technique. Methods A literature search was performed in PubMed, Embase, and the Cochrane library databases on November 20, 2020, adhering to the PRISMA guidelines, to identify all relevant articles. Then, a data extraction and standardization process was performed to assess all outcome data. Ultimately, the data were assessed using a random effects regression model with comprehensive meta-analysis software. Results Thirty-nine studies consisting of 3 cohorts and 36 case series with a total of 4046 cases were included. Meta-analysis revealed a relatively high satisfaction rate of 90.9% (95% CI, 86.4%–94.0%). Frequent complications in 4046 patients receiving AFG were edema, chemosis, and contour irregularity, with an overall complication rate of 7.9% (95% CI, 4.8%–12.8%). Conclusion This systematic review and meta-analysis showed that AFG for rejuvenation of eyelids and periorbital area provided a high satisfaction rate and did not result in severe complications. Therefore, AFG might be performed safely for periorbital rejuvenation and reconstruction.
Collapse
Affiliation(s)
- Fan Yang
- Department of Plastic Surgery and Burns, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhaohua Ji
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi’an, China
| | - Liwei Peng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ting Fu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi’an, China
| | - Kun Liu
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi’an, China
| | - Wenjie Dou
- Department of Plastic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jing Li
- Department of Plastic Surgery and Burns, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yuejun Li
- Department of Plastic Surgery and Burns, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
- * E-mail: (WZ); (YL); (YL)
| | - Yong Long
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi’an, China
- * E-mail: (WZ); (YL); (YL)
| | - Weilu Zhang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, The Fourth Military Medical University, Xi’an, China
- * E-mail: (WZ); (YL); (YL)
| |
Collapse
|
183
|
Zhao Y, Xie L. An Update on Mesenchymal Stem Cell-Centered Therapies in Temporomandibular Joint Osteoarthritis. Stem Cells Int 2021; 2021:6619527. [PMID: 33868408 PMCID: PMC8035039 DOI: 10.1155/2021/6619527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease characterized by cartilage degeneration, disrupted subchondral bone remodeling, and synovitis, seriously affecting the quality of life of patients with chronic pain and functional disabilities. Current treatments for TMJOA are mainly symptomatic therapies without reliable long-term efficacy, due to the limited self-renewal capability of the condyle and the poorly elucidated pathogenesis of TMJOA. Recently, there has been increased interest in cellular therapies for osteoarthritis and TMJ regeneration. Mesenchymal stem cells (MSCs), self-renewing and multipotent progenitor cells, play a promising role in TMJOA treatment. Derived from a variety of tissues, MSCs exert therapeutic effects through diverse mechanisms, including chondrogenic differentiation; fibrocartilage regeneration; and trophic, immunomodulatory, and anti-inflammatory effects. Here, we provide an overview of the therapeutic roles of various tissue-specific MSCs in osteoarthritic TMJ or TMJ regenerative tissue engineering, with an additional focus on joint-resident stem cells and other cellular therapies, such as exosomes and adipose-derived stromal vascular fraction (SVF). Additionally, we summarized the updated pathogenesis of TMJOA to provide a better understanding of the pathological mechanisms of cellular therapies. Although limitations exist, MSC-centered therapies still provide novel, innovative approaches for TMJOA treatment.
Collapse
Affiliation(s)
- Yifan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
184
|
Surowiecka A, Piekarski M, Pototschnig H. Stromal vascular fraction and emulsified fat as regenerative tools in rejuvenation of the lower eyelid area. Dermatol Ther 2021; 34:e14937. [PMID: 33704865 DOI: 10.1111/dth.14937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022]
Abstract
In the lower eyelid area, dermal melanocytosis, fine lines, skin atrophy, dryness, and loss of subcutaneous fat tissue represent the initial signs of aging. Beside the addition of volume, adipose tissue injections can also improve pigmentation and skin texture. Clinical studies of simultaneous stromal vascular fraction (SVF) and emulsified fat transfers have not been reported so far. Our aim was to investigate the clinical results of transferring SVF and emulsified fat into the lower eyelid area. A total of 16 patients underwent tumescent liposuction and injection of SVF and emulsified fat into the lower eyelid area. For preparation of SVF and emulsified fat, ACP double syringes with 2.4, 1.4, and 1.2 mm connectors, and a swing-out rotor centrifuge, were used. At follow-up, improvements on before and after pictures were rated by the treating physician and two independent physicians, using the global aesthetic improvement scale (GAIS). Clinical outcomes were rated as exceptional, very improved, or improved in all patients, with an average GAIS score of 1.6. No serious adverse events occurred. Our initial results suggest that SVF and emulsified fat are safe and effective tools for skin rejuvenation and correction of volume deficiencies in the lower eyelid area. More studies need to be conducted to corroborate these encouraging findings.
