151
|
Grine G, Drouet H, Fenollar F, Bretelle F, Raoult D, Drancourt M. Detection of Methanobrevibacter smithii in vaginal samples collected from women diagnosed with bacterial vaginosis. Eur J Clin Microbiol Infect Dis 2019; 38:1643-1649. [PMID: 31127480 DOI: 10.1007/s10096-019-03592-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/14/2019] [Indexed: 01/18/2023]
Abstract
Vaginosis is a dysbiotic condition of the vaginal cavity that has deleterious effects during pregnancy. The role of methanogens in this disease is unknown since current methods of investigation are not appropriate for the search of methanogens. We prospectively investigated the presence of methanogens in vaginal specimens collected from 33 women thereafter diagnosed with bacterial vaginosis and 92 women thereafter diagnosed without bacterial vaginosis (control group) by direct microscopic examination and fluorescent in situ hybridization, PCR-sequencing, and real-time PCR and isolation and culture. These investigations found only one methanogen, Methanobrevibacter smithii, exclusively in 97% bacterial vaginosis specimens and in two intermediate microbiota specimens. M. smithii was detected microscopically in 2/20 specimens analyzed, by PCR-based observations in 34/125 specimens with 99% sequence similarity with the reference 16S rRNA and mcrA gene sequences and was cultured in 9/40 specimens. These data suggest that the detection of M. smithii could be used as a biomarker for the laboratory diagnosis of bacterial vaginosis.
Collapse
Affiliation(s)
- Ghiles Grine
- MEPHI, IRD, IHU Méditerranée Infection, Aix Marseille University, Marseille, France.,IHU Méditerranée Infection, UMR MEPHI, 19-21, Bd Jean Moulin, 13005, Marseille, France
| | - Hortense Drouet
- VITROME, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Florence Fenollar
- VITROME, IRD, AP-HM, IHU-Méditerranée Infection, Aix Marseille University, Marseille, France
| | - Florence Bretelle
- Gynecology Department, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Didier Raoult
- MEPHI, IRD, IHU Méditerranée Infection, Aix Marseille University, Marseille, France.,IHU Méditerranée Infection, UMR MEPHI, 19-21, Bd Jean Moulin, 13005, Marseille, France
| | - Michel Drancourt
- MEPHI, IRD, IHU Méditerranée Infection, Aix Marseille University, Marseille, France. .,IHU Méditerranée Infection, UMR MEPHI, 19-21, Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
152
|
Cho K, Seo KW, Shin SG, Lee S, Park C. Process stability and comparative rDNA/rRNA community analyses in an anaerobic membrane bioreactor with silicon carbide ceramic membrane applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:155-164. [PMID: 30798226 DOI: 10.1016/j.scitotenv.2019.02.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated the feasibility of using a silicon carbide (SiC) anaerobic ceramic membrane bioreactor (AnCMBR) to co-manage domestic wastewater (DWW) and food waste recycling wastewater (FRW). A pilot-scale SiC-AnCMBR was put into operation for 140 days under two different organic loading rates (OLRs): 5 kg COD m-3 d-1 (OLR 5) and 3 kg COD m-3 d-1 (OLR 3). The organic removal efficiency was 93.5 ± 3.7% over the operational period. Methane production increased significantly after sludge re-seeding at OLR 3. rDNA and rRNA microbial results showed that the active archaeal community was affected by sludge re-seeding, whereas the active bacterial community was not, indicating that a shift in the active archaeal community was responsible for the increased methane production. Our results thus suggest that SiC-AnCMBRs are a promising option for co-managing DWW and FRW.
Collapse
Affiliation(s)
- Kyungjin Cho
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kyu Won Seo
- Small & Medium Enterprises Support Center, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Biotechnology, Korea University, Seoul 02841, South Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju-si, Gyeongsangnam-do 52725, South Korea
| | - Seockheon Lee
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
153
|
Martinez-Fernandez G, Denman SE, McSweeney CS. Sample Processing Methods Impacts on Rumen Microbiome. Front Microbiol 2019; 10:861. [PMID: 31114550 PMCID: PMC6502991 DOI: 10.3389/fmicb.2019.00861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/04/2019] [Indexed: 01/02/2023] Open
Abstract
The standardization of collection and processing methods for rumen samples is crucial to reduce the level of errors that may affect the analysis and interpretation of the data. The aim of this study was to compare two processing methods and their impacts on the microbial community composition analysis, from material that was either immediately frozen or samples that were stored as cell pellets after removing the supernatant prior to freezing. Eight rumen-fistulated Brahman steers received chloroform as an antimethanogenic compound for 21 days. Rumen fluid samples (60 mL per animal) were collected using a probe covered with two layers of cheesecloth at 3 h post feeding at day 0 prior-treatment (control period) and day 21 of treatment. One sub-set of samples were placed in dry ice and stored at −80°C (Method 1) for subsequent DNA extraction, while a second subset of samples was centrifuged, the supernatant removed and the microbial pellet and rumen contents placed in dry ice and stored at −80°C (Method 2) prior to DNA extractions. Phylogenetic based methods (Illumina Miseq) targeting the 16S rRNA gene were used to characterize the bacterial and archaeal communities from both collection methods for the control and treatment periods. The results from this study showed that the chloroform treatment was significantly different for all beta diversity measures regardless of the processing method used. Significant differences in the relative abundances of some bacteria and archaea, such as Elusimicrobia, Fibrobacteres, Lentisphaerae, Spirochaetes, and Verrucomicrobia and Methanomassiliicoccaceae, were observed at higher levels in the Method 2. These microbial populations are known to have fragile cell wall structures and are susceptible to cell lysis. Regardless of the processing method used, both identified the key microbial groups and can be used to compare the relative shifts in the rumen microbiome between treatments. However, immediately freezing samples might alter the abundance of material from species that are more readily lysed and will not be suitable for studies that aim to assign absolute abundance values to these species within the rumen.
Collapse
Affiliation(s)
- Gonzalo Martinez-Fernandez
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, St Lucia, QLD, Australia
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, St Lucia, QLD, Australia
| | - Christopher S McSweeney
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, St Lucia, QLD, Australia
| |
Collapse
|
154
|
Hu YY, Wu J, Li HZ, Poncin S, Wang KJ, Zuo JE. Novel insight into high solid anaerobic digestion of swine manure after thermal treatment: Kinetics and microbial community properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:169-177. [PMID: 30682669 DOI: 10.1016/j.jenvman.2019.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Compared to traditional anaerobic digestion (AD), high solid anaerobic digestion (HSAD) had the advantages of small digester, low heating energy and less digestate. However, the methane production was poor. In our previous study, thermal treatment (70 ± 1 °C, 3 days) without any dilution could satisfactorily enhance the methane production rate of HSAD by up to 39.5%. However, effects of solid content on HSAD after thermal treatment were not yet studied. In this study, HSAD was conducted at 11.7-17.6% solid content, and the control experiment was conducted at low solid content (4.4% solid content). Results showed that HSAD's methane production rate was the highest at 11.7% solid content (158 mL CH4/g VS), and could reach up to 89.2% of that at 4.4% solid content. The utilization of organics was revealed by kinetics analysis that the readily biodegradable organics could be utilized at increasing solid content with decreasing hydrolysis rate. Furthermore, it was notable that methylotrophic methanogens predominated in HSAD with the abundance of 82.6%. This was quite unique from the general belief that AD system was usually dominated by acetoclastic or hydrogenotrophic methanogenic pathways. In this study, the microbial community structure of HSAD after thermal treatment was firstly studied, its unique specific methanogenic pathways was firstly revealed.
Collapse
Affiliation(s)
- Yu-Ying Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Huai-Zhi Li
- Laboratory of Reactions and Process Engineering, Université de Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001, Nancy Cedex, France
| | - Souhila Poncin
- Laboratory of Reactions and Process Engineering, Université de Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001, Nancy Cedex, France
| | - Kai-Jun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jian-E Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
155
|
Salgado-Flores A, Tveit AT, Wright AD, Pope PB, Sundset MA. Characterization of the cecum microbiome from wild and captive rock ptarmigans indigenous to Arctic Norway. PLoS One 2019; 14:e0213503. [PMID: 30856229 PMCID: PMC6411164 DOI: 10.1371/journal.pone.0213503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/24/2019] [Indexed: 01/17/2023] Open
Abstract
Rock ptarmigans (Lagopus muta) are gallinaceous birds inhabiting arctic and sub-arctic environments. Their diet varies by season, including plants or plant parts of high nutritional value, but also toxic plant secondary metabolites (PSMs). Little is known about the microbes driving organic matter decomposition in the cecum of ptarmigans, especially the last steps leading to methanogenesis. The cecum microbiome in wild rock ptarmigans from Arctic Norway was characterized to unveil their functional potential for PSM detoxification, methanogenesis and polysaccharides degradation. Cecal samples were collected from wild ptarmigans from Svalbard (L. m. hyperborea) and northern Norway (L. m. muta) during autumn/winter (Sept-Dec). Samples from captive Svalbard ptarmigans fed commercial pelleted feed were included to investigate the effect of diet on microbial composition and function. Abundances of methanogens and bacteria were determined by qRT-PCR, while microbial community composition and functional potential were studied using 16S rRNA gene sequencing and shotgun metagenomics. Abundances of bacteria and methanogenic Archaea were higher in wild ptarmigans compared to captive birds. The ceca of wild ptarmigans housed bacterial groups involved in PSM-degradation, and genes mediating the conversion of phenol compounds to pyruvate. Methanomassiliicoccaceae was the major archaeal family in wild ptarmigans, carrying the genes for methanogenesis from methanol. It might be related to increased methanol production from pectin degradation in wild birds due to a diet consisting of primarily fresh pectin-rich plants. Both wild and captive ptarmigans possessed a broad suite of genes for the depolymerization of hemicellulose and non-cellulosic polysaccharides (e.g. starch). In conclusion, there were no physiological and phenotypical dissimilarities in the microbiota found in the cecum of wild ptarmigans on mainland Norway and Svalbard. While substantial differences in the functional potential for PSM degradation and methanogenesis in wild and captive birds seem to be a direct consequence of their dissimilar diets.
