151
|
Natsumi A, Sugawara K, Yasumizu M, Mizukami Y, Sano S, Morita A, Paus R, Tsuruta D. Re-investigating the Basement Membrane Zone of Psoriatic Epidermal Lesions: Is Laminin-511 a New Player in Psoriasis Pathogenesis? J Histochem Cytochem 2018; 66:847-862. [PMID: 29906214 PMCID: PMC6262504 DOI: 10.1369/0022155418782693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a complex chronic inflammatory skin disease characterized by epidermal thickening on the basis of increased keratinocyte proliferation and insufficient apoptosis. Laminins are important components of the basement membrane (BM) and impact on epidermal keratinocyte growth/apoptosis. Although several laminins are involved in the pathogenesis of psoriasis, it is still controversial about the expression patterns of laminin isoforms and which laminins are important in the development of psoriasis. Because laminin-511 and -332 are key BM components in human skin, and laminin-511 stimulates human hair follicle growth, we asked whether the BM zone in psoriasis shows any laminin-related abnormalities. This showed that the BM expression of laminin-511 and -332 was significantly increased within the skin lesion of psoriasis. Immunofluorescence microscopy revealed that laminin-511, -332, and collagen type IV proteins were also significantly increased in psoriasis-like skin lesions of Imiquimod-treated mice. Transmission electron microscopy showed a few gaps of lamina densa, and its thickness was significantly increased. Finally, laminin-511 treatment significantly stimulated the proliferation and inhibited apoptosis of HaCaT cells, while laminin-α5 chain gene knockdown decreased proliferation and induced apoptosis. These phenomenological observations raise the question of whether laminin-511-controlled keratinocyte growth/death may be a previously overlooked player in the pathogenesis of psoriatic epidermal lesions.
Collapse
Affiliation(s)
- Aki Natsumi
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Koji Sugawara
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Makiko Yasumizu
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yukari Mizukami
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Ralf Paus
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL and Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
152
|
Chae JB, Choi HR, Shin JW, Na JI, Huh CH, Park KC. The Effects of the 3-OH Group of Kaempferol on Interfollicular Epidermal Stem Cell Fate. Ann Dermatol 2018; 30:694-700. [PMID: 33911509 PMCID: PMC7992458 DOI: 10.5021/ad.2018.30.6.694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/18/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023] Open
Abstract
Background Kaempferol (3,4′,5,7-tetrahydroxyflavone) is a flavonoid known to have a wide range of pharmacological activities. The 3-OH group in flavonoids has been reported to determine antioxidant activities. Objective We tested whether kaempferol can affect the expression of integrins and the stem cell fate of interfollicular epidermal stem cells. Methods Skin equivalent (SE) models were constructed, and the expression levels of stem cell markers and basement membrane-related antigens were tested. The immunohistochemical staining patterns of integrins, p63, and proliferating cell nuclear antigen (PCNA) were compared between kaempferol- and apigenin-treated SE models. Reverse transcription-polymerase chain reaction (RT-PCR) was used to evaluate the mRNA expression of integrins. Results Kaempferol increased the thickness of the epidermis when added to prepare SEs. In addition, the basal cells of kaempferol- treated SEs appeared more columnar. In the immunohistological study, the expression of integrins α6 and β1 and the numbers of p63- and PCNA-positive cells were markedly higher in the kaempferol-treated model. However, apigenin showed no effects on the formation of three-dimensional skin models. RT-PCR analysis also confirmed that kaempferol increased the expression of integrin α6 and integrin β1. Conclusion Our findings indicated that kaempferol can increase the proliferative potential of basal epidermal cells by modulating the basement membrane. In other words, kaempferol can affect the fate of interfollicular epidermal stem cells by increasing the expression of both integrins α6 and β1. These effects, in particular, might be ascribed to the 3-OH group of kaempferol.
Collapse
Affiliation(s)
- Je Byeong Chae
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
153
|
Fujiwara H, Tsutsui K, Morita R. Multi-tasking epidermal stem cells: Beyond epidermal maintenance. Dev Growth Differ 2018; 60:531-541. [PMID: 30449051 DOI: 10.1111/dgd.12577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Over the past decade, multiple stem cell compartments have been identified within the epidermis. These stem cell pools have different transcriptional properties, proliferative modes and anatomical locations, and they maintain distinct epidermal compartments. The importance of this stem cell heterogeneity and compartmentalization has been understood as a key feature in epidermal homeostasis. However, recent studies have revealed that these heterogeneous stem cells themselves act as a niche for neighboring cells, thereby establishing spatially and temporally patterned epidermal-dermal functional units. These studies provide a new perspective for interpreting the biological significance of stem cell heterogeneity and compartmentalization beyond their role in epidermal maintenance.
Collapse
Affiliation(s)
| | - Ko Tsutsui
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Ritsuko Morita
- RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
154
|
Evaluation of Tyrosinase Inhibitory, Antioxidant, Antimicrobial, and Antiaging Activities of Magnolia officinalis Extracts after Aspergillus niger Fermentation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5201786. [PMID: 30581856 PMCID: PMC6276509 DOI: 10.1155/2018/5201786] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/15/2023]
Abstract
This study intended to improve physiological characteristics of Magnolia officinalis bark (MOB) extracts by Aspergillus niger fermentation. M. officinalis bark was extracted using distilled water, 95% ethanol, and methanol, and it was then fermented by A. niger. The physiological characteristics of the fermented extracts, namely, tyrosinase inhibitory activity, antioxidant activity, antibacterial activity, and anti-skin-aging activity, were evaluated and compared with those of unfermented extracts. To determine the safety of the fermented extracts, their cytotoxicity was analyzed by measuring the cell viability of CCD-966SK and human epidermal melanocytes (HEMn) after exposure. The fermented methanol extract exhibited the highest antityrosinase activity, total phenolic content, and antioxidant activity. The total phenolic content of the extracts fermented by A. niger was 3.52 times greater than that of the unfermented extracts. The optimal IC50 values for tyrosinase inhibition and 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal by the A. niger-fermented extracts were 30 and 12 μg/mL, respectively. The fermented methanol extracts inhibited skin-aging-related enzymes such as collagenase, elastase, MMP-1, and MMP-2. Compared with the unfermented extracts, the fermented extracts also contained greater antibacterial activity against tested stains including MRSA. These results could be attributed to an increase in the concentration of original active compounds and the biosynthesis of new compounds during fermentation. In cytotoxicity assays, the A. niger-fermented extracts were nontoxic to CCD-966SK cells, even at 500 μg/mL. Hence, in general, methanol-extracted M. officinalis fermented by A. niger for 72 h has the most active antioxidant, skincare, or antiaging compounds for healthy food or cosmetics applications.
Collapse
|
155
|
Camacho Leal MDP, Costamagna A, Tassone B, Saoncella S, Simoni M, Natalini D, Dadone A, Sciortino M, Turco E, Defilippi P, Calautti E, Cabodi S. Conditional ablation of p130Cas/BCAR1 adaptor protein impairs epidermal homeostasis by altering cell adhesion and differentiation. Cell Commun Signal 2018; 16:73. [PMID: 30390666 PMCID: PMC6215608 DOI: 10.1186/s12964-018-0289-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background p130 Crk-associated substrate (p130CAS; also known as BCAR1) is a scaffold protein that modulates many essential cellular processes such as cell adhesion, proliferation, survival, cell migration, and intracellular signaling. p130Cas has been shown to be highly expressed in a variety of human cancers of epithelial origin. However, few data are available regarding the role of p130Cas during normal epithelial development and homeostasis. Methods To this end, we have generated a genetically modified mouse in which p130Cas protein was specifically ablated in the epidermal tissue. Results By using this murine model, we show that p130Cas loss results in increased cell proliferation and reduction of cell adhesion to extracellular matrix. In addition, epidermal deletion of p130Cas protein leads to premature expression of “late” epidermal differentiation markers, altered membrane E-cadherin/catenin proteins localization and aberrant tyrosine phosphorylation of E-cadherin/catenin complexes. Interestingly, these alterations in adhesive properties in absence of p130Cas correlate with abnormalities in progenitor cells balance resulting in the amplification of a more committed cell population. Conclusion Altogether, these results provide evidence that p130Cas is an important regulator of epidermal cell fate and homeostasis. Electronic supplementary material The online version of this article (10.1186/s12964-018-0289-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Del Pilar Camacho Leal
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Andrea Costamagna
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Beatrice Tassone
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Stefania Saoncella
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Matilde Simoni
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Dora Natalini
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Aurora Dadone
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Marianna Sciortino
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Emilia Turco
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Paola Defilippi
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Enzo Calautti
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy
| | - Sara Cabodi
- Department of Biotechnology and Health Science, Molecular Biotechnology Center, Università di Torino, Via Nizza 52, Torino, Italy.