Collapse
|
185
|
Facial Rejuvenation with Concentrated Lipograft-A 12 Month Follow-Up Study. Cells 2021; 10:cells10030594. [PMID: 33800325 PMCID: PMC7998566 DOI: 10.3390/cells10030594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Lipofilling is a popular technique to treat volume loss in aging patients. The isolated adipose tissue is composed of adipocytes and stromal vascular fraction cells, which include adipose-derived stem cells (ASC). We hypothesize that the patient’s wrinkle severity scale (WSS) and patient’s satisfaction on the global aesthetic improvement scale (GAIS) can be improved after using concentrated lipoaspirate. Fourteen patients (54 years ± 11.09 years) with volume loss in the midface area underwent waterjet-assisted liposuction (Human Med AG, Schwerin, Germany). Fat was centrifuged in an ACP Double Syringe (Arthrex GmbH, Munich, Germany) using Rotofix 32A centrifuge (Andreas Hettich, GmbH & Co.KG, Tuttlingen, Germany). Homogenization was performed using the double syringe and a 1.4 mm female–female luerlock connector. After a second centrifugation, patients received periorbital (PO) and nasolabial (NL) lipografting. ASC count was performed after enzymatical digestion. Vitality of cells was assessed using a resazurin assay. During long-term follow up (12 months, n = 10), we found a high patient’s satisfaction (GAIS 1+/−0.52) and a good improvement of the WSS during short- and long-term follow-up. The ASC count of processed lipoaspirate was 2.1-fold higher than of unprocessed lipoaspirate (p < 0.001). The difference of ASC in sedimented and simply centrifuged lipoaspirate was also significant (p < 0.05). Facial rejuvenation with concentrated fat graft offers good results concerning objective aesthetic outcome and patient’s satisfaction.
Collapse
|
186
|
Macedo RDR, Fonseca LFD, Lana JFSD, Mosaner T, Purita J, de Andrade MAP, Rodrigues LM, Centurion P. Biofat grafts as an orthobiologic tool in osteoarthritis: An update and classification proposal. World J Meta-Anal 2021; 9:29-39. [DOI: 10.13105/wjma.v9.i1.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Among degenerative musculoskeletal disorders, osteoarthritis remains one of the main causes of pain and disability in the adult population. Current available alternatives to alleviate symptoms include conservative treatments such as physical therapy, anti-inflammatory drugs and an educational approach to lifestyle modification. The use of certain analgesics, such as opiates and corticosteroids offer short-term results but does not address the etiological source of pain and disability. In addition, prolonged use of such medications can cause additional complications. Therefore, the demand for regeneration of joint cartilage has led to an alternative approach called "orthobiologics". This alternative is based on cellular and molecular components capable of inducing and promoting tissue repair. Products derived from adipose tissue have been studied as an excellent source of orthobiologics in an attempt to promote joint cartilage repair. However, the lack of standardization regarding collection and processing protocols presents a challenge for the generalization of study results and determination of effectiveness. To the best of our knowledge, orthobiologics derived from fat have not yet been classified. Therefore, this manuscript proposes the HGS classification system which aims to describe certain parameters that are relevant to the quality of organic products regarding harvesting techniques (H), graft type (G), and number of centrifugations (S). The more parameters used would imply greater characterization and complexity of the evaluation of the biological product used. The HGS classification may provide a valuable contribution to the understanding of clinical procedures and research results, aiming to ultimately usher in a standardization of optimal practice.