Collapse
Affiliation(s)
- Alejandro Salgado-Flores
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Langnes, Tromsø, Norway
- * E-mail: (AS); (MS)
| | - Alexander T. Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Langnes, Tromsø, Norway
| | - Andre-Denis Wright
- College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, Washington, United States of America
| | - Phil B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Monica A. Sundset
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Langnes, Tromsø, Norway
- * E-mail: (AS); (MS)
| |
Collapse
|
156
|
Kalwasińska A, Deja-Sikora E, Szabó A, Felföldi T, Kosobucki P, Brzezinska MS, Walczak M. Salino-alkaline lime of anthropogenic origin a reservoir of diverse microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:842-854. [PMID: 30481711 DOI: 10.1016/j.scitotenv.2018.11.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
This paper presents study on the microbiome of a unique extreme environment - saline and alkaline lime, a by-product of soda ash and table salt production in Janikowo, central Poland. High-throughput 16S rDNA amplicon sequencing was used to reveal the structure of bacterial and archaeal communities in the lime samples, taken from repository ponds differing in salinity (2.3-25.5% NaCl). Surprisingly abundant and diverse bacterial communities were discovered in this extreme environment. The most important geochemical drivers of the observed microbial diversity were salinity, calcium ions, nutrients, and water content. The bacterial and archaeal communities in saline, alkaline lime were similar to those found in natural haloalkaline environments. Although the archaeal contribution to the whole microbial community was lower than 4%, the four archaeal genera Natronomonas, Halorubrum, Halobellus, and Halapricum constituted the core microbiome of saline, alkaline lime - a set of OTUs (> 0.1% of total archaeal relative abundance) present in all samples under study. The high proportion of novel, unclassified archaeal and bacterial sequences (not identified at 97% similarity level) in the 16S rRNA gene libraries indicated that potentially new genera, especially within the class of Thermoplasmata inhabit this unique environment.
Collapse
Affiliation(s)
- Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Edyta Deja-Sikora
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, PázmányPéterstny. 1/c. H-1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, PázmányPéterstny. 1/c. H-1117 Budapest, Hungary
| | - Przemysław Kosobucki
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
157
|
McKay LJ, Dlakić M, Fields MW, Delmont TO, Eren AM, Jay ZJ, Klingelsmith KB, Rusch DB, Inskeep WP. Co-occurring genomic capacity for anaerobic methane and dissimilatory sulfur metabolisms discovered in the Korarchaeota. Nat Microbiol 2019; 4:614-622. [PMID: 30833730 DOI: 10.1038/s41564-019-0362-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/07/2019] [Indexed: 11/09/2022]
Abstract
Phylogenetic and geological evidence supports the hypothesis that life on Earth originated in thermal environments and conserved energy through methanogenesis or sulfur reduction. Here we describe two populations of the deeply rooted archaeal phylum Korarchaeota, which were retrieved from the metagenome of a circumneutral, suboxic hot spring that contains high levels of sulfate, sulfide, methane, hydrogen and carbon dioxide. One population is closely related to 'Candidatus Korarchaeum cryptofilum OPF8', while the more abundant korarchaeote, 'Candidatus Methanodesulfokores washburnensis', contains genes that are necessary for anaerobic methane and dissimilatory sulfur metabolisms. Phylogenetic and ancestral reconstruction analyses suggest that methane metabolism originated in the Korarchaeota, whereas genes for dissimilatory sulfite reduction were horizontally transferred to the Korarchaeota from the Firmicutes. Interactions among enzymes involved in both metabolisms could facilitate exergonic, sulfite-dependent, anaerobic oxidation of methane to methanol; alternatively, 'Ca. M. washburnensis' could conduct methanogenesis and sulfur reduction independently. Metabolic reconstruction suggests that 'Ca. M. washburnensis' is a mixotroph, capable of amino acid uptake, assimilation of methane-derived carbon and/or CO2 fixation by archaeal type III-b RuBisCO for scavenging ribose carbon. Our findings link anaerobic methane metabolism and dissimilatory sulfur reduction within a single deeply rooted archaeal population and have implications for the evolution of these traits throughout the Archaea.
Collapse
Affiliation(s)
- Luke J McKay
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA. .,Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Tom O Delmont
- Department of Medicine, University of Chicago, Chicago, IL, USA.,Genoscope, Évry, France
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA.,Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Zackary J Jay
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | | | | | - William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA. .,Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
158
|
Li Z, Hu Y, Liu C, Shen J, Wu J, Li H, Wang K, Zuo J. Performance and microbial community of an expanded granular sludge bed reactor in the treatment of cephalosporin wastewater. BIORESOURCE TECHNOLOGY 2019; 275:94-100. [PMID: 30579106 DOI: 10.1016/j.biortech.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 05/06/2023]
Abstract
In this study, the anaerobic treatment and microbial characteristics of high-concentration cephalosporin wastewater were studied. A pilot-scale expanded granular sludge bed (EGSB) reactor was designed to treat cephalosporin wastewater, whose diameter, height and effective volume were 0.5 m, 4.9 m, 0.92 m3, respectively. With mixed high-concentration cephalosporin wastewater and municipal wastewater as a substrate, the anaerobic reactor was started and operated 414 days. An average COD removal efficiency of 72% was achieved at an organic loading rate (OLR) of 9.96 kg COD/(m3·d), with a hydraulic retention time (HRT) of 25 h. The average methane content reached 82%. Methanobacterium and Methanomassiliicoccus were predominant archaea in the granular sludge for each of the organic loading rates, and the predominant methane-producing pathway was hydrogenotroph and methylotroph. Those results demonstrated that the EGSB reactor could treat high-concentration cephalosporin wastewater with a unique methane-producing pathway.
Collapse
Affiliation(s)
- Zhonghua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuying Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, PR China
| | - Chuanyang Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jian Shen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Huaizhi Li
- Laboratory of Reactions and Process Engineering, Université de Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
159
|
Treu L, Tsapekos P, Peprah M, Campanaro S, Giacomini A, Corich V, Kougias PG, Angelidaki I. Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. BIORESOURCE TECHNOLOGY 2019; 275:375-385. [PMID: 30599281 DOI: 10.1016/j.biortech.2018.12.084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
This study investigates the efficiency in methane production of lab-scale mesophilic (37 °C) and thermophilic (54 °C) continuous stirred tank reactors fed with cheese whey at different operational conditions. Results showed that whey mono-digestion was feasible at mesophilic conditions, while at thermophilic conditions frequent acidification incidents were recorded. The limited buffer capacity of the influent feedstock was responsible for the unstable anaerobic digestion process. The co-digestion of cheese whey with cattle manure maintained the pH levels higher than 7.0, and therefore, stable methane production rates were achieved without any significant accumulation of volatile fatty acids. An additional enhancement of the methane productivity was achieved by in-situ H2 dispersion. Microbial community composition was investigated using high-throughput 16S rRNA gene amplicon sequencing and results were correlated with process parameters. Hydrogenotrophic methanogens were the dominant archaea during the whole experiment at mesophilic and thermophilic conditions.
Collapse
Affiliation(s)
- Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; Department of Biology, University of Padua, 35131 Padua, Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, PD, Italy
| | - Panagiotis Tsapekos
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark.
| | - Maria Peprah
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | | | - Alessio Giacomini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, PD, Italy
| | - Viviana Corich
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, 35020 Legnaro, PD, Italy
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark; Institute of Animal Science, Hellenic Agricultural Organisation Demeter, Paralimni 58100, Greece
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
160
|
Snell-Castro R, Méndez-Acosta HO, Arreola-Vargas J, González-Álvarez V, Pintado-González M, González-Morales MT, Godon JJ. Active prokaryotic population dynamics exhibit high correlation to reactor performance during methane production from acid hydrolysates of Agave tequilana var. azul bagasse. J Appl Microbiol 2019; 126:1618-1630. [PMID: 30803104 DOI: 10.1111/jam.14234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/28/2022]
Abstract
AIMS The purpose of this study was to apply cDNA approach for the characterization of active prokaryotic community to understand microbial scenarios and performance of an AnSBR digester fed with acid hydrolysates of Agave tequilana var. azul bagasse (ATAB). METHODS AND RESULTS The digester was implemented for methane production under organic loading rate (OLR) disturbances to correlate physicochemical variables with changes in abundance, diversity and population dynamics of active Bacteria and Archaea by principal components analysis (PCA). Results indicated that methane yield increased as well as active syntrophic relationships for interspecies hydrogen/formate (Anaerolinaceae-Methanobacterium beijingense) and acetate (Anaerolinaceae-Methanosaeta concilii) transfers at 8 g-COD l-1 day-1 . However, methane yield was negatively affected at 16 g-COD l-1 day-1 due to the competition for acetate by active Desulfovibrio marrakechensis and volatile fatty acids inhibition. CONCLUSIONS Microbial scenarios obtained by PCA correlations indicated that methane production from acid hydrolysates of ATAB was feasible at 8 g-COD l-1 day-1 . The digester operation at higher OLR only favoured methanogenesis by the hydrogenotrophic pathway. SIGNIFICANCE AND IMPACT OF THE STUDY Only cDNA analysis showed Archaea population dynamics, exhibiting high correlation with physicochemical variables towards the understanding of the methanogenic digester performance during OLR disturbances.