| |
Collapse
|
156
|
Lee CG, Jung J, Hwang S, Park CO, Hwang S, Jo M, Sin MH, Kim HH, Rhee KJ. Histological Evaluation of Bioresorbable Threads in Rats. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2018. [DOI: 10.15324/kjcls.2018.50.3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chang Gun Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Jaeyun Jung
- Mielle Dermatology & Plastic Surgery Network Clinic, Busan, Korea
| | - Samnoh Hwang
- Department of Pathology, The Catholic University of Korea, Seoul Saint Mary’s Hospital, Seoul, Korea
| | - Chan Oh Park
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Minjeong Jo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| | - Min Hi Sin
- Department of Pathology, Wonju Severance Christian Hospital, Wonju, Korea
| | | | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, Korea
| |
Collapse
|
157
|
Paudel HP, Alt C, Runnels J, Lin CP. Pupil plane differential detection microscopy. OPTICS LETTERS 2018; 43:4410-4412. [PMID: 30211877 PMCID: PMC6492546 DOI: 10.1364/ol.43.004410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/15/2018] [Indexed: 05/22/2023]
Abstract
Differential interference contrast (DIC) microscopy is a powerful technique for imaging phase objects in transparent samples but does not work with scattering samples. This Letter, to the best of our knowledge, describes a new technique for obtaining DIC-like phase-gradient images in scattering media based on differential detection of forward-scattered light, using detectors arranged in a ring configuration around the microscope objective pupil or its conjugate pupil plane. This method, called pupil plane differential detection (P2D2) microscopy, does not need polarization optics or a confocal pinhole, yet produces images that are free of speckles and interference noises. We compared the P2D2 imaging technique with reflectance confocal microscopy and demonstrated P2D2 as a simple add-on to conventional laser scanning microscopes.
Collapse
|
158
|
Lineage Identity and Location within the Dermis Determine the Function of Papillary and Reticular Fibroblasts in Human Skin. J Invest Dermatol 2018; 139:342-351. [PMID: 30179601 DOI: 10.1016/j.jid.2018.07.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Human skin dermis is composed of the superficial papillary dermis and the reticular dermis in the lower layers, which can easily be distinguished histologically. In vitro analyses of fibroblasts from explant cultures from superficial and lower dermal layers suggest that human skin comprises at least two fibroblast lineages with distinct morphology, expression profiles, and functions. However, while for mouse skin cell surface markers have been identified, allowing the isolation of pure populations of one lineage or the other via FACS, this has not been achieved for human skin fibroblasts. We have now discovered two cell surface markers that discriminate between papillary and reticular fibroblasts. While FAP+CD90- cells display increased proliferative potential, express PDPN and NTN1, and cannot be differentiated into adipocytes, FAP-CD90+ fibroblasts express high levels of ACTA2, MGP, PPARγ, and CD36 and readily undergo adipogenic differentiation, a hallmark of reticular fibroblasts. Flow cytometric analysis of fibroblasts isolated from superficial and lower layers of human dermis showed that FAP+CD90- cells are enriched in the papillary dermis. Altogether, functional analysis and expression profiling confirms that FAP+CD90- cells represent papillary fibroblasts, whereas FAP-CD90+ fibroblasts derive from the reticular lineage. Although papillary and reticular fibroblasts are enriched in the upper or lower dermis, respectively, they are not spatially restricted, and the microenvironment seems to affect their function.
Collapse
|
159
|
Muliaditan T, Caron J, Okesola M, Opzoomer JW, Kosti P, Georgouli M, Gordon P, Lall S, Kuzeva DM, Pedro L, Shields JD, Gillett CE, Diebold SS, Sanz-Moreno V, Ng T, Hoste E, Arnold JN. Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nat Commun 2018; 9:2951. [PMID: 30054470 PMCID: PMC6063977 DOI: 10.1038/s41467-018-05346-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor.
Collapse
Affiliation(s)
- Tamara Muliaditan
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Jonathan Caron
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Mary Okesola
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - James W Opzoomer
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Paris Kosti
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Mirella Georgouli
- Tumour Plasticity Laboratory, Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter Gordon
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Sharanpreet Lall
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Desislava M Kuzeva
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Luisa Pedro
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Cambridge, CB2 0XZ, UK
| | - Jacqueline D Shields
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Cambridge, CB2 0XZ, UK
| | - Cheryl E Gillett
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Sandra S Diebold
- National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Tony Ng
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Esther Hoste
- Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, B-9052, Ghent-Zwijnaarde, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - James N Arnold
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
160
|
Tissot FS, Estrach S, Boulter E, Cailleteau L, Tosello L, Seguin L, Pisano S, Audebert S, Croce O, Féral CC. Dermal Fibroblast SLC3A2 Deficiency Leads to Premature Aging and Loss of Epithelial Homeostasis. J Invest Dermatol 2018; 138:2511-2521. [PMID: 29906411 DOI: 10.1016/j.jid.2018.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 01/12/2023]
Abstract
Skin homeostasis relies on fine-tuning of epidermis-dermis interactions and is affected by aging. While extracellular matrix (ECM) proteins, such as integrins, are involved in aging, the molecular basis of the skin changes needs to be investigated further. Here, we showed that integrin co-receptor, SLC3A2, required for cell proliferation, is expressed at the surface of resting dermal fibroblasts in young patients and is reduced drastically with aging. In vivo SLC3A2 dermal fibroblast deletion induced major skin phenotypes resembling premature aging. Knockout mice (3 months old) presented strong defects in skin elasticity due to altered ECM assembly, which impairs epidermal homeostasis. SLC3A2 dermal fibroblast loss led to an age-associated secretome profile, with 77% of identified proteins belonging to ECM and ECM-associated proteins. ECM not only contributes to skin mechanical properties, but it is also a reservoir of growth factors and bioactive molecules. We demonstrate that dermal fibroblast SLC3A2 is required for ECM to fully exert its structural and reservoir role allowing proper and efficient TGF-β localization and activation. We identified SLC3A2 as a protective controller of dermal ECM stiffness and quality required to maintain the epidermis to dermis interface as functional and dynamic.
Collapse
Affiliation(s)
- Floriane S Tissot
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France
| | - Soline Estrach
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France
| | - Etienne Boulter
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France
| | - Laurence Cailleteau
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France
| | - Lionel Tosello
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France
| | - Laetitia Seguin
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France
| | - Sabrina Pisano
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, Institut National de la Santé et de la Recherche Médicale, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Marseille, France
| | - Olivier Croce
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France
| | - Chloé C Féral
- Institut de Recherche sur le Cancer et le Vieillissement, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Université Cote d'Azur, Nice, France.
| |
Collapse
|
161
|
Wang X, Ding Z, Wang C, Chen X, Xu H, Lu Q, Kaplan DL. Bioactive Silk Hydrogels with Tunable Mechanical Properties. J Mater Chem B 2018; 6:2739-2746. [PMID: 30345058 PMCID: PMC6191054 DOI: 10.1039/c8tb00607e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing bioactive hydrogels with potential to guide the differentiation behavior of stem cells has become increasingly important in the biomaterials field. Here, silk hydrogels with tunable mechanical properties were developed by introducing inert silk fibroin nanofibers (SNF) within an enzyme crosslinked system of regenerated silk fibroin (RSF). After the crosslinking reaction of RSF, the inert SNF was embedded into the RSF hydrogel matrix, resulting in improved mechanical properties. Tunable stiffness in the range of 9-60 KPa was achieved by adjusting the amount of the added NSF, significantly higher than SNF-free hydrogels formed under same conditions (about 1 KPa). In addition, the proliferation of rat bone marrow derived mesenchymal stem cells cultured on the composite hydrogels and differentiated into endothelial cells, myoblast and osteoblast cells was improved, putatively due to the control of stiffness of the hydrogels. Bioactive and tunable silk-based hydrogels were prepared via a composite SNF and crosslinked RSF system, providing a new strategy to design silk biomaterials with tunable mechanical and biological performance.