Collapse
Affiliation(s)
- Rafael da Rocha Macedo
- Department of Orthopedics, Rede D’Or unidade IFOR Hospital, São Bernardo do Campo 09715-021, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, Escola Paulista de Medicina da Universidade Federal de São Paulo, São Paulo 04024-002, Brazil
| | | | - Tomas Mosaner
- Department of Orthopedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, São Paulo, Brazil
| | - Joseph Purita
- Department of Orthopedics, Institute of Regenerative Medicine, Boca Raton, FL 33432, United States
| | - MAP de Andrade
- Department of Orthopedics, Federal University of Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | | | - Patricio Centurion
- Aesthetic and Reconstructive Plastic Surgery, Ricardo Palma University, Lima 15023, Peru
| |
Collapse
|
187
|
Ye Y, Zou J, Tan M, Hu K, Jiang J. Phenotypic and Cellular Characteristics of a Stromal Vascular Fraction/Extracellular Matrix Gel Prepared Using Mechanical Shear Force on Human Fat. Front Bioeng Biotechnol 2021; 9:638415. [PMID: 33718340 PMCID: PMC7952646 DOI: 10.3389/fbioe.2021.638415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/03/2021] [Indexed: 11/23/2022] Open
Abstract
The retention of fat-derived grafts remains a challenge for regenerative medicine. Fat aspirates from patients undergoing liposuction were prepared into standard Coleman fat grafts or further isolated using mechanical shear force to prepare a stromal vascular fraction (SVF)/extracellular matrix (ECM) gel. The retention rate of the SVF/ECM gel was significantly higher than that of the Coleman fat at 3, 14, 28, and 60 days following transplantation on the backs of nude mice. The viscosity of the fat was directly proportional to the shearing force. Although the mechanical isolation did not affect the total number of cells, it significantly decreased the number of living cells. Flow cytometry showed a greater number of mesenchymal stem cells, supra-adventitial (SA)-adipose stromal cells (ASCs), and adipose-derived stem cells but a lower number of endothelial progenitor cells in the SVF/ECM gel than in the Coleman fat. Thus, mechanical isolation of fat can increase the pluripotency of adipocytes, which can improve graft retention in cell therapy.
Collapse
Affiliation(s)
- Yuan Ye
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jingjiang Zou
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Meijun Tan
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Kuikui Hu
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jindou Jiang
- Department of Plastic and Cosmetic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
188
|
Stromal-vascular fraction of adipose tissue as an alternative source of cellular material for regenerative medicine. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adipose tissue is the most convenient source of cellular material for regenerative medicine as it can be obtained in significant quantities via cosmetic liposuction, lipoaspiration of subcutaneous fat or by excision of fat deposits. Adipose tissue consists of adipocytes and cells, which are the part of the stromal-vascular fraction (SVF). Different cell populations can be isolated from SVF, among which the population of adipose tissue stem cells (adipose-derived stem cells, ADSC) is especially important for regenerative medicine. SVF can be obtained relatively easily from adipose tissue (adipose tissue is an alternative to bone marrow in terms of being a source of stem cells) and used to treat various pathologies. Recent studies show that SVF not only has a therapeutic effect similar to that of ADSC, but in some cases is even more effective. The article provides the analysis of the main methods of SVF obtainment, characteristics of SVF cellular composition, its potential for use in clinical medicine and its main advantages over other sources of cellular material, including ADSC cultured in vitro, for regenerative medicine. Keywords: adipocytes, adipose-derived stem cells, regenerative medicine, stromal-vascular fraction
Collapse
|
189
|
Copcu HE, Oztan S. Not Stromal Vascular Fraction (SVF) or Nanofat, but Total Stromal-Cells (TOST): A New Definition. Systemic Review of Mechanical Stromal-Cell Extraction Techniques. Tissue Eng Regen Med 2021; 18:25-36. [PMID: 33231864 PMCID: PMC7862455 DOI: 10.1007/s13770-020-00313-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/04/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
The most important and greatest source in the body for regenerative cells is fat tissue. Obtaining regenerative cells from adipose tissue can be done in two ways: Enzymatic and mechanical. The regenerative cell cocktail obtained by the enzymatic method, including stem cells, is called Stromal vascular fracture (SVF). In the literature, there is no clear definition of regenerative cells obtained by mechanical method. We systematically searched the techniques and definitions for stromal cells obtained from adipose tissue by scanning different databases. To evaluate the mechanical stromal-cell isolation techniques and end products from adipose tissue. Systematic review of English and non-English articles using Embase, PubMed, Web of Science and Google scholar databases. Search terms included Nanofat, fragmented fat, mechanical stromal / stem cell, mechanical SVF, SVF gel. We screened all peer-reviewed articles related with mechanical stromal-cell isolation. Author performed a literature query with the aforementioned key words and databases. A total of 276 publications containing the keywords we searched were reached. In these publications, there are 46 different definitions used to obtain mechanical stromal cells. The term SVF is only suitable for enzymatic methods. A different definition is required for mechanical. The most used term nanofat is also not suitable because the product is not in both "fat" and in "nanoscale". We think that the term total stromal-cells would be the most appropriate definition since both extracellular matrix and all stromal cells are protected in mechanical methods.
