151
|
Lineage switching in acute leukemias: a consequence of stem cell plasticity? BONE MARROW RESEARCH 2012; 2012:406796. [PMID: 22852088 PMCID: PMC3407598 DOI: 10.1155/2012/406796] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/08/2012] [Indexed: 01/26/2023]
Abstract
Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development.
Collapse
|
152
|
Hertwig F, Meyer K, Braun S, Ek S, Spang R, Pfenninger CV, Artner I, Prost G, Chen X, Biegel JA, Judkins AR, Englund E, Nuber UA. Definition of genetic events directing the development of distinct types of brain tumors from postnatal neural stem/progenitor cells. Cancer Res 2012; 72:3381-92. [PMID: 22719073 DOI: 10.1158/0008-5472.can-11-3525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although brain tumors are classified and treated based upon their histology, the molecular factors involved in the development of various tumor types remain unknown. In this study, we show that the type and order of genetic events directs the development of gliomas, central nervous system primitive neuroectodermal tumors, and atypical teratoid/rhabdoid-like tumors from postnatal mouse neural stem/progenitor cells (NSC/NPC). We found that the overexpression of specific genes led to the development of these three different brain tumors from NSC/NPCs, and manipulation of the order of genetic events was able to convert one established tumor type into another. In addition, loss of the nuclear chromatin-remodeling factor SMARCB1 in rhabdoid tumors led to increased phosphorylation of eIF2α, a central cytoplasmic unfolded protein response (UPR) component, suggesting a role for the UPR in these tumors. Consistent with this, application of the proteasome inhibitor bortezomib led to an increase in apoptosis of human cells with reduced SMARCB1 levels. Taken together, our findings indicate that the order of genetic events determines the phenotypes of brain tumors derived from a common precursor cell pool, and suggest that the UPR may represent a therapeutic target in atypical teratoid/rhabdoid tumors.
Collapse
Affiliation(s)
- Falk Hertwig
- Department of Immunotechnology, Lund University Hospital, and Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Nin DS, Kok WK, Li F, Takahashi S, Chng WJ, Khan M. Role of misfolded N-CoR mediated transcriptional deregulation of Flt3 in acute monocytic leukemia (AML)-M5 subtype. PLoS One 2012; 7:e34501. [PMID: 22514634 PMCID: PMC3326026 DOI: 10.1371/journal.pone.0034501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/05/2012] [Indexed: 12/03/2022] Open
Abstract
The nuclear receptor co-repressor (N-CoR) is a key component of the generic multi-protein complex involved in transcriptional control. Flt3, a key regulator of hematopoietic cell growth, is frequently deregulated in AML (acute myeloid leukemia). Here, we report that loss of N-CoR-mediated transcriptional control of Flt3 due to misfolding, contributes to malignant growth in AML of the M5 subtype (AML-M5). An analysis of hematopoietic genes in AML cells led to the identification of Flt3 as a transcriptional target of N-CoR. Flt3 level was inversely related to N-CoR status in various leukemia cells. N-CoR was associated with the Flt3 promoter in-vivo, and a reporter driven by the Flt3 promoter was effectively repressed by N-CoR. Blocking N-CoR loss with Genistein; an inhibitor of N-CoR misfolding, significantly down-regulated Flt3 levels regardless of the Flt3 receptor mutational status and promoted the differentiation of AML-M5 cells. While stimulation of the Flt3 receptor with the Flt3 ligand triggered N-CoR loss, Flt3 antibody mediated blockade of Flt3 ligand-receptor binding led to N-CoR stabilization. Genetic ablation of N-CoR potentiated Flt3 ligand induced proliferation of BA/F3 cells. These findings suggest that N-CoR-induced repression of Flt3 might be crucial for limiting the contribution of the Flt3 signaling pathway on the growth potential of leukemic cells and its deregulation due to N-CoR loss in AML-M5, could contribute to malignant growth by conferring a proliferative advantage to the leukemic blasts. Therapeutic restoration of N-CoR function could thus be a useful approach in restricting the contribution of the Flt3 signaling pathway in AML-M5 pathogenesis.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Departments of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wai Kay Kok
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Feng Li
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shinichiro Takahashi
- Division of Hematology, Kitasato University School of Allied Health Science, Kanagawa, Japan
| | - Wee Joo Chng
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Departments of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Hematology-Oncology, National Cancer Institute of Singapore, National University Health System, Singapore, Singapore
| | - Matiullah Khan
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Departments of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
154
|
Ooi J, Liu P. Delineating nuclear reprogramming. Protein Cell 2012; 3:329-45. [PMID: 22467264 DOI: 10.1007/s13238-012-2920-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/04/2012] [Indexed: 12/13/2022] Open
Abstract
Nuclear reprogramming is described as a molecular switch, triggered by the conversion of one cell type to another. Several key experiments in the past century have provided insight into the field of nuclear reprogramming. Previously deemed impossible, this research area is now brimming with new findings and developments. In this review, we aim to give a historical perspective on how the notion of nuclear reprogramming was established, describing main experiments that were performed, including (1) somatic cell nuclear transfer, (2) exposure to cell extracts and cell fusion, and (3) transcription factor induced lineage switch. Ultimately, we focus on (4) transcription factor induced pluripotency, as initiated by a landmark discovery in 2006, where the process of converting somatic cells to a pluripotent state was narrowed down to four transcription factors. The conception that somatic cells possess the capacity to revert to an immature status brings about huge clinical implications including personalized therapy, drug screening and disease modeling. Although this technology has potential to revolutionize the medical field, it is still impeded by technical and biological obstacles. This review describes the effervescent changes in this field, addresses bottlenecks hindering its advancement and in conclusion, applies the latest findings to overcome these issues.
Collapse
Affiliation(s)
- Jolene Ooi
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | | |
Collapse
|
155
|
Abstract
Early studies that used parasite-infected interleukin-4 (IL-4) reporter animals led us to identify basophils as the primary source of IL-4 and hence propose the hypothesis that basophils trigger the development of antigen-specific T helper type 2 (Th2) immune responses in vivo. These findings appeared to resolve a long-standing puzzle underlying Th2 immunity, that is, 'what is the source of the initial IL-4 necessary for CD4 T-cell differentiation into Th2 effector cells?'. However, results from extensive investigations of the contribution of basophils to Th2 immunity unveiled some controversial data that cast doubt on the initial hypothesis. In this review, the consensus and the controversy regarding the roles of basophils in infection and immunity, as well as outstanding questions for the future, are discussed.
Collapse
Affiliation(s)
- Booki Min
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | | |
Collapse
|
156
|
IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood 2012; 119:2003-12. [PMID: 22238324 DOI: 10.1182/blood-2011-06-364976] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
While most blood lineages are assumed to mature through a single cellular and developmental route downstream of HSCs, dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors differentiate into common DC progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that IFN regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8(-/-) BM demonstrated cell-intrinsic defects in the formation of CDPs and all splenic DC subsets. Irf8(-/-) common myeloid progenitors and, unexpectedly, Irf8(-/-) ALPs produced more neutrophils in vivo than their wild-type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context.
Collapse
|
157
|
Fiedler K, Brunner C. The role of transcription factors in the guidance of granulopoiesis. AMERICAN JOURNAL OF BLOOD RESEARCH 2012; 2:57-65. [PMID: 22432088 PMCID: PMC3301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
In recent years, the prospective isolation of hematopoietic stem and progenitor cells has identified the hierarchical structure of hematopoietic development and lineage-commitment. Moreover, these isolated cell populations allowed the elucitation of the molecular mechansims associated with lineage choice and revealed the indispensable functions of transcription factors as lineage determinants. This review summarizes current concepts regarding adult murine granulopoiesis and illustrates the importance of the transcription factors C/EBPα, PU.1 and GATA-2 for the development of neutrophil, eosinophil and basophil granulocytes.