Collapse
Affiliation(s)
- Xue Wang
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science, Soochow University, Suzhou 215123, P. R. China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Xiangdong Chen
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Hui Xu
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science, Soochow University, Suzhou 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
162
|
Feng X, Moy AJ, Nguyen HTM, Zhang Y, Zhang J, Fox MC, Sebastian KR, Reichenberg JS, Markey MK, Tunnell JW. Raman biophysical markers in skin cancer diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 29752800 DOI: 10.1117/1.jbo.23.5.057002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/23/2018] [Indexed: 05/22/2023]
Abstract
Raman spectroscopy (RS) has demonstrated great potential for in vivo cancer screening; however, the biophysical changes that occur for specific diagnoses remain unclear. We recently developed an inverse biophysical skin cancer model to address this issue. Here, we presented the first demonstration of in vivo melanoma and nonmelanoma skin cancer (NMSC) detection based on this model. We fit the model to our previous clinical dataset and extracted the concentration of eight Raman active components in 100 lesions in 65 patients diagnosed with malignant melanoma (MM), dysplastic nevi (DN), basal cell carcinoma, squamous cell carcinoma, and actinic keratosis. We then used logistic regression and leave-one-lesion-out cross validation to determine the diagnostically relevant model components. Our results showed that the biophysical model captures the diagnostic power of the previously used statistical classification model while also providing the skin's biophysical composition. In addition, collagen and triolein were the most relevant biomarkers to represent the spectral variances between MM and DN, and between NMSC and normal tissue. Our work demonstrates the ability of RS to reveal the biophysical basis for accurate diagnosis of different skin cancers, which may eventually lead to a reduction in the number of unnecessary excisional skin biopsies performed.
Collapse
Affiliation(s)
- Xu Feng
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, Unites States
| | - Austin J Moy
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, Unites States
| | - Hieu T M Nguyen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, Unites States
| | - Yao Zhang
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, Unites States
| | - Jason Zhang
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, Unites States
| | - Matthew C Fox
- University of Texas at Austin, Dell Medical School, Department of Medicine, Austin, Texas, United States
| | - Katherine R Sebastian
- University of Texas at Austin, Dell Medical School, Department of Medicine, Austin, Texas, United States
| | - Jason S Reichenberg
- University of Texas at Austin, Dell Medical School, Department of Medicine, Austin, Texas, United States
| | - Mia K Markey
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, Unites States
| | - James W Tunnell
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, Unites States
| |
Collapse
|
163
|
Gao D, Ma X, Lian P, Zhou S, Chen J. Pathogenetic mechanism of lipoid proteinosis caused by mutation of the extracellular matrix protein 1 gene. Mol Med Rep 2018; 17:8087-8090. [PMID: 29693130 DOI: 10.3892/mmr.2018.8928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/08/2018] [Indexed: 11/06/2022] Open
Abstract
Lipoid proteinosis (LP) is a rare form of dermatosis with autosomal recessive inheritance. The present study hypothesized that an extracellular matrix protein 1 (ECM1) gene mutation forms the pathological basis of LP. The association between ECM1 mutation and LP; however, requires further investigation and was thus investigated in the present study. Injury skin tissue samples from patients with LP were collected, along with venous blood samples for genomic DNA extraction. Immunohistochemical staining was performed. Polymerase chain reaction (PCR) was then used to obtain an ECM1 gene fragment, which was sequenced and compared with healthy individuals. Histopathological examination revealed that all included patients fitted the features of LP and PCR amplification of the ECM1 gene in all patients obtained positive results. Patients with LP in the present study exhibited point mutations in the ECM1 gene, including one homozygous mutation (C220G) as previously reported, and one novel homozygous mutation c.508insCTG and two heterozygous mutations (C220G/P.R481X and c507delT/c.l473delT). LP is correlated with ECM1 gene mutation.
Collapse
Affiliation(s)
- Dong Gao
- Department of Dermatology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xianying Ma
- Department of Information, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Peiwen Lian
- Department of Laboratory and Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Surong Zhou
- Department of Dermatology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Jian Chen
- Department of Laboratory and Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
164
|
Philippeos C, Telerman SB, Oulès B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD, Watt FM. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J Invest Dermatol 2018; 138:811-825. [PMID: 29391249 PMCID: PMC5869055 DOI: 10.1016/j.jid.2018.01.016] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis.
Collapse
Affiliation(s)
- Christina Philippeos
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Stephanie B Telerman
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Bénédicte Oulès
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Angela O Pisco
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Tanya J Shaw
- King's College London Centre for Molecular and Cellular Biology of Inflammation, London, UK
| | - Raul Elgueta
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Giovanna Lombardi
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Ryan R Driskell
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; School of Molecular Medicine, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mark Soldin
- Department of Plastic and Reconstructive Surgery, St. George's National Health Service Trust, London, UK
| | - Magnus D Lynch
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; St. John's Institute of Dermatology, Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK.
| |
Collapse
|
165
|
Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci 2018; 19:ijms19041003. [PMID: 29584689 PMCID: PMC5979429 DOI: 10.3390/ijms19041003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Collapse
Affiliation(s)
- Elina Chermnykh
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
166
|
Zoppi N, Chiarelli N, Ritelli M, Colombi M. Multifaced Roles of the αvβ3 Integrin in Ehlers-Danlos and Arterial Tortuosity Syndromes' Dermal Fibroblasts. Int J Mol Sci 2018; 19:ijms19040982. [PMID: 29587413 PMCID: PMC5979373 DOI: 10.3390/ijms19040982] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/19/2018] [Accepted: 03/24/2018] [Indexed: 02/07/2023] Open
Abstract
The αvβ3 integrin, an endothelial cells’ receptor-binding fibronectin (FN) in the extracellular matrix (ECM) of blood vessels, regulates ECM remodeling during migration, invasion, angiogenesis, wound healing and inflammation, and is also involved in the epithelial mesenchymal transition. In vitro-grown human control fibroblasts organize a fibrillar network of FN, which is preferentially bound on the entire cell surface to its canonical α5β1 integrin receptor, whereas the αvβ3 integrin is present only in rare patches in focal contacts. We report on the preferential recruitment of the αvβ3 integrin, due to the lack of FN–ECM and its canonical integrin receptor, in dermal fibroblasts from Ehlers–Danlos syndromes (EDS) and arterial tortuosity syndrome (ATS), which are rare multisystem connective tissue disorders. We review our previous findings that unraveled different biological mechanisms elicited by the αvβ3 integrin in fibroblasts derived from patients affected with classical (cEDS), vascular (vEDS), hypermobile EDS (hEDS), hypermobility spectrum disorders (HSD), and ATS. In cEDS and vEDS, respectively, due to defective type V and type III collagens, αvβ3 rescues patients’ fibroblasts from anoikis through a paxillin-p60Src-mediated cross-talk with the EGF receptor. In hEDS and HSD, without a defined molecular basis, the αvβ3 integrin transduces to the ILK-Snail1-axis inducing a fibroblast-to-myofibroblast-transition. In ATS cells, the deficiency of the dehydroascorbic acid transporter GLUT10 leads to redox imbalance, ECM disarray together with the activation of a non-canonical αvβ3 integrin-TGFBRII signaling, involving p125FAK/p60Src/p38MAPK. The characterization of these different biological functions triggered by αvβ3 provides insights into the multifaced nature of this integrin, at least in cultured dermal fibroblasts, offering future perspectives for research in this field.
Collapse
Affiliation(s)
- Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
167
|
Hsu CK, Lin HH, Harn HIC, Hughes MW, Tang MJ, Yang CC. Mechanical forces in skin disorders. J Dermatol Sci 2018; 90:232-240. [PMID: 29567352 DOI: 10.1016/j.jdermsci.2018.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/05/2018] [Indexed: 01/08/2023]
Abstract
Mechanical forces are known to regulate homeostasis of the skin and play a role in the pathogenesis of skin diseases. The epidermis consists of keratinocytes that are tightly adhered to each other by cell junctions. Defects in keratins or desmosomal/hemidesmosomal proteins lead to the attenuation of mechanical strength and formation of intraepidermal blisters in the case of epidermolysis bullosa simplex. The dermis is rich in extracellular matrix, especially collagen, and provides the majority of tensile force in the skin. Keloid and hypertrophic scar, which is the result of over-production of collagen by fibroblasts during the wound healing, are associated with extrinsic tensile forces and changes of intrinsic mechanical properties of the cell. Increasing evidences shows that stiffness of the skin environment determines the regenerative ability during wound healing process. Mechanotransduction pathways are also involved in the morphogenesis and cyclic growth of hair follicles. The development of androgenetic alopecia is correlated to tensile forces generated by the fibrous tissue underlying the scalp. Acral melanoma predominantly occurs in the weight-bearing area of the foot suggesting the role of mechanical stress. Increased dermal stiffness from fibrosis might be the cause of recessive dystrophic epidermolysis bullosa associated squamous cell carcinoma. Strategies to change the mechanical forces or modify the mechanotransduction signals may lead to a new way to treat skin diseases and promote skin regeneration.