Collapse
Affiliation(s)
- H. Eray Copcu
- Plastic and Reconstructive Surgery, MEST Medical Services, Cumhuriyet Bulv. No:161/A,1,2 Alsancak, Izmir, Turkey
| | - Sule Oztan
- Plastic and Reconstructive Surgery, MEST Medical Services, Cumhuriyet Bulv. No:161/A,1,2 Alsancak, Izmir, Turkey
| |
Collapse
|
190
|
Rosa I, Romano E, Fioretto BS, Matucci-Cerinic M, Manetti M. Adipose-derived stem cells: Pathophysiologic implications vs therapeutic potential in systemic sclerosis. World J Stem Cells 2021; 13:30-48. [PMID: 33584978 PMCID: PMC7859990 DOI: 10.4252/wjsc.v13.i1.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) residing in the stromal vascular fraction (SVF) of white adipose tissue are recently emerging as an alternative tool for stem cell-based therapy in systemic sclerosis (SSc), a complex connective tissue disorder affecting the skin and internal organs with fibrotic and vascular lesions. Several preclinical and clinical studies have reported promising therapeutic effects of fat grafting and autologous SVF/ADSC-based local treatment for facial and hand cutaneous manifestations of SSc patients. However, currently available data indicate that ADSCs may represent a double-edged sword in SSc, as they may exhibit a pro-fibrotic and anti-adipogenic phenotype, possibly behaving as an additional pathogenic source of pro-fibrotic myofibroblasts through the adipocyte-to-myofibroblast transition process. Thus, in the perspective of a larger employ of SSc-ADSCs for further therapeutic applications, it is important to definitely unravel whether these cells present a comparable phenotype and similar immunosuppressive, anti-inflammatory, anti-fibrotic and pro-angiogenic properties in respect to healthy ADSCs. In light of the dual role that ADSCs seem to play in SSc, this review will provide a summary of the most recent insights into the preclinical and clinical studies employing SVF and ADSCs for the treatment of the disease and, at the same time, will focus on the main findings highlighting the possible involvement of these stem cells in SSc-related fibrosis pathogenesis.
Collapse
Affiliation(s)
- Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence 50134, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence 50134, Italy.
| |
Collapse
|
191
|
Jiang X, Lai XR, Lu JQ, Tang LZ, Zhang JR, Liu HW. Decellularized adipose tissue: A key factor in promoting fat regeneration by recruiting and inducing mesenchymal stem cells. Biochem Biophys Res Commun 2021; 541:63-69. [PMID: 33477034 DOI: 10.1016/j.bbrc.2020.12.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Decellularized adipose tissue (DAT) has attracted much attention due to its wide range of sources and adipose regeneration capacity. However, the lipogenic efficiency of DAT is still controversial due to its unclear mechanism. To this point, it is crucial to clarify the mechanism of DAT in promoting adipose regeneration Objective: This study aims to explore the mechanism of DAT promoting adipose regeneration and survival mechanism of DAT transplantation in vivo. METHODS DAT preparation by repeated freeze-thaw, enzymatic digestion, and isopropanol degreasing. Histology, DAPI, immunohistochemistry, immunofluorescence and scanning electron microscopy confirmed the efficacy and reproducibility of these approaches. BM-MSCs, ADSCs and UCMSCs were cocultured with DAT for 14 days and then stained with oil red O. Adipogenic genes of three MSCs were detected by RT-PCR. DAT and adipose tissue were transplanted subcutaneously into the back of nude mice to observe medium and long-term morphological changes, vascularization, and lipid-forming efficiency. Mass spectrometry (MS)-based proteomic to analyze the adipogenic protein contents of DAT and adipose tissue. RESULTS The DAT without any cellular components but with an abundance of collagen; neither DNA nor lipids were detected. Seeding experiments with MSCs indicated that the DAT provided an inductive microenvironment for adipogenesis, supporting the expression of the master regulators PPARγ. Within four months after transplantation, HE morphology of DAT was identical to adipose cells. Immunofluorescence markers CD31 and perilipin were increased in DAT, while the retention rate gradually decreased over time, eventually accounting for 33.7% of the original volume. MS-based proteomic analyses identified 1013 types of proteins in adipose tissue and 29 proteins in the DAT. Analyses of GO and KEGG databases suggested that DAT contained a variety of proteins involved in fat metabolism. CONCLUSIONS DAT can interact with different types of MSCs and ultimately achieve adipose regeneration. The presence of multiple adipogenic proteins in DAT make it play a vital role in adipose regeneration. DAT is expected to be an ideal bio-derived scaffold for adipose tissue engineering.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Xin-Rui Lai
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Jin-Qiang Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Ling-Zhi Tang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Jin-Rong Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| | - Hong-Wei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510630, PR China; Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province, 510630, PR China.