Collapse
Affiliation(s)
- Katja Fiedler
- Institute of Physiological Chemistry, University Ulm Germany
| | | |
Collapse
|
158
|
Pournasr B, Khaloughi K, Salekdeh GH, Totonchi M, Shahbazi E, Baharvand H. Concise Review: Alchemy of Biology: Generating Desired Cell Types from Abundant and Accessible Cells. Stem Cells 2011; 29:1933-1941. [DOI: 10.1002/stem.760] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
A major goal of regenerative medicine is to produce cells to participate in the generation, maintenance, and repair of tissues that are damaged by disease, aging, or trauma, such that function is restored. The establishment of induced pluripotent stem cells, followed by directed differentiation, offers a powerful strategy for producing patient-specific therapies. Given how laborious and lengthy this process can be, the conversion of somatic cells into lineage-specific stem/progenitor cells in one step, without going back to, or through, a pluripotent stage, has opened up tremendous opportunities for regenerative medicine. However, there are a number of obstacles to overcome before these cells can be widely considered for clinical applications. Here, we focus on induced transdifferentiation strategies to convert mature somatic cells to other mature cell types or progenitors, and we summarize the challenges that need to be met if the potential applications of transdifferentiation technology are to be achieved.
Collapse
Affiliation(s)
- Behshad Pournasr
- Department of Stem Cells and Developmental Biology Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Keynoush Khaloughi
- Department of Stem Cells and Developmental Biology Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ebrahim Shahbazi
- Department of Stem Cells and Developmental Biology Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| |
Collapse
|
159
|
Uhm TG, Kim BS, Chung IY. Eosinophil development, regulation of eosinophil-specific genes, and role of eosinophils in the pathogenesis of asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2011; 4:68-79. [PMID: 22379601 PMCID: PMC3283796 DOI: 10.4168/aair.2012.4.2.68] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 08/31/2011] [Indexed: 12/16/2022]
Abstract
Eosinophils arise from hematopoietic CD34+ stem cells in the bone marrow. They acquire IL-5Rα on their surface at a very early stage during eosinophilopoiesis, and differentiate under the strong influence of interleukin (IL)-5. They then exit to the bloodstream, and enter the lung upon exposure to airway inflammatory signals, including eotaxins. In inflamed tissues, eosinophils act as key mediators of terminal effector functions and innate immunity and in linking to adaptive immune responses. Transcription factors GATA-1, CCAAT/enhancer-binding protein, and PU.1 play instructive roles in eosinophil specification from multipotent stem cells through a network of cooperative and antagonistic interactions. Not surprisingly, the interplay of these transcription factors is instrumental in forming the regulatory circuit of expression of eosinophil-specific genes, encoding eosinophil major basic protein and neurotoxin, CC chemokine receptor 3 eotaxin receptor, and IL-5 receptor alpha. Interestingly, a common feature is that the critical cis-acting elements for these transcription factors are clustered in exon 1 and intron 1 of these genes rather than their promoters. Elucidation of the mechanism of eosinophil development and activation may lead to selective elimination of eosinophils in animals and human subjects. Furthermore, availability of a range of genetically modified mice lacking or overproducing eosinophil-specific genes will facilitate evaluation of the roles of eosinophils in the pathogenesis of asthma. This review summarizes eosinophil biology, focusing on development and regulation of eosinophil-specific genes, with a heavy emphasis on the causative link between eosinophils and pathological development of asthma using genetically modified mice as models of asthma.
Collapse
Affiliation(s)
- Tae Gi Uhm
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Korea
| | | | | |
Collapse
|
160
|
Role of transcription factors in differentiation and reprogramming of hematopoietic cells. Keio J Med 2011; 60:47-55. [PMID: 21720200 DOI: 10.2302/kjm.60.47] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Differentiation of hematopoietic cells is a sequential process of cell fate decision originating from hematopoietic stem cells (HSCs), allowing multi- or oligopotent progenitors to commit to certain lineages. HSCs are cells that are able to self-renew and repopulate the marrow for the long term. They first differentiate into multipotent progenitors (MPPs), which give rise to common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). CMPs then differentiate into granulocyte monocyte progenitors (GMPs) and megakaryocyte erythroid progenitors (MEPs), which are the precursors of granulocytes/monocytes and erythrocytes/megakaryocytes, respectively. Lineage specification at differentiation branch points is dictated by the activation of lineage-specific transcription factors such as C/EBPα, PU.1, and GATA-1. The role of these transcription factors is generally instructive, and the expression of a single factor can often determine cell fate. Differentiation was long regarded as an irreversible process, and it was believed that somatic cells would not change their fate once they were differentiated. This paradigm was first challenged by the finding that ectopic cytokine signals could change the fate of differentiation, probably through modulating internal transcription networks. Subsequently, we and others showed that virtually all progenitors, including CLPs, CMPs, GMPs, and MEPs, still retain differentiation plasticity, and they can be converted into lineages other than their own by ectopic activation of only a single lineage-specific transcription factor. These findings established a novel paradigm for cellular differentiation and opened up an avenue for artificially manipulating cell fate for clinical use.
Collapse
|
161
|
Sarrazin S, Sieweke M. Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment. Semin Immunol 2011; 23:326-34. [DOI: 10.1016/j.smim.2011.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/19/2011] [Indexed: 02/03/2023]
|
162
|
Mercer EM, Lin YC, Murre C. Factors and networks that underpin early hematopoiesis. Semin Immunol 2011; 23:317-25. [PMID: 21930392 DOI: 10.1016/j.smim.2011.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 08/19/2011] [Indexed: 01/08/2023]
Abstract
Multiple trajectories have recently been described through which hematopoietic progenitor cells travel prior to becoming lineage-committed effectors. A wide spectrum of transcription factors has recently been identified that modulate developmental progression along such trajectories. Here we describe how distinct families of transcription factors act and are linked together to orchestrate early hematopoiesis.
Collapse
Affiliation(s)
- Elinore M Mercer
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, United States.
| | | | | |
Collapse
|
163
|
Dyer KD, Garcia-Crespo KE, Percopo CM, Bowen AB, Ito T, Peterson KE, Gilfillan AM, Rosenberg HF. Defective eosinophil hematopoiesis ex vivo in inbred Rocky Mountain White (IRW) mice. J Leukoc Biol 2011; 90:1101-9. [PMID: 21878543 DOI: 10.1189/jlb.0211059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We examine the proliferation and differentiation of bone marrow (BM) progenitors from inbred Rocky Mountain White (IRW) mice, a strain used primarily for retrovirus infection studies. In contrast to findings with BALB/c and C57BL/6 strains, IRW BM cells cannot proliferate or generate pure eosinophil cultures ex vivo in response to a defined cytokine regimen. Analysis of IRW BM at baseline was unremarkable, including 0.08 ± 0.03% Lin(-)Sca-1(+)c-kit(+) (LSK) hematopoietic stem cells and 5.2 ± 0.3% eosinophils; the percentage of eosinophil progenitors (EoPs; Lin(-)Sca-1(-)c-kit(+)CD34(+)IL-5Rα(+)) was similar in all three mouse strains. Transcripts encoding GM-CSFRα and the IL-3/IL-5/GM-CSF common β chain were detected at equivalent levels in IRW and BALB/c BM, whereas expression of transcripts encoding IL-5Rα, IL-3Rα, and GATA-2 was diminished in IRW BM compared with BALB/c. Expression of membrane-bound IL-5Rα and intracellular STAT5 proteins was also diminished in IRW BM cells. Diminished expression of transcripts encoding IL-5Rα and GATA-2 and immunoreactive STAT5 in IRW BM persisted after 4 days in culture, along with diminished expression of GATA-1. Western blot revealed that cells from IRW BM overexpress nonsignaling soluble IL-5Rα protein. Interestingly, OVA sensitization and challenge resulted in BM and airway eosinophilia in IRW mice; however, the responses were significantly blunted. These results suggest that IRW mice have diminished capacity to generate eosinophils in culture and in vivo, likely as a result of diminished signaling via IL-5Rα.
