151
|
Alcántar-Fernández J, Navarro RE, Salazar-Martínez AM, Pérez-Andrade ME, Miranda-Ríos J. Caenorhabditis elegans respond to high-glucose diets through a network of stress-responsive transcription factors. PLoS One 2018; 13:e0199888. [PMID: 29990370 PMCID: PMC6039004 DOI: 10.1371/journal.pone.0199888] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
High-glycemic-index diets, as well as a sedentary lifestyle are considered as determinant factors for the development of obesity, type 2 diabetes, and cardiovascular diseases in humans. These diets have been shown to shorten the life span of C. elegans in a manner that is dependent on insulin signaling, but the participation of other signaling pathways have not been addressed. In this study, we have determined that worms fed with high-glucose diets show alterations in glucose content and uptake, triglyceride content, body size, number of eggs laid, egg-laying defects, and signs of oxidative stress and accelerated aging. Additionally, we analyzed the participation of different key regulators of carbohydrate and lipid metabolism, oxidative stress and longevity such as SKN-1/NRF2, HIF-1/HIF1α, SBP-1/SREBP, CRH-1/CREB, CEP-1/p53, and DAF-16/FOXO, in the reduction of lifespan in glucose-fed worms.
Collapse
Affiliation(s)
- Jonathan Alcántar-Fernández
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), México, Ciudad de México, México
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, Ciudad de México, México
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana María Salazar-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Martha Elva Pérez-Andrade
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, Ciudad de México, México
| | - Juan Miranda-Ríos
- Unidad de Genética de la Nutrición, Depto. de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, UNAM e Instituto Nacional de Pediatría, México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
152
|
D'Amora DR, Hu Q, Pizzardi M, Kubiseski TJ. BRAP-2 promotes DNA damage induced germline apoptosis in C. elegans through the regulation of SKN-1 and AKT-1. Cell Death Differ 2018; 25:1276-1288. [PMID: 29358669 PMCID: PMC6030105 DOI: 10.1038/s41418-017-0038-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
As part of the DNA damage response (DDR) network, the tumour suppressor Breast cancer susceptibility gene 1 (BRCA1) is activated to facilitate DNA repair, transcription and cell cycle control. BRC-1, the Caenorhabditis elegans ortholog of BRCA1, has conserved function in DNA double strand break repair, wherein a loss of brc-1 results in high levels of germline apoptosis. BRAP2/IMP was initially identified as a BRCA1 associated binding protein and previously we have shown that the C. elegans brap-2 deletion mutant experiences BRC-1 dependent larval arrest when exposed to low concentrations of paraquat. Since BRC-1 function in the germline is conserved, we wanted to determine the role of BRAP-2 in DNA damage induced germline apoptosis in C. elegans. We examined levels of germ cell death following DNA damage and found that brap-2(ok1492) mutants display reduced levels of germline apoptosis when compared to the wild type, and the loss of brap-2 significantly reduced germ cell death in brc-1 mutant animals. We also found increased mRNA levels of skn-1 following DNA damage in brap-2 mutants and that skn-1 RNAi knockdown in brap-2;brc-1 double mutants and a loss of pmk-1 mutation in brap-2 mutants increased apoptosis to wild type levels, indicating that brap-2 promotion of cell survival requires PMK-1 and SKN-1. Since mammalian BRAP2 has been shown to bind the AKT phosphatase PHLPP1/2, it suggests that BRAP2 could be involved in the Insulin/Insulin-like growth factor Signaling (IIS) pathway. We found that this interaction is conserved between the C. elegans homologs and that a loss of akt-1 in brap-2 mutants increased germline apoptosis. Thus in response to DNA damage, our findings suggest that BRAP-2 is required to attenuate the pro-cell survival signals of AKT-1 and PMK-1/SKN-1 to promote DNA damage induced germline apoptosis.
Collapse
Affiliation(s)
- Dayana R D'Amora
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Queenie Hu
- Department of Biology, York University, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Monica Pizzardi
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Terrance J Kubiseski
- Department of Biology, York University, Toronto, Ontario, Canada.
- Program in Neuroscience, York University, Toronto, Ontario, Canada.
| |
Collapse
|
153
|
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol Rev 2018; 98:1169-1203. [PMID: 29717933 PMCID: PMC9762786 DOI: 10.1152/physrev.00023.2017] [Citation(s) in RCA: 1177] [Impact Index Per Article: 168.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Kelch-like ECH-associated protein 1-NF-E2-related factor 2 (KEAP1-NRF2) system forms the major node of cellular and organismal defense against oxidative and electrophilic stresses of both exogenous and endogenous origins. KEAP1 acts as a cysteine thiol-rich sensor of redox insults, whereas NRF2 is a transcription factor that robustly transduces chemical signals to regulate a battery of cytoprotective genes. KEAP1 represses NRF2 activity under quiescent conditions, whereas NRF2 is liberated from KEAP1-mediated repression on exposure to stresses. The rapid inducibility of a response based on a derepression mechanism is an important feature of the KEAP1-NRF2 system. Recent studies have unveiled the complexities of the functional contributions of the KEAP1-NRF2 system and defined its broader involvement in biological processes, including cell proliferation and differentiation, as well as cytoprotection. In this review, we describe historical milestones in the initial characterization of the KEAP1-NRF2 system and provide a comprehensive overview of the molecular mechanisms governing the functions of KEAP1 and NRF2, as well as their roles in physiology and pathology. We also refer to the clinical significance of the KEAP1-NRF2 system as an important prophylactic and therapeutic target for various diseases, particularly aging-related disorders. We believe that controlled harnessing of the KEAP1-NRF2 system is a key to healthy aging and well-being in humans.
Collapse
|
154
|
Goh GYS, Winter JJ, Bhanshali F, Doering KRS, Lai R, Lee K, Veal EA, Taubert S. NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell 2018; 17:e12743. [PMID: 29508513 PMCID: PMC5946062 DOI: 10.1111/acel.12743] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
Endogenous and exogenous stresses elicit transcriptional responses that limit damage and promote cell/organismal survival. Like its mammalian counterparts, hepatocyte nuclear factor 4 (HNF4) and peroxisome proliferator-activated receptor α (PPARα), Caenorhabditis elegans NHR-49 is a well-established regulator of lipid metabolism. Here, we reveal that NHR-49 is essential to activate a transcriptional response common to organic peroxide and fasting, which includes the pro-longevity gene fmo-2/flavin-containing monooxygenase. These NHR-49-dependent, stress-responsive genes are also upregulated in long-lived glp-1/notch receptor mutants, with two of them making critical contributions to the oxidative stress resistance of wild-type and long-lived glp-1 mutants worms. Similar to its role in lipid metabolism, NHR-49 requires the mediator subunit mdt-15 to promote stress-induced gene expression. However, NHR-49 acts independently from the transcription factor hlh-30/TFEB that also promotes fmo-2 expression. We show that activation of the p38 MAPK, PMK-1, which is important for adaptation to a variety of stresses, is also important for peroxide-induced expression of a subset of NHR-49-dependent genes that includes fmo-2. However, organic peroxide increases NHR-49 protein levels, by a posttranscriptional mechanism that does not require PMK-1 activation. Together, these findings establish a new role for the HNF4/PPARα-related NHR-49 as a stress-activated regulator of cytoprotective gene expression.
Collapse
Affiliation(s)
- Grace Y. S. Goh
- Graduate Program in Cell & Developmental Biology; University of British Columbia; Vancouver BC Canada
- Centre for Molecular Medicine and Therapeutics; Vancouver BC Canada
- BC Children's Hospital Research Institute; Vancouver BC Canada
| | - Johnathan J. Winter
- Institute for Cell and Molecular Biosciences; Newcastle University; Newcastle upon Tyne UK
- Newcastle University Institute for Ageing; Newcastle University; Newcastle upon Tyne UK
| | - Forum Bhanshali
- Centre for Molecular Medicine and Therapeutics; Vancouver BC Canada
- BC Children's Hospital Research Institute; Vancouver BC Canada
| | - Kelsie R. S. Doering
- Centre for Molecular Medicine and Therapeutics; Vancouver BC Canada
- BC Children's Hospital Research Institute; Vancouver BC Canada
- Department of Medical Genetics; University of British Columbia; Vancouver BC Canada
| | - Regina Lai
- Centre for Molecular Medicine and Therapeutics; Vancouver BC Canada
- BC Children's Hospital Research Institute; Vancouver BC Canada
| | - Kayoung Lee
- Centre for Molecular Medicine and Therapeutics; Vancouver BC Canada
- BC Children's Hospital Research Institute; Vancouver BC Canada
- Department of Medical Genetics; University of British Columbia; Vancouver BC Canada
| | - Elizabeth A. Veal
- Institute for Cell and Molecular Biosciences; Newcastle University; Newcastle upon Tyne UK
- Newcastle University Institute for Ageing; Newcastle University; Newcastle upon Tyne UK
| | - Stefan Taubert
- Graduate Program in Cell & Developmental Biology; University of British Columbia; Vancouver BC Canada
- Centre for Molecular Medicine and Therapeutics; Vancouver BC Canada
- BC Children's Hospital Research Institute; Vancouver BC Canada
- Department of Medical Genetics; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
155
|
Kimura Y, Tsutsumi K, Konno A, Ikegami K, Hameed S, Kaneko T, Kaplan OI, Teramoto T, Fujiwara M, Ishihara T, Blacque OE, Setou M. Environmental responsiveness of tubulin glutamylation in sensory cilia is regulated by the p38 MAPK pathway. Sci Rep 2018; 8:8392. [PMID: 29849065 PMCID: PMC5976657 DOI: 10.1038/s41598-018-26694-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Glutamylation is a post-translational modification found on tubulin that can alter the interaction between microtubules (MTs) and associated proteins. The molecular mechanisms regulating tubulin glutamylation in response to the environment are not well understood. Here, we show that in the sensory cilia of Caenorhabditis elegans, tubulin glutamylation is upregulated in response to various signals such as temperature, osmolality, and dietary conditions. Similarly, tubulin glutamylation is modified in mammalian photoreceptor cells following light adaptation. A tubulin glutamate ligase gene ttll-4, which is essential for tubulin glutamylation of axonemal MTs in sensory cilia, is activated by p38 MAPK. Amino acid substitution of TTLL-4 has revealed that a Thr residue (a putative MAPK-phosphorylation site) is required for enhancement of tubulin glutamylation. Intraflagellar transport (IFT), a bidirectional trafficking system specifically observed along axonemal MTs, is required for the formation, maintenance, and function of sensory cilia. Measurement of the velocity of IFT particles revealed that starvation accelerates IFT, which was also dependent on the Thr residue of TTLL-4. Similarly, starvation-induced attenuation of avoidance behaviour from high osmolality conditions was also dependent on ttll-4. Our data suggest that a novel evolutionarily conserved regulatory system exists for tubulin glutamylation in sensory cilia in response to the environment.