Collapse
Affiliation(s)
- Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hsi-Hui Lin
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hans I-Chen Harn
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael W Hughes
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Chun Yang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
168
|
Bekeschus S, Lackmann JW, Gümbel D, Napp M, Schmidt A, Wende K. A Neutrophil Proteomic Signature in Surgical Trauma Wounds. Int J Mol Sci 2018. [PMID: 29518953 PMCID: PMC5877622 DOI: 10.3390/ijms19030761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-healing wounds continue to be a clinical challenge for patients and medical staff. These wounds have a heterogeneous etiology, including diabetes and surgical trauma wounds. It is therefore important to decipher molecular signatures that reflect the macroscopic process of wound healing. To this end, we collected wound sponge dressings routinely used in vacuum assisted therapy after surgical trauma to generate wound-derived protein profiles via global mass spectrometry. We confidently identified 311 proteins in exudates. Among them were expected targets belonging to the immunoglobulin superfamily, complement, and skin-derived proteins, such as keratins. Next to several S100 proteins, chaperones, heat shock proteins, and immune modulators, the exudates presented a number of redox proteins as well as a discrete neutrophil proteomic signature, including for example cathepsin G, elastase, myeloperoxidase, CD66c, and lipocalin 2. We mapped over 200 post-translational modifications (PTMs; cysteine/methionine oxidation, tyrosine nitration, cysteine trioxidation) to the proteomic profile, for example, in peroxiredoxin 1. Investigating manually collected exudates, we confirmed presence of neutrophils and their products, such as microparticles and fragments containing myeloperoxidase and DNA. These data confirmed known and identified less known wound proteins and their PTMs, which may serve as resource for future studies on human wound healing.
Collapse
Affiliation(s)
- Sander Bekeschus
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Jan-Wilm Lackmann
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Denis Gümbel
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, Greifswald University, Medical Center Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.
| | - Matthias Napp
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, Greifswald University, Medical Center Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany.
| | - Anke Schmidt
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany.
| |
Collapse
|
169
|
Jobeili L, Rousselle P, Béal D, Blouin E, Roussel AM, Damour O, Rachidi W. Selenium preserves keratinocyte stemness and delays senescence by maintaining epidermal adhesion. Aging (Albany NY) 2018; 9:2302-2315. [PMID: 29176034 PMCID: PMC5723688 DOI: 10.18632/aging.101322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022]
Abstract
Skin is constantly exposed to environmental factors such as pollutants, chemicals and ultra violet radiation (UV), which can induce premature skin aging and increase the risk of skin cancer. One strategy to reduce the effect of oxidative stress produced by environmental exposure is the application of antioxidant molecules. Among the endogenous antioxidants, selenoproteins play a key role in antioxidant defense and in maintaining a reduced cellular environment. Selenium, essential for the activity of selenoproteins, is a trace element that is not synthesized by organisms and must be supplied by diet or supplementation. The aim of this study is to evaluate the effect of Selenium supplementation on skin aging, especially on keratinocytes, the main cells of the epidermis. Our results demonstrate for the first time to our knowledge, the major role of Selenium on the replicative life span of keratinocytes and on aging skin. Selenium protects keratinocyte stem cells (KSCs) against senescence via preservation of their stemness phenotype through adhesion to the basement membrane. Additionally, Selenium supplementation maintains the homeostasis of skin during chronological aging in our senescent skin equivalent model. Controlled supplementation with Selenium could be a new strategy to protect skin against aging.
Collapse
Affiliation(s)
- Lara Jobeili
- Cell and Tissue Bank of Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France.,CarMeN Laboratory, INSERM U-1060, INRA USC-1235, Lyon 1 University, Lyon, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, University Lyon I, Lyon, France
| | - David Béal
- Grenoble Alpes University, Grenoble, France.,CEA, INAC, SyMMES, Grenoble, France
| | | | | | - Odile Damour
- Cell and Tissue Bank of Hospices Civils de Lyon, Hôpital Edouard Herriot, Lyon, France.,Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, University Lyon I, Lyon, France
| | - Walid Rachidi
- Grenoble Alpes University, Grenoble, France.,CEA, INAC, SyMMES, Grenoble, France
| |
Collapse
|
170
|
Watanabe M, Natsuga K, Shinkuma S, Shimizu H. Epidermal aspects of type VII collagen: Implications for dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. J Dermatol 2018; 45:515-521. [PMID: 29352483 DOI: 10.1111/1346-8138.14222] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 02/02/2023]
Abstract
Type VII collagen (COL7), a major component of anchoring fibrils in the epidermal basement membrane zone, has been characterized as a defective protein in dystrophic epidermolysis bullosa and as an autoantigen in epidermolysis bullosa acquisita. Although COL7 is produced and secreted by both epidermal keratinocytes and dermal fibroblasts, the role of COL7 with regard to the epidermis is rarely discussed. This review focuses on COL7 physiology and pathology as it pertains to epidermal keratinocytes. We summarize the current knowledge of COL7 production and trafficking, its involvement in keratinocyte dynamics, and epidermal carcinogenesis in COL7 deficiency and propose possible solutions to unsolved issues in this field.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
171
|
Bogdanowicz DR, Lu HH. Designing the stem cell microenvironment for guided connective tissue regeneration. Ann N Y Acad Sci 2018; 1410:3-25. [PMID: 29265419 DOI: 10.1111/nyas.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration.
Collapse
Affiliation(s)
- Danielle R Bogdanowicz
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
172
|
Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest 2018; 128:26-35. [PMID: 29293096 DOI: 10.1172/jci93555] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fibroblasts synthesize the extracellular matrix of connective tissue and play an essential role in maintaining the structural integrity of most tissues. Researchers have long suspected that fibroblasts exhibit functional specialization according to their organ of origin, body site, and spatial location. In recent years, a number of approaches have revealed the existence of fibroblast subtypes in mice. Here, we discuss fibroblast heterogeneity with a focus on the mammalian dermis, which has proven an accessible and tractable system for the dissection of these relationships. We begin by considering differences in fibroblast identity according to anatomical site of origin. Subsequently, we discuss new results relating to the existence of multiple fibroblast subtypes within the mouse dermis. We consider the developmental origin of fibroblasts and how this influences heterogeneity and lineage restriction. We discuss the mechanisms by which fibroblast heterogeneity arises, including intrinsic specification by transcriptional regulatory networks and epigenetic factors in combination with extrinsic effects of the spatial context within tissue. Finally, we discuss how fibroblast heterogeneity may provide insights into pathological states including wound healing, fibrotic diseases, and aging. Our evolving understanding suggests that ex vivo expansion or in vivo inhibition of specific fibroblast subtypes may have important therapeutic applications.
Collapse
Affiliation(s)
- Magnus D Lynch
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, United Kingdom.,St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, United Kingdom
| |
Collapse
|
173
|
Kang KB, Lawrence BD, Gao XR, Luo Y, Zhou Q, Liu A, Guaiquil VH, Rosenblatt MI. Micro- and Nanoscale Topographies on Silk Regulate Gene Expression of Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2017; 58:6388-6398. [PMID: 29260198 PMCID: PMC5736325 DOI: 10.1167/iovs.17-22213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Corneal basement membrane has topographical features that provide biophysical cues to direct cell adherence, migration, and proliferation. In this study, we hypothesize that varying topographic pitch created on silk films can alter epithelial cell morphology, adhesion, and the genetic expression involved in cytoskeletal dynamics-related pathways. Methods Silicon wafers with parallel ridge widths of 2000, 1000, and 800 nm were produced and used to pattern silk films via soft lithography. Human corneal epithelial cells were cultured onto silk. After 72 hours of incubation, images were taken to study cell morphology and alignment. Cytoskeletal structures were studied by immunofluorescent staining. RNA was collected from cultured cells to perform RNA-Seq transcriptome analysis using the Illumina Hiseq 2500 sequencing system. Differentially expressed genes were identified using DNAstar Qseq then verified using quantitative real-time PCR. These genes were used to perform pathway analyses using Ingenuity Pathways Analysis. Results Primary human corneal epithelial cell alignment to the surface pattern was the greatest on 1000-nm features. Fluorescent microscopy of f-actin staining showed cell cytoskeleton alignment either in parallel (2000 nm) or perpendicular (1000 and 800 nm) to the long feature axis. Z-stack projection of vinculin staining indicated increased focal adhesion formation localized on the cellular basal surface. RNA-seq analysis revealed differentially expressed genes involved in actin organization, integrin signaling, and focal adhesion kinase signaling (−log (P)>5). Conclusions Patterned silk film substrates may serve as a scaffold and provide biophysical cues to corneal epithelial cells that change their gene expression, alter cellular adherence, morphology, and may offer a promising customizable material for use in ocular surface repair.