Collapse
Affiliation(s)
- Kimberly D Dyer
- Eosinophil Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy andInfectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
164
|
The PI3K pathway drives the maturation of mast cells via microphthalmia transcription factor. Blood 2011; 118:3459-69. [PMID: 21791431 DOI: 10.1182/blood-2011-04-351809] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mast cell maturation is poorly understood. We show that enhanced PI3K activation results in accelerated maturation of mast cells by inducing the expression of microphthalmia transcription factor (Mitf). Conversely, loss of PI3K activation reduces the maturation of mast cells by inhibiting the activation of AKT, leading to reduced Mitf but enhanced Gata-2 expression and accumulation of Gr1(+)Mac1(+) myeloid cells as opposed to mast cells. Consistently, overexpression of Mitf accelerates the maturation of mast cells, whereas Gata-2 overexpression mimics the loss of the PI3K phenotype. Expressing the full-length or the src homology 3- or BCR homology domain-deleted or shorter splice variant of the p85α regulatory subunit of PI3K or activated AKT or Mitf in p85α-deficient cells restores the maturation but not growth. Although deficiency of both SHIP and p85α rescues the maturation of SHIP(-/-) and p85α(-/-) mast cells and expression of Mitf; in vivo, mast cells are rescued in some, but not all tissues, due in part to defective KIT signaling, which is dependent on an intact src homology 3 and BCR homology domain of p85α. Thus, p85α-induced maturation, and growth and survival signals, in mast cells can be uncoupled.
Collapse
|
165
|
Qi X, Nishida J, Chaves L, Ohmori K, Huang H. CCAAT/enhancer-binding protein alpha (C/EBPalpha) is critical for interleukin-4 expression in response to FcepsilonRI receptor cross-linking. J Biol Chem 2011; 286:16063-73. [PMID: 21454593 DOI: 10.1074/jbc.m110.213389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Basophils mediate many of their biological functions by producing IL-4. However, it is unknown how the Il4 gene is regulated in basophils. Here, we report that CCAAT/enhancer-binding protein α (C/EBPα), a major myeloid transcription factor, was highly expressed in basophils. We show that C/EBPα selectively activated Il4 promoter-luciferase reporter gene transcription in response to IgE cross-linking, but C/EBPα did not activate other known Th2 or mast cell enhancers. We found that the PI3K pathway and calcineurin were essential in C/EBPα-driven Il4 promoter-luciferase gene transcription. Our mutation analyses revealed that C/EBPα drove Il4 promoter-luciferase activity depending on its DNA binding domain. Mutation of the C/EBPα-binding site in the Il4 promoter region abolished C/EBPα-driven Il4 promoter-luciferase activity. Our results further showed that a mutation in nuclear factor of activated T cells (NFAT)-binding sites in the Il4 promoter also negated C/EBPα-driven Il4 promoter-luciferase activity. Our study demonstrates that C/EBPα, in cooperation with NFAT, directly regulates Il4 gene transcription.
Collapse
Affiliation(s)
- Xiaopeng Qi
- Division of Allergy and Immunology, Department of Medicine, National Jewish Health, University of Colorado Denver School of Medicine, Denver, Colorado 80206, USA
| | | | | | | | | |
Collapse
|
166
|
Abstract
Master transcriptional regulators of development often function through dispersed cis elements at endogenous target genes. While cis-elements are routinely studied in transfection and transgenic reporter assays, it is challenging to ascertain how they function in vivo. To address this problem in the context of the locus encoding the critical hematopoietic transcription factor Gata2, we engineered mice lacking a cluster of GATA motifs 2.8 kb upstream of the Gata2 transcriptional start site. We demonstrate that the -2.8 kb site confers maximal Gata2 expression in hematopoietic stem cells and specific hematopoietic progenitors. By contrast to our previous demonstration that a palindromic GATA motif at the neighboring -1.8 kb site maintains Gata2 repression in terminally differentiating erythroid cells, the -2.8 kb site was not required to initiate or maintain repression. These analyses reveal qualitatively distinct functions of 2 GATA motif-containing regions in vivo.
Collapse
|
167
|
Siracusa MC, Comeau MR, Artis D. New insights into basophil biology: initiators, regulators, and effectors of type 2 inflammation. Ann N Y Acad Sci 2011; 1217:166-77. [PMID: 21276006 DOI: 10.1111/j.1749-6632.2010.05918.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent studies indicate that basophils perform essential functions in multiple models of Th2 cytokine-dependent immunity and inflammation. In addition to their role as late phase effector cells, basophil populations can express MHC class II and costimulatory molecules, migrate into draining lymph nodes, present antigen to naive CD4(+) T cells, and promote Th2 cell differentiation. In this context, basophils have been shown to contribute to the induction and propagation of Th2 cytokine responses following exposure to some helminth parasites or allergens. In this review, we discuss recent studies that provide new insights into basophil development, regulation, and effector function. In addition, we discuss the ability of basophils to act both independently and cooperatively with dendritic cells to support Th2 cytokine-mediated inflammation.
Collapse
Affiliation(s)
- Mark C Siracusa
- Institute for Immunology, Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
168
|
Quesenberry PJ, Aliotta JM. Cellular phenotype switching and microvesicles. Adv Drug Deliv Rev 2010; 62:1141-8. [PMID: 20558219 DOI: 10.1016/j.addr.2010.06.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022]
Abstract
Cell phenotype alteration by cell-derived vesicles presents a new aspect for consideration of cell fate. Accumulating data indicates that vesicles from many cells interact with or enter different target cells from other tissues, altering their phenotype toward that of the cell releasing the vesicles. Cells may be changed by direct interactions, transfer of cell surface receptors or epigenetic reprogramming via transcriptional regulators. Induced epigenetic changes appear to be stable and result in significant functional effects. These data force a reconsideration of the cellular context in which transcription regulates the proliferative and differentiative fate of tissues and suggests a highly plastic cellular system, which might underlay a relatively stable tissue system. The capacity of marrow to convert to non-hematopoietic cells related to vesicle cross-communication may underlie the phenomena of stem cell plasticity. Additionally, vesicles have promise in the clinical arenas of disease biomarkers, tissue restoration and control of neoplastic cell growth.
Collapse
|
169
|
Konstantinidis D, George A, Kalfa TA. Rac GTPases in erythroid biology. Transfus Clin Biol 2010; 17:126-30. [PMID: 20655266 PMCID: PMC4473774 DOI: 10.1016/j.tracli.2010.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 05/21/2010] [Indexed: 12/20/2022]
Abstract
Rac1 and Rac2 GTPases, members of the Rho GTPases family, control actin organization and play distinct and overlapping roles in hematopoietic and mature blood cells of all lineages. Here, we review our findings on the role of Rac GTPases in erythroid cells, by using conditional gene-targeting in mice. Rac1 and Rac2 deficiency causes anemia with reticulocytosis, indicating decreased red blood cell (RBC) survival, altered actin assembly in the erythrocyte membrane skeleton and decreased RBC deformability. On the other hand, Rac1(-/-); Rac2(-/-) megakaryocyte-erythrocyte progenitors demonstrate decreased proliferation in the bone marrow, but increased survival and proliferation in the spleen, indicating that stress erythropoiesis circumvents Rac GTPases deficiency. Further elucidation of the signaling pathways controlled by Rac GTPases in erythroid cells may reveal potential therapeutic targets for diseases characterized by hemolytic anemia and erythropoiesis disorders.