Collapse
Affiliation(s)
- Yoshishige Kimura
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa, 238-8522, Japan
| | - Koji Tsutsumi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Alu Konno
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Saira Hameed
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomomi Kaneko
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa, 238-8522, Japan
| | - Oktay Ismail Kaplan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, 4, Ireland
- Abdullah Gul Universitesi, Doga Bilimleri Fakultesi, Sumer Kampusu, 38090, Kocasinan, Kayseri, Turkey
| | - Takayuki Teramoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Manabi Fujiwara
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Ishihara
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Department of Anatomy, The University of Hong Kong, Hong Kong, China.
- Division of Neural Systematics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
156
|
Chen YW, Ko WC, Chen CS, Chen PL. RIOK-1 Is a Suppressor of the p38 MAPK Innate Immune Pathway in Caenorhabditis elegans. Front Immunol 2018; 9:774. [PMID: 29719537 PMCID: PMC5913292 DOI: 10.3389/fimmu.2018.00774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 01/08/2023] Open
Abstract
Innate immunity is the primary defense mechanism against infection in metazoans. However, aberrant upregulation of innate immune-signaling pathways can also be detrimental to the host. The p38 MAPK/PMK-1 innate immune-signaling pathway has been demonstrated to play essential roles in cellular defenses against numerous infections in metazoans, including Caenorhabditis elegans. However, the negative regulators that maintain the homeostasis of this important innate immune pathway remain largely understudied. By screening a focused RNAi library against the kinome of C. elegans, we identified RIOK-1, a human RIO kinase homolog, as a novel suppressor of the p38 MAPK/PMK-1 signal pathway. We demonstrated that the suppression of riok-1 confers resistance to Aeromonas dhakensis infection in C. elegans. Using quantitative real time-PCR and riok-1 reporter worms, we found the expression levels of riok-1 to be significantly upregulated in worms infected with A. dhakensis. Our genetic epistasis analysis suggested that riok-1 acts on the upstream of the p38 MAPK/pmk-1 genetic pathway. Moreover, the suppression of riok-1 enhanced the p38 MAPK signal, suggesting that riok-1 is a negative regulator of this innate pathway in C. elegans. Our epistatic results put riok-1 downstream of skn-1, which encodes a p38 MAPK downstream transcription factor and serves as a feedback loop to the p38 MAPK pathway during an A. dhakensis infection. In conclusion, riok-1 is proposed as a novel innate immune suppressor and as a negative feedback loop model involving p38 MAPK, SKN-1, and RIOK-1 in C. elegans.
Collapse
Affiliation(s)
- Yi-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
157
|
Liu P, Wei M, Zhang J, Wang R, Li B, Chen Q, Weng Q. Changes in mycelia growth, sporulation, and virulence of Phytophthora capsici when challenged by heavy metals (Cu 2+, Cr 2+ and Hg 2+) under acid pH stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:372-380. [PMID: 29306805 DOI: 10.1016/j.envpol.2017.12.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/15/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
Phytophthora capsici, an economically devastating oomycete pathogen, causes devastating disease epidemics on a wide range of vegetable plants and pose a grave threat to global vegetables production. Heavy metals and acid pH are newly co-occurring stresses to soil micro-organisms, but what can be expected for mycelia growth and virulence and how they injure the oomycetes (especially P. capsici) remains unknown. Here, the effects of different heavy metals (Cu2+, Cr2+, and Hg2+) on mycelia growth and virulence were investigated at different pHs (4.0 vs. 7.0) and the plausible molecular and physiological mechanisms were analyzed. In the present study, we compared the effective inhibition of different heavy metals (Cu2+, Cr2+, and Hg2+) and acid pH on a previously genome sequenced P. capsici virulent strain LT1534. Both stress factors independently affected its mycelia growth and sporulation. Next, we investigated whether ROS participated in the pH-inhibited mycelial growth, finding that the ROS scavenger, catalase (CAT), significantly inhibited the acid pH-induced ROS in mycelia. Additionally, because MAPK specially transmits different stress responsive signals in environment into cells, we employed CAT and a p38-MAPK pathway inhibitor to investigate ROS and p38-MAPK roles in heavy metal-inhibited mycelia growth at different pHs (4.0 vs. 7.0), finding that they significantly inhibited growth. Furthermore, ROS and p38-MAPK influenced the heavy metal-induced TBARS content, total antioxidant capacity (TAC), and CAT activity at different pHs, and also reduced the expression of infection-related laccases (PcLAC2) and an effector-related protein (PcNLP14). We propose that acid pH stress accelerates how heavy metals inhibit mycelium growth, sporulation, and virulence change in P. capsici, and posit that ROS and p38-MAPK function to regulate the molecular and physiological mechanisms underlying this toxicity. Although these stresses induce molecular and physiological challenges to oomycetes, much remains to be known the mechanisms dedicated to resolve these environmental stresses.
Collapse
Affiliation(s)
- Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| | - Mengyao Wei
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Jinzhu Zhang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Qinghe Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Qiyong Weng
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| |
Collapse
|
158
|
Tummalapalli SR, Bhat R, Chojnowski A, Prorok M, Kreiss T, Goldberg R, Canan S, Hawryluk N, Mortensen D, Khetani V, Zeldis J, Siekierka JJ, Rotella DP. Discovery of a Stress-Activated Protein Kinase Inhibitor for Lymphatic Filariasis. ACS Med Chem Lett 2018. [PMID: 29541362 DOI: 10.1021/acsmedchemlett.7b00477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Lymphatic filariasis infects over 120 million people worldwide and can lead to significant disfigurement and disease. Resistance is emerging with current treatments, and these therapies have dose limiting adverse events; consequently new targets are needed. One approach to achieve this goal is inhibition of parasitic protein kinases involved in circumventing host defense mechanisms. This report describes structure-activity relationships leading to the identification of a potent, orally bioavailable stress activated protein kinase inhibitor that may be used to investigate this hypothesis.
Collapse
Affiliation(s)
- Sreedhar R. Tummalapalli
- Sokol Institute for Pharmaceutical Life Sciences and Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Rohit Bhat
- Sokol Institute for Pharmaceutical Life Sciences and Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Agnieszka Chojnowski
- Sokol Institute for Pharmaceutical Life Sciences and Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Monika Prorok
- Sokol Institute for Pharmaceutical Life Sciences and Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Tamara Kreiss
- Sokol Institute for Pharmaceutical Life Sciences and Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Ronald Goldberg
- Sokol Institute for Pharmaceutical Life Sciences and Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - Stacie Canan
- Celgene Global Health, Celgene San Diego, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Natalie Hawryluk
- Celgene Global Health, Celgene San Diego, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Deborah Mortensen
- Celgene Global Health, Celgene San Diego, 10300 Campus Point Drive, San Diego, California 92121, United States
| | - Vikram Khetani
- Celgene Global Health, 86 Morris Avenue, Summit, New Jersey 07901, United States
| | - Jerome Zeldis
- Celgene Global Health, 86 Morris Avenue, Summit, New Jersey 07901, United States
| | - John J. Siekierka
- Sokol Institute for Pharmaceutical Life Sciences and Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| | - David P. Rotella
- Sokol Institute for Pharmaceutical Life Sciences and Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
159
|
Li W, Wang D, Wang D. Regulation of the Response of Caenorhabditis elegans to Simulated Microgravity by p38 Mitogen-Activated Protein Kinase Signaling. Sci Rep 2018; 8:857. [PMID: 29339777 PMCID: PMC5770453 DOI: 10.1038/s41598-018-19377-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/29/2017] [Indexed: 11/24/2022] Open
Abstract
The in vivo function of p38 mitogen-activated protein kinase (MAPK) signaling in regulating the response to simulated microgravity is still largely unclear. Using Caenorhabditis elegans as an assay system, we investigated the in vivo function of p38 MAPK signaling in regulating the response of animals to simulated microgravity and the underlying molecular mechanism. Simulated microgravity treatment significantly increased the transcriptional expressions of genes (pmk-1, sek-1, and nsy-1) encoding core p38 MAPK signaling pathway and the expression of phosphorylated PMK-1/p38 MAPK. The pmk-1, sek-1, or nsy-1 mutant was susceptible to adverse effects of simulated microgravity. The intestine-specific activity of PMK-1 was required for its function in regulating the response to simulated microgravity, and the entire p38 MAPK signaling pathway could act in the intestine to regulate the response to simulated microgravity. In the intestine, SKN-1 and ATF-7, two transcriptional factors, were identified as downstream targets for PMK-1 in regulating the response to simulated microgravity. Therefore, the activation of p38 MAPK signaling may mediate a protection mechanism for nematodes against the adverse effects of simulated microgravity. Additionally, our results highlight the potential crucial role of intestinal cells in response to simulated microgravity in nematodes.