Collapse
Affiliation(s)
- R Snell-Castro
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - H O Méndez-Acosta
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J Arreola-Vargas
- División de Procesos Industriales, Universidad Tecnológica de Jalisco, Guadalajara, Jalisco, México
| | - V González-Álvarez
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - M Pintado-González
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - M T González-Morales
- Departamento de Ingeniería Química, CUCEI-Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - J J Godon
- Laboratoire de Biotechnologie de l'Environnement, Institut National de la Recherche Agronomique, Narbonne, France
| |
Collapse
|
161
|
Sogodogo E, Drancourt M, Grine G. Methanogens as emerging pathogens in anaerobic abscesses. Eur J Clin Microbiol Infect Dis 2019; 38:811-818. [DOI: 10.1007/s10096-019-03510-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/02/2023]
|
162
|
Li L, Qin Y, Kong Z, Wu J, Kubota K, Li YY. Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:709-717. [PMID: 30380478 DOI: 10.1016/j.scitotenv.2018.10.292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The thermophilic anaerobic co-digestion of food waste and paper waste was successfully operated with a 0% to 70% fraction of paper waste. The variation of functional microbial community was investigated by 16S rRNA gene analysis. The results indicated that the hydrolyzing bacterial community changed from carbohydrate/protein-degrading bacteria to cellulose-degrading bacteria when the paper waste ratio was higher than 50%. Significant changes in the taxon responsible for cellulose degradation were found depending on the paper waste fraction. Cellulose-degrading bacteria outcompeted lactic acid bacteria in the degradation of monosaccharide, resulting in a decline in the proportion of lactic acid bacteria and the absence of an accumulation of lactic acid. At high paper waste ratios, because the cellulose-degrading bacteria, such as Defluviitoga tunisiensis, were more likely to degrade monosaccharides directly to acetate and hydrogen rather than to propionate and butyrate, the abundance of syntrophs was reduced. The variation of those bacteria with high H2-producing ability significantly influenced the proportion of hydrogenotrophic archaea. The change in the microbial community as the paper waste fraction increased was illustrated with regard to anaerobic degradation steps.
Collapse
Affiliation(s)
- Lu Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jing Wu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
163
|
Impacts of environmental factors on microbial diversity, distribution patterns and syntrophic correlation in anaerobic processes. Arch Microbiol 2019; 201:603-614. [DOI: 10.1007/s00203-019-01627-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 11/27/2022]
|
164
|
Bodkhe R, Shetty SA, Dhotre DP, Verma AK, Bhatia K, Mishra A, Kaur G, Pande P, Bangarusamy DK, Santosh BP, Perumal RC, Ahuja V, Shouche YS, Makharia GK. Comparison of Small Gut and Whole Gut Microbiota of First-Degree Relatives With Adult Celiac Disease Patients and Controls. Front Microbiol 2019; 10:164. [PMID: 30800106 PMCID: PMC6376745 DOI: 10.3389/fmicb.2019.00164] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies on celiac disease (CeD) have reported alterations in the gut microbiome. Whether this alteration in the microbial community is the cause or effect of the disease is not well understood, especially in adult onset of disease. The first-degree relatives (FDRs) of CeD patients may provide an opportunity to study gut microbiome in pre-disease state as FDRs are genetically susceptible to CeD. By using 16S rRNA gene sequencing, we observed that ecosystem level diversity measures were not significantly different between the disease condition (CeD), pre-disease (FDR) and control subjects. However, differences were observed at the level of amplicon sequence variant (ASV), suggesting alterations in specific ASVs between pre-disease and diseased condition. Duodenal biopsies showed higher differences in ASVs compared to fecal samples indicating larger disruption of the microbiota at the disease site. The duodenal microbiota of FDR was characterized by significant abundance of ASVs belonging to Parvimonas, Granulicatella, Gemella, Bifidobacterium, Anaerostipes, and Actinomyces genera. The duodenal microbiota of CeD was characterized by higher abundance of ASVs from genera Megasphaera and Helicobacter compared to the FDR microbiota. The CeD and FDR fecal microbiota had reduced abundance of ASVs classified as Akkermansia and Dorea when compared to control group microbiota. In addition, predicted functional metagenome showed reduced ability of gluten degradation by CeD fecal microbiota in comparison to FDRs and controls. The findings of the present study demonstrate differences in ASVs and predicts reduced ability of CeD fecal microbiota to degrade gluten compared to the FDR fecal microbiota. Further research is required to investigate the strain level and active functional profiles of FDR and CeD microbiota to better understand the role of gut microbiome in pathophysiology of CeD.
Collapse
Affiliation(s)
- Rahul Bodkhe
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Sudarshan A Shetty
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Dhiraj P Dhotre
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Anil K Verma
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Khushbo Bhatia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Asha Mishra
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Pranav Pande
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | | | | | | | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Yogesh S Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
165
|
Im S, Yun YM, Song YC, Kim DH. Enhanced anaerobic digestion of glycerol by promoting DIET reaction. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
166
|
Park JG, Lee B, Park HR, Jun HB. Long-term evaluation of methane production in a bio-electrochemical anaerobic digestion reactor according to the organic loading rate. BIORESOURCE TECHNOLOGY 2019; 273:478-486. [PMID: 30469138 DOI: 10.1016/j.biortech.2018.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
In this study, the effects of differing organic loading rates (OLRs) on methane production were evaluated via long-term operation of a bio-electrochemical anaerobic digestion (BEAD) reactor and an anaerobic digestion (AD) reactor. In the AD reactor, the maximum OLR was 4 kg/m3·d whereas the electro-active microbial community in bulk and on the biofilm of the BEAD reactor produced methane even at 10 kg/m3·d. The BEAD reactor rapidly removed volatile fatty acids (VFAs) and reduced H+ to H2 at high OLRs, thereby preventing VFA accumulation and pH decrease. After the steady state was achieved, both the AD and BEAD reactors exhibited similar organic matter removal and methane production at a low OLR. Thus, a BEAD reactor can stably produce methane under conditions of high OLR and severe OLR fluctuation and can even shorten the stabilization period over the long term.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, South Korea.
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, South Korea.
| | - Hye-Rin Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, South Korea.
| | - Hang-Bae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, South Korea.
| |
Collapse
|
167
|
An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 2019; 17:219-232. [DOI: 10.1038/s41579-018-0136-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/26/2018] [Indexed: 11/08/2022]
|
168
|
Carson MA, Bräuer S, Basiliko N. Enrichment of peat yields novel methanogens: approaches for obtaining uncultured organisms in the age of rapid sequencing. FEMS Microbiol Ecol 2019; 95:5289378. [DOI: 10.1093/femsec/fiz001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael A Carson
- Department of Biology, Laurentian University, Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Suzanna Bräuer
- Department of Biology, Appalachian State University, 572 Rivers Street, Boone, NC 28608, USA
| | - Nathan Basiliko
- Department of Biology, Laurentian University, Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
169
|
Improved Methanogenic Communities for Biogas Production. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-10516-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
170
|
Tian H, Treu L, Konstantopoulos K, Fotidis IA, Angelidaki I. 16s rRNA gene sequencing and radioisotopic analysis reveal the composition of ammonia acclimatized methanogenic consortia. BIORESOURCE TECHNOLOGY 2019; 272:54-62. [PMID: 30308408 DOI: 10.1016/j.biortech.2018.09.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Different mesophilic and thermophilic methanogenic consortia were acclimatised and enriched to extreme total ammonia (9.0 and 5.0 g NH4+-N L-1, respectively) and free ammonia (1.0 and 1.4 g NH3-N L-1, respectively) levels in this study. [2-14C] acetate radioisotopic analyses showed the dominance of aceticlastic methanogenesis in all enriched consortia. According to 16S rRNA gene sequencing result, in mesophilic consortia, methylotrophic Methanomassiliicoccus luminyensis was predominant, followed by aceticlastic Methanosarcina soligelidi. A possible scenario explaining the dominance of M. luminyensis includes the use of methylamine produced by Tissierella spp. and biomass build-up by metabolizing acetate. Nevertheless, further studies are needed to pinpoint the exact metabolic pathway of M. luminyensis. In thermophilic consortia, aceticlastic Methanosarcina thermophila was the sole dominant methanogen. Overall, results derived from this study demonstrated the efficient biomethanation ability of these ammonia-tolerant methanogenic consortia, indicating a potential application of these consortia to solve ammonia toxicity problems in future full-scale reactors.
Collapse
Affiliation(s)
- Hailin Tian
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Konstantinos Konstantopoulos
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| | - Ioannis A Fotidis
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
171
|
Methanogens: pushing the boundaries of biology. Emerg Top Life Sci 2018; 2:629-646. [PMID: 33525834 PMCID: PMC7289024 DOI: 10.1042/etls20180031] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/15/2023]
Abstract
Methanogens are anaerobic archaea that grow by producing methane gas. These microbes and their exotic metabolism have inspired decades of microbial physiology research that continues to push the boundary of what we know about how microbes conserve energy to grow. The study of methanogens has helped to elucidate the thermodynamic and bioenergetics basis of life, contributed our understanding of evolution and biodiversity, and has garnered an appreciation for the societal utility of studying trophic interactions between environmental microbes, as methanogens are important in microbial conversion of biogenic carbon into methane, a high-energy fuel. This review discusses the theoretical basis for energy conservation by methanogens and identifies gaps in methanogen biology that may be filled by undiscovered or yet-to-be engineered organisms.