Collapse
Affiliation(s)
- Kai B Kang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Brian D Lawrence
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States
| | - X Raymond Gao
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Aihong Liu
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
174
|
Li Y, Hong L, Liu C, Min J, Hong S, Hu M, Zhao Y, Yang Q, Tang J, He S. Effect of puerarin on collagen metabolism of fibroblasts in pelvic tissue of women with pelvic organ prolapse. Mol Med Rep 2017; 17:2705-2711. [PMID: 29207080 DOI: 10.3892/mmr.2017.8112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/20/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of puerarin on pelvic organ prolapse (POP) and the underlying mechanisms that regulate the metabolism of human parametrial ligament fibroblasts (HPLFs). HPLFs obtained from the pelvic tissue of patients with (n=10) or without (n=8) POP during hysterectomy were isolated by enzymatic digestion and subsequently identified by immunocytochemistry in a previous study of the authors. Following this, cultured HPLFs were treated with 0.01, 0.10 or 1.00 mmol/l puerarin, followed by detection of proliferation rate by Cell Counting kit‑8 assay. Following incubation with puerarin for 48 h, mRNA and protein expression levels of tissue inhibitor of metalloproteinase‑1 (TIMP‑1), matrix metalloproteinase (MMP)‑2 and ‑9, and collagen (COL)I and III in HPLFs were quantified by reverse transcription‑quantitative polymerase chain reaction, and western blot and gelatin zymography analyses, respectively. MMP‑2 and ‑9 expression levels were increased, whereas expression levels of TIMP‑1, and COL I and III were decreased, in patients with POP compared with healthy controls. Following puerarin treatment, the expression levels of TIMP‑1, and COL I and III were enhanced, whereas MMP‑2 and ‑9 were inhibited. In conclusion, the present study demonstrated evidence increased degradation of the extracellular matrix in pelvic tissues of patients with POP compared with controls, and the protective effect of puerarin against POP via its anti‑degradation effect on collagen. These results provide evidence for puerarin as a novel approach for the treatment of POP.
Collapse
Affiliation(s)
- Yang Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Min
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shasha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming Hu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Zhao
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianming Tang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Songming He
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
175
|
|
176
|
Kim A, Im M, Ma JY. SRVF, a novel herbal formula including Scrophulariae Radix and Viticis Fructus, disrupts focal adhesion and causes detachment-induced apoptosis in malignant cancer cells. Sci Rep 2017; 7:12756. [PMID: 29038437 PMCID: PMC5643381 DOI: 10.1038/s41598-017-12934-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
When cells lose adhesion, they undergo detachment-induced apoptosis, known as anoikis. In contrast, tumor cells acquire resistance to anoikis, enabling them to survive, even after separating from neighboring cells or the ECM. Therefore, agents that restore anoikis sensitivity may serve as anti-cancer candidates. In this study, we constructed a novel herbal formula, SRVF, which contains Scrophulariae Radix (SR) and Viticis Fructus (VF). SRVF rapidly decreased cell adhesion, altered the cell morphology to round, and induced cell death; however, SR, VF, or their co-treatment did not. SRVF arrested HT1080 cells in G2/M phase, increased the levels of pro-apoptotic proteins, and decreased the levels of anti-apoptotic proteins. Furthermore, SRVF efficiently reduced cell-cell and cell-ECM interactions by disrupting the F-actin cytoskeleton and down-regulating the levels of focal adhesion-related proteins, suggesting that SRVF efficiently triggers detachment-induced apoptosis (i.e., anoikis) in malignant cancer cells. In xenograft mouse models, daily oral administration of 50 or 100 mg/kg SRVF retarded tumor growth in vivo, and repeated administration of SRVF did not cause systemic toxicity in normal mice. These data collectively indicate that SRVF induces cancer cell death by restoring anoikis sensitivity via disrupting focal adhesion. Therefore, SRVF may be a safe and potent anti-cancer herbal decoction.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Minju Im
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Chumdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|
177
|
Babitha S, Korrapati PS. Biodegradable zein–polydopamine polymeric scaffold impregnated with TiO
2
nanoparticles for skin tissue engineering. Biomed Mater 2017; 12:055008. [DOI: 10.1088/1748-605x/aa7d5a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
178
|
Hufbauer M, Akgül B. Molecular Mechanisms of Human Papillomavirus Induced Skin Carcinogenesis. Viruses 2017; 9:v9070187. [PMID: 28708084 PMCID: PMC5537679 DOI: 10.3390/v9070187] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Infection of the cutaneous skin with human papillomaviruses (HPV) of genus betapapillomavirus (βHPV) is associated with the development of premalignant actinic keratoses and squamous cell carcinoma. Due to the higher viral loads of βHPVs in actinic keratoses than in cancerous lesions, it is currently discussed that these viruses play a carcinogenic role in cancer initiation. In vitro assays performed to characterize the cell transforming activities of high-risk HPV types of genus alphapapillomavirus have markedly contributed to the present knowledge on their oncogenic functions. However, these assays failed to detect oncogenic functions of βHPV early proteins. They were not suitable for investigations aiming to study the interactive role of βHPV positive epidermis with mesenchymal cells and the extracellular matrix. This review focuses on βHPV gene functions with special focus on oncogenic mechanisms that may be relevant for skin cancer development.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany.
| | - Baki Akgül
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany.
| |
Collapse
|
179
|
Laminin-511 and -521-based matrices for efficient ex vivo-expansion of human limbal epithelial progenitor cells. Sci Rep 2017; 7:5152. [PMID: 28698551 PMCID: PMC5506065 DOI: 10.1038/s41598-017-04916-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
Optimization of culture conditions for human limbal epithelial stem/progenitor cells (LEPC) that incorporate the in vivo cell-matrix interactions are essential to enhance LEPC ex vivo-expansion and transplantation efficiency. Here, we investigate the efficacy of laminin (LN) isoforms preferentially expressed in the limbal niche as culture matrices for epithelial tissue engineering. Analyses of expression patterns of LN chains in the human limbal niche provided evidence for enrichment of LN-α2, -α3, -α5, -β1, -β2, -β3, -γ1, -γ2 and -γ3 chains in the limbal basement membrane, with LN-α5 representing a signature component specifically produced by epithelial progenitor cells. Recombinant human LN-521 and LN-511 significantly enhanced in vitro LEPC adhesion, migration and proliferation compared to other isoforms, and maintained phenotype stability. The bioactive LN-511-E8 fragment carrying only C-terminal domains showed similar efficacy as full-length LN-511. Functional blocking of α3β1 and α6β1 integrins suppressed adhesion of LEPC to LN-511/521-coated surfaces. Cultivation of LEPC on fibrin-based hydrogels incorporating LN-511-E8 resulted in firm integrin-mediated adhesion to the scaffold and well-stratified epithelial constructs, with maintenance of a progenitor cell phenotype in their (supra)basal layers. Thus, the incorporation of chemically defined LN-511-E8 into biosynthetic scaffolds represents a promising approach for xeno-free corneal epithelial tissue engineering for ocular surface reconstruction.
Collapse
|
180
|
Watanabe M, Natsuga K, Nishie W, Kobayashi Y, Donati G, Suzuki S, Fujimura Y, Tsukiyama T, Ujiie H, Shinkuma S, Nakamura H, Murakami M, Ozaki M, Nagayama M, Watt FM, Shimizu H. Type XVII collagen coordinates proliferation in the interfollicular epidermis. eLife 2017; 6:e26635. [PMID: 28693719 PMCID: PMC5505703 DOI: 10.7554/elife.26635] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022] Open
Abstract
Type XVII collagen (COL17) is a transmembrane protein located at the epidermal basement membrane zone. COL17 deficiency results in premature hair aging phenotypes and in junctional epidermolysis bullosa. Here, we show that COL17 plays a central role in regulating interfollicular epidermis (IFE) proliferation. Loss of COL17 leads to transient IFE hypertrophy in neonatal mice owing to aberrant Wnt signaling. The replenishment of COL17 in the neonatal epidermis of COL17-null mice reverses the proliferative IFE phenotype and the altered Wnt signaling. Physical aging abolishes membranous COL17 in IFE basal cells because of inactive atypical protein kinase C signaling and also induces epidermal hyperproliferation. The overexpression of human COL17 in aged mouse epidermis suppresses IFE hypertrophy. These findings demonstrate that COL17 governs IFE proliferation of neonatal and aged skin in distinct ways. Our study indicates that COL17 could be an important target of anti-aging strategies in the skin.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Shotaro Suzuki
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yu Fujimura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideki Nakamura
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masamoto Murakami
- Department of Dermatology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
181
|
Dor-On E, Raviv S, Cohen Y, Adir O, Padmanabhan K, Luxenburg C. T-plastin is essential for basement membrane assembly and epidermal morphogenesis. Sci Signal 2017; 10:10/481/eaal3154. [PMID: 28559444 DOI: 10.1126/scisignal.aal3154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The establishment of epithelial architecture is a complex process involving cross-talk between cells and the basement membrane. Basement membrane assembly requires integrin activity but the role of the associated actomyosin cytoskeleton is poorly understood. Here, we identify the actin-bundling protein T-plastin (Pls3) as a regulator of basement membrane assembly and epidermal morphogenesis. In utero depletion of Pls3 transcripts in mouse embryos caused basement membrane and polarity defects in the epidermis but had little effect on cell adhesion and differentiation. Loss-of-function experiments demonstrated that the apicobasal polarity defects were secondary to the disruption of the basement membrane. However, the basement membrane itself was profoundly sensitive to subtle perturbations in the actin cytoskeleton. We further show that Pls3 localized to the cell cortex, where it was essential for the localization and activation of myosin II. Inhibition of myosin II motor activity disrupted basement membrane organization. Our results provide insights into the regulation of cortical actomyosin and its importance for basement membrane assembly and skin morphogenesis.