Collapse
Affiliation(s)
- Diamantis Konstantinidis
- Hematology-Oncology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | - Alex George
- Hematology-Oncology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | - Theodosia A. Kalfa
- Hematology-Oncology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
170
|
DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PLoS One 2010; 5:e12197. [PMID: 20808941 PMCID: PMC2922373 DOI: 10.1371/journal.pone.0012197] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/14/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aberrant promoter DNA methylation has been shown to play a role in acute myeloid leukemia (AML) pathophysiology. However, further studies to discuss the prognostic value and the relationship of the epigenetic signatures with defined genomic rearrangements in acute myeloid leukemia are required. METHODOLOGY/PRINCIPAL FINDINGS We carried out high-throughput methylation profiling on 116 de novo AML cases and we validated the significant biomarkers in an independent cohort of 244 AML cases. Methylation signatures were associated with the presence of a specific cytogenetic status. In normal karyotype cases, aberrant methylation of the promoter of DBC1 was validated as a predictor of the disease-free and overall survival. Furthermore, DBC1 expression was significantly silenced in the aberrantly methylated samples. Patients with chromosome rearrangements showed distinct methylation signatures. To establish the role of fusion proteins in the epigenetic profiles, 20 additional samples of human hematopoietic stem/progenitor cells (HSPC) transduced with common fusion genes were studied and compared with patient samples carrying the same rearrangements. The presence of MLL rearrangements in HSPC induced the methylation profile observed in the MLL-positive primary samples. In contrast, fusion genes such as AML1/ETO or CBFB/MYH11 failed to reproduce the epigenetic signature observed in the patients. CONCLUSIONS/SIGNIFICANCE Our study provides a comprehensive epigenetic profiling of AML, identifies new clinical markers for cases with a normal karyotype, and reveals relevant biological information related to the role of fusion proteins on the methylation signature.
Collapse
|
171
|
Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 2010; 116:3944-54. [PMID: 20713961 DOI: 10.1182/blood-2010-03-267419] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Eosinophils are granulocytic leukocytes implicated in numerous aspects of immunity and disease. The precise functions of eosinophils, however, remain enigmatic. Alternative models to study eosinophil biology may thus yield novel insights into their function. Eosinophilic cells have been observed in zebrafish but have not been thoroughly characterized. We used a gata2:eGFP transgenic animal to enable prospective isolation and characterization of zebrafish eosinophils, and demonstrate that all gata2(hi) cells in adult hematopoietic tissues are eosinophils. Although eosinophils are rare in most organs, they are readily isolated from whole kidney marrow and abundant within the peritoneal cavity. Molecular analyses demonstrate that zebrafish eosinophils express genes important for the activities of mammalian eosinophils. In addition, gata2(hi) cells degranulate in response to helminth extract. Chronic exposure to helminth- related allergens resulted in profound eosinophilia, demonstrating that eosinophil responses to allergens have been conserved over evolution. Importantly, infection of adult zebrafish with Pseudocapillaria tomentosa, a natural nematode pathogen of teleosts, caused marked increases in eosinophil number within the intestine. Together, these observations support a conserved role for eosinophils in the response to helminth antigens or infection and provide a new model to better understand how parasitic worms activate, co-opt, or evade the vertebrate immune response.
Collapse
|
172
|
Kim K, Suzuki N, Ohneda K, Minegishi N, Yamamoto M. Fractionation of mature eosinophils in GATA-reporter transgenic mice. TOHOKU J EXP MED 2010; 220:127-38. [PMID: 20139664 DOI: 10.1620/tjem.220.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Eosinophils contribute to the pathophysiology of allergic and infectious diseases, albeit their molecular functions remain unknown. Mature eosinophils are identified by their unique morphology and staining characteristics. However, it is difficult to fractionate living eosinophils by flow cytometry because these granulocytes express multiple cell surface markers that are shared by other cells of hematopoietic or non-hematopoietic origin. In this study, we describe a flow cytometry-based method to enumerate and fractionate eosinophils by developmental stages. To fractionate these cell types, we used transgenic mouse lines that express fluorescent proteins under control of the Gata1 gene hematopoietic regulatory region (Gata1-HRD), which is exclusively active in Gata1-expressing hematopoietic cells, including eosinophils. As expected, mature eosinophils were highly enriched in the fluorescent reporter-expressing subfraction of bone marrow myeloid cells that were negatively selected by using multiple antibodies against B220, CD4, CD8, Ter119, c-Kit and CD71. Cytochemical analyses of flow-sorted cells identified the cells in this fraction as eosinophils harboring eosinophilic granules. Additionally, expression of eosinophil-specific genes, for instance eosinophil enzymes and the IL-5 receptor alpha gene, were specifically detected in this fraction. The expression of these eosinophil-specific genes increased as the cells differentiated. This method for enrichment of bone marrow eosinophils is applicable to fractionation of eosinophils and bronchoalveolar lavage fluid from transgenic mice with atopic asthma. Thus, both pathological and developmental stages of eosinophils are efficiently fractionated by this flow cytometry-based method using Gata1-HRD transgenic reporter mice. This study, therefore, proposes a useful means to study the experimental allergic and inflammatory systems.
Collapse
Affiliation(s)
- Kibom Kim
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | |
Collapse
|
173
|
Gautreau L, Boudil A, Pasqualetto V, Skhiri L, Grandin L, Monteiro M, Jais JP, Ezine S. Gene coexpression analysis in single cells indicates lymphomyeloid copriming in short-term hematopoietic stem cells and multipotent progenitors. THE JOURNAL OF IMMUNOLOGY 2010; 184:4907-17. [PMID: 20368277 DOI: 10.4049/jimmunol.0902184] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progressive restriction to a differentiation pathway results from both activation and silencing of particular gene expression programs. To identify the coexpression and the expression levels of regulatory genes during hematopoietic stem cell (HSC) differentiation toward the T cell branch, we applied a new single-cell RT-PCR technique to analyze the simultaneous expression of 13 genes in 9 functionally purified populations from the bone marrow and the thymus. We report in this paper that Lin(-)Sca1(+)ckit(+) HSCs display, at the single-cell level, a homogeneous and high transcriptional activity as do early thymic progenitors. Moreover, the coexpression of lymphoid and myeloid genes is an early event detected in approximately 30% of short-term HSC and most multipotent progenitors, suggesting novel sources for the generation of early thymic progenitors, common lymphoid progenitors (CLPs), and common myeloid progenitors. Loss of multipotency in Lin(-)Sca1(+)ckit(+) cells directed to the lymphoid branch is characterized by Lmo2 and Gata2 gene expression downregulation. Indeed, highest levels of Gata2 expression are detected only in long-term and short-term HSC populations. Complete shutdown of Pu1 gene expression in all triple-negative (TN)3 stage thymic pre-T cells is indicative of total T cell commitment. Interestingly, this is also observed in 30% of TN2 cells and 25% of CLP in the bone marrow, suggesting a possible initiation of T cell engagement in TN2 and CLP. Also, our strategy highlights similar gene patterns among HSCs and intrathymic progenitors, proposing, therefore, that identical activation signals are maintained until further maturation and generation of CD4 and CD8 coreceptors bearing thymocytes.
Collapse
Affiliation(s)
- Laetitia Gautreau
- Institut National de la Santé et de la Recherche Médicale, Unité 591, 156 rue de Vaugirard, F-75730 Paris 15, France
| | | | | | | | | | | | | | | |
Collapse
|
174
|
A zinc-finger transcriptional activator designed to interact with the gamma-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood 2010; 115:3033-41. [PMID: 20190190 DOI: 10.1182/blood-2009-08-240556] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fetal hemoglobin (HbF) is a potent genetic modifier of the severity of beta-thalassemia and sickle cell anemia. We used an in vitro culture model of human erythropoiesis in which late-stage erythroblasts are derived directly from human CD34(+) hematopoietic cells to evaluate HbF production. This system recapitulates expression of globin genes according to the developmental stage of the originating cell source. When cytokine-mobilized peripheral blood CD34(+) cells from adults were cultured, background levels of HbF were 2% or less. Cultured cells were readily transduced with lentiviral vectors when exposed to vector particles between 48 and 72 hours. Among the genetic elements that may enhance fetal hemoglobin production is an artificial zinc-finger transcription factor, GG1-VP64, designed to interact with the proximal gamma-globin gene promoters. Our data show that lentiviral-mediated, enforced expression of GG1-VP64 under the control of relatively weak erythroid-specific promoters induced significant amounts of HbF (up to 20%) in erythroblasts derived from adult CD34(+) cells without altering their capacity for erythroid maturation and only modestly reducing the total numbers of cells that accumulate in culture after transduction. These observations demonstrate the potential for sequence-specific enhancement of HbF in patients with beta-thalassemia or sickle cell anemia.