Collapse
|
172
|
The human archaeome: methodological pitfalls and knowledge gaps. Emerg Top Life Sci 2018; 2:469-482. [PMID: 33525835 DOI: 10.1042/etls20180037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023]
Abstract
Forty years ago, archaea were described as a separate domain of life, distinct from bacteria and eukarya. Although it is known for quite a long time that methanogenic archaea are substantial components of the human gastrointestinal tract (GIT) and the oral cavity, the knowledge on the human archaeome is very limited. Various methodological problems contribute to the invisibility of the human archaeome, resulting in severe knowledge gaps and contradictory information. Similar to the bacteriome, the archaeal biogeography was found to be site-specific, forming (i) the thaumarchaeal skin landscape, (ii) the (methano)euryarchaeal GIT landscape, (iii) a mixed skin/GIT landscape in nose, and (iv) a woesearchaeal lung landscape, including numerous unknown archaeal clades. Compared with so-called universal microbiome approaches, archaea-specific protocols reveal a wide diversity and high quantity of archaeal signatures in various human tissues, with up to 1 : 1 ratios of bacteria and archaea in appendix and nose samples. The archaeome interacts closely with the bacteriome and the human body cells, whereas the roles of the human-associated archaea with respect to human health are only sparsely described. Methanogenic archaea and methane production were correlated with many health issues, including constipation, periodontitis and multiple sclerosis. However, one of the most burning questions - do archaeal pathogens exist? - still remains obscure to date.
Collapse
|
173
|
Vďačný P, Érseková E, Šoltys K, Budiš J, Pecina L, Rurik I. Co-existence of multiple bacterivorous clevelandellid ciliate species in hindgut of wood-feeding cockroaches in light of their prokaryotic consortium. Sci Rep 2018; 8:17749. [PMID: 30532066 PMCID: PMC6288088 DOI: 10.1038/s41598-018-36245-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/15/2018] [Indexed: 11/23/2022] Open
Abstract
The hindgut of wood-feeding Panesthia cockroaches harbours a diverse microbial community, whose most morphologically prominent members are bacterivorous clevelandellid ciliates. Co-occurrence and correlation patterns of prokaryotes associated with these endosymbiotic ciliates were investigated. Multidimensional scaling based on taxa interaction-adjusted index showed a very clear separation of the hindgut ciliate samples from the ciliate-free hindgut samples. This division was corroborated also by SparCC analysis which revealed strong negative associations between prokaryotic taxa that were relatively more abundant in the ciliate-free hindgut samples and prokaryotic taxa that were more abundant in the ciliate samples. This very likely reflects the grazing behaviour of hindgut ciliates which prefer Proteobacteria, Firmicutes and Actinobacteria, causing their abundances to be increased in the ciliate samples at the expense of abundances of Euryarchaeota and Bacteroidetes which prevail in the hindgut content. Ciliate species do not distinctly differ in the associated prokaryotes, indicating that minute variations in the proportion of associated bacteria might be sufficient to avoid competition between bacterivorous ciliate species and hence enable their co-occurrence in the same host. The nearest free-living relatives of hindgut ciliates have a different pattern of associations with prokaryotes, i.e., alphaproteobacteria are predominantly associated with free-living ciliates while gammaproteobacteria with hindgut ciliates.
Collapse
Affiliation(s)
- Peter Vďačný
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia.
| | - Emese Érseková
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Katarína Šoltys
- Comenius University Science Park, Comenius University in Bratislava, 841 04, Bratislava, Slovakia
| | - Jaroslav Budiš
- Department of Computer Science, Comenius University in Bratislava, Mlynská dolina F-1, 842 48, Bratislava, Slovakia
| | - Lukáš Pecina
- Department of Zoology, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Ivan Rurik
- Private computer laboratory, 821 07, Bratislava, Slovakia
| |
Collapse
|
174
|
Variation in the Distribution of Hydrogen Producers from the Clostridiales Order in Biogas Reactors Depending on Different Input Substrates. ENERGIES 2018. [DOI: 10.3390/en11123270] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With growing demand for clean and cheap energy resources, biogas production is emerging as an ideal solution, as it provides relatively cheap and clean energy, while also tackling the problematic production of excessive organic waste from crops and animal agriculture. Behind this process stands a variety of anaerobic microorganisms, which turn organic substrates into valuable biogas. The biogas itself is a mixture of gases, produced mostly as metabolic byproducts of the microorganisms, such as methane, hydrogen, or carbon dioxide. Hydrogen itself figures as a potent bio-fuel, however in many bioreactors it serves as the main substrate of methanogenesis, thus potentially limiting biogas yield. With help of modern sequencing techniques, we tried to evaluate the composition in eight bioreactors using different input materials, showing shifts in the microbial consortia depending on the substrate itself. In this paper, we provide insight on the occurrence of potentially harmful microorganisms such as Clostridium novyi and Clostridium septicum, as well as key genera in hydrogen production, such as Clostridium stercorarium, Mobilitalea sp., Herbinix sp., Herbivorax sp., and Acetivibrio sp.
Collapse
|
175
|
Meineke B, Heimgärtner J, Lafranchi L, Elsässer SJ. Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells. ACS Chem Biol 2018; 13:3087-3096. [PMID: 30260624 PMCID: PMC6243396 DOI: 10.1021/acschembio.8b00571] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Genetic
code expansion via stop codon suppression
is a powerful technique for engineering proteins in mammalian cells
with site-specifically encoded noncanonical amino acids (ncAAs). Current
methods rely on very few available tRNA/aminoacyl-tRNA synthetase
pairs orthogonal in mammalian cells, the pyrrolysyl tRNA/aminoacyl-tRNA
synthetase pair from Methanosarcina mazei (Mma PylRS/PylT) being the most active and versatile to date.
We found a pyrrolysyl tRNA/aminoacyl-tRNA synthetase pair from the
human gut archaeon Methanomethylophilus alvus Mx1201 (Mx1201 PylRS/PylT) to be active and orthogonal in mammalian cells. We show
that this PylRS enzyme can be engineered to expand its ncAA substrate
spectrum. We find that due to the large evolutionary distance of the
two pairs, Mx1201 PylRS/PylT is partially orthogonal
to Mma PylRS/PylT. Through rational mutation of Mx1201 PylT, we abolish its noncognate interaction with Mma PylRS, creating two mutually orthogonal PylRS/PylT pairs.
Combined in the same cell, we show that the two pairs can site-selectively
introduce two different ncAAs in response to two distinct stop codons.
Our work expands the repertoire of mutually orthogonal tools for genetic
code expansion in mammalian cells and provides the basis for advanced in vivo protein engineering applications for cell biology
and protein production.
Collapse
Affiliation(s)
- Birthe Meineke
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johannes Heimgärtner
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lorenzo Lafranchi
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Simon J. Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
176
|
Lagier JC, Bilen M, Cadoret F, Drancourt M, Fournier PE, La Scola B, Raoult D. Naming microorganisms: the contribution of the IHU Méditerranée Infection, Marseille, France. New Microbes New Infect 2018; 26:S89-S95. [PMID: 30402249 PMCID: PMC6205575 DOI: 10.1016/j.nmni.2018.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022] Open
Abstract
The number of isolated new microorganisms has dramatically increased after the readaption of culture using the culturomics approach. Each of these microorganisms is deposited in an international strain collection institute, with its name being attributed and published by the scientist who isolated it. The attributed name is of Latin or Latinized origin and chosen on the basis of the geographical location of the sample collection, the institute or geographical region where the project was being performed, the name of a concerned scientist, and characteristics of the sample or the microorganism. Our institution has played an important role in the isolation of new microorganisms, with the first effort reporting 468 new bacterial species (3% of the bacterial species isolated at least once worldwide) and 327 species isolated for the first time from human beings, which in turn resulted in an increase of 30% of the total number of microorganisms isolated. Additionally, more than 100 giant viruses, including seven new species, have been isolated at our institute. In the present work, after recalling the rules of nomenclature, we detail the naming of the new microorganisms chosen at our laboratory. The most common species name was massiliensis, attributed 161 times. We consider it imperative for the cultivators, who have frequently made considerable efforts in the field of microbial culture, to be the ones who name the newly isolated microorganisms, taking into consideration the Latinized nomenclature standards.
Collapse
Affiliation(s)
| | - M. Bilen
- Aix-Marseille Univ, IRD, MEPHI, France
| | | | | | - P.-E. Fournier
- Aix-Marseille Univ, IRD, VITROME, APHM, IHU Méditerranée Infection, Marseille, France
| | | | - D. Raoult
- Aix-Marseille Univ, IRD, MEPHI, France
| |
Collapse
|
177
|
Archaea: Microbial Candidates in Next-generation Probiotics Development. J Clin Gastroenterol 2018; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S71-S73. [PMID: 29668558 DOI: 10.1097/mcg.0000000000001043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pharmabiotics and probiotics in current use or under development belong to 2 of 3 domains of life, Eukarya (eg, yeasts) and Bacteria (eg, lactobacilli). Archaea constitute a third domain of life, and are currently not used as probiotics, despite several interesting features. This includes the absence of known pathogens in humans, animals, or plants and the existence of some archaea closely associated to humans in various microbiomes. We promote the concept that some specific archaea that naturally thrive in the human gut are potential next-generation probiotics that can be rationally selected on the basis of their metabolic phenotype not being encountered in other human gut microbes, neither Bacteria nor Eukarya. The example of the possible bioremediation of the proatherogenic compound trimethylamine into methane by archaeal microbes is described.