Collapse
Affiliation(s)
- Wenjie Li
- Medical School, Southeast University, Nanjing, 210009, China
| | - Daoyong Wang
- Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
160
|
Yan F, Chen X, Zheng X. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (LO2) and Caenorhabditis elegans under hyperglycemic conditions. Food Res Int 2017; 102:213-224. [DOI: 10.1016/j.foodres.2017.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 11/27/2022]
|
161
|
Wang Y, Wu Y, Wang B, Cao X, Fu A, Li Y, Li W. Effects of probiotic Bacillus as a substitute for antibiotics on antioxidant capacity and intestinal autophagy of piglets. AMB Express 2017; 7:52. [PMID: 28244029 PMCID: PMC5328899 DOI: 10.1186/s13568-017-0353-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022] Open
Abstract
The objective of this study was to evaluate effects of probiotic Bacillus amyloliquefaciens (Ba) as a substitute for antibiotics on growth performance, antioxidant ability and intestinal autophagy of piglets. Ninety piglets were divided into three groups: G1 (containing 150 mg/Kg aureomycin in the diet); G2 (containing 75 mg/Kg aureomycin and 1 × 108 cfu/Kg Ba in the diet); G3 (containing 2 × 108 cfu/Kg Ba in the diet without any antibiotics). Each treatment had three replications of ten pigs per pen. Results showed that Ba replacement significantly increased the daily weight gain of piglets. Moreover, improved antioxidant status in serum and jejunum was noted in Ba-fed groups as compared with aureomycin group. Increased gene expression of antioxidant enzymes and elevated nuclear factor erythroid 2 related factor 2 (Nrf2) in jejunum was also observed in Ba-fed groups. Besides, Ba replacement significantly decreased jejunal c-Jun N-terminal kinase (JNK) phosphorylation compared with antibiotic group. Western blotting results also revealed that replacing all antibiotics with Ba initiated autophagy in the jejunum as evidenced by increased microtubule-associated protein 1 light chain 3 II (LC3-II) abundance. Taken together, these results indicate that replacing aureomycin with Ba can improve growth performance and antioxidant status of piglets via increasing antioxidant capacity and intestinal autophagy, suggesting a good potential for Ba as an alternative to antibiotics in feed.
Collapse
|
162
|
Kang HM, Jeong CB, Lee YH, Cui YH, Kim DH, Lee MC, Kim HS, Han J, Hwang DS, Lee SJ, Lee JS. Cross-reactivities of mammalian MAPKs antibodies in rotifer and copepod: Application in mechanistic studies in aquatic ecotoxicology. MARINE POLLUTION BULLETIN 2017; 124:614-623. [PMID: 28012735 DOI: 10.1016/j.marpolbul.2016.11.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/01/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
The mitogen-activated protein kinases (MAPKs) family is known to mediate various biological processes in response to diverse environmental pollutants. Although MAPKs are well characterized and studied in vertebrates, in invertebrates the cross-reactivities of MAPKs antibodies were not clearly known in response to environmental pollutants due to limited information of antibody epitopes with material resources for invertebrates. In this paper, we performed phylogenetic analysis of MAPKs genes in the marine rotifer Brachionus koreanus and the copepods Paracyclopina nana and Tigriopus japonicus. Also in rotifer and copepods, several studies of Western blot of MAPK signaling pathways were shown in response to environmental pollutants, including multi-walled carbon nanotubes (MWCNTs), water-accommodated fractions (WAFs) of crude oil, and microplastics. This paper will provide a better understanding of the underlying mechanistic scenario in terms of cross-reactivities of mammalian antibodies in rotifer and copepod.
Collapse
Affiliation(s)
- Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yan-Hong Cui
- Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Dae-Sik Hwang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Su-Jae Lee
- Department of Life Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
163
|
Tang H, Pang S. Proline Catabolism Modulates Innate Immunity in Caenorhabditis elegans. Cell Rep 2017; 17:2837-2844. [PMID: 27974198 DOI: 10.1016/j.celrep.2016.11.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/28/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022] Open
Abstract
Metabolic pathways are regulated to fuel or instruct the immune responses to pathogen threats. However, the regulatory roles for amino acid metabolism in innate immune responses remains poorly understood. Here, we report that mitochondrial proline catabolism modulates innate immunity in Caenorhabditis elegans. Modulation of proline catabolic enzymes affects host susceptibility to bacterial pathogen Pseudomonas aeruginosa. Mechanistically, proline catabolism governs reactive oxygen species (ROS) homeostasis and subsequent activation of SKN-1, a critical transcription factor regulating xenobiotic stress response and pathogen defense. Intriguingly, proline catabolism-mediated activation of SKN-1 requires cell-membrane dual-oxidase Ce-Duox1/BLI-3, highlighting the importance of interaction between mitochondrial and cell-membrane components in host defense. Our findings reveal how animals utilize metabolism of a single amino acid to defend against a pathogen and identify proline catabolism as a component of innate immune signaling.
Collapse
Affiliation(s)
- Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
164
|
UPR mt coordinates immunity to maintain mitochondrial homeostasis and animal fitness. Mitochondrion 2017; 41:9-13. [PMID: 29180055 DOI: 10.1016/j.mito.2017.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022]
Abstract
Proper function of mitochondria is often challenged by intrinsic factors and extrinsic stimuli. To cope with mitochondrial stress, organisms evolve mitochondrial unfolded protein response (UPRmt) to monitor mitochondrial function and induce the transcription of mitochondrial chaperones and proteases to restore mitochondrial proteostasis and alleviate stress. Interestingly, UPRmt also induces immune response genes and improves animals' fitness against pathogen infection. In this review, we will summarize progresses of UPRmt studies and discuss the relationship between UPRmt and the induction of innate immunity.
Collapse
|
165
|
Yoon DS, Choi Y, Cha DS, Zhang P, Choi SM, Alfhili MA, Polli JR, Pendergrass D, Taki FA, Kapalavavi B, Pan X, Zhang B, Blackwell TK, Lee JW, Lee MH. Triclosan Disrupts SKN-1/Nrf2-Mediated Oxidative Stress Response in C. elegans and Human Mesenchymal Stem Cells. Sci Rep 2017; 7:12592. [PMID: 28974696 PMCID: PMC5626723 DOI: 10.1038/s41598-017-12719-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Triclosan (TCS), an antimicrobial chemical with potential endocrine-disrupting properties, may pose a risk to early embryonic development and cellular homeostasis during adulthood. Here, we show that TCS induces toxicity in both the nematode C. elegans and human mesenchymal stem cells (hMSCs) by disrupting the SKN-1/Nrf2-mediated oxidative stress response. Specifically, TCS exposure affected C. elegans survival and hMSC proliferation in a dose-dependent manner. Cellular analysis showed that TCS inhibited the nuclear localization of SKN-1/Nrf2 and the expression of its target genes, which were associated with oxidative stress response. Notably, TCS-induced toxicity was significantly reduced by either antioxidant treatment or constitutive SKN-1/Nrf2 activation. As Nrf2 is strongly associated with aging and chemoresistance, these findings will provide a novel approach to the identification of therapeutic targets and disease treatment.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Dong Seok Cha
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Oriental Pharmacy, College of Pharmacy, Woosuk University, Jeonbuk, 565-701, Republic of Korea
| | - Peng Zhang
- Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.,Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seong Mi Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea
| | - Mohammad Abdulmohsen Alfhili
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Joseph Ryan Polli
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - DeQwon Pendergrass
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.,Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Faten A Taki
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Brahmam Kapalavavi
- Department of Chemistry, East Carolina University, Greenville, NC, 27858, USA
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - T Keith Blackwell
- Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.,Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 120-752, South Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 120-752, South Korea.
| | - Myon-Hee Lee
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
166
|
Hourihan JM, Moronetti Mazzeo LE, Fernández-Cárdenas LP, Blackwell TK. Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant Response. Mol Cell 2017; 63:553-566. [PMID: 27540856 DOI: 10.1016/j.molcel.2016.07.019] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/01/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
Emerging evidence suggests that many proteins may be regulated through cysteine modification, but the extent and functions of this signaling remain largely unclear. The endoplasmic reticulum (ER) transmembrane protein IRE-1 maintains ER homeostasis by initiating the unfolded protein response (UPR(ER)). Here we show in C. elegans and human cells that IRE-1 has a distinct redox-regulated function in cytoplasmic homeostasis. Reactive oxygen species (ROS) that are generated at the ER or by mitochondria sulfenylate a cysteine within the IRE-1 kinase activation loop. This inhibits the IRE-1-mediated UPR(ER) and initiates the p38/SKN-1(Nrf2) antioxidant response, thereby increasing stress resistance and lifespan. Many AGC-family kinases (AKT, p70S6K, PKC, ROCK1) seem to be regulated similarly. The data reveal that IRE-1 has an ancient function as a cytoplasmic sentinel that activates p38 and SKN-1(Nrf2) and indicate that cysteine modifications induced by ROS signals can direct proteins to adopt unexpected functions and may coordinate many cellular processes.
Collapse
Affiliation(s)
- John M Hourihan
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lorenza E Moronetti Mazzeo
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - L Paulette Fernández-Cárdenas
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - T Keith Blackwell
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA; Department of Genetics and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
167
|
PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans. Mol Genet Genomics 2017; 292:1341-1361. [PMID: 28766017 PMCID: PMC5682872 DOI: 10.1007/s00438-017-1351-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.