| |
Collapse
|
192
|
Laloze J, Fiévet L, Desmoulière A. Adipose-Derived Mesenchymal Stromal Cells in Regenerative Medicine: State of Play, Current Clinical Trials, and Future Prospects. Adv Wound Care (New Rochelle) 2021; 10:24-48. [PMID: 32470315 PMCID: PMC7698876 DOI: 10.1089/wound.2020.1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Significance: Wound healing is a complex process involving pain and inflammation, where innervation plays a central role. Managing wound healing and pain remains an important issue, especially in pathologies such as excessive scarring (often leading to fibrosis) or deficient healing, leading to chronic wounds. Recent Advances: Advances in therapies using mesenchymal stromal cells offer new insights for treating indications that previously lacked options. Adipose-derived mesenchymal stromal cells (AD-MSCs) are now being used to a much greater extent in clinical trials for regenerative medicine. However, to be really valid, these randomized trials must imperatively follow strict guidelines such as consolidated standards of reporting trials (CONSORT) statement. Indeed, AD-MSCs, because of their paracrine activities and multipotency, have potential to cure degenerative and/or inflammatory diseases. Combined with their relatively easy access (from adipose tissue) and proliferation capacity, AD-MSCs represent an excellent candidate for allogeneic treatments. Critical Issues: The success of AD-MSC therapy may depend on the robustness of the biological functions of AD-MSCs, which requires controlling source heterogeneity and production processes, and development of biomarkers that predict desired responses. Several studies have investigated the effect of AD-MSCs on innervation, wound repair, or pain management separately, but systematic evaluation of how those effects could be combined is lacking. Future Directions: Future studies that explore how AD-MSC therapy can be used to treat difficult-to-heal wounds, underlining the need to thoroughly characterize the cells used, and standardization of preparation processes are needed. Finally, how this a priori easy-to-use cell therapy treatment fits into clinical management of pain, improvement of tissue healing, and patient quality of life, all need to be explored.
Collapse
Affiliation(s)
- Jérôme Laloze
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
- Department of Maxillo-Facial and Reconstructive Surgery and Stomatology, University Hospital Dupuytren, Limoges, France
| | - Loïc Fiévet
- STROMALab, Etablissement Français du Sang (EFS)-Occitanie, INSERM 1031, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, University of Toulouse, Toulouse, France
| | - Alexis Desmoulière
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
| |
Collapse
|
193
|
Svolacchia F, Svolacchia L. Adipose tissue micrograft in a scaffold of plasma-gel combined with platelet-derived growth factors in dermal wrinkle regeneration. SCRIPTA MEDICA 2021. [DOI: 10.5937/scriptamed52-30316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Background: The dermal aging process and the formation of deep wrinkles are a biological involution that also involves the regeneration system of cells immersed in the extracellular matrix and the papillary dermis. The progressive loss of niches of adult stem cells (MSCs) is more evident after the first third of life; it increases the phenotypic expression and the characteristics of the tissue senescence process. The purpose of this study was to clinically demonstrate that in viable micrograft there may be an improvement of deep wrinkles and surrounding tissues. Methods: This study involved 11 female patients who underwent the correction of deep dermal wrinkles through a suspension containing 0.8 mL of viable micrografts in a 5 mL plasma gel scaffold, obtained from the centrifugation of a 20 cc venous sample peripheral blood, gelled by heat in a dry steriliser and the buffy coat coming from the same venous sample, in order verify overtime the improvement of the interested anatomical area. Individual signs of wrinkles and the degree of correction obtained for each treatment and each area were objectively evaluated by using a 10-0 visual analog scale (VAS), Modified Vancouver scale and Berardesca's scale. Results: With this technique excellent results were obtained. In fact, wrinkles were improved, as well as surrounding tissues, even after 60 days, as shown by the Berardesca's, VAS and Modified Vancouver scales. Conclusion: This retrospective clinical evaluation allowed us to consider the excellent clinical results obtained with this method for the treatment of deep wrinkles and surrounding tissues, through a suspension of progenitors with MSCs derived from adipose tissue (ADSCa) in a not inflammatory plasma gel scaffold combined with buffy coat.