Collapse
Affiliation(s)
- Eyal Dor-On
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shaul Raviv
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yonatan Cohen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Adir
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
182
|
Totaro A, Castellan M, Battilana G, Zanconato F, Azzolin L, Giulitti S, Cordenonsi M, Piccolo S. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nat Commun 2017; 8:15206. [PMID: 28513598 PMCID: PMC5442321 DOI: 10.1038/ncomms15206] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
How the behaviour of somatic stem cells (SCs) is influenced by mechanical signals remains a black-box in cell biology. Here we show that YAP/TAZ regulation by cell shape and rigidity of the extracellular matrix (ECM) dictates a pivotal SC decision: to remain undifferentiated and grow, or to activate a terminal differentiation programme. Notably, mechano-activation of YAP/TAZ promotes epidermal stemness by inhibition of Notch signalling, a key factor for epidermal differentiation. Conversely, YAP/TAZ inhibition by low mechanical forces induces Notch signalling and loss of SC traits. As such, mechano-dependent regulation of YAP/TAZ reflects into mechano-dependent regulation of Notch signalling. Mechanistically, at least in part, this is mediated by YAP/TAZ binding to distant enhancers activating the expression of Delta-like ligands, serving as ‘in cis' inhibitors of Notch. Thus YAP/TAZ mechanotransduction integrates with cell–cell communication pathways for fine-grained orchestration of SC decisions. Notch signalling is a fundamental negative regulator of epidermal stemness. Here, the authors show that cell mechanics through YAP/TAZ activity prevent primary human keratinocytes from differentiating by inhibiting cell-autonomous Notch signals.
Collapse
Affiliation(s)
- Antonio Totaro
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Martina Castellan
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Giusy Battilana
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Francesca Zanconato
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Luca Azzolin
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Stefano Giulitti
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy.,Department of Industrial Engineering (DII), University of Padua, via Marzolo 9, Padua 35131, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| |
Collapse
|
183
|
Niche-localized tumor cells are protected from HER2-targeted therapy via upregulation of an anti-apoptotic program in vivo. NPJ Breast Cancer 2017. [PMID: 28649658 PMCID: PMC5460247 DOI: 10.1038/s41523-017-0020-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several lines of evidence suggest that components of the tumor microenvironment, specifically basement membrane and extracellular matrix proteins, influence drug sensitivities. We previously reported differential drug sensitivity of tumor cells localized adjacent to laminin-rich extracellular matrix in three-dimensional tumor spheroid cultures. To evaluate whether differential intra-tumor responses to targeted therapy occur in vivo, we examined the sensitivity of human epidermal growth factor receptor 2-positive tumors to lapatinib using a previously described ductal carcinoma in situ-like model characterized by tumor cell confinement within ductal structures surrounded by an organized basement membrane. Here we show that tumor cells localized to a ‘niche’ in the outer layer of the intraductal tumors adjacent to myoepithelial cells and basement membrane are resistant to lapatinib. We found that the pro-survival protein BCL2 is selectively induced in the niche-protected tumor cells following lapatinib treatment, and combined inhibition of HER2 and BCL-2/XL enhanced targeting of these residual tumor cells. Elimination of the niche-protected tumor cells was achieved with the HER2 antibody–drug conjugate T-DM1, which delivers a chemotherapeutic payload. Thus, these studies provide evidence that subpopulations of tumor cells within specific microenvironmental niches can adapt to inhibition of critical oncogenic pathways, and furthermore reveal effective strategies to eliminate these resistant subpopulations. Location-specific subpopulations of breast cancer cells adapt to targeted drug treatment, but therapeutic strategies exist to attack these niche-protected cells. A team led by Joan Brugge and Jason Zoeller from Harvard Medical School, USA, implanted human HER2+ breast tumor cells into the ducts of mouse mammary glands to recapitulate the architecture of ductal carcinoma in situ, a common type of non-invasive breast cancer. They found that cancer cells located on the outer rim of the tumors were resistant to lapatinib, a drug that targets the HER2 protein. Combination treatment with lapatinib and a drug that blocks a pro-survival protein called BCL2 that was specifically enriched in the outer cells after lapatinib treatment helped kill more cells. Complete elimination of the resistant cells was achieved with an antibody-drug conjugate, T-DM1, that binds to HER2 and then releases a chemotherapeutic payload.
Collapse
|
184
|
Hendijani F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 2017; 50:e12334. [PMID: 28144997 PMCID: PMC6529062 DOI: 10.1111/cpr.12334] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Faculty of PharmacyHormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
185
|
Lelièvre SA, Kwok T, Chittiboyina S. Architecture in 3D cell culture: An essential feature for in vitro toxicology. Toxicol In Vitro 2017; 45:287-295. [PMID: 28366709 DOI: 10.1016/j.tiv.2017.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023]
Abstract
Three-dimensional cell culture has the potential to revolutionize toxicology studies by allowing human-based reproduction of essential elements of organs. Beyond the study of toxicants on the most susceptible organs such as liver, kidney, skin, lung, gastrointestinal tract, testis, heart and brain, carcinogenesis research will also greatly benefit from 3D cell culture models representing any normal tissue. No tissue function can be suitably reproduced without the appropriate tissue architecture whether mimicking acini, ducts or tubes, sheets of cells or more complex cellular organizations like hepatic cords. In this review, we illustrate the fundamental characteristics of polarity that is an essential architectural feature of organs for which different 3D cell culture models are available for toxicology studies in vitro. The value of tissue polarity for the development of more accurate carcinogenesis studies is also exemplified, and the concept of using extracellular gradients of gaseous or chemical substances produced with microfluidics in 3D cell culture is discussed. Indeed such gradients-on-a-chip might bring unprecedented information to better determine permissible exposure levels. Finally, the impact of tissue architecture, established via cell-matrix interactions, on the cell nucleus is emphasized in light of the importance in toxicology of morphological and epigenetic alterations of this organelle.
Collapse
Affiliation(s)
- Sophie A Lelièvre
- Purdue University, Department of Basic Medical Sciences, 625 Harrison Street, West Lafayette, IN 47907, USA; 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S University Street, West Lafayette, IN 47907, USA.
| | - Tim Kwok
- 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA
| | - Shirisha Chittiboyina
- Purdue University, Department of Basic Medical Sciences, 625 Harrison Street, West Lafayette, IN 47907, USA; 3D Cell Culture Core (3D3C) Facility, Birck Nanotechnology Center, Purdue University Discovery Park, 1205 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
186
|
Metral E, Bechetoille N, Demarne F, Rachidi W, Damour O. α6 Integrin (α6 high)/Transferrin Receptor (CD71) low Keratinocyte Stem Cells Are More Potent for Generating Reconstructed Skin Epidermis Than Rapid Adherent Cells. Int J Mol Sci 2017; 18:ijms18020282. [PMID: 28134816 PMCID: PMC5343818 DOI: 10.3390/ijms18020282] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022] Open
Abstract
The epidermis basal layer is composed of two keratinocyte populations: Keratinocyte Stem cells (KSC) and Transitory Amplifying (TA) cells that arise from KSC division. Unfortunately, no specific marker exists to differ between KSC and TA cells. Here, we aimed at comparing two different methods that pretended to isolate these two populations: (i) the rapid adhesion method on coated substrate and (ii) the flow cytometry method, which is based on the difference in cell surface expressions of the α6 integrin and transferrin receptor (CD71). Then, we compared different parameters that are known to discriminate KSC and TA populations. Interestingly, we showed that both methods allow enrichment in stem cells. However, cell sorting by flow cytometry (α6high/CD71low) phenotype leads to a better enrichment of KSC since the colony forming efficiency is five times increased versus total cell suspension, whereas it is only 1.4 times for the adhesion method. Moreover, α6high/CD71low cells give rise to a thicker pluristratified epithelium with lower seeding density and display a low Ki67 positive cells number, showing that they have reached the balance between proliferation and differentiation. We clearly demonstrated that cells isolated by a rapid adherent method are not the same population as KSC isolated by flow cytometry following α6high/CD71low phenotype.
Collapse
Affiliation(s)
- Elodie Metral
- Gattefossé, 36 chemin de Genas, F-69800 Saint-Priest, France.