Collapse
|
168
|
Sasakura H, Moribe H, Nakano M, Ikemoto K, Takeuchi K, Mori I. Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in C. elegans. J Cell Sci 2017; 130:2631-2643. [PMID: 28676501 DOI: 10.1242/jcs.202119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
Reactive oxygen species (ROS), originally characterized based on their harmful effects on cells or organisms, are now recognized as important signal molecules regulating various biological processes. In particular, low levels of ROS released from mitochondria extend lifespan. Here, we identified a novel mechanism of generating appropriate levels of ROS at the plasma membrane through a peroxidase and dual oxidase (DUOX) system, which could extend lifespan in Caenorhabditis elegans A redox co-factor, pyrroloquinoline quinone (PQQ), activates the C. elegans DUOX protein BLI-3 to produce the ROS H2O2 at the plasma membrane, which is subsequently degraded by peroxidase (MLT-7), eventually ensuring adequate levels of ROS. These ROS signals are transduced mainly by the oxidative stress transcriptional factors SKN-1 (Nrf2 or NFE2L2 in mammals) and JUN-1, and partially by DAF-16 (a FOXO protein homolog). Cell biology experiments demonstrated a similarity between the mechanisms of PQQ-induced activation of human DUOX1 and DUOX2 and that of C. elegans BLI-3, suggesting that DUOXs are potential targets of intervention for lifespan extension. We propose that low levels of ROS, fine-tuned by the peroxidase and dual oxidase system at the plasma membrane, act as second messengers to extend lifespan by the effect of hormesis.
Collapse
Affiliation(s)
- Hiroyuki Sasakura
- Neuroscience Institute and Group of Molecular Neurobiology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroki Moribe
- Department of Biology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Masahiko Nakano
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company Inc., Niigata 950-3112, Japan
| | - Kazuto Ikemoto
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company Inc., Niigata 950-3112, Japan
| | - Kosei Takeuchi
- Department of Medical Biology, Aichi Medical University, 1-1 Yazako-Karimata, Nagakute, Aichi 480-1195, Japan
| | - Ikue Mori
- Neuroscience Institute and Group of Molecular Neurobiology, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
169
|
The Oxidative Stress Response in Caenorhabditis elegans Requires the GATA Transcription Factor ELT-3 and SKN-1/Nrf2. Genetics 2017; 206:1909-1922. [PMID: 28600327 DOI: 10.1534/genetics.116.198788] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 06/02/2017] [Indexed: 12/19/2022] Open
Abstract
Cellular damage caused by reactive oxygen species is believed to be a major contributor to age-associated diseases. Previously, we characterized the Caenorhabditis elegans Brap2 ortholog (BRAP-2) and found that it is required to prevent larval arrest in response to elevated levels of oxidative stress. Here, we report that C. elegans brap-2 mutants display increased expression of SKN-1-dependent, phase II detoxification enzymes that is dependent on PMK-1 (a p38 MAPK C. elegans ortholog). An RNA-interference screen was conducted using a transcription factor library to identify genes required for increased expression of the SKN-1 target gst-4 in brap-2 mutants. We identified ELT-3, a member of the GATA transcription factor family, as a positive regulator of gst-4p::gfp expression. We found that ELT-3 interacts with SKN-1 to activate gst-4 transcription in vitro and that elt-3 is required for enhanced gst-4 expression in the brap-2(ok1492) mutant in vivo Furthermore, nematodes overexpressing SKN-1 required ELT-3 for life-span extension. Taken together, these results suggest a model where BRAP-2 acts as negative regulator of SKN-1 through inhibition of p38 MAPK activity, and that the GATA transcription factor ELT-3 is required along with SKN-1 for the phase II detoxification response in C. elegans.
Collapse
|
170
|
Lo JY, Spatola BN, Curran SP. WDR23 regulates NRF2 independently of KEAP1. PLoS Genet 2017; 13:e1006762. [PMID: 28453520 PMCID: PMC5428976 DOI: 10.1371/journal.pgen.1006762] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 05/12/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
Cellular adaptation to stress is essential to ensure organismal survival. NRF2/NFE2L2 is a key determinant of xenobiotic stress responses, and loss of negative regulation by the KEAP1-CUL3 proteasome system is implicated in several chemo- and radiation-resistant cancers. Advantageously using C. elegans alongside human cell culture models, we establish a new WDR23-DDB1-CUL4 regulatory axis for NRF2 activity that operates independently of the canonical KEAP1-CUL3 system. WDR23 binds the DIDLID sequence within the Neh2 domain of NRF2 to regulate its stability; this regulation is not dependent on the KEAP1-binding DLG or ETGE motifs. The C-terminal domain of WDR23 is highly conserved and involved in regulation of NRF2 by the DDB1-CUL4 complex. The addition of WDR23 increases cellular sensitivity to cytotoxic chemotherapeutic drugs and suppresses NRF2 in KEAP1-negative cancer cell lines. Together, our results identify WDR23 as an alternative regulator of NRF2 proteostasis and uncover a cellular pathway that regulates NRF2 activity and capacity for cytoprotection independently of KEAP1.
Collapse
Affiliation(s)
- Jacqueline Y. Lo
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, California, United States of America
- University of Southern California, Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, Los Angeles, California, United States of America
| | - Brett N. Spatola
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, California, United States of America
- University of Southern California, Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, Los Angeles, California, United States of America
| | - Sean P. Curran
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, California, United States of America
- University of Southern California, Dornsife College of Letters, Arts, and Sciences, Department of Molecular and Computational Biology, Los Angeles, California, United States of America
| |
Collapse
|
171
|
F-Box Protein XREP-4 Is a New Regulator of the Oxidative Stress Response in Caenorhabditis elegans. Genetics 2017; 206:859-871. [PMID: 28341649 DOI: 10.1534/genetics.117.200592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
The transcription factor SKN-1 (Skinhead family member-1) in Caenorhabditis elegans is a homolog of the mammalian Nrf-2 protein and functions to promote oxidative stress resistance and longevity. SKN-1 mediates protection from reactive oxygen species (ROS) via the transcriptional activation of genes involved in antioxidant defense and phase II detoxification. Although many core regulators of SKN-1 have been identified, much remains unknown about this complex signaling pathway. We carried out an ethyl methanesulfonate (EMS) mutagenesis screen and isolated six independent mutants with attenuated SKN-1-dependent gene activation in response to acrylamide. All six were found to contain mutations in F46F11.6/xrep-4 (xenobiotics response pathways-4), which encodes an uncharacterized F-box protein. Loss of xrep-4 inhibits the skn-1-dependent expression of detoxification genes in response to prooxidants and decreases survival of oxidative stress, but does not shorten life span under standard culture conditions. XREP-4 interacts with the ubiquitin ligase component SKR-1 and the SKN-1 principal repressor WDR-23, and knockdown of xrep-4 increases nuclear localization of a WDR-23::GFP fusion protein. Furthermore, a missense mutation in the conserved XREP-4 F-box domain that reduces interaction with SKR-1 but not WDR-23 strongly attenuates SKN-1-dependent gene activation. These results are consistent with XREP-4 influencing the SKN-1 stress response by functioning as a bridge between WDR-23 and the ubiquitin ligase component SKR-1.
Collapse
|
172
|
Conservation of the Keap1-Nrf2 System: An Evolutionary Journey through Stressful Space and Time. Molecules 2017; 22:molecules22030436. [PMID: 28282941 PMCID: PMC6155405 DOI: 10.3390/molecules22030436] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Its regulatory mechanisms, e.g., stress-sensing mechanism, proteasome-based regulation of Nrf2 activity and selection of target genes, have been elucidated mainly in mammals. In addition, emerging model animals, such as zebrafish, fruit fly and Caenorhabditis elegans, have been shown to have similar anti-stress systems to mammals, suggesting that analogous defense systems are widely conserved throughout the animal kingdom. Experimental evidence in lower animals provides important information beyond mere laboratory-confined utility, such as regarding how these systems transformed during evolution, which may help characterize the mammalian system in greater detail. Recent advances in genome projects of both model and non-model animals have provided a great deal of useful information toward this end. We herein review the research on Keap1-Nrf2 and its analogous systems in both mammals and lower model animals. In addition, by comparing the amino acid sequences of Nrf2 and Keap1 proteins from various species, we can deduce the evolutionary history of the anti-stress system. This combinatorial approach using both experimental and genetic data will suggest perspectives of approach for researchers studying the stress response.
Collapse
|
173
|
O-GlcNAcylation of SKN-1 modulates the lifespan and oxidative stress resistance in Caenorhabditis elegans. Sci Rep 2017; 7:43601. [PMID: 28272406 PMCID: PMC5341102 DOI: 10.1038/srep43601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/25/2017] [Indexed: 01/07/2023] Open
Abstract
In C. elegans, the transcription factor skinhead-1 (SKN-1), the ortholog of human NF-E2-related factor 2 (Nrf-2), plays important roles in oxidative stress defense and aging processes. It has been documented that the activity of SKN-1 is regulated by its phosphorylation modification. However, whether other posttranslational modifications of SKN-1 affect its function remains unclear to date. Here we report, for the first time, that SKN-1 is O-GlcNAcylated at Ser470 and Thr493 by O-GlcNActransferase OGT-1. By generating the double mutations of Ser470/Thr493 in the wild type and skn-1(zu67) worms, respectively, we found that disruption of O-GlcNAc modification on SKN-1 repressed the accumulation of SKN-1 in the intestinal nuclei, and decreased the activities of SKN-1 in modulating lifespan and oxidative stress resistance. Moreover, under oxidative stress, SKN-1 was highly O-GlcNAcylated, resulting in the decrease of GSK-3-mediated phosphorylation at Ser483 adjacent to the O-GlcNAcylated residues (Ser470 and Thr493). These data suggest that O-GlcNAcylation of SKN-1 is crucial for regulating lifespan and oxidative stress resistance via the crosstalk with its phosphorylation in C. elegans. These findings have important implications for studying the functions of O-GlcNAcylation on Nrf-2 in human aging-related diseases.