Collapse
|
194
|
Cohen SR, Hewett S. Commentary on: Fat Grafting to Improve Results of Facelift: Systematic Review of Safety and Effectiveness of Current Treatment Paradigms. Aesthet Surg J 2021; 41:13-15. [PMID: 32556099 DOI: 10.1093/asj/sjaa043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steven R Cohen
- Dr Cohen is a Clinical Professor of Plastic Surgery, University of California, San Diego, CA
| | - Sierra Hewett
- Ms Hewett is a research assistant at a private plastic surgery practice in La Jolla, CA
| |
Collapse
|
195
|
The Paracrine Effect of Adipose-Derived Stem Cells Orchestrates Competition between Different Damaged Dermal Fibroblasts to Repair UVB-Induced Skin Aging. Stem Cells Int 2020; 2020:8878370. [PMID: 33381190 PMCID: PMC7759414 DOI: 10.1155/2020/8878370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/23/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022] Open
Abstract
Background Human dermal fibroblasts (HDFs) are the primary cells in skin and are associated with UVB-induced skin photoaging. Adipose-derived stem cells (ASCs) have been proposed as a treatment for skin aging. The goal of this study was to investigate paracrine mechanisms by which ASCs repair HDFs damage from UVB exposure. Methods ASCs were cocultured with UVB-irradiated and nonirradiated HDFs. We compared HDF senescence, proliferation, migration, oxidative stress, and cytokine expression. In a nude mouse UVB-induced photoaging model, ASCs were injected subcutaneously, and skin samples were collected weekly between postoperative weeks 3 through 7. Histological analysis, PCR, ELISA, and immunohistochemistry were used to analyze the effect of ASCs. Results Compared with UVB-irradiated HDFs, nonirradiated HDFs showed higher proliferation and migration, reduced apoptosis, and fewer senescent cells when cocultured with ASCs. The expression of extracellular matrix-related cytokines was also regulated by ASCs. In addition, ASCs effectively reversed UVB-induced skin photoaging in vivo. We propose that ASCs more robustly coordinate healthy HDFs than UVB-damaged HDFs to repair aging skin. Conclusions ASCs improved the function of both UVB-damaged and healthy HDFs through paracrine effects. However, the impact of ASCs on healthy HDFs was greater than UVB-damaged HDFs. These findings help to elucidate the underlying mechanisms of the skin rejuvenation effect of ASCs.
Collapse
|
196
|
Kemaloğlu CA, Özyazgan İ, Gönen ZB. Immediate fat and nanofat-enriched fat grafting in breast reduction for scar management. J Plast Surg Hand Surg 2020; 55:173-180. [PMID: 33315503 DOI: 10.1080/2000656x.2020.1856678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Reduction mammoplasty can be successful but surgical scars may continue to be a most undesirable and unavoidable outcome. Various medical and non-invasive methods are available to minimize scar formation but as yet no methods have been discovered to eliminate them. We hypothesize that immediate fat and nanofat-enriched fat graft transfer may improve the scar quality and optimize results. MATERIALS AND METHODS This prospective study comprised 45 superomedial pedicle wise-pattern breast reduction patients divided into three groups of 15 in a randomized fashion. The control group had no additional injections whereas the other two groups received injections of fat and nanofat-enriched fat grafts immediately under their surgery scars, respectively. Surgical scar formation was evaluated at six months and scars were scored using the Vancouver scar scale and a visual analogue scale. RESULTS Fat and nanofat-enriched fat graft-injected groups scored significantly better on all items of the Vancouver scar scale, except for scar height, compared to the control group (p < 0.05). Visual analogue scores were significantly lower in the fat and nanofat-enriched fat graft-injected groups compared to the control group (p < 0.05). CONCLUSIONS In breast reduction patients, simultaneous fat and nanofat-enriched fat grafting appears to be a safe and promising strategy for scar management.
Collapse
Affiliation(s)
- Cemal Alper Kemaloğlu
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - İrfan Özyazgan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
197
|
Zhang K, Liu F, Zhang Y, Huang X, Tang M, Hou Y, Lv Q, Jin D, Li Y, Kong L. Mechanical Vibration-Extracted Stromal Vascular Fraction Improves Volume Retention after Autologous Fat Grafting. Plast Reconstr Surg 2020; 146:1275-1284. [PMID: 33234957 DOI: 10.1097/prs.0000000000007341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The stromal vascular fraction can improve volume retention after fat grafting, but the optimal stromal vascular fraction extraction method remains controversial. This study investigated the effect of mechanical vibration on stromal vascular fraction activity and explored the efficacy of vibration as a new extraction method compared to centrifugation, enzyme digestion, and nanoemulsion methods. METHODS Twenty-four rabbits were divided into three groups, and adipose tissue was harvested from the scapular region of each rabbit. In the first group, stromal vascular fraction was extracted from adipose tissue by vibration with different frequencies and durations. Cell counts and colony formation were assessed to determine the optimal vibration parameters. In the second group, stromal vascular fraction was extracted by the four methods, and the cell counts, proliferation, and adipogenic capabilities were observed in vitro. In the third group, adipose tissue mixed with stromal vascular fraction extracted by means of the four methods was grafted into rabbit ears. Volume retention and histologic changes were evaluated over 24 weeks. RESULTS Stromal vascular fraction activity was not influenced by low-frequency (≤45 Hz) and short-duration (≤20 minutes) vibrations. Vibration at 30 Hz for 15 minutes was most efficient for stromal vascular fraction extraction. In vitro, stromal vascular fraction extracted by vibration showed advantages for cell viability. In vivo, the vibration group showed a more normal tissue morphology and a higher retention rate (60.68 ± 7.07 percent) than the enzyme digestion (31.88 ± 4.99 percent), centrifugation (43.76 ± 4.32 percent), and nanoemulsion groups (21.79 ± 3.57 percent) (p < 0.05). CONCLUSION Vibration at 30 Hz for 15 minutes is recommended as a novel nonenzymatic method to extract stromal vascular fraction with high activity.