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA)/Institut Nanosciences et cryogénie (INAC)/SYstèmes Moléculaires et nanoMatériaux pour l'Energie et la Santé (SyMMES)/Lésions des acides nucléiques (LAN), 17 avenue des martyrs, F-38054 Grenoble CEDEX, France.
- Hospices Civils de LYON (HCL)/Banque de Tissus et Cellules/Laboratoire des Substituts Cutanés, 5 place d'Arsonval, F-69000 Lyon, France.
- Department of Biological Sciences, University Grenoble Alpes, F-38000 Grenoble, France.
| | | | | | - Walid Rachidi
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA)/Institut Nanosciences et cryogénie (INAC)/SYstèmes Moléculaires et nanoMatériaux pour l'Energie et la Santé (SyMMES)/Lésions des acides nucléiques (LAN), 17 avenue des martyrs, F-38054 Grenoble CEDEX, France.
- Department of Biological Sciences, University Grenoble Alpes, F-38000 Grenoble, France.
| | - Odile Damour
- Hospices Civils de LYON (HCL)/Banque de Tissus et Cellules/Laboratoire des Substituts Cutanés, 5 place d'Arsonval, F-69000 Lyon, France.
| |
Collapse
|
187
|
Maiorani O, Pivetta E, Capuano A, Modica TME, Wassermann B, Bucciotti F, Colombatti A, Doliana R, Spessotto P. Neutrophil elastase cleavage of the gC1q domain impairs the EMILIN1-α4β1 integrin interaction, cell adhesion and anti-proliferative activity. Sci Rep 2017; 7:39974. [PMID: 28074935 PMCID: PMC5225433 DOI: 10.1038/srep39974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix glycoprotein EMILIN1 exerts a wide range of functions mainly associated with its gC1q domain. Besides providing functional significance for adhesion and migration, the direct interaction between α4β1 integrin and EMILIN1-gC1q regulates cell proliferation, transducing net anti-proliferative effects. We have previously demonstrated that EMILIN1 degradation by neutrophil elastase (NE) is a specific mechanism leading to the loss of functions disabling its regulatory properties. In this study we further analysed the proteolytic activity of NE, MMP-3, MMP-9, and MT1-MMP on EMILIN1 and found that MMP-3 and MT1-MMP partially cleaved EMILIN1 but without affecting the functional properties associated with the gC1q domain, whereas NE was able to fully impair the interaction of gC1q with the α4β1 integrin by cleaving this domain outside of the E933 integrin binding site. By a site direct mutagenesis approach we mapped the bond between S913 and R914 residues and selected the NE-resistant R914W mutant still able to interact with the α4β1 integrin after NE treatment. Functional studies showed that NE impaired the EMILIN1-α4β1 integrin interaction by cleaving the gC1q domain in a region crucial for its proper structural conformation, paving the way to better understand NE effects on EMILIN1-cell interaction in pathological context.
Collapse
Affiliation(s)
- Orlando Maiorani
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Eliana Pivetta
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Alessandra Capuano
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Teresa Maria Elisa Modica
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Bruna Wassermann
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Francesco Bucciotti
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Roberto Doliana
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Paola Spessotto
- Experimental Oncology 2, Department of Translational Research, CRO-IRCCS, National Cancer Institute, Aviano 33081, Italy
| |
Collapse
|
188
|
Erickson JR, Gearhart MD, Honson DD, Reid TA, Gardner MK, Moriarity BS, Echeverri K. A novel role for SALL4 during scar-free wound healing in axolotl. NPJ Regen Med 2016; 1. [PMID: 28955504 PMCID: PMC5612448 DOI: 10.1038/npjregenmed.2016.16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human response to serious cutaneous damage is limited to relatively primitive wound healing, whereby collagenous scar tissue fills the wound bed. Scars assure structural integrity at the expense of functional regeneration. In contrast, axolotls have the remarkable capacity to functionally regenerate full thickness wounds. Here, we identified a novel role for SALL4 in regulating collagen transcription after injury that is essential for perfect skin regeneration in axolotl. Furthermore, we identify miR-219 as a molecular regulator of Sall4 during wound healing. Taken together, our work highlights one molecular mechanism that allows for efficient cutaneous wound healing in the axolotl.
Collapse
Affiliation(s)
- Jami R Erickson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Drew D Honson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Taylor A Reid
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Center for Genome Engineering, University of Minnesota, Masonic Cancer Center, University of Minnesota, Minnesota, MN USA
| | - Karen Echeverri
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, USA
| |
Collapse
|
189
|
Čunderlíková B. Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Crit Rev Oncol Hematol 2016; 105:127-44. [DOI: 10.1016/j.critrevonc.2016.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023] Open
|
190
|
Weissmann R, Kacprowski T, Peper M, Esche J, Jensen LR, van Diepen L, Port M, Kuss AW, Scherthan H. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts. HEALTH PHYSICS 2016; 111:75-84. [PMID: 27356049 PMCID: PMC4936435 DOI: 10.1097/hp.0000000000000419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 06/06/2023]
Abstract
Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios.
Collapse
Affiliation(s)
- Robert Weissmann
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Tim Kacprowski
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Michel Peper
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Jennifer Esche
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Lars R. Jensen
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Laura van Diepen
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Matthias Port
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Andreas W. Kuss
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Harry Scherthan
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| |
Collapse
|
191
|
Abstract
Stem cells hold great promise in treating many diseases either through promoting endogenous cell repair or through direct cell transplants. In order to maximize their potential, understanding the fundamental signals and mechanisms that regulate their behavior is essential. The extracellular matrix (ECM) is one such component involved in mediating stem cell fate. Recent studies have made significant progress in understanding stem cell-ECM interactions. Technological developments have provided greater clarity in how cells may sense and respond to the ECM, in particular the physical properties of the matrix. This review summarizes recent developments, providing illustrative examples of the different modes with which the ECM controls both embryonic and adult stem cell behavior.
Collapse
|
192
|
Bogdanowicz P, Haure MJ, Ceruti I, Bessou-Touya S, Castex-Rizzi N. Results from in vitro and ex vivo skin aging models assessing the antiglycation and anti-elastase MMP-12 potential of glycylglycine oleamide. Clin Cosmet Investig Dermatol 2016; 9:143-50. [PMID: 27382322 PMCID: PMC4922745 DOI: 10.2147/ccid.s98633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Glycation is an aging reaction of naturally occurring sugars with dermal proteins. Type I collagen and elastin are most affected by glycation during intrinsic chronological aging. AIM To study the in vitro and ex vivo assays in human skin cells and explants and the antiaging effects of glycylglycine oleamide (GGO). MATERIALS AND METHODS The antiglycation effect of GGO was assessed in a noncellular in vitro study on collagen and, ex vivo, by immunohistochemical staining on human skin explants (elastin network glycation). The ability of GGO to contract fibroblasts was assessed in a functional assay, and its anti-elastase (MMP-12) activity was compared to that of oleic acid alone, glycylglycine (GG) alone, and oleic acid associated with GG. RESULTS In vitro, GGO reduced the glycation of type I collagen. Ex vivo, GGO restored the expression of fibrillin-1 inhibited by glycation. Furthermore, GGO induced a tissue retraction of almost 30%. Moreover, the MMP-12 activity was inhibited by up to 60%. CONCLUSION Under the present in vitro and ex vivo conditions, GGO prevents glycation of the major structural proteins of the dermis, helping to reduce the risk of rigidification. By maintaining the elastic function of the skin, GGO may be a promising sparring partner for other topical antiaging agents.