Collapse
|
175
|
Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, Spalding C, Hughes S, Pittaluga S, Raffeld M, Sorbara LR, Elloumi HZ, Kuhns DB, Turner ML, Cowen EW, Fink D, Long-Priel D, Hsu AP, Ding L, Paulson ML, Whitney AR, Sampaio EP, Frucht DM, DeLeo FR, Holland SM. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 2010; 115:1519-29. [PMID: 20040766 PMCID: PMC2830758 DOI: 10.1182/blood-2009-03-208629] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 10/08/2009] [Indexed: 12/11/2022] Open
Abstract
We identified 18 patients with the distinct clinical phenotype of susceptibility to disseminated nontuberculous mycobacterial infections, viral infections, especially with human papillomaviruses, and fungal infections, primarily histoplasmosis, and molds. This syndrome typically had its onset in adulthood (age range, 7-60 years; mean, 31.1 years; median, 32 years) and was characterized by profound circulating monocytopenia (mean, 13.3 cells/microL; median, 14.5 cells/microL), B lymphocytopenia (mean, 9.4 cells/microL; median, 4 cells/microL), and NK lymphocytopenia (mean, 16 cells/microL; median, 5.5 cells/microL). T lymphocytes were variably affected. Despite these peripheral cytopenias, all patients had macrophages and plasma cells at sites of inflammation and normal immunoglobulin levels. Ten of these patients developed 1 or more of the following malignancies: 9 myelodysplasia/leukemia, 1 vulvar carcinoma and metastatic melanoma, 1 cervical carcinoma, 1 Bowen disease of the vulva, and 1 multiple Epstein-Barr virus(+) leiomyosarcoma. Five patients developed pulmonary alveolar proteinosis without mutations in the granulocyte-macrophage colony-stimulating factor receptor or anti-granulocyte-macrophage colony-stimulating factor autoantibodies. Among these 18 patients, 5 families had 2 generations affected, suggesting autosomal dominant transmission as well as sporadic cases. This novel clinical syndrome links susceptibility to mycobacterial, viral, and fungal infections with malignancy and can be transmitted in an autosomal dominant pattern.
Collapse
Affiliation(s)
- Donald C Vinh
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Epigenetic mechanisms regulating normal and malignant haematopoiesis: new therapeutic targets for clinical medicine. Expert Rev Mol Med 2010; 12:e6. [PMID: 20152067 DOI: 10.1017/s1462399410001377] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is now well established that epigenetic phenomena and aberrant gene regulation play a major role in carcinogenesis. These include aberrant gene silencing by imposing inactive histone marks on promoters, aberrant methylation of DNA at CpG islands, and the active repression of promoters by oncoproteins. In addition, many malignant cells also show aberrant gene activation due to constitutively active signalling. The next frontier in cancer research will be to examine how, at the molecular level, small mutations that alter the regulatory phenotype of a cell give rise after a number of cell divisions to the vast deregulation phenomena seen in malignant cells. This review outlines recent insights into how normal cell differentiation in the haematopoietic system is subverted in leukaemia and it introduces the molecular players involved in this process. It also summarises the results of recent clinical trials trying to reverse aberrant epigenetic regulation by employing agents influencing global epigenetic regulators.
Collapse
|
177
|
Abstract
Emerging evidence has shown that basophils perform essential, non-redundant functions in multiple models of acute and chronic Th2 cytokine-dependent immunity and inflammation. In particular, recent studies have shown that basophils are rapidly recruited to the lymph nodes, can function as antigen-presenting cells and are critical for the induction of Th2 cell differentiation and the associated inflammatory responses after exposure to helminth parasites or allergens. In this review, we discuss recent studies that provide new insights into the pathways that control basophil development, regulation and effector function.
Collapse
|
178
|
FOG1 requires NuRD to promote hematopoiesis and maintain lineage fidelity within the megakaryocytic-erythroid compartment. Blood 2010; 115:2156-66. [PMID: 20065294 DOI: 10.1182/blood-2009-10-251280] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nuclear factors regulate the development of complex tissues by promoting the formation of one cell lineage over another. The cofactor FOG1 interacts with transcription factors GATA1 and GATA2 to control erythroid and megakaryocyte (MK) differentiation. In contrast, FOG1 antagonizes the ability of GATA factors to promote mast cell (MC) development. Normal FOG1 function in late-stage erythroid cells and MK requires interaction with the chromatin remodeling complex NuRD. Here, we report that mice in which the FOG1/NuRD interaction is disrupted (Fog(ki/ki)) produce MK-erythroid progenitors that give rise to significantly fewer and less mature MK and erythroid colonies in vitro while retaining multilineage capacity, capable of generating MCs and other myeloid lineage cells. Gene expression profiling of Fog(ki/ki) MK-erythroid progenitors revealed inappropriate expression of several MC-specific genes. Strikingly, aberrant MC gene expression persisted in mature Fog(ki/ki) MK and erythroid progeny. Using a GATA1-dependent committed erythroid cell line, select MC genes were found to be occupied by NuRD, suggesting a direct mechanism of repression. Together, these observations suggest that a simple heritable silencing mechanism is insufficient to permanently repress MC genes. Instead, the continuous presence of GATA1, FOG1, and NuRD is required to maintain lineage fidelity throughout MK-erythroid ontogeny.
Collapse
|
179
|
Abstract
The ability to produce stem cells by induced pluripotency (iPS reprogramming) has rekindled an interest in earlier studies showing that transcription factors can directly convert specialized cells from one lineage to another. Lineage reprogramming has become a powerful tool to study cell fate choice during differentiation, akin to inducing mutations for the discovery of gene functions. The lessons learnt provide a rubric for how cells may be manipulated for therapeutic purposes.
Collapse
|
180
|
Abstract
Rho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho GTPase functions in blood cell development and regulation by gene targeting of individual Rho GTPases in mice has allowed a genetic understanding of their physiologic roles in hematopoietic progenitors and mature lineages. In particular, mouse gene-targeting studies have provided convincing evidence that individual members of the Rho GTPase family are essential regulators of cell type-specific functions and stimuli-specific pathways in regulating hematopoietic stem cell interaction with bone marrow niche, erythropoiesis, and red blood cell actin dynamics, phagocyte migration and killing, and T- and B-cell maturation. In addition, deregulation of Rho GTPase family members has been associated with multiple human hematologic diseases such as neutrophil dysfunction, leukemia, and Fanconi anemia, raising the possibility that Rho GTPases and downstream signaling pathways are of therapeutic value. In this review we discuss recent genetic studies of Rho GTPases in hematopoiesis and several blood lineages and the implications of Rho GTPase signaling in hematologic malignancies, immune pathology. and anemia.
Collapse
|
181
|
Sigvardsson M. New light on the biology and developmental potential of haematopoietic stem cells and progenitor cells. J Intern Med 2009; 266:311-24. [PMID: 19765177 DOI: 10.1111/j.1365-2796.2009.02154.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though stem cells have been identified in several tissues, one of the best understood somatic stem cells is the bone marrow residing haematopoietic stem cell (HSC). These cells are able to generate all types of blood cells found in the periphery over the lifetime of an animal, making them one of the most profound examples of tissue-restricted stem cells. HSC therapy also represents one of the absolutely most successful cell-based therapies applied both in the treatment of haematological disorders and cancer. However, to fully explore the clinical potential of HSCs we need to understand the molecular regulation of cell maturation and lineage commitment. The extensive research effort invested in this area has resulted in a rapid development of the understanding of the relationship between different blood cell lineages and increased understanding for how a balanced composition of blood cells can be generated. In this review, several of the basic features of HSCs, as well as their multipotent and lineage-restricted offspring, are addressed, providing a current view of the haematopoietic development tree. Some of the basic mechanisms believed to be involved in lineage restriction events including activities of permissive and instructive external signals are also discussed, besides transcription factor networks and epigenetic alterations to provide an up-to-date view of early haematopoiesis.