Collapse
|
174
|
Gillet FX, Bournaud C, Antonino de Souza Júnior JD, Grossi-de-Sa MF. Plant-parasitic nematodes: towards understanding molecular players in stress responses. ANNALS OF BOTANY 2017; 119:775-789. [PMID: 28087659 PMCID: PMC5378187 DOI: 10.1093/aob/mcw260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant-parasitic nematode interactions occur within a vast molecular plant immunity network. Following initial contact with the host plant roots, plant-parasitic nematodes (PPNs) activate basal immune responses. Defence priming involves the release in the apoplast of toxic molecules derived from reactive species or secondary metabolism. In turn, PPNs must overcome the poisonous and stressful environment at the plant-nematode interface. The ability of PPNs to escape this first line of plant immunity is crucial and will determine its virulence. SCOPE Nematodes trigger crucial regulatory cytoprotective mechanisms, including antioxidant and detoxification pathways. Knowledge of the upstream regulatory components that contribute to both of these pathways in PPNs remains elusive. In this review, we discuss how PPNs probably orchestrate cytoprotection to resist plant immune responses, postulating that it may be derived from ancient molecular mechanisms. The review focuses on two transcription factors, DAF-16 and SKN-1 , which are conserved in the animal kingdom and are central regulators of cell homeostasis and immune function. Both regulate the unfolding protein response and the antioxidant and detoxification pathways. DAF-16 and SKN-1 target a broad spectrum of Caenorhabditis elegans genes coding for numerous protein families present in the secretome of PPNs. Moreover, some regulatory elements of DAF-16 and SKN-1 from C. elegans have already been identified as important genes for PPN infection. CONCLUSION DAF-16 and SKN-1 genes may play a pivotal role in PPNs during parasitism. In the context of their hub status and mode of regulation, we suggest alternative strategies for control of PPNs through RNAi approaches.
Collapse
Affiliation(s)
- François-Xavier Gillet
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | - Caroline Bournaud
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final Av. W/5 Norte, CEP 70·770-900, Brasília, DF, Brazil
- Catholic University of Brasilia, Brasília-DF, Brazil
| |
Collapse
|
175
|
Hisamoto N, Matsumoto K. Signal transduction cascades in axon regeneration: insights from C. elegans. Curr Opin Genet Dev 2017; 44:54-60. [PMID: 28213159 DOI: 10.1016/j.gde.2017.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
Axon regeneration after nerve injury is a conserved biological process in many animals, including humans. The nematode Caenorhabditis elegans (C. elegans) has recently emerged as a genetically tractable model for studying regenerative responses in neurons. Extensive studies over several years using this organism have revealed a number of intrinsic and extrinsic signal transduction cascades that regulate axon regeneration, and these are found to be conserved from worms to humans. Further studies have demonstrated that these cascades consist of several signaling networks that ultimately merge into the c-Jun N-terminal kinase (JNK) cascade. In this review, we describe some recent insights into the signaling cascades controlling axon regeneration in C. elegans and describe their conserved roles in other organisms including mammals.
Collapse
Affiliation(s)
- Naoki Hisamoto
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Kunihiro Matsumoto
- Department of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
176
|
Ewald CY, Hourihan JM, Bland MS, Obieglo C, Katic I, Moronetti Mazzeo LE, Alcedo J, Blackwell TK, Hynes NE. NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans. eLife 2017; 6. [PMID: 28085666 PMCID: PMC5235354 DOI: 10.7554/elife.19493] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/27/2016] [Indexed: 12/23/2022] Open
Abstract
Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity. DOI:http://dx.doi.org/10.7554/eLife.19493.001
Collapse
Affiliation(s)
- Collin Yvès Ewald
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.,Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland.,Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - John M Hourihan
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Monet S Bland
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Carolin Obieglo
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
| | - Lorenza E Moronetti Mazzeo
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Joy Alcedo
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland.,Department of Biological Sciences, Wayne State University, Detroit, United States
| | - T Keith Blackwell
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
177
|
Nakagawa H, Miyazaki T. Beneficial effects of antioxidative lactic acid bacteria. AIMS Microbiol 2017; 3:1-7. [PMID: 31294145 PMCID: PMC6604973 DOI: 10.3934/microbiol.2017.1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/28/2016] [Indexed: 01/15/2023] Open
Abstract
Oxidative stress is caused by exposure to reactive oxygen intermediates. The oxidative damage of cell components such as proteins, lipids, and nucleic acids one of the important factors associated with diabetes mellitus, cancers and cardiovascular diseases. This occurs as a result of imbalance between the generations of oxygen derived radicals and the organism's antioxidant potential. The amount of oxidative damage increases as an organism ages and is postulated to be a major causal factor of senescence. To date, many studies have focused on food sources, nutrients, and components that exert antioxidant activity in worms, flies, mice, and humans. Probiotics, live microorganisms that when administered in adequate amounts provide many beneficial effects on the human health, have been attracting growing interest for their health-promoting effects, and have often been administered in fermented milk products. In particular, lactic acid bacteria (LAB) are known to conferre physiologic benefits. Many studies have indicated the antioxidative activity of LAB. Here we review that the effects of lactic acid bacteria to respond to oxidative stress, is connected to oxidative-stress related disease and aging.
Collapse
Affiliation(s)
- Hisako Nakagawa
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, Japan
| | - Tadaaki Miyazaki
- Department of Probiotics Immunology, Institute for Genetic Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo, Japan
| |
Collapse
|
178
|
Abstract
Runx genes have been identified in all metazoans and considerable conservation of function observed across a wide range of phyla. Thus, insight gained from studying simple model organisms is invaluable in understanding RUNX biology in higher animals. Consequently, this chapter will focus on the Runx genes in the diploblasts, which includes sea anemones and sponges, as well as the lower triploblasts, including the sea urchin, nematode, planaria and insect. Due to the high degree of functional redundancy amongst vertebrate Runx genes, simpler model organisms with a solo Runx gene, like C. elegans, are invaluable systems in which to probe the molecular basis of RUNX function within a whole organism. Additionally, comparative analyses of Runx sequence and function allows for the development of novel evolutionary insights. Strikingly, recent data has emerged that reveals the presence of a Runx gene in a protist, demonstrating even more widespread occurrence of Runx genes than was previously thought. This review will summarize recent progress in using invertebrate organisms to investigate RUNX function during development and regeneration, highlighting emerging unifying themes.
Collapse
Affiliation(s)
- S Hughes
- Faculteit Techniek, Hogeschool van Arnhem en Nijmegen, Laan van Scheut 2, 6503 GL, Nijmegen, The Netherlands
| | - A Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
179
|
Pastuhov S, Shimizu T, Hisamoto N. Heavy Metal Stress Assay of Caenorhabditis elegans. Bio Protoc 2017; 7:e2312. [DOI: 10.21769/bioprotoc.2312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/03/2017] [Accepted: 05/02/2017] [Indexed: 11/02/2022] Open
|
180
|
Miranda-Vizuete A, Veal EA. Caenorhabditis elegans as a model for understanding ROS function in physiology and disease. Redox Biol 2016; 11:708-714. [PMID: 28193593 PMCID: PMC5304259 DOI: 10.1016/j.redox.2016.12.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
ROS (reactive oxygen species) are potentially damaging by-products of aerobic metabolism which, unchecked, can have detrimental effects on cell function. However, it is now widely accepted that, at physiological levels, certain ROS play important roles in cell signaling, acting as second messengers to regulate cell choices that contribute to the development, adaptation and survival of plants and animals. Despite important recent advances in the biochemical tools available to study redox-signaling, the molecular mechanisms underlying most of these responses remain poorly understood, particularly in multicellular organisms. As we will review here, C. elegans has emerged as a powerful animal model to elucidate these and other aspects of redox biology.