Collapse
|
178
|
Fontana A, Kougias PG, Treu L, Kovalovszki A, Valle G, Cappa F, Morelli L, Angelidaki I, Campanaro S. Microbial activity response to hydrogen injection in thermophilic anaerobic digesters revealed by genome-centric metatranscriptomics. MICROBIOME 2018; 6:194. [PMID: 30368244 PMCID: PMC6204281 DOI: 10.1186/s40168-018-0583-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/18/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND The expansion of renewable energy produced by windmills and photovoltaic panels has generated a considerable electricity surplus, which can be utilized in water electrolysis systems for hydrogen production. The resulting hydrogen can then be funneled to anaerobic digesters for biogas upgrading (biomethanation) purposes (power-to-methane) or to produce high value-added compounds such as short-chain fatty acids (power-to-chemicals). Genome-centric metagenomics and metatranscriptomic analyses were performed to better understand the metabolic dynamics associated with H2 injection in two different configurations of anaerobic digesters treating acidic wastes, specifically cheese manufacturing byproducts. These approaches revealed the key-genes involved in methanation and carbon fixation pathways at species level. RESULTS The biogas upgrading process in the single-stage configuration increased the CH4 content by 7%. The dominant methanogenic species responsible for the upregulation of the hydrogenotrophic pathway in this reactor was Methanothermobacter wolfeii UC0008. In the two-stage configuration, H2 injection induced an upregulation of CO2 fixation pathways producing short-chain fatty acids, mainly acetate and butyrate. In this configuration, the abundant species Anaerobaculum hydrogeniformans UC0046 and Defluviitoga tunisiensis UC0050 primarily upregulated genes related to electron transport chains, suggesting putative syntrophisms with hydrogen scavenger microbes. Interestingly, Tepidanaerobacter acetatoxydans UC0018 did not act as an acetate-oxidizer in either reactor configurations, and instead regulated pathways involved in acetate production and uptake. A putative syntrophic association between Coprothermobacter proteolyticus UC0011 and M. wolfeii UC0008 was proposed in the two-stage reactor. In order to support the transcriptomic findings regarding the hydrogen utilization routes, an advanced bioconversion model was adapted for the simulation of the single- and two-stage reactor setups. CONCLUSIONS This is the first study investigating biogas reactor metatranscriptome dynamics following hydrogen injection for biomethanation and carbon fixation to short-chain fatty acids purposes. The same microbes showed different patterns of metabolic regulation in the two reactor configurations. It was observed an effect of the specialized acidogenic reactor on the overall microbial consortium composition and activity in the two-stage digester. There were also suggested the main species responsible for methanation, short-chain fatty acids production, and electron transport chain mechanisms, in both reactor configurations.
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process, DiSTAS, Catholic University of the Sacred Heart, 29122, Piacenza, Italy
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Adam Kovalovszki
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Giorgio Valle
- Department of Biology, University of Padua, 35131, Padua, Italy
| | - Fabrizio Cappa
- Department for Sustainable Food Process, DiSTAS, Catholic University of the Sacred Heart, 29122, Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, DiSTAS, Catholic University of the Sacred Heart, 29122, Piacenza, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | |
Collapse
|
179
|
Vuillemin A, Horn F, Friese A, Winkel M, Alawi M, Wagner D, Henny C, Orsi WD, Crowe SA, Kallmeyer J. Metabolic potential of microbial communities from ferruginous sediments. Environ Microbiol 2018; 20:4297-4313. [PMID: 29968357 DOI: 10.1111/1462-2920.14343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 06/25/2018] [Indexed: 01/22/2023]
Abstract
Ferruginous (Fe-rich, SO4 -poor) conditions are generally restricted to freshwater sediments on Earth today, but were likely widespread during the Archean and Proterozoic Eons. Lake Towuti, Indonesia, is a large ferruginous lake that likely hosts geochemical processes analogous to those that operated in the ferruginous Archean ocean. The metabolic potential of microbial communities and related biogeochemical cycling under such conditions remain largely unknown. We combined geochemical measurements (pore water chemistry, sulfate reduction rates) with metagenomics to link metabolic potential with geochemical processes in the upper 50 cm of sediment. Microbial diversity and quantities of genes for dissimilatory sulfate reduction (dsrAB) and methanogenesis (mcrA) decrease with increasing depth, as do rates of potential sulfate reduction. The presence of taxa affiliated with known iron- and sulfate-reducers implies potential use of ferric iron and sulfate as electron acceptors. Pore-water concentrations of acetate imply active production through fermentation. Fermentation likely provides substrates for respiration with iron and sulfate as electron donors and for methanogens that were detected throughout the core. The presence of ANME-1 16S and mcrA genes suggests potential for anaerobic methane oxidation. Overall our data suggest that microbial community metabolism in anoxic ferruginous sediments support coupled Fe, S and C biogeochemical cycling.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany.,Department of Earth & Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - André Friese
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Matthias Winkel
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany.,University of Potsdam, Faculty of Mathematics and Natural Sciences, Institute of Earth and Environmental Sciences, Potsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology (LIPI), Indonesian Institute of Sciences, Division of Inland Waterways Dynamics, Cibinong-Bogor, Indonesia
| | - William D Orsi
- Department of Earth & Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Geobio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sean A Crowe
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| |
Collapse
|
180
|
Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018; 10:nu10101398. [PMID: 30275434 PMCID: PMC6213249 DOI: 10.3390/nu10101398] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is a molecule generated from choline, betaine, and carnitine via gut microbial metabolism. The plasma level of TMAO is determined by several factors including diet, gut microbial flora, drug administration and liver flavin monooxygenase activity. In humans, recent clinical studies evidence a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events. A direct correlation between increased TMAO levels and neurological disorders has been also hypothesized. Several therapeutic strategies are being explored to reduce TMAO levels, including use of oral broad spectrum antibiotics, promoting the growth of bacteria that use TMAO as substrate and the development of target-specific molecules. Despite the accumulating evidence, it is questioned whether TMAO is the mediator of a bystander in the disease process. Thus, it is important to undertake studies to establish the role of TMAO in human health and disease. In this article, we reviewed dietary sources and metabolic pathways of TMAO, as well as screened the studies suggesting possible involvement of TMAO in the etiology of cardiovascular and neurological disorders, underlying the importance of TMAO mediating inflammatory processes. Finally, the potential utility of TMAO as therapeutic target is also analyzed.
Collapse
|
181
|
Speth DR, Orphan VJ. Metabolic marker gene mining provides insight in global mcrA diversity and, coupled with targeted genome reconstruction, sheds further light on metabolic potential of the Methanomassiliicoccales. PeerJ 2018; 6:e5614. [PMID: 30245936 PMCID: PMC6147122 DOI: 10.7717/peerj.5614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 01/24/2023] Open
Abstract
Over the past years, metagenomics has revolutionized our view of microbial diversity. Moreover, extracting near-complete genomes from metagenomes has led to the discovery of known metabolic traits in unsuspected lineages. Genome-resolved metagenomics relies on assembly of the sequencing reads and subsequent binning of assembled contigs, which might be hampered by strain heterogeneity or low abundance of a target organism. Here we present a complementary approach, metagenome marker gene mining, and use it to assess the global diversity of archaeal methane metabolism through the mcrA gene. To this end, we have screened 18,465 metagenomes for the presence of reads matching a database representative of all known mcrA proteins and reconstructed gene sequences from the matching reads. We use our mcrA dataset to assess the environmental distribution of the Methanomassiliicoccales and reconstruct and analyze a draft genome belonging to the ‘Lake Pavin cluster’, an uncultivated environmental clade of the Methanomassiliicoccales. Analysis of the ‘Lake Pavin cluster’ draft genome suggests that this organism has a more restricted capacity for hydrogenotrophic methylotrophic methanogenesis than previously studied Methanomassiliicoccales, with only genes for growth on methanol present. However, the presence of the soluble subunits of methyltetrahydromethanopterin:CoM methyltransferase (mtrAH) provide hypothetical pathways for methanol fermentation, and aceticlastic methanogenesis that await experimental verification. Thus, we show that marker gene mining can enhance the discovery power of metagenomics, by identifying novel lineages and aiding selection of targets for in-depth analyses. Marker gene mining is less sensitive to strain heterogeneity and has a lower abundance threshold than genome-resolved metagenomics, as it only requires short contigs and there is no binning step. Additionally, it is computationally cheaper than genome resolved metagenomics, since only a small subset of reads needs to be assembled. It is therefore a suitable approach to extract knowledge from the many publicly available sequencing projects.
Collapse
Affiliation(s)
- Daan R Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States of America
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
182
|
Wu J, Niu Q, Li L, Hu Y, Mribet C, Hojo T, Li YY. A gradual change between methanogenesis and sulfidogenesis during a long-term UASB treatment of sulfate-rich chemical wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:168-176. [PMID: 29704712 DOI: 10.1016/j.scitotenv.2018.04.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
The competition between methane-producing archaea and sulfate-reducing bacteria is an important topic in anaerobic wastewater treatment. In this study, an Up-flow Anaerobic Sludge Blanket Reactor (UASB) was operated for 330 days to evaluate the treatment performance of sulfate-rich wastewater. The effects of competition change between methane production and sulfate reduction on the organic removal efficiency, methane production, and electrons allocation were investigated. Synthetic wastewater was composed of ethanol and acetate with a chemical oxygen demand (COD)/SO42- of 1.0. As a result, the COD removal efficiency achieved in long-term treatment was higher than 90%. During the initial stage, methane production was the dominant reaction. Sulfate-reducing bacteria (SRB) could only partially oxidize ethanol to acetate, and methane-producing archaea (MPA) utilized acetate for methane production. Methane production declined gradually over the long-term operation, whereas the sulfate-reducing efficiency increased. However, UASB performed well throughout the experiment because there was no significant inhibition. After the complete reduction of the sulfate, MPA converted the remaining COD into methane.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 27# Shanda South Road, Jinan 250100, China
| | - Lu Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yong Hu
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-0053, Japan
| | - Chaimaa Mribet
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan
| | - Toshimasa Hojo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
183
|
de Jong AEE, In 't Zandt MH, Meisel OH, Jetten MSM, Dean JF, Rasigraf O, Welte CU. Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments. Environ Microbiol 2018; 20:4314-4327. [PMID: 29968310 PMCID: PMC6334529 DOI: 10.1111/1462-2920.14345] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022]
Abstract
Arctic permafrost soils store large amounts of organic matter that is sensitive to temperature increases and subsequent microbial degradation to methane (CH4) and carbon dioxide (CO2). Here, we studied methanogenic and methanotrophic activity and community composition in thermokarst lake sediments from Utqiag˙vik (formerly Barrow), Alaska. This experiment was carried out under in situ temperature conditions (4°C) and the IPCC 2013 Arctic climate change scenario (10°C) after addition of methanogenic and methanotrophic substrates for nearly a year. Trimethylamine (TMA) amendment with warming showed highest maximum CH4production rates, being 30% higher at 10°C than at 4°C. Maximum methanotrophic rates increased by up to 57% at 10°C compared to 4°C. 16S rRNA gene sequencing indicated high relative abundance of Methanosarcinaceae in TMA amended incubations, and for methanotrophic incubations Methylococcaeae were highly enriched. Anaerobic methanotrophic activity with nitrite or nitrate as electron acceptor was not detected. This study indicates that the methane cycling microbial community can adapt to temperature increases and that their activity is highly dependent on substrate availability.