Collapse
Affiliation(s)
- M Sigvardsson
- The Institution for Clinical and Experimental Research, Linköping University, Sweden.
| |
Collapse
|
182
|
Wada T, Kikuchi J, Nishimura N, Shimizu R, Kitamura T, Furukawa Y. Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem 2009; 284:30673-83. [PMID: 19736310 DOI: 10.1074/jbc.m109.042242] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are globally implicated in the growth and differentiation of mammalian cells; however, relatively little is known about their specific roles in hematopoiesis. In this study, we investigated the expression of HDACs in human hematopoietic cells and their functions during hematopoiesis. The expression of HDACs was very low in hematopoietic progenitor cells, which was accompanied by histone hyperacetylation. HDACs were detectable in more differentiated progenitors and erythroid precursors but down-regulated in mature myeloid cells especially granulocytes. In contrast, acute myeloid leukemias showed HDAC overexpression and histone hypoacetylation. Transcription of the HDAC1 gene was repressed by CCAAT/enhancer binding proteins during myeloid differentiation, and activated by GATA-1 during erythro-megakaryocytic differentiation. Small interfering RNA-mediated knockdown of HDAC1 enhanced myeloid differentiation in immature hematopoietic cell lines and perturbed erythroid differentiation in progenitor cells. Myeloid but not erythro-megakaryocytic differentiation was blocked in mice transplanted with HDAC1-overexpressing hematopoietic progenitor cells. These findings suggest that HDAC is not merely an auxiliary factor of genetic elements but plays a direct role in the cell fate decision of hematopoietic progenitors.
Collapse
Affiliation(s)
- Taeko Wada
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | | | | | | | |
Collapse
|
183
|
Ito T, Nishiyama C, Nakano N, Nishiyama M, Usui Y, Takeda K, Kanada S, Fukuyama K, Akiba H, Tokura T, Hara M, Tsuboi R, Ogawa H, Okumura K. Roles of PU.1 in monocyte- and mast cell-specific gene regulation: PU.1 transactivates CIITA pIV in cooperation with IFN-gamma. Int Immunol 2009; 21:803-16. [PMID: 19502584 DOI: 10.1093/intimm/dxp048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over-expression of PU.1, a myeloid- and lymphoid-specific transcription factor belonging to the Ets family, induces monocyte-specific gene expression in mast cells. However, the effects of PU.1 on each target gene and the involvement of cytokine signaling in PU.1-mediated gene expression are largely unknown. In the present study, PU.1 was over-expressed in two different types of bone marrow-derived cultured mast cells (BMMCs): BMMCs cultured with IL-3 plus stem cell factor (SCF) and BMMCs cultured with pokeweed mitogen-stimulated spleen-conditioned medium (PWM-SCM). PU.1 over-expression induced expression of MHC class II, CD11b, CD11c and F4/80 on PWM-SCM-cultured BMMCs, whereas IL-3/SCF-cultured BMMCs expressed CD11b and F4/80, but not MHC class II or CD11c. When IFN-gamma was added to the IL-3/SCF-based medium, PU.1 transfectant acquired MHC class II expression, which was abolished by antibody neutralization or in Ifngr(-/-) BMMCs, through the induction of expression of the MHC class II transactivator, CIITA. Real-time PCR detected CIITA mRNA driven by the fourth promoter, pIV, and chromatin immunoprecipitation indicated direct binding of PU.1 to pIV in PU.1-over-expressing BMMCs. PU.1-over-expressing cells showed a marked increase in IL-6 production in response to LPS stimulation in both IL-3/SCF and PWM-SCM cultures. These results suggest that PU.1 overproduction alone is sufficient for both expression of CD11b and F4/80 and for amplification of LPS-induced IL-6 production. However, IFN-gamma stimulation is essential for PU.1-mediated transactivation of CIITA pIV. Reduced expression of mast cell-related molecules and transcription factors GATA-1/2 and up-regulation of C/EBPalpha in PU.1 transfectants indicate that enforced PU.1 suppresses mast cell-specific gene expression through these transcription factors.
Collapse
Affiliation(s)
- Tomonobu Ito
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Wang D, Paz-Priel I, Friedman AD. NF-kappa B p50 regulates C/EBP alpha expression and inflammatory cytokine-induced neutrophil production. THE JOURNAL OF IMMUNOLOGY 2009; 182:5757-62. [PMID: 19380823 DOI: 10.4049/jimmunol.0803861] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
NF-kappaB is a key transcriptional inducer of the inflammatory response in mature myeloid cells, and also stimulates cell survival, but its role in immature myeloid cell development has not been well characterized. C/EBPalpha is required for the development of monocytic and granulocytic myeloid cells from early progenitors, and NF-kappaB and C/EBPbeta cooperatively induce several inflammatory mediators. Having found that C/EBPalpha binds NF-kappaB p50 preferentially compared with NF-kappaB p65, we have now investigated myelopoiesis in nfkb1(-/-) mice lacking NF-kappaB p50. Absence of p50 leads to a significant reduction in the number of granulocytic progenitors, CFU-granulocyte, obtained with G-CSF or GM-CSF in vitro and reduces neutrophil production in vivo in response to G-CSF, with preservation of monopoiesis in vitro in response to cytokines or LPS. To gain insight into the mechanism underlying reduced granulopoiesis in the absence of NF-kappaB p50, we assessed the expression of several myeloid regulatory proteins in lineage-negative, immature myeloid cells. Although PU.1, C/EBPbeta, and STAT3 levels were unchanged, C/EBPalpha protein and RNA levels were reduced approximately 3-fold in the absence of NF-kappaB p50. In addition, NF-kappaB p50 and C/EBPalpha bound the endogenous C/EBPalpha promoter in a chromatin immunoprecipitation assay, and NF-kappaB p50 trans activated the C/EBPalpha promoter, alone or in cooperation with C/EBPalpha. Despite reduction of C/EBPalpha, G-CSFR and M-CSFR levels were maintained in total marrow and in lineage-negative cells. Together, these data indicate that acute inflammation not only activates mature myeloid cells, but also stimulates neutrophil production via NF-kappaB p50 induction of C/EBPalpha transcription.
Collapse
Affiliation(s)
- Dehua Wang
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
185
|
Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 2009; 114:983-94. [PMID: 19491391 DOI: 10.1182/blood-2009-03-207944] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
GATA-1 and PU.1 are essential hematopoietic transcription factors that control erythromegakaryocytic and myelolymphoid differentiation, respectively. These proteins antagonize each other through direct physical interaction to repress alternate lineage programs. We used immortalized Gata1(-) erythromegakaryocytic progenitor cells to study how PU.1/Sfpi1 expression is regulated by GATA-1 and GATA-2, a related factor that is normally expressed at earlier stages of hematopoiesis. Both GATA factors bind the PU.1/Sfpi1 gene at 2 highly conserved regions. In the absence of GATA-1, GATA-2 binding is associated with an undifferentiated state, intermediate level PU.1/Sfpi1 expression, and low-level expression of its downstream myeloid target genes. Restoration of GATA-1 function induces erythromegakaryocytic differentiation. Concomitantly, GATA-1 replaces GATA-2 at the PU.1/Sfpi1 locus and PU.1/Sfpi1 expression is extinguished. In contrast, when GATA-1 is not present, shRNA knockdown of GATA-2 increases PU.1/Sfpi1 expression by 3-fold and reprograms the cells to become macrophages. Our findings indicate that GATA factors act sequentially to regulate lineage determination during hematopoiesis, in part by exerting variable repressive effects at the PU.1/Sfpi1 locus.