Collapse
Affiliation(s)
- Kai Zhang
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Fuwei Liu
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Yanyuan Zhang
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Xin Huang
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Mingyue Tang
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Yan Hou
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Qianxin Lv
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Dan Jin
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Yunpeng Li
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| | - Liang Kong
- From the State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; and the Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University
| |
Collapse
|
198
|
Sesé B, Sanmartín JM, Ortega B, Llull R. Human Stromal Cell Aggregates Concentrate Adipose Tissue Constitutive Cell Population by In Vitro DNA Quantification Analysis. Plast Reconstr Surg 2020; 146:1285-1293. [PMID: 33234958 DOI: 10.1097/prs.0000000000007342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Regenerative cell strategies rely on stromal cell implants to attain an observable clinical outcome. However, the effective cell dose to ensure a therapeutic response remains unknown. To achieve a higher cell dose, the authors hypothesized that reducing the volume occupied by mature adipocytes in lipoaspirate will concentrate the stromal vascular fraction present in the original tissue. METHODS Human standardized lipoaspirate (n = 6) was centrifuged (1200 g for 3 minutes) and the water phase was discarded. Mechanical disaggregation was achieved by shearing tissue through 2.4- and 1.2-mm Luer-to-Luer transfers. After a second centrifugation (800 g for 10 minutes), stromal cell aggregates were separated from the supernatant oil phase. Lipoaspirate percentage composition was determined by its constituent weights. Cell content was measured by total DNA quantification, and partial cell viability was determined by image cytometry. Tissue sections were evaluated histologically (hematoxylin and eosin and Masson trichrome stains). RESULTS Stromal cell aggregates reduced the standardized lipoaspirate mass to 28.6 ± 4.2 percent. Accordingly, the cell density increased by 222.6 ± 63.3 percent (from 9.9 ± 1.4 million cells/g to 31.3 ± 6.6 million cells/g; p < 0.05). Cell viability was unaffected in stromal cell aggregates (71.3 ± 2.5 percent) compared to standardized lipoaspirate (72.2 ± 2.3 percent), and histologic analysis revealed high-density areas enriched with stromal cells (622.9 ± 145.6 percent) and extracellular matrix (871.2 ± 80.3 percent). CONCLUSION Stromal cell aggregates represent a biological agent that triplicates the cell density versus unprocessed lipoaspirate, low on oil and water fluids, and enriched extracellular matrix components.