Collapse
Affiliation(s)
- Anniek E E de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Michiel H In 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Ove H Meisel
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joshua F Dean
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
184
|
Zhu Z, Kristensen L, Difford GF, Poulsen M, Noel SJ, Abu Al-Soud W, Sørensen SJ, Lassen J, Løvendahl P, Højberg O. Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows. J Dairy Sci 2018; 101:9847-9862. [PMID: 30172409 DOI: 10.3168/jds.2017-14366] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/03/2018] [Indexed: 11/19/2022]
Abstract
In the present study, we hypothesized that the rumen bacterial and archaeal communities would change significantly over the transition period of dairy cows, mainly as an adaptation to the classical use of low-grain prepartum and high-grain postpartum diets. Bacterial 16S rRNA gene amplicon sequencing of rumen samples from 10 primiparous Holstein dairy cows revealed no changes over the transition period in relative abundance of genera such as Ruminococcus, Butyrivibrio, Clostridium, Coprococcus, and Pseudobutyrivibrio. However, other dominant genus-level taxa, such as Prevotella, unclassified Ruminococcaceae, and unclassified Succinivibrionaceae, showed distinct changes in relative abundance from the prepartum to the postpartum period. Overall, we observed individual fluctuation patterns over the transition period for a range of bacterial taxa that, in some cases, were correlated with observed changes in the rumen short-chain fatty acids profile. Combined results from clone library and terminal-restriction fragment length polymorphism (T-RFLP) analyses, targeting the methyl-coenzyme M reductase α-subunit (mcrA) gene, revealed a methanogenic archaeal community dominated by the Methanobacteriales and Methanomassiliicoccales orders, particularly the genera Methanobrevibacter, Methanosphaera, and Methanomassiliicoccus. As observed for the bacterial community, the T-RFLP patterns showed significant shifts in methanogenic community composition over the transition period. Together, the composition of the rumen bacterial and archaeal communities exhibited changes in response to particularly the dietary changes of dairy cows over the transition period.
Collapse
Affiliation(s)
- Zhigang Zhu
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark.
| | - Lise Kristensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Gareth F Difford
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Morten Poulsen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Samantha J Noel
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Waleed Abu Al-Soud
- Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jan Lassen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Peter Løvendahl
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Ole Højberg
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark.
| |
Collapse
|
185
|
Li D, Ran Y, Chen L, Cao Q, Li Z, Liu X. Instability diagnosis and syntrophic acetate oxidation during thermophilic digestion of vegetable waste. WATER RESEARCH 2018; 139:263-271. [PMID: 29656191 DOI: 10.1016/j.watres.2018.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/04/2018] [Accepted: 04/07/2018] [Indexed: 05/16/2023]
Abstract
Effective process monitoring and instability diagnosis are important for stable anaerobic digestion (AD) of vegetable waste (VW). In order to evaluate the performance of thermophilic digestion of VW, to make early diagnosis for instability after organic overload, and to reveal the dynamics of microbial community under different running states, thermophilic AD of VW was carried out under improved organic loading rates (OLR) of 0.5-2.5 g volatile solid (VS)/(L ∙ d) in this study. Gaseous parameters including volumetric methane production rate (VMPR), CH4, CO2, and H2 concentrations, and liquid parameters including pH, oxidation-reduction potential, volatile fatty acid (VFA), and total alkalinity (TA), bicarbonate alkalinity (BA), intermediate alkalinity (IA), and ammonia, were monitored. The coupling parameters, such as the CH4/CO2, VFA/BA, and BA/TA ratios were also used to evaluate stability. The dynamics of syntrophic acetate-oxidizing bacteria (SAOB), acetoclastic methanogens (AM), and hydrogenotrophic methanogens (HM) were analyzed by high-throughput sequencing. The main methanogenic bacteria were HM (Methanothermobacter) during the start-up period of OLR 0.5 gVS/(L ∙ d), while they were AM (Methanosarcina) during the stable period of OLR of 1.0 gVS/(L ∙ d). The VMPR of stable period was about 0.29 L/(L · d) with total VFA concentration below 100 mg/L, CH4/CO2 > 1.3, and BA/TA>0.9. The first instability due to the accumulation of VFA and self-recovery due to syntrophic acetate oxidation occurred at an OLR of 1.5 gVS/(L ∙ d). The syntrophic acetate-oxidizing bacteria probably belong to genus S1 (family Thermotogaceae). The digestion failed at an OLR of 2.0 g VS/(L · d). H2 was only detected during collapsed period instead of instable period. The total ammonia nitrogen loss and bicarbonate alkalinity (BA) reduction were the primary causes for the instability of AD of VW without effluent recirculation. Compared with single parameters, the CH4/CO2 and BA/total alkalinity (TA) ratios are recommended as early warning indicators for engineering applications of thermophilic AD of VW.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi Ran
- Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Lin Chen
- Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, China
| | - Qin Cao
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhidong Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Liu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
186
|
Hoedt EC, Parks DH, Volmer JG, Rosewarne CP, Denman SE, McSweeney CS, Muir JG, Gibson PR, Cuív PÓ, Hugenholtz P, Tyson GW, Morrison M. Culture- and metagenomics-enabled analyses of the Methanosphaera genus reveals their monophyletic origin and differentiation according to genome size. ISME JOURNAL 2018; 12:2942-2953. [PMID: 30068938 DOI: 10.1038/s41396-018-0225-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/27/2018] [Accepted: 06/03/2018] [Indexed: 11/09/2022]
Abstract
The genus Methanosphaera is a well-recognized but poorly characterized member of the mammalian gut microbiome, and distinctive from Methanobrevibacter smithii for its ability to induce a pro-inflammatory response in humans. Here we have used a combination of culture- and metagenomics-based approaches to expand the representation and information for the genus, which has supported the examination of their phylogeny and physiological capacity. Novel isolates of the genus Methanosphaera were recovered from bovine rumen digesta and human stool, with the bovine isolate remarkable for its large genome size relative to other Methanosphaera isolates from monogastric hosts. To substantiate this observation, we then recovered seven high-quality Methanosphaera-affiliated population genomes from ruminant and human gut metagenomic datasets. Our analyses confirm a monophyletic origin of Methanosphaera spp. and that the colonization of monogastric and ruminant hosts favors representatives of the genus with different genome sizes, reflecting differences in the genome content needed to persist in these different habitats.
Collapse
Affiliation(s)
- Emily C Hoedt
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - James G Volmer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Carly P Rosewarne
- Commonwealth Scientific and Industrial Research Organisation, Kintore Avenue, Adelaide, Australia
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Australia
| | - Christopher S McSweeney
- Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, Australia
| | - Jane G Muir
- Department of Gastroenterology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Peter R Gibson
- Department of Gastroenterology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Páraic Ó Cuív
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Philip Hugenholtz
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Australia.
| |
Collapse
|
187
|
Lackner N, Hintersonnleitner A, Wagner AO, Illmer P. Hydrogenotrophic Methanogenesis and Autotrophic Growth of Methanosarcina thermophila. ARCHAEA (VANCOUVER, B.C.) 2018; 2018:4712608. [PMID: 30123085 PMCID: PMC6079545 DOI: 10.1155/2018/4712608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/03/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022]
Abstract
Although Methanosarcinales are versatile concerning their methanogenic substrates, the ability of Methanosarcina thermophila to use carbon dioxide (CO2) for catabolic and anabolic metabolism was not proven until now. Here, we show that M. thermophila used CO2 to perform hydrogenotrophic methanogenesis in the presence as well as in the absence of methanol. During incubation with hydrogen, the methanogen utilized the substrates methanol and CO2 consecutively, resulting in a biphasic methane production. Growth exclusively from CO2 occurred slowly but reproducibly with concomitant production of biomass, verified by DNA quantification. Besides verification through multiple transfers into fresh medium, the identity of the culture was confirmed by 16s RNA sequencing, and the incorporation of carbon atoms from 13CO2 into 13CH4 molecules was measured to validate the obtained data. New insights into the physiology of M. thermophila can serve as reference for genomic analyses to link genes with metabolic features in uncultured organisms.