Collapse
|
186
|
Takatsu K, Kouro T, Nagai Y. Interleukin 5 in the link between the innate and acquired immune response. Adv Immunol 2009; 101:191-236. [PMID: 19231596 DOI: 10.1016/s0065-2776(08)01006-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interleukin-5 (IL-5) is an interdigitating homodimeric glycoprotein that is initially identified by its ability to support the in vitro growth and differentiation of mouse B cells and eosinophils. IL-5 transgenic mouse shows two predominant features, remarkable increase in B-1 cells resulting in enhanced serum antibody levels, predominantly IgM, IgA, and IgE classes and in expansion of eosinophil numbers in the blood and eosinophil infiltration into various tissues. Conversely, mice lacking a functional gene for IL-5 or IL-5 receptor alpha chain (IL-5Ralpha) display a number of developmental and functional impairments in B cells and eosinophils. IL-5 receptor (IL-5R) comprises alpha and betac chains. IL-5 specifically binds to IL-5Ralpha and induces the recruitment of betac to IL-5R. Although precise mechanisms on cell-lineage-specific IL-5Ralpha expression remain elusive, several transcription factors including Sp1, E12/E47, Oct-2, and c/EBPbeta have been shown to regulate its expression in B cells and eosinophils. JAK2 and JAK1 tyrosine kinase are constitutively associated with IL-5Ralpha and betac, respectively, and are activated by IL-5 stimulation. IL-5 activates at least three different signaling pathways including JAK2/STAT5 pathway, Btk pathway, and Ras/ERK pathway. IL-5 is one of key cytokines for mouse B cell differentiation in general, particularly for fate-determination of terminal B cell differentiation to antibody-secreting plasma cells. IL-5 critically regulates homeostatic proliferation and survival of and natural antibody production by B-1 cells, and enhances the AID and Blimp-1 expression in activated B-2 cells leading to induce mu to gamma1 class switch recombination and terminal differentiation to IgM- and IgG1-secreting plasma cells, respectively. In humans, major target cells of IL-5 are eosinophils. IL-5 appears to play important roles in pathogenesis of asthma, hypereosinophilic syndromes, and eosinophil-dependent inflammatory diseases. Clinical studies will provide a strong impetus for investigating the means of modulating IL-5 effects. We will discuss the role of IL-5 in the link between innate and acquired immune response, particularly emphasis of the molecular basis of IL-5-dependent B cell activation, allergen-induced chronic inflammation and hypereosinophilic syndromes on a novel target for therapy.
Collapse
Affiliation(s)
- Kiyoshi Takatsu
- Department of Immunobiology and Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama 930-0194, Japan
| | | | | |
Collapse
|
187
|
Ceredig R, Rolink AG, Brown G. Models of haematopoiesis: seeing the wood for the trees. Nat Rev Immunol 2009; 9:293-300. [DOI: 10.1038/nri2525] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
188
|
Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood 2009; 114:299-309. [PMID: 19339695 DOI: 10.1182/blood-2008-11-191890] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At the cellular level, development progresses through successive regulatory states, each characterized by their specific gene expression profile. However, the molecular mechanisms regulating first the priming and then maintenance of gene expression within one developmental pathway are essentially unknown. The hematopoietic system represents a powerful experimental model to address these questions and here we have focused on a regulatory circuit playing a central role in myelopoiesis: the transcription factor PU.1, its target gene colony-stimulating-factor 1 receptor (Csf1r), and key upstream regulators such as RUNX1. We find that during ontogeny, chromatin unfolding precedes the establishment of active histone marks and the formation of stable transcription factor complexes at the Pu.1 locus and we show that chromatin remodeling is mediated by the transient binding of RUNX1 to Pu.1 cis-elements. By contrast, chromatin reorganization of Csf1r requires prior expression of PU.1 together with RUNX1 binding. Once the full hematopoietic program is established, stable transcription factor complexes and active chromatin can be maintained without RUNX1. Our experiments therefore demonstrate how individual transcription factors function in a differentiation stage-specific manner to differentially affect the initiation versus maintenance of a developmental program.
Collapse
|
189
|
Qiu Z, Dyer KD, Xie Z, Rådinger M, Rosenberg HF. GATA transcription factors regulate the expression of the human eosinophil-derived neurotoxin (RNase 2) gene. J Biol Chem 2009; 284:13099-109. [PMID: 19279013 DOI: 10.1074/jbc.m807307200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transcription factors GATA-1 and GATA-2 have been implicated in promoting differentiation of eosinophilic leukocytes. In this study, we examined the roles of GATA-1 and GATA-2 in activating transcription of the secretory ribonuclease, the eosinophil-derived neurotoxin (EDN/RNase 2). Augmented expression of both GATA-1 and GATA-2 was detected in eosinophil promyelocyte HL-60 clone 15 cells in response to biochemical differentiation with butyric acid. Deletion or mutation of one or both of the two consensus GATA-binding sites in the extended 1000-bp 5' promoter of the EDN gene resulted in profound reduction in reporter gene activity. Antibody-augmented electrophoretic mobility shift and chromatin immunoprecipitation analyses indicate that GATA-1 and GATA-2 proteins bind to both functional GATA consensus sequences in the EDN promoter. Interestingly, RNA silencing of GATA-1 alone had no impact on EDN expression; silencing of GATA-2 resulted in diminished expression of EDN, and also diminished expression of GATA-1 in both butyric acid-induced HL-60 clone 15 cells and in differentiating human eosinophils derived from CD34(+) hematopoietic progenitors. Likewise, overexpression of GATA-2 in uninduced HL-60 clone 15 cells resulted in augmented transcription of both EDN and GATA-1. Taken together, our data suggest that GATA-2 functions directly via interactions with the EDN promoter and also indirectly, via its ability to regulate the expression of GATA-1 in differentiating eosinophils and eosinophil cell lines.
Collapse
Affiliation(s)
- Zhijun Qiu
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
190
|
Abstract
Basophils and mast cells are major players in the progression of allergic disorders. Although both cell types originate from hematopoietic stem cells, their lineage commitment pathways and mechanisms have been unsolved issues in hematology. Recent advances in the multicolor FACS system enable the prospective isolation of progenitor populations whose readouts are restricted to basophil and/or mast cell lineages. These newly-isolated progenitor subsets are helpful to understand the developmental machinery of basophil and mast cell lineages, leading to the possible exploitation of a novel therapeutic strategy for allergic and autoimmune disorders. In this review, we summarize the recent progress in our understanding of the basophil/mast cell ontogeny on a cellular basis.
Collapse
Affiliation(s)
- Yojiro Arinobu
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
| | | | | |
Collapse
|
191
|
Abstract
The role of basophils, the rarest of blood granulocytes, in host immunity has been a mystery. Long considered the poor relative of mast cells, basophils have received much recent attention because of the availability of new reagents and models that reveal unique properties of these cells. Basophils are known to have distinct roles in allergic hypersensitivity reactions and in the immune response to intestinal helminthes. In this review, we highlight these advances and summarize our current understanding of the repertoire of functions attributed to these cells. Despite these recent insights, we are likely only beginning to gain a full understanding of how and where these cells lend effector functions to vertebrate immunity. Advances are likely to come only with the development of specific reagents that enable the finer study of basophil lineage and function. Although many fundamental aspects of basophil biology remain unanswered, the prospects remain bright for unmasking new contributions by these unusual cells.
Collapse
Affiliation(s)
- Brandon M Sullivan
- UCSF School of Medicine and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | | |
Collapse
|
192
|
Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 2009; 41:342-7. [PMID: 19198610 DOI: 10.1038/ng.323] [Citation(s) in RCA: 589] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 01/05/2009] [Indexed: 12/18/2022]
Abstract
Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts in blood of 9,392 Icelanders. The most significant SNPs were studied further in 12,118 Europeans and 5,212 East Asians. SNPs at 2q12 (rs1420101), 2q13 (rs12619285), 3q21 (rs4857855), 5q31 (rs4143832) and 12q24 (rs3184504) reached genome-wide significance (P = 5.3 x 10(-14), 5.4 x 10(-10), 8.6 x 10(-17), 1.2 x 10(-10) and 6.5 x 10(-19), respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 x 10(-12)) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated with atopic asthma (P = 4.2 x 10(-6), 2.2 x 10(-5) and 2.4 x 10(-4), respectively). We also found that a nonsynonymous SNP at 12q24, in SH2B3, associated significantly (P = 8.6 x 10(-8)) with myocardial infarction in six different populations (6,650 cases and 40,621 controls).