Collapse
Affiliation(s)
- Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
181
|
Papaevgeniou N, Sakellari M, Jha S, Tavernarakis N, Holmberg CI, Gonos ES, Chondrogianni N. 18α-Glycyrrhetinic Acid Proteasome Activator Decelerates Aging and Alzheimer's Disease Progression in Caenorhabditis elegans and Neuronal Cultures. Antioxid Redox Signal 2016; 25:855-869. [PMID: 26886723 PMCID: PMC5124744 DOI: 10.1089/ars.2015.6494] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Proteasomes are constituents of the cellular proteolytic networks that maintain protein homeostasis through regulated proteolysis of normal and abnormal (in any way) proteins. Genetically mediated proteasome activation in multicellular organisms has been shown to promote longevity and to exert protein antiaggregation activity. In this study, we investigate whether compound-mediated proteasome activation is feasible in a multicellular organism and we dissect the effects of such approach in aging and Alzheimer's disease (AD) progression. RESULTS Feeding of wild-type Caenorhabditis elegans with 18α-glycyrrhetinic acid (18α-GA; a previously shown proteasome activator in cell culture) results in enhanced levels of proteasome activities that lead to a skinhead-1- and proteasome activation-dependent life span extension. The elevated proteasome function confers lower paralysis rates in various AD nematode models accompanied by decreased Aβ deposits, thus ultimately decelerating the progression of AD phenotype. More importantly, similar positive results are also delivered when human and murine cells of nervous origin are subjected to 18α-GA treatment. INNOVATION This is the first report of the use of 18α-GA, a diet-derived compound as prolongevity and antiaggregation factor in the context of a multicellular organism. CONCLUSION Our results suggest that proteasome activation with downstream positive outcomes on aging and AD, an aggregation-related disease, is feasible in a nongenetic manipulation manner in a multicellular organism. Moreover, they unveil the need for identification of antiaging and antiamyloidogenic compounds among the nutrients found in our normal diet. Antioxid. Redox Signal. 25, 855-869.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,2 Faculty of Biology and Pharmacy, Institute of Nutrition, Friedrich Schiller University of Jena , Jena, Germany
| | - Marianthi Sakellari
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,3 Medical School, Örebro University , Örebro, Sweden
| | - Sweta Jha
- 4 Translational Cancer Biology Program, Research Programs Unit, University of Helsinki , Helsinki, Finland
| | - Nektarios Tavernarakis
- 5 Institute of Molecular Biology and Biotechnology , Foundation for Research and Technology-Hellas, Heraklion, Greece .,6 Faculty of Medicine, Department of Basic Sciences, University of Crete , Heraklion, Greece
| | - Carina I Holmberg
- 4 Translational Cancer Biology Program, Research Programs Unit, University of Helsinki , Helsinki, Finland
| | - Efstathios S Gonos
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece .,3 Medical School, Örebro University , Örebro, Sweden
| | - Niki Chondrogianni
- 1 Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens, Greece
| |
Collapse
|
182
|
The genetics of isoflurane-induced developmental neurotoxicity. Neurotoxicol Teratol 2016; 60:40-49. [PMID: 27989695 DOI: 10.1016/j.ntt.2016.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Neurotoxicity induced by early developmental exposure to volatile anesthetics is a characteristic of organisms across a wide range of species, extending from the nematode C. elegans to mammals. Prevention of anesthetic-induced neurotoxicity (AIN) will rely upon an understanding of its underlying mechanisms. However, no forward genetic screens have been undertaken to identify the critical pathways affected in AIN. By characterizing such pathways, we may identify mechanisms to eliminate isoflurane induced AIN in mammals. METHODS Chemotaxis in adult C. elegans after larval exposure to isoflurane was used to measure AIN. We initially compared changes in chemotaxis indices between classical mutants known to affect nervous system development adding mutants in response to data. Activation of specific genes was visualized using fluorescent markers. Animals were then treated with rapamycin or preconditioned with isoflurane to test effects on AIN. RESULTS Forty-four mutations, as well as pharmacologic manipulations, identified two pathways, highly conserved from invertebrates to humans, that regulate AIN in C. elegans. Activation of one stress-protective pathway (DAF-2 dependent) eliminates AIN, while activation of a second stress-responsive pathway (endoplasmic reticulum (ER) associated stress) causes AIN. Pharmacologic inhibition of the mechanistic Target of Rapamycin (mTOR) blocks ER-stress and AIN. Preconditioning with isoflurane prior to larval exposure also inhibited AIN. DISCUSSION Our data are best explained by a model in which isoflurane acutely inhibits mitochondrial function causing activation of responses that ultimately lead to ER-stress. The neurotoxic effect of isoflurane can be completely prevented by manipulations at multiple points in the pathways that control this response. Endogenous signaling pathways can be recruited to protect organisms from the neurotoxic effects of isoflurane.
Collapse
|
183
|
Wu CW, Deonarine A, Przybysz A, Strange K, Choe KP. The Skp1 Homologs SKR-1/2 Are Required for the Caenorhabditis elegans SKN-1 Antioxidant/Detoxification Response Independently of p38 MAPK. PLoS Genet 2016; 12:e1006361. [PMID: 27776126 PMCID: PMC5077136 DOI: 10.1371/journal.pgen.1006361] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023] Open
Abstract
SKN-1/Nrf are the primary antioxidant/detoxification response transcription factors in animals and they promote health and longevity in many contexts. SKN-1/Nrf are activated by a remarkably broad-range of natural and synthetic compounds and physiological conditions. Defining the signaling mechanisms that regulate SKN-1/Nrf activation provides insights into how cells coordinate responses to stress. Nrf2 in mammals is regulated in part by the redox sensor repressor protein named Keap1. In C. elegans, the p38 MAPK cascade in the intestine activates SKN-1 during oxidative stress by promoting its nuclear accumulation. Interestingly, we find variation in the kinetics of p38 MAPK activation and tissues with SKN-1 nuclear accumulation among different pro-oxidants that all trigger strong induction of SKN-1 target genes. Using genome-wide RNAi screening, we identify new genes that are required for activation of the core SKN-1 target gene gst-4 during exposure to the natural pro-oxidant juglone. Among 10 putative activators identified in this screen was skr-1/2, highly conserved homologs of yeast and mammalian Skp1, which function to assemble protein complexes. Silencing of skr-1/2 inhibits induction of SKN-1 dependent detoxification genes and reduces resistance to pro-oxidants without decreasing p38 MAPK activation. Global transcriptomics revealed strong correlation between genes that are regulated by SKR-1/2 and SKN-1 indicating a high degree of specificity. We also show that SKR-1/2 functions upstream of the WD40 repeat protein WDR-23, which binds to and inhibits SKN-1. Together, these results identify a novel p38 MAPK independent signaling mechanism that activates SKN-1 via SKR-1/2 and involves WDR-23.
Collapse
Affiliation(s)
- Cheng-Wei Wu
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Andrew Deonarine
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620
| | - Aaron Przybysz
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109
| | - Kevin Strange
- The MDI Biological Laboratory, Salisbury Cove, ME 04672
| | - Keith P. Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- * E-mail:
| |
Collapse
|
184
|
Havermann S, Humpf HU, Wätjen W. Baicalein modulates stress-resistance and life span in C. elegans via SKN-1 but not DAF-16. Fitoterapia 2016; 113:123-7. [PMID: 27370100 DOI: 10.1016/j.fitote.2016.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
The flavonoid baicalein has been demonstrated to be an activator of the transcription factor Nrf2 in mammalian cell lines. We show that it further modulates the Nrf2 homolog SKN-1 in Caenorhabditis elegans and by this pathway mediates beneficial effects in the nematode: baicalein enhances the resistance of C. elegans against lethal thermal and sodium arsenite stress and dose-dependently prolongs the life span of the nematode. Using RNA interference against SKN-1 we were able to show that the induction of longevity and the enhanced stress-resistance were dependent on this transcription factor. DAF-16 (homolog to mammalian FOXO) is another pivotal aging-related transcription factor in the nematode. We demonstrate that DAF-16 does not participate in the beneficial effects of baicalein: since baicalein causes no increase in the nuclear translocation of DAF-16 (DAF-16::GFP expressing strain, incubation time: 1h) and it still induces longevity even in a DAF-16 loss-of-function strain, we conclude, that baicalein increases stress-resistance and life span in C. elegans via SKN-1 but not DAF-16.
Collapse
Affiliation(s)
- Susannah Havermann
- Martin-Luther-Universität Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Weinbergweg 22, 06120 Halle/Saale, Germany; Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany; Heinrich-Heine-Universität Düsseldorf, Institute of Toxicology, P.O. Box 101007, 40001 Düsseldorf, Germany
| | - Hans-Ulrich Humpf
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - Wim Wätjen
- Martin-Luther-Universität Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Weinbergweg 22, 06120 Halle/Saale, Germany; Heinrich-Heine-Universität Düsseldorf, Institute of Toxicology, P.O. Box 101007, 40001 Düsseldorf, Germany.
| |
Collapse
|
185
|
Peptides from sesame cake extend healthspan of Caenorhabditis elegans via upregulation of skn-1 and inhibition of intracellular ROS levels. Exp Gerontol 2016; 82:139-49. [DOI: 10.1016/j.exger.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022]
|
186
|
Cao X, Aballay A. Neural Inhibition of Dopaminergic Signaling Enhances Immunity in a Cell-Non-autonomous Manner. Curr Biol 2016; 26:2329-34. [PMID: 27524480 DOI: 10.1016/j.cub.2016.06.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/10/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
The innate immune system is the front line of host defense against microbial infections, but its rapid and uncontrolled activation elicits microbicidal mechanisms that have deleterious effects [1, 2]. Increasing evidence indicates that the metazoan nervous system, which responds to stimuli originating from both the internal and the external environment, functions as a modulatory apparatus that controls not only microbial killing pathways but also cellular homeostatic mechanisms [3-5]. Here we report that dopamine signaling controls innate immune responses through a D1-like dopamine receptor, DOP-4, in Caenorhabditis elegans. Chlorpromazine inhibition of DOP-4 in the nervous system activates a microbicidal PMK-1/p38 mitogen-activated protein kinase signaling pathway that enhances host resistance against bacterial infections. The immune inhibitory function of dopamine originates in CEP neurons and requires active DOP-4 in downstream ASG neurons. Our findings indicate that dopamine signaling from the nervous system controls immunity in a cell-non-autonomous manner and identifies the dopaminergic system as a potential therapeutic target for not only infectious diseases but also a range of conditions that arise as a consequence of malfunctioning immune responses.