Collapse
Affiliation(s)
- Nina Lackner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Anna Hintersonnleitner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Andreas Otto Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020 Innsbruck, Austria
| |
Collapse
|
188
|
Park J, Lee B, Shi P, Kwon H, Jeong SM, Jun H. Methanol metabolism and archaeal community changes in a bioelectrochemical anaerobic digestion sequencing batch reactor with copper-coated graphite cathode. BIORESOURCE TECHNOLOGY 2018; 259:398-406. [PMID: 29597148 DOI: 10.1016/j.biortech.2018.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, the metabolism of methanol and changes in an archaeal community were examined in a bioelectrochemical anaerobic digestion sequencing batch reactor with a copper-coated graphite cathode (BEAD-SBRCu). Copper-coated graphite cathode produced methanol from food waste. The BEAD-SBRCu showed higher methanol removal and methane production than those of the anaerobic digestion (AD)-SBR. The methane production and pH of the BEAD-SBRCu were stable even under a high organic loading rate (OLR). The hydrogenotrophic methanogens increased from 32.2 to 60.0%, and the hydrogen-dependent methylotrophic methanogens increased from 19.5 to 37.7% in the bulk of BEAD-SBRCu at high OLR. Where methanol was directly injected as a single substrate into the BEAD-SBRCu, the main metabolism of methane production was hydrogenotrophic methanogenesis using carbon dioxide and hydrogen released by the oxidation of methanol on the anode through bioelectrochemical reactions.
Collapse
Affiliation(s)
- Jungyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Peng Shi
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Hyejeong Kwon
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Sang Mun Jeong
- Department of Chemical Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea.
| |
Collapse
|
189
|
Park J, Lee B, Shin W, Jo S, Jun H. Application of a rotating impeller anode in a bioelectrochemical anaerobic digestion reactor for methane production from high-strength food waste. BIORESOURCE TECHNOLOGY 2018; 259:423-432. [PMID: 29602105 DOI: 10.1016/j.biortech.2018.02.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
In this study, a practical bioelectrochemical anaerobic digestion (BEAD) reactor equipped with a rotating STS304 impeller was tested to verify its methane production performance. Methane production in the BEAD reactor was possible without accumulation of volatile fatty acids (VFAs) and decreases in pH at high organic loading rates (OLRs) up to 6 kg-COD/m3·d (COD: chemical oxygen demand). Methane production in a BEAD-O (open circuit) reactor was inhibited at OLRs above 4 kg-COD/m3·d; however, the performance could be recovered bioelectrochemically by supplying voltage. The population density of hydrogenotrophic methanogens increased to 73.3% in the BEAD-C (closed circuit) reactor, even at high OLRs, through the removal of VFAs and conversion of hydrogen to methane. The energy efficiency in the BEAD-C reactor was 85.6%, indicating that the commercialization of BEAD reactors equipped with rotating STS304 impeller electrodes is possible.
Collapse
Affiliation(s)
- Jungyu Park
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Beom Lee
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Wonbeom Shin
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Sangyeol Jo
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Republic of Korea.
| |
Collapse
|
190
|
Matheus Carnevali PB, Herbold CW, Hand KP, Priscu JC, Murray AE. Distinct Microbial Assemblage Structure and Archaeal Diversity in Sediments of Arctic Thermokarst Lakes Differing in Methane Sources. Front Microbiol 2018; 9:1192. [PMID: 29930542 PMCID: PMC6000721 DOI: 10.3389/fmicb.2018.01192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/16/2018] [Indexed: 12/04/2022] Open
Abstract
Developing a microbial ecological understanding of Arctic thermokarst lake sediments in a geochemical context is an essential first step toward comprehending the contributions of these systems to greenhouse gas emissions, and understanding how they may shift as a result of long term changes in climate. In light of this, we set out to study microbial diversity and structure in sediments from four shallow thermokarst lakes in the Arctic Coastal Plain of Alaska. Sediments from one of these lakes (Sukok) emit methane (CH4) of thermogenic origin, as expected for an area with natural gas reserves. However, sediments from a lake 10 km to the North West (Siqlukaq) produce CH4 of biogenic origin. Sukok and Siqlukaq were chosen among the four lakes surveyed to test the hypothesis that active CH4-producing organisms (methanogens) would reflect the distribution of CH4 gas levels in the sediments. We first examined the structure of the little known microbial community inhabiting the thaw bulb of arctic thermokarst lakes near Barrow, AK. Molecular approaches (PCR-DGGE and iTag sequencing) targeting the SSU rRNA gene and rRNA molecule were used to profile diversity, assemblage structure, and identify potentially active members of the microbial assemblages. Overall, the potentially active (rRNA dominant) fraction included taxa that have also been detected in other permafrost environments (e.g., Bacteroidetes, Actinobacteria, Nitrospirae, Chloroflexi, and others). In addition, Siqlukaq sediments were unique compared to the other sites, in that they harbored CH4-cycling organisms (i.e., methanogenic Archaea and methanotrophic Bacteria), as well as bacteria potentially involved in N cycling (e.g., Nitrospirae) whereas Sukok sediments were dominated by taxa typically involved in photosynthesis and biogeochemical sulfur (S) transformations. This study revealed a high degree of archaeal phylogenetic diversity in addition to CH4-producing archaea, which spanned nearly the phylogenetic extent of currently recognized Archaea phyla (e.g., Euryarchaeota, Bathyarchaeota, Thaumarchaeota, Woesearchaeota, Pacearchaeota, and others). Together these results shed light on expansive bacterial and archaeal diversity in Arctic thermokarst lakes and suggest important differences in biogeochemical potential in contrasting Arctic thermokarst lake sediment ecosystems.
Collapse
Affiliation(s)
| | - Craig W Herbold
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - John C Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States
| | - Alison E Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, United States
| |
Collapse
|
191
|
in ‘t Zandt MH, de Jong AEE, Slomp CP, Jetten MSM. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol Ecol 2018; 94:4966976. [PMID: 29873717 PMCID: PMC5989612 DOI: 10.1093/femsec/fiy064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic 'Candidatus Methanothrix paradoxum', which is active in oxic soils. The resultant energy-rich methane can be oxidized via a suite of electron acceptors. Recently, 'Candidatus Methanoperedens nitroreducens' ANME-2d archaea and 'Candidatus Methylomirabilis oxyfera' bacteria were enriched on nitrate and nitrite under anoxic conditions with methane as an electron donor. Although 'Candidatus Methanoperedens nitroreducens' and other ANME archaea can use iron citrate as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified. Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery.
Collapse
Affiliation(s)
- Michiel H in ‘t Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Anniek EE de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Caroline P Slomp
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Department of Earth Sciences, Geochemistry, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Mike SM Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
192
|
Levasseur A, Merhej V, Baptiste E, Sharma V, Pontarotti P, Raoult D. The Rhizome of Lokiarchaeota Illustrates the Mosaicity of Archaeal Genomes. Genome Biol Evol 2018; 9:2635-2639. [PMID: 29048529 PMCID: PMC5737619 DOI: 10.1093/gbe/evx208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
Genome remodeling and exchange of sequences are widespread in the prokaryotic world and mosaic genomes challenge the classification of prokaryotes, which cannot be properly achieved in terms of a single gene or group of genes. Here, we studied individually the gene collection of the archaic microorganism Lokiarchaeum sp., suggested as an archaeal host close to the emergence of the eukaryotes. The network or rhizome of all Lokiarchaeum sp. genes revealed that the genomic repertoire is mainly composed of genes from archaeal (∼36%) and bacterial origin (∼28%), distantly followed by components of eukaryotic origin (∼2%). Thirty-three percent of genes were unique to this species (ORFans). The mosaicity of archaea was also supported by studying Methanomassiliicoccus luminyensis, an archaea from the gut, in which 67% of the genomic repertoire arised from archaea and 22% from bacteria. Our results illustrate the intricate evolutionary relationships of the archaeal genome repertoire and highlight the rhizome-like processes of evolution in archaea, their mosaicity, and chimeric origin composed of different domains of life, questioning the reality of a tree of life.
Collapse
Affiliation(s)
- Anthony Levasseur
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, France.,Institut Universitaire de France (IUF), Paris, France
| | - Vicky Merhej
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, France
| | - Emeline Baptiste
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, France
| | - Vikas Sharma
- CNRS, Centrale Marseille, I2M, UMR7373, FR 4213 - FR Eccorev 3098, Équipe EBM, Aix-Marseille Université, France
| | - Pierre Pontarotti
- CNRS, Centrale Marseille, I2M, UMR7373, FR 4213 - FR Eccorev 3098, Équipe EBM, Aix-Marseille Université, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, AP-HM, IHU - Méditerranée Infection, Faculté de Médecine, Aix-Marseille Université, France
| |
Collapse
|
193
|
Sorokin DY, Merkel AY, Abbas B, Makarova KS, Rijpstra WIC, Koenen M, Sinninghe Damsté JS, Galinski EA, Koonin EV, van Loosdrecht MCM. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and 'Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. Int J Syst Evol Microbiol 2018; 68:2199-2208. [PMID: 29781801 DOI: 10.1099/ijsem.0.002810] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Methanogenic enrichments from hypersaline lakes at moderate thermophilic conditions have resulted in the cultivation of an unknown deep lineage of euryarchaeota related to the class Halobacteria. Eleven soda lake isolates and three salt lake enrichment cultures were methyl-reducing methanogens that utilize C1 methylated compounds as electron acceptors and H2 or formate as electron donors, but they were unable to grow on either substrates alone or to form methane from acetate. They are extreme halophiles, growing optimally at 4 M total Na+ and the first representatives of methanogens employing the 'salt-in' osmoprotective mechanism. The salt lake subgroup is neutrophilic, whereas the soda lake isolates are obligate alkaliphiles, with an optimum around pH 9.5. Both grow optimally at 50 °C. The genetic diversity inside the two subgroups is very low, indicating that the soda and salt lake clusters consist of a single genetic species each. The phylogenetic distance between the two subgroups is in the range of distant genera, whereas the distance to other euryarchaea is below 83 % identity of the 16S rRNA gene. These isolates and enriched methanogens, together with closely related environmental clones from hypersaline habitats (the SA1 group), form a novel class-level clade in the phylum Euryarchaeota. On the basis of distinct phenotypic and genetic properties, the soda lake isolates are classified into a new genus and species, Methanonatronarchaeum thermophilum, with the type strain AMET1T (DSM 28684T=NBRC 110805T=UNIQEM U982T), and the salt lake methanogens into a candidate genus and species 'Candidatus Methanohalarchaeum thermophilum'. These organisms are proposed to form novel family, order and class Methanonatronarchaeaceae fam. nov., Methanonatronarchaeales ord. nov. and Methanonatronarchaeia classis nov., within the phylum Euryarchaeota.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Biotechnology, TU Delft, The Netherlands
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ben Abbas
- Department of Biotechnology, TU Delft, The Netherlands
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, and Utrecht University, The Netherlands
| | - M Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, and Utrecht University, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, and Utrecht University, The Netherlands.,Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Erwin A Galinski
- Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
194
|
Liang B, Zhang K, Wang LY, Liu JF, Yang SZ, Gu JD, Mu BZ. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs. Front Microbiol 2018; 9:841. [PMID: 29755446 PMCID: PMC5934436 DOI: 10.3389/fmicb.2018.00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C) by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05). Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.