Collapse
Affiliation(s)
| | - Marie-José Haure
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - Isabelle Ceruti
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | | | | |
Collapse
|
193
|
Alves RN, Gomes AS, Stueber K, Tine M, Thorne MAS, Smáradóttir H, Reinhard R, Clark MS, Rønnestad I, Power DM. The transcriptome of metamorphosing flatfish. BMC Genomics 2016; 17:413. [PMID: 27233904 PMCID: PMC4884423 DOI: 10.1186/s12864-016-2699-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. Metamorphosis in vertebrates is driven by thyroid hormones (THs), but how they orchestrate the cellular, morphological and functional modifications associated with maturation to juvenile/adult states in flatfish is an enigma. Since THs act via thyroid receptors that are ligand activated transcription factors, we hypothesized that the maturation of tissues during metamorphosis should be preceded by significant modifications in the transcriptome. Targeting the unique metamorphosis of flatfish and taking advantage of the large size of Atlantic halibut (Hippoglossus hippoglossus) larvae, we determined the molecular basis of TH action using RNA sequencing. RESULTS De novo assembly of sequences for larval head, skin and gastrointestinal tract (GI-tract) yielded 90,676, 65,530 and 38,426 contigs, respectively. More than 57 % of the assembled sequences were successfully annotated using a multi-step Blast approach. A unique set of biological processes and candidate genes were identified specifically associated with changes in morphology and function of the head, skin and GI-tract. Transcriptome dynamics during metamorphosis were mapped with SOLiD sequencing of whole larvae and revealed greater than 8,000 differentially expressed (DE) genes significantly (p < 0.05) up- or down-regulated in comparison with the juvenile stage. Candidate transcripts quantified by SOLiD and qPCR analysis were significantly (r = 0.843; p < 0.05) correlated. The majority (98 %) of DE genes during metamorphosis were not TH-responsive. TH-responsive transcripts clustered into 6 groups based on their expression pattern during metamorphosis and the majority of the 145 DE TH-responsive genes were down-regulated. CONCLUSIONS A transcriptome resource has been generated for metamorphosing Atlantic halibut and over 8,000 DE transcripts per stage were identified. Unique sets of biological processes and candidate genes were associated with changes in the head, skin and GI-tract during metamorphosis. A small proportion of DE transcripts were TH-responsive, suggesting that they trigger gene networks, signalling cascades and transcription factors, leading to the overt changes in tissue occurring during metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana S Gomes
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Kurt Stueber
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Mbaye Tine
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany.,Current address: Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Richard Reinhard
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
194
|
Divergent modulation of normal and neoplastic stem cells by thrombospondin-1 and CD47 signaling. Int J Biochem Cell Biol 2016; 81:184-194. [PMID: 27163531 DOI: 10.1016/j.biocel.2016.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/27/2016] [Accepted: 05/04/2016] [Indexed: 01/19/2023]
Abstract
Thrombospondin-1 is a secreted matricellular protein that regulates the differentiation and function of many cell types. Thrombospondin-1 is not required for embryonic development, but studies using lineage-committed adult stem cells have identified positive and negative effects of thrombospondin-1 on stem cell differentiation and self-renewal and identified several thrombospondin-1 receptors that mediate these responses. Genetic studies in mice reveal a broad inhibitory role of thrombospondin-1 mediated by its receptor CD47. Cells and tissues lacking thrombospondin-1 or CD47 exhibit an increased capacity for self-renewal associated with increased expression of the stem cell transcription factors c-Myc, Sox2, Klf4, and Oct4. Thrombospondin-1 inhibits expression of these transcription factors in a CD47-dependent manner. However, this regulation differs in some neoplastic cells. Tumor initiating/cancer stem cells express high levels of CD47, but in contrast to nontransformed stem cells CD47 signaling supports cancer stem cells. Suppression of CD47 expression in cancer stem cells or ligation of CD47 by function blocking antibodies or thrombospondin-1 results in loss of self-renewal. Therefore, the therapeutic CD47 antagonists that are in clinical development for stimulating innate anti-tumor immunity may also inhibit tumor growth by suppressing cancer stem cells. These and other therapeutic modulators of thrombospondin-1 and CD47 signaling may also have applications in regenerative medicine to enhance the function of normal stem cells.
Collapse
|
195
|
de Menezes JP, Saraiva EM, da Rocha-Azevedo B. The site of the bite: Leishmania interaction with macrophages, neutrophils and the extracellular matrix in the dermis. Parasit Vectors 2016; 9:264. [PMID: 27146515 PMCID: PMC4857439 DOI: 10.1186/s13071-016-1540-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Leishmania spp., the causative agents of leishmaniasis, are intracellular parasites, transmitted to humans via the bite of their sand fly vectors. Once inoculated, the promastigotes are exposed to the dermis, which is composed of extracellular matrix (ECM), growth factors and its resident cells. Promastigote forms are phagocytosed by macrophages recruited to the site of the sand fly bite, either directly or after interaction with neutrophils. Since Leishmania is an intracellular parasite, its interaction with the host ECM has been neglected as well as the immediate steps after the sand fly bite. However, promastigotes must overcome the obstacles presented by the dermis ECM in order to establish the infection. Thus, the study of the interaction between Leishmania promastigotes and ECM components as well as the earliest stages of infection are important steps to understand the establishment of the disease, and could contribute in the future to new drug developments towards leishmaniasis.
Collapse
Affiliation(s)
| | - Elvira M Saraiva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno da Rocha-Azevedo
- Programa de Terapia Celular e Bioengenharia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. .,Present Address: Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
196
|
Zigrino P, Brinckmann J, Niehoff A, Lu Y, Giebeler N, Eckes B, Kadler KE, Mauch C. Fibroblast-Derived MMP-14 Regulates Collagen Homeostasis in Adult Skin. J Invest Dermatol 2016; 136:1575-1583. [PMID: 27066886 PMCID: PMC4946792 DOI: 10.1016/j.jid.2016.03.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022]
Abstract
Proteolytic activities in the extracellular matrix by the matrix metalloproteinase (MMP)-14 have been implicated in the remodeling of collagenous proteins during development. To analyze the function of fibroblast-derived MMP-14 in adult skin homeostasis, we generated mice with inducible deletion of MMP-14 in the dermal fibroblast (MMP-14Sf–/–). These mice are smaller and display a fibrosis-like phenotype in the skin. The skin of these mice showed increased stiffness and tensile strength but no altered collagen cross-links. In vivo, we measured a significantly increased amount of collagen type I accumulated in the skin of MMP-14Sf–/– mice without an increase in collagen fibril diameters. However, bleomycin-induced fibrosis in skin proceeded in a comparable manner in MMP-14Sf+/+ and MMP-14Sf–/– mice, but resolution over time was impaired in MMP-14Sf–/– mice. Increased accumulation of collagen type I was detected in MMP-14Sf–/– fibroblasts in culture without significant enhancement of collagen de novo synthesis. This points to a degradative but not synthetic phenotype. In support of this, MMP-14Sf–/– fibroblasts lost their ability to process fibrillar collagen type I and to activate proMMP-2. Taken together, these data indicate that MMP-14 expression in fibroblasts plays a crucial role in collagen remodeling in adult skin and largely contributes to dermal homeostasis underlying its pathogenic role in fibrotic skin disease.
Collapse
Affiliation(s)
- Paola Zigrino
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany.
| | - Jürgen Brinckmann
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University and Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Nives Giebeler
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| | - Beate Eckes
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| | - Karl E Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Cornelia Mauch
- Department of Dermatology and Venerology, University of Cologne, Cologne, Germany
| |
Collapse
|
197
|
Abstract
Epithelia cover the surfaces and line the cavities of the body. Recent studies have highlighted the existence of multiple stem cell compartments within individual epithelia that exhibit striking plasticity in response to tissue damage, transplantation, or tumor development. New knowledge about the composition of the epithelial niche and the transcription factor networks that maintain cell identity has provided new insights into the extrinsic and intrinsic regulation of stem cell behavior. In addition new in vitro tissue substitutes allow better integration of data from human and mouse models.
Collapse
|
198
|
Abstract
Hematopoietic stem cells (HSCs) are capable to self-renew with multi-potency which generated much excitement in clinical therapy. However, the main obstacle of HSCs in clinical application was insufficient number of HSCs which were derived from either bone marrow, peripheral blood or umbilical cord blood. This review briefly discusses the indispensable utility of growth factors and cytokines, stromal cells, extracellular matrix, bionic scaffold and microenvironment aiming to control the hematopoiesis in all directions and provide a better and comprehensive understanding for in vitro expansion of hematopoietic stem cells.
Collapse
|
199
|
Jacob RS, George E, Singh PK, Salot S, Anoop A, Jha NN, Sen S, Maji SK. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif. J Biol Chem 2016; 291:5278-98. [PMID: 26742841 DOI: 10.1074/jbc.m115.678177] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids.
Collapse
Affiliation(s)
- Reeba S Jacob
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Edna George
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Pradeep K Singh
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Shimul Salot
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Arunagiri Anoop
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Narendra Nath Jha
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Shamik Sen
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Samir K Maji
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
200
|
Lee YB, Shin YM, Kim EM, Lee JY, Lim J, Kwon SK, Shin H. Mussel adhesive protein inspired coatings on temperature-responsive hydrogels for cell sheet engineering. J Mater Chem B 2016; 4:6012-6022. [DOI: 10.1039/c6tb01057a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A cell sheet translocation system is developed based on a temperature-responsive hydrogel with modular cell adhesion properties by a mussel-inspired polydopamine coating.
Collapse
Affiliation(s)
- Yu Bin Lee
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Young Min Shin
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Joong-yup Lee
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Jangsoo Lim
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| | - Seong Keun Kwon
- Department of Otorhinolaryngology – Head and Neck Surgery
- Seoul National University Hospital
- Seoul
- Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering
- Hanyang University
- Seoul
- Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team
| |
Collapse
|