Collapse
Affiliation(s)
- Xiou Cao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alejandro Aballay
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
187
|
Munkácsy E, Khan MH, Lane RK, Borror MB, Park JH, Bokov AF, Fisher AL, Link CD, Rea SL. DLK-1, SEK-3 and PMK-3 Are Required for the Life Extension Induced by Mitochondrial Bioenergetic Disruption in C. elegans. PLoS Genet 2016; 12:e1006133. [PMID: 27420916 PMCID: PMC4946786 DOI: 10.1371/journal.pgen.1006133] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction underlies numerous age-related pathologies. In an effort to uncover how the detrimental effects of mitochondrial dysfunction might be alleviated, we examined how the nematode C. elegans not only adapts to disruption of the mitochondrial electron transport chain, but in many instances responds with extended lifespan. Studies have shown various retrograde responses are activated in these animals, including the well-studied ATFS-1-dependent mitochondrial unfolded protein response (UPRmt). Such processes fall under the greater rubric of cellular surveillance mechanisms. Here we identify a novel p38 signaling cascade that is required to extend life when the mitochondrial electron transport chain is disrupted in worms, and which is blocked by disruption of the Mitochondrial-associated Degradation (MAD) pathway. This novel cascade is defined by DLK-1 (MAP3K), SEK-3 (MAP2K), PMK-3 (MAPK) and the reporter gene Ptbb-6::GFP. Inhibition of known mitochondrial retrograde responses does not alter induction of Ptbb-6::GFP, instead induction of this reporter often occurs in counterpoint to activation of SKN-1, which we show is under the control of ATFS-1. In those mitochondrial bioenergetic mutants which activate Ptbb-6::GFP, we find that dlk-1, sek-3 and pmk-3 are all required for their life extension.
Collapse
Affiliation(s)
- Erin Munkácsy
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Maruf H. Khan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rebecca K. Lane
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Megan B. Borror
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jae H. Park
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alex F. Bokov
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Alfred L. Fisher
- Department of Medicine (Division of Geriatrics, Gerontology, and Palliative Medicine), University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center, South Texas VA Health Care System, San Antonio, Texas, United States of America
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christopher D. Link
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Shane L. Rea
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
188
|
Mora-Lorca JA, Sáenz-Narciso B, Gaffney CJ, Naranjo-Galindo FJ, Pedrajas JR, Guerrero-Gómez D, Dobrzynska A, Askjaer P, Szewczyk NJ, Cabello J, Miranda-Vizuete A. Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development. Free Radic Biol Med 2016; 96:446-61. [PMID: 27117030 PMCID: PMC8386055 DOI: 10.1016/j.freeradbiomed.2016.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 04/18/2016] [Indexed: 12/22/2022]
Abstract
Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress, have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode.
Collapse
Affiliation(s)
- José Antonio Mora-Lorca
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham and Medical School Royal Derby Hospital, DE22 3DT Derby, United Kingdom
| | - Francisco José Naranjo-Galindo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - José Rafael Pedrajas
- Grupo de Bioquímica y Señalización Celular, Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| | - David Guerrero-Gómez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Agnieszka Dobrzynska
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham and Medical School Royal Derby Hospital, DE22 3DT Derby, United Kingdom
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain.
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
| |
Collapse
|
189
|
Chi C, Ronai D, Than MT, Walker CJ, Sewell AK, Han M. Nucleotide levels regulate germline proliferation through modulating GLP-1/Notch signaling in C. elegans. Genes Dev 2016; 30:307-20. [PMID: 26833730 PMCID: PMC4743060 DOI: 10.1101/gad.275107.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, Chi et al. researched the link between known nutrient-sensing systems and reproductive programs. Using a model system in C. elegans, they show that a Notch signaling pathway senses the level of uridine/thymidine and controls germline proliferation, delineating a previously unknown nucleotide-sensing mechanism for controlling reproductivity. Animals alter their reproductive programs to accommodate changes in nutrient availability, yet the connections between known nutrient-sensing systems and reproductive programs are underexplored, and whether there is a mechanism that senses nucleotide levels to coordinate germline proliferation is unknown. We established a model system in which nucleotide metabolism is perturbed in both the nematode Caenorhabditis elegans (cytidine deaminases) and its food (Escherichia coli); when fed food with a low uridine/thymidine (U/T) level, germline proliferation is arrested. We provide evidence that this impact of U/T level on the germline is critically mediated by GLP-1/Notch and MPK-1/MAPK, known to regulate germline mitotic proliferation. This germline defect is suppressed by hyperactivation of glp-1 or disruption of genes downstream from glp-1 to promote meiosis but not by activation of the IIS or TORC1 pathways. Moreover, GLP-1 expression is post-transcriptionally modulated by U/T levels. Our results reveal a previously unknown nucleotide-sensing mechanism for controlling reproductivity.
Collapse
Affiliation(s)
- Congwu Chi
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Diana Ronai
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Minh T Than
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Cierra J Walker
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Aileen K Sewell
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Min Han
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
190
|
Joshi KK, Matlack TL, Rongo C. Dopamine signaling promotes the xenobiotic stress response and protein homeostasis. EMBO J 2016; 35:1885-901. [PMID: 27261197 DOI: 10.15252/embj.201592524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/03/2016] [Indexed: 01/11/2023] Open
Abstract
Multicellular organisms encounter environmental conditions that adversely affect protein homeostasis (proteostasis), including extreme temperatures, toxins, and pathogens. It is unclear how they use sensory signaling to detect adverse conditions and then activate stress response pathways so as to offset potential damage. Here, we show that dopaminergic mechanosensory neurons in C. elegans release the neurohormone dopamine to promote proteostasis in epithelia. Signaling through the DA receptor DOP-1 activates the expression of xenobiotic stress response genes involved in pathogenic resistance and toxin removal, and these genes are required for the removal of unstable proteins in epithelia. Exposure to a bacterial pathogen (Pseudomonas aeruginosa) results in elevated removal of unstable proteins in epithelia, and this enhancement requires DA signaling. In the absence of DA signaling, nematodes show increased sensitivity to pathogenic bacteria and heat-shock stress. Our results suggest that dopaminergic sensory neurons, in addition to slowing down locomotion upon sensing a potential bacterial feeding source, also signal to frontline epithelia to activate the xenobiotic stress response so as to maintain proteostasis and prepare for possible infection.
Collapse
Affiliation(s)
- Kishore K Joshi
- Department of Genetics, The Waksman Institute Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Tarmie L Matlack
- Department of Genetics, The Waksman Institute Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher Rongo
- Department of Genetics, The Waksman Institute Rutgers The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
191
|
Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2016; 113:E2832-41. [PMID: 27140632 DOI: 10.1073/pnas.1524727113] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H2S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H2S and ROS. These kri-1-dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H2S and, remarkably, kri-1-dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1-dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.
Collapse
|
192
|
Nakagawa H, Shiozaki T, Kobatake E, Hosoya T, Moriya T, Sakai F, Taru H, Miyazaki T. Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 in Caenorhabditis elegans. Aging Cell 2016; 15:227-36. [PMID: 26710940 PMCID: PMC4783334 DOI: 10.1111/acel.12431] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
Lactic-acid bacteria are widely recognized beneficial host associated groups of the microbiota of humans and animals. Some lactic-acid bacteria have the ability to extend the lifespan of the model animals. The mechanisms behind the probiotic effects of bacteria are not entirely understood. Recently, we reported the benefit effects of Lactobacillus gasseriSBT2055 (LG2055) on animal and human health, such as preventing influenza A virus, and augmentation of IgA production. Therefore, it was preconceived that LG2055 has the beneficial effects on longevity and/or aging. We examined the effects of LG2055 on lifespan and aging of Caenorhabditis elegans and analyzed the mechanism of prolongevity. Our results demonstrated that LG2055 has the beneficial effects on longevity and anti-aging of C. elegans. Feeding with LG2055 upregulated the expression of the skn-1 gene and the target genes of SKN-1, encoding the antioxidant proteins enhancing antioxidant defense responses. We found that feeding with LG2055 directly activated SKN-1 activity via p38 MAPK pathway signaling. The oxidative stress response is elicited by mitochondrial dysfunction in aging, and we examined the influence of LG2055 feeding on the membrane potential of mitochondria. Here, the amounts of mitochondria were significantly increased by LG2055 feeding in comparison with the control. Our result suggests that feeding with LG2055 is effective to the extend lifespan in C. elegans by a strengthening of the resistance to oxidative stress and by stimulating the innate immune response signaling including p38MAPK signaling pathway and others.
Collapse
Affiliation(s)
- Hisako Nakagawa
- Department of Probiotics Immunology Institute for Genetic Medicine Hokkaido University Sapporo Japan
| | - Takuya Shiozaki
- Department of Probiotics Immunology Institute for Genetic Medicine Hokkaido University Sapporo Japan
| | - Eiji Kobatake
- Milk science Research Institute Megmilk Snow Brand Co., Ltd Kawagoe Japan
| | - Tomohiro Hosoya
- Milk science Research Institute Megmilk Snow Brand Co., Ltd Kawagoe Japan
| | - Tomohiro Moriya
- Milk science Research Institute Megmilk Snow Brand Co., Ltd Kawagoe Japan
| | - Fumihiko Sakai
- Milk science Research Institute Megmilk Snow Brand Co., Ltd Kawagoe Japan
| | - Hidenori Taru
- Laboratory of Neuronal Cell Biology Graduate School of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| | - Tadaaki Miyazaki
- Department of Probiotics Immunology Institute for Genetic Medicine Hokkaido University Sapporo Japan
| |
Collapse
|
193
|
Quirós PM, Mottis A, Auwerx J. Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 2016; 17:213-26. [PMID: 26956194 DOI: 10.1038/nrm.2016.23] [Citation(s) in RCA: 510] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria participate in crucial cellular processes such as energy harvesting and intermediate metabolism. Although mitochondria possess their own genome--a vestige of their bacterial origins and endosymbiotic evolution--most mitochondrial proteins are encoded in the nucleus. The expression of the mitochondrial proteome hence requires tight coordination between the two genomes to adapt mitochondrial function to the ever-changing cellular milieu. In this Review, we focus on the pathways that coordinate the communication between mitochondria and the nucleus during homeostasis and mitochondrial stress. These pathways include nucleus-to-mitochondria (anterograde) and mitochondria-to-nucleus (retrograde) communication, mitonuclear feedback signalling and proteostasis regulation, the integrated stress response and non-cell-autonomous communication. We discuss how mitonuclear communication safeguards cellular and organismal fitness and regulates lifespan.