Collapse
Affiliation(s)
- Bo Liang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Li-Ying Wang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
195
|
Seck EH, Dufour JC, Raoult D, Lagier JC. Halophilic & halotolerant prokaryotes in humans. Future Microbiol 2018; 13:799-812. [PMID: 29726267 DOI: 10.2217/fmb-2017-0237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Halophilic prokaryotes are described as microorganisms living in hypersaline environments. Here, we list the halotolerant and halophilic bacteria which have been isolated in humans. Of the 52 halophilic prokaryotes, 32 (61.54%) were moderately halophilic, 17 (32.69%) were slightly halophilic and three (5.76%) were extremely halophilic prokaryotes. At the phylum level, 29 (54.72%) belong to Firmicutes, 15 (28.84%) to Proteobacteria, four (7.69%) to Actinobacteria, three (5.78%) to Euryarchaeota and one (1.92%) belongs to Bacteroidetes. Halophilic prokaryotes are rarely pathogenic: of these 52 halophilic prokaryotes only two (3.92%) species were classified in Risk Group 2 (Vibrio cholerae, Vibrio parahaemolyticus) and one (1.96%), species in Risk Group 3 (Bacillus anthracis).
Collapse
Affiliation(s)
- El Hadji Seck
- Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jean-Charles Dufour
- SESSTIM (UMR912), Sciences Economiques et Sociales de la Santé et Traitement de l'Information Médicale, Aix Marseille University, INSERM, IRD, Marseille, France.,Service Biostatistique et Technologies de l'Information et de la Communication (BIOSTIC), Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Marseille, France
| | - Didier Raoult
- Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jean-Christophe Lagier
- Aix Marseille University, IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
196
|
Cho K, Jeong Y, Seo KW, Lee S, Smith AL, Shin SG, Cho SK, Park C. Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment. BIORESOURCE TECHNOLOGY 2018; 256:137-144. [PMID: 29433048 DOI: 10.1016/j.biortech.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
An anaerobic ceramic membrane bioreactor (AnCMBR) has been attracted as an alternative technology to co-manage various organic substrates. This AnCMBR study investigated process performance and microbial community structure at decreasing temperatures to evaluate the potential of AnCMBR treatment for co-managing domestic wastewater (DWW) and food waste-recycling wastewater (FRW). As a result, the water flux (≥6.9 LMH) and organic removal efficiency (≥98.0%) were maintained above 25 °C. The trend of methane production in the AnCMBR was similar except for at 15 °C. At 15 °C, the archaeal community structure did not shifted, whereas the bacterial community structure was changed. Various major archaeal species were identified as the mesophilic methanogens which unable to grow at 15 °C. Our results suggest that the AnCMBR can be applied to co-manage DWW and FRW above 20 °C. Future improvements including psychrophilic methanogen inoculation and process optimization would make co-manage DWW and FRW at lower temperature climates.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yeongmi Jeong
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kyu Won Seo
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Biotechnology, Korea University, Seoul 02841, South Korea
| | - Seockheon Lee
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju-si, Gyeongsangnam-do 52725, South Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do 10326, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
197
|
Fontana A, Campanaro S, Treu L, Kougias PG, Cappa F, Morelli L, Angelidaki I. Performance and genome-centric metagenomics of thermophilic single and two-stage anaerobic digesters treating cheese wastes. WATER RESEARCH 2018; 134:181-191. [PMID: 29427960 DOI: 10.1016/j.watres.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 05/25/2023]
Abstract
The present research is the first comprehensive study regarding the thermophilic anaerobic degradation of cheese wastewater, which combines the evaluation of different reactor configurations (i.e. single and two-stage continuous stirred tank reactors) on the process efficiency and the in-depth characterization of the microbial community structure using genome-centric metagenomics. Both reactor configurations showed acidification problems under the tested organic loading rates (OLRs) of 3.6 and 2.4 g COD/L-reactor day and the hydraulic retention time (HRT) of 15 days. However, the two-stage design reached a methane yield equal to 95% of the theoretical value, in contrast with the single stage configuration, which reached a maximum of 33% of the theoretical methane yield. The metagenomic analysis identified 22 new population genomes and revealed that the microbial compositions between the two configurations were remarkably different, demonstrating a higher methanogenic biodiversity in the two-stage configuration. In fact, the acidogenic reactor of the serial configuration was almost solely composed by the lactose degrader Bifidobacterium crudilactis UC0001. The predictive functional analyses of the main population genomes highlighted specific metabolic pathways responsible for the AD process and the mechanisms of main intermediates production. Particularly, the acetate accumulation experienced by the single stage configuration was mainly correlated to the low abundant syntrophic acetate oxidizer Tepidanaerobacter acetatoxydans UC0018 and to the absence of aceticlastic methanogens.
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy; Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Fabrizio Cappa
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process - DiSTAS, Catholic University of the Sacred Heart, 29122 Piacenza, Italy
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
198
|
Zemskaya TI, Lomakina AV, Mamaeva EV, Zakharenko AS, Likhoshvai AV, Galach’yants YP, Müller B. Composition of Microbial Communities in Sediments from Southern Baikal Containing Fe/Mn Concretions. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718030165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
199
|
Lu X, Ni J, Zhen G, Kubota K, Li YY. Response of morphology and microbial community structure of granules to influent COD/SO 42 - ratios in an upflow anaerobic sludge blanket (UASB) reactor treating starch wastewater. BIORESOURCE TECHNOLOGY 2018; 256:456-465. [PMID: 29501030 DOI: 10.1016/j.biortech.2018.02.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Biochemical properties of granules are of vital importance to UASB performance. This study characterized the granules cultivated at different COD/SO42- ratios to elucidate the influence of sulfidogenesis on starch wastewater (1000 mg-COD L-1) biodegradation kinetics and process stability. Suitable sulfate addition enriched granular microecosystems and stimulated the secretion of extracellular substances, facilitating cells cohersion and sludge aggregation. The percentage of granules larger than 2.8 mm increased from <10.0% to 58.8-69.4% with decreasing COD/SO42- ratio from 10 to 2. Starch-fed granules tended to grow flagella-like filaments on the surface. The filaments overwhelmed by hydrophilic biopolymers had high affinity for biogas-bubbles and water-molecules aggravating granule floatation and washout. 16 s rRNA gene analysis revealed that decreasing COD/SO42- ratio shifted Syntrophobacterales to Desulfovibrio, which co-worked with Methanosaeta while suppressing Methanobacterium thereby altering starch bioconversion routes. Decrease in Syntrophobacterales caused propionate accumulation and slight process upset.
Collapse
Affiliation(s)
- Xueqin Lu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
200
|
Lagier JC, Drancourt M, Charrel R, Bittar F, La Scola B, Ranque S, Raoult D. Many More Microbes in Humans: Enlarging the Microbiome Repertoire. Clin Infect Dis 2018; 65:S20-S29. [PMID: 28859350 DOI: 10.1093/cid/cix404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The proportion of cultured microorganisms is dramatically lower than those predicted to be involved in colonization, acute, or chronic infections. We report our laboratory's contribution to promoting culture methods. As a result of using culturomics in our clinical microbiology laboratories (including amoeba co-culture and shell-vial culture) and through the use of matrix-assisted laser desorption/ionization-time-of-flight and the 16S rRNA gene for identification, we cultured 329 new bacterial species. This is also the first time that 327 of species have been isolated from humans, increasing the known human bacterial repertoire by 29%. We isolated 4 archaeal species for the first time from human, including 2 new species. Of the 100 isolates of giant viruses, we demonstrated the human pathogenicity of Mimivirus in pneumonia and Marseillevirus in diverse clinical situations. From sand flies, we isolated most of the known Phlebovirus strains that potentially cause human infections. Increasing the repertoire of human-associated microorganisms through culture will allow us to test pathogenicity models with viable microorganisms.
Collapse
Affiliation(s)
| | | | - Rémi Charrel
- UMR Emergence des Pathologies Virales, IRD 190, Inserm 1207, EHESP, France Fondation, IHU Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille (AP-HM) Public Hospitals of Marseille
| | | | | | - Stéphane Ranque
- Université Montpellier 1, IRBA, IP-TPT, Aix Marseille Université.,Parasitologie and Mycologie, IHU Méditerranée Infection, Hôpital de la Timone, AP-HM, Marseille, France
| | | |
Collapse
|