Collapse
Affiliation(s)
- Borja Sesé
- From the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears; Servei de Genètica, Hospital Universitari Son Espases; Institut Català d'Oncologia, Hospital Germans Trias i Pujol; Cell Pro Tech Spain; and the University of Florida College of Medicine
| | - Javier M Sanmartín
- From the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears; Servei de Genètica, Hospital Universitari Son Espases; Institut Català d'Oncologia, Hospital Germans Trias i Pujol; Cell Pro Tech Spain; and the University of Florida College of Medicine
| | - Bernat Ortega
- From the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears; Servei de Genètica, Hospital Universitari Son Espases; Institut Català d'Oncologia, Hospital Germans Trias i Pujol; Cell Pro Tech Spain; and the University of Florida College of Medicine
| | - Ramon Llull
- From the Cancer Cell Biology Group, Institut d'Investigació Sanitària Illes Balears; Servei de Genètica, Hospital Universitari Son Espases; Institut Català d'Oncologia, Hospital Germans Trias i Pujol; Cell Pro Tech Spain; and the University of Florida College of Medicine
| |
Collapse
|
199
|
Li Z, Zhang J, Li M, Tang L, Liu H. Concentrated nanofat: a modified fat extraction promotes hair growth in mice via the stem cells and extracellular matrix components interaction. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1184. [PMID: 33241033 PMCID: PMC7576054 DOI: 10.21037/atm-20-6086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Fat graft transplantation seems a promising cell therapy for hair loss. However, impurities in lipoaspirate weaken the treatment effect. Here, we developed the lipoaspirate extraction method then investigate the effect and mechanism on hair growth-promoting in a mouse model. Methods Fat graft was prepared into concentrated nanofat (CNF), decellularized CNF (DCNF), and adipose-derived stem cells (ADSCs). They were injected subcutaneously in the back of depilated mice to test the hair promoting effect. Conditioned media (CM) from the adipose extracts were applied to dermal papilla cells (DPCs) to evaluate the cell viability and the anagen related signal. Results CNF and a high dose of ADSCs promoted hair growth and induced telogen-to-anagen transition in depilated mice. DCNF and a low dose of ADSCs did not show such effect; however, hair growth was promoted when they were used in combination. In vitro study showed the CNF-CM treated DPCs exhibited increased proliferation, migration, cell cycle progression, and elevated Wnt/β-catenin pathway protein levels compared with the other treatment groups. Conclusions CNF has a better effect than ADSCs in hair promotion via activating the DPCs and anagen induction. In this nature complex of stem cells (SCs) and extracellular matrix (ECM), ECM serves a significant supplementary role and amplifies the power of ADSCs. These results supply a theoretical basis on the clinical application of CNF to treat hair loss.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, China
| | - Jinrong Zhang
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Innovative Technology Research Institute of Tissue Repair and Regeneration, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, China
| | - Meng Li
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lingzhi Tang
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongwei Liu
- Department of Plastic Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
200
|
Yu F, Witman N, Yan D, Zhang S, Zhou M, Yan Y, Yao Q, Ding F, Yan B, Wang H, Fu W, Lu Y, Fu Y. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Res Ther 2020; 11:490. [PMID: 33213517 PMCID: PMC7678328 DOI: 10.1186/s13287-020-02008-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Background Fat grafting, as a standard treatment for numerous soft tissue defects, remains unpredictable and technique-dependent. Human adipose-derived stem cells (hADSCs) are promising candidates for cell-assisted therapy to improve graft survival. As free-living fat requires nutritional and respiratory sources to thrive, insufficient and unstable vascularization still impedes hADSC-assisted therapy. Recently, cytotherapy combined with modified mRNA (modRNA) encoding vascular endothelial growth factor (VEGF) has been applied for the treatment of ischemia-related diseases. Herein, we hypothesized that VEGF modRNA (modVEGF)-engineered hADSCs could robustly enhance fat survival in a fat graft transplantation model. Methods hADSCs were acquired from lipoaspiration and transfected with modRNAs. Transfection efficiency and expression kinetics of modRNAs in hADSCs were first evaluated in vitro. Next, we applied an in vivo Matrigel plug assay to assess the viability and angiogenic potential of modVEGF-engineered hADSCs at 1 week post-implantation. Finally, modVEGF-engineered hADSCs were co-transplanted with human fat in a murine model to analyze the survival rate, re-vascularization, proliferation, fibrosis, apoptosis, and necrosis of fat grafts over long-term follow-up. Results Transfections of modVEGF in hADSCs were highly tolerable as the modVEGF-engineered hADSCs facilitated burst-like protein production of VEGF in both our in vitro and in vivo models. modVEGF-engineered hADSCs induced increased levels of cellular proliferation and proangiogenesis when compared to untreated hADSCs in both ex vivo and in vivo assays. In a fat graft transplantation model, we provided evidence that modVEGF-engineered hADSCs promote the optimal potency to preserve adipocytes, especially in the long-term post-transplantation phase. Detailed histological analysis of fat grafts harvested at 15, 30, and 90 days following in vivo grafting suggested the release of VEGF protein from modVEGF-engineered hADSCs significantly improved neo-angiogenesis, vascular maturity, and cell proliferation. The modVEGF-engineered hADSCs also significantly mitigated the presence of fibrosis, apoptosis, and necrosis of grafts when compared to the control groups. Moreover, modVEGF-engineered hADSCs promoted graft survival and cell differentiation abilities, which also induced an increase in vessel formation and the number of surviving adipocytes after transplantation. Conclusion This current study demonstrates the employment of modVEGF-engineered hADSCs as an advanced alternative to the clinical treatment involving soft-tissue reconstruction and rejuvenation.
Collapse
Affiliation(s)
- Fei Yu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Siyi Zhang
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Meng Zhou
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yan Yan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Feixue Ding
- Department of Plastic Surgery, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bingqian Yan
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huijing Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yang Lu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|