Collapse
Affiliation(s)
- Pedro M Quirós
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
194
|
TRX-1 Regulates SKN-1 Nuclear Localization Cell Non-autonomously in Caenorhabditis elegans. Genetics 2016; 203:387-402. [PMID: 26920757 DOI: 10.1534/genetics.115.185272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
The Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators. We report that loss of trx-1 promotes nuclear localization of intestinal SKN-1 in a redox-independent, cell non-autonomous fashion from the ASJ neurons. Furthermore, this regulation is not general to the thioredoxin family, as two other C. elegans thioredoxins, TRX-2 and TRX-3, do not play a role in this process. Moreover, TRX-1-dependent regulation requires signaling from the p38 MAPK-signaling pathway. However, while TRX-1 regulates SKN-1 nuclear localization, classical SKN-1 transcriptional activity associated with stress response remains largely unaffected. Interestingly, RNA-Seq analysis revealed that loss of trx-1 elicits a general, organism-wide down-regulation of several classes of genes; those encoding for collagens and lipid transport being most prevalent. Together, these results uncover a novel role for a thioredoxin in regulating intestinal SKN-1 nuclear localization in a cell non-autonomous manner, thereby contributing to the understanding of the processes involved in maintaining redox homeostasis throughout an organism.
Collapse
|
195
|
Andrusiak MG, Jin Y. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans. J Biol Chem 2016; 291:7796-804. [PMID: 26907690 DOI: 10.1074/jbc.r115.711101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans.
Collapse
Affiliation(s)
| | - Yishi Jin
- From the Howard Hughes Medical Institute and the Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
196
|
Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1/Nrf. Sci Rep 2016; 6:21611. [PMID: 26899496 PMCID: PMC4761942 DOI: 10.1038/srep21611] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Identification of biologically active natural compounds that promote health and longevity, and understanding how they act, will provide insights into aging and metabolism, and strategies for developing agents that prevent chronic disease. The garlic-derived thioallyl compounds S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) have been shown to have multiple biological activities. Here we show that SAC and SAMC increase lifespan and stress resistance in Caenorhabditis elegans and reduce accumulation of reactive oxygen species (ROS). These compounds do not appear to activate DAF-16 (FOXO orthologue) or mimic dietary restriction (DR) effects, but selectively induce SKN-1 (Nrf1/2/3 orthologue) targets involved in oxidative stress defense. Interestingly, their treatments do not facilitate SKN-1 nuclear accumulation, but slightly increased intracellular SKN-1 levels. Our data also indicate that thioallyl structure and the number of sulfur atoms are important for SKN-1 target induction. Our results indicate that SAC and SAMC may serve as potential agents that slow aging.
Collapse
|
197
|
Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, Ghazi A, Fisher AL. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway. PLoS Genet 2016; 12:e1005823. [PMID: 26828939 PMCID: PMC4734690 DOI: 10.1371/journal.pgen.1005823] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/31/2015] [Indexed: 12/30/2022] Open
Abstract
The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique platform to explore these possibilities.
Collapse
Affiliation(s)
- Scott A. Keith
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah K. Maddux
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Yayu Zhong
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Meghna N. Chinchankar
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Annabel A. Ferguson
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arjumand Ghazi
- Rangos Research Center, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alfred L. Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- San Antonio GRECC, South Texas VA Healthcare System, San Antonio, Texas, United States of America
| |
Collapse
|
198
|
Kim S, Lee HJ, Hahm JH, Jeong SK, Park DH, Hancock WS, Paik YK. Quantitative Profiling Identifies Potential Regulatory Proteins Involved in Development from Dauer Stage to L4 Stage in Caenorhabditis elegans. J Proteome Res 2016; 15:531-9. [DOI: 10.1021/acs.jproteome.5b00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunhee Kim
- Department
of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyoung-Joo Lee
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
| | - Jeong-Hoon Hahm
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
| | - Seul-Ki Jeong
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
| | - Don-Ha Park
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
| | - William S. Hancock
- Department
of Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States,
| | - Young-Ki Paik
- Department
of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- Yonsei
Proteome Research Center, Yonsei University, Seoul, Korea
- Department
of Integrated Omics for Biomedical Science, Graduate School, Yonsei University, Seoul, Korea
| |
Collapse
|
199
|
Robinson JD, Powell JR. Long-term recovery from acute cold shock in Caenorhabditis elegans. BMC Cell Biol 2016; 17:2. [PMID: 26754108 PMCID: PMC4709947 DOI: 10.1186/s12860-015-0079-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
Background Animals are exposed to a wide range of environmental stresses that can cause potentially fatal cellular damage. The ability to survive the period of stress as well as to repair any damage incurred is essential for fitness. Exposure to 2 °C for 24 h or longer is rapidly fatal to the nematode Caenorhabditis elegans, but the process of recovery from a shorter, initially non-lethal, cold shock is poorly understood. Results We report that cold shock of less than 12-hour duration does not initially kill C. elegans, but these worms experience a progression of devastating phenotypes over the next 96 h that correlate with their eventual fate: successful recovery from the cold shock and survival, or failure to recover and death. Cold-shocked worms experience a marked loss of pigmentation, decrease in the size of their intestine and gonads, and disruption to the vulva. Those worms who will successfully recover from the cold shock regain their pigmentation and much of the integrity of their intestine and gonads. Those who will die do so with a distinct phenotype from worms dying during or immediately following cold shock, suggesting independent mechanisms. Worms lacking the G-protein coupled receptor FSHR-1 are resistant to acute death from longer cold shocks, and are more successful in their recovery from shorter sub-lethal cold shocks. Conclusions We have defined two distinct phases of death associated with cold shock and described a progression of phenotypes that accompanies the course of recovery from that cold shock. The G-protein coupled receptor FSHR-1 antagonizes these novel processes of damage and recovery. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0079-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph D Robinson
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA. .,Present address: Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94702, USA.
| | - Jennifer R Powell
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.
| |
Collapse
|
200
|
Park EC, Rongo C. The p38 MAP kinase pathway modulates the hypoxia response and glutamate receptor trafficking in aging neurons. eLife 2016; 5. [PMID: 26731517 PMCID: PMC4775213 DOI: 10.7554/elife.12010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/04/2016] [Indexed: 01/07/2023] Open
Abstract
Neurons are sensitive to low oxygen (hypoxia) and employ a conserved pathway to combat its effects. Here, we show that p38 MAP Kinase (MAPK) modulates this hypoxia response pathway in C. elegans. Mutants lacking p38 MAPK components pmk-1 or sek-1 resemble mutants lacking the hypoxia response component and prolyl hydroxylase egl-9, with impaired subcellular localization of Mint orthologue LIN-10, internalization of glutamate receptor GLR-1, and depression of GLR-1-mediated behaviors. Loss of p38 MAPK impairs EGL-9 protein localization in neurons and activates the hypoxia-inducible transcription factor HIF-1, suggesting that p38 MAPK inhibits the hypoxia response pathway through EGL-9. As animals age, p38 MAPK levels decrease, resulting in GLR-1 internalization; this age-dependent downregulation can be prevented through either p38 MAPK overexpression or removal of CDK-5, an antagonizing kinase. Our findings demonstrate that p38 MAPK inhibits the hypoxia response pathway and determines how aging neurons respond to hypoxia through a novel mechanism. DOI:http://dx.doi.org/10.7554/eLife.12010.001 The brain accounts for 2% of our body weight, but consumes about 20% of our oxygen intake. This oxygen gluttony is due to the tremendous appetite of brain cells for energy, which neurons satisfy through oxygen-dependent (aerobic) metabolism. As a result, the loss of oxygen to the brain during a stroke, heart attack, or due to another medical condition can be very damaging to cells in the brain. Human and other animal cells use a communication system called the hypoxia response pathway to sense oxygen and trigger a protective response when oxygen is low. This pathway includes an enzyme called prolyl hydroxylase, which senses oxygen and modifies another protein in the pathway that regulates the production of enzymes involved in metabolism. This alters the balance of enzymes involved in aerobic and oxygen-independent (anaerobic) metabolism in the cell. However, it is not clear how the activity of the prolyl hydroxylase is regulated. Much of our knowledge about the hypoxia response pathway has been gained from studies using a small worm called C. elegans. This worm uses the pathway to cope with hypoxia in the harsh environment of the soil. Mutant worms that lack the prolyl hydroxylase have several abnormalities including higher levels of anaerobic metabolism even in the presence of oxygen, and defects in the connections between neurons. Park and Rongo used C. elegans to study the pathway in more detail. The experiments show that another enzyme called p38 MAPK activates the prolyl hydroxylase. Mutant worms that lack this enzyme have similar abnormalities in the hypoxia response pathway as animals that lack the prolyl hydroxylase. In normal worms, decreasing levels of p38 MAPK as the animals grow older contribute to the decline in the nervous system. The p38 MAPK enzyme appears to work by regulating the activity of the prolyl hydroxylase and its location inside neurons. These findings provide a new target for the development of drugs that may help to protect us from tissue damage caused by hypoxia. Future challenges are to find out what activates p38 MAPK, and how it influences the location of prolyl hydroxylase in neurons. DOI:http://dx.doi.org/10.7554/eLife.12010.002
Collapse
Affiliation(s)
- Eun Chan Park
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| | - Christopher Rongo
- The Waksman Institute, Rutgers The State University of New Jersey, New Jersey, United States.,Department of Genetics, Rutgers The State University of New Jersey, New Jersey, United States
| |
Collapse
|