Collapse
|
193
|
Chen J, Olsen J, Ford S, Mirza S, Walker A, Murphy JM, Young IG. A New Isoform of Interleukin-3 Receptor α with Novel Differentiation Activity and High Affinity Binding Mode. J Biol Chem 2009; 284:5763-73. [DOI: 10.1074/jbc.m808197200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
194
|
Fukushima K, Matsumura I, Ezoe S, Tokunaga M, Yasumi M, Satoh Y, Shibayama H, Tanaka H, Iwama A, Kanakura Y. FIP1L1-PDGFRalpha imposes eosinophil lineage commitment on hematopoietic stem/progenitor cells. J Biol Chem 2009; 284:7719-32. [PMID: 19147501 DOI: 10.1074/jbc.m807489200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although leukemogenic tyrosine kinases (LTKs) activate a common set of downstream molecules, the phenotypes of leukemia caused by LTKs are rather distinct. Here we report the molecular mechanism underlying the development of hypereosinophilic syndrome/chronic eosinophilic leukemia by FIP1L1-PDGFRalpha. When introduced into c-Kit(high)Sca-1(+)Lineage(-) cells, FIP1L1-PDGFRalpha conferred cytokine-independent growth on these cells and enhanced their self-renewal, whereas it did not immortalize common myeloid progenitors in in vitro replating assays and transplantation assays. Importantly, FIP1L1-PDGFRalpha but not TEL-PDGFRbeta enhanced the development of Gr-1(+)IL-5Ralpha(+) eosinophil progenitors from c-Kit(high)Sca-1(+)Lineage(-) cells. FIP1L1-PDGFRalpha also promoted eosinophil development from common myeloid progenitors. Furthermore, when expressed in megakaryocyte/erythrocyte progenitors and common lymphoid progenitors, FIP1L1-PDGFRalpha not only inhibited differentiation toward erythroid cells, megakaryocytes, and B-lymphocytes but aberrantly developed eosinophil progenitors from megakaryocyte/erythrocyte progenitors and common lymphoid progenitors. As for the mechanism of FIP1L1-PDGFRalpha-induced eosinophil development, FIP1L1-PDGFRalpha was found to more intensely activate MEK1/2 and p38(MAPK) than TEL-PDGFRbeta. In addition, a MEK1/2 inhibitor and a p38(MAPK) inhibitor suppressed FIP1L1-PDGFRalpha-promoted eosinophil development. Also, reverse transcription-PCR analysis revealed that FIP1L1-PDGFRalpha augmented the expression of C/EBPalpha, GATA-1, and GATA-2, whereas it hardly affected PU.1 expression. In addition, short hairpin RNAs against C/EBPalpha and GATA-2 and GATA-3KRR, which can act as a dominant-negative form over all GATA members, inhibited FIP1L1-PDGFRalpha-induced eosinophil development. Furthermore, FIP1L1-PDGFRalpha and its downstream Ras inhibited PU.1 activity in luciferase assays. Together, these results indicate that FIP1L1-PDGFRalpha enhances eosinophil development by modifying the expression and activity of lineage-specific transcription factors through Ras/MEK and p38(MAPK) cascades.
Collapse
Affiliation(s)
- Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, 2-2, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Mori Y, Iwasaki H, Kohno K, Yoshimoto G, Kikushige Y, Okeda A, Uike N, Niiro H, Takenaka K, Nagafuji K, Miyamoto T, Harada M, Takatsu K, Akashi K. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. ACTA ACUST UNITED AC 2008; 206:183-93. [PMID: 19114669 PMCID: PMC2626675 DOI: 10.1084/jem.20081756] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To establish effective therapeutic strategies for eosinophil-related disorders, it is critical to understand the developmental pathway of human eosinophils. In mouse hematopoiesis, eosinophils originate from the eosinophil lineage-committed progenitor (EoP) that has been purified downstream of the granulocyte/macrophage progenitor (GMP). We show that the EoP is also isolatable in human adult bone marrow. The previously defined human common myeloid progenitor (hCMP) population (Manz, M.G., T. Miyamoto, K. Akashi, and I.L. Weissman. 2002. Proc. Natl. Acad. Sci. USA. 99:11872–11877) was composed of the interleukin 5 receptor α chain+ (IL-5Rα+) and IL-5Rα− fractions, and the former was the hEoP. The IL-5Rα+CD34+CD38+IL-3Rα+CD45RA− hEoPs gave rise exclusively to pure eosinophil colonies but never differentiated into basophils or neutrophils. The IL-5Rα− hCMP generated the hEoP together with the hGMP or the human megakaryocyte/erythrocyte progenitor (hMEP), whereas hGMPs or hMEPs never differentiated into eosinophils. Importantly, the number of hEoPs increased up to 20% of the conventional hCMP population in the bone marrow of patients with eosinophilia, suggesting that the hEoP stage is involved in eosinophil differentiation and expansion in vivo. Accordingly, the phenotypic definition of hCMP should be revised to exclude the hEoP; an “IL-5Rα–negative” criterion should be added to define more homogenous hCMP. The newly identified hEoP is a powerful tool in studying pathogenesis of eosinophilia and could be a therapeutic target for a variety of eosinophil-related disorders.
Collapse
Affiliation(s)
- Yasuo Mori
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Abstract
Choice of a T lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification, tests of the short-term Notch dependence of these gene expression changes, and analyses of the effects of overexpression of two essential transcription factors, namely PU.1 and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T cell precursors progress from primitive multipotency to T lineage commitment. Our analyses reveal separate contributions of Notch signaling, GATA-3 activity, and down-regulation of PU.1. Using BioTapestry (www.BioTapestry.org), the results have been assembled into a draft gene regulatory network for the specification of T cell precursors and the choice of T as opposed to myeloid/dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfi1 against Egr-2 and of TCF-1 against PU.1 as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose dependence of GATA-3 effects, the gene-specific modulation of PU.1 activity based on Notch activity, the lack of direct opposition between PU.1 and GATA-3, and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.
Collapse
|
197
|
Chang EJ, Ha J, Huang H, Kim HJ, Woo JH, Lee Y, Lee ZH, Kim JH, Kim HH. The JNK-dependent CaMK pathway restrains the reversion of committed cells during osteoclast differentiation. J Cell Sci 2008; 121:2555-64. [PMID: 18650497 DOI: 10.1242/jcs.028217] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteoclastogenesis involves the commitment of macrophage-lineage precursors to tartrate-resistant acid phosphatase-positive (TRAP+) mononuclear pre-osteoclasts (pOCs) and subsequent fusion of pOCs to form multinuclear mature osteoclasts. Despite many studies on osteoclast differentiation, little is known about the signaling mechanisms that specifically mediate the osteoclastic commitment. In this study, we found that inhibition of JNK at the pOC stage provoked reversion of TRAP(+) cells to TRAP(-) cells. The conversion to TRAP(-) cells occurred with concomitant return to the state with higher expression of macrophage antigens, and greater activity of phagocytosis and dendritic-differentiation potential. JNK inhibition at the pOC stage reduced NFATc1 and CaMK levels, and addition of active NFATc1 partially rescued the effect of JNK inhibition. In addition, the level of NFATc1 was decreased by knockdown of CaMK by RNAi and by catalytic inhibition of CaMK, which both caused the reversion of pOCs to macrophages. These data suggest that JNK activity is specifically required for maintaining the committed status during osteoclastogenesis and that the CaMK-NFATc1 pathway is the key element in that specific role of JNK.
Collapse
Affiliation(s)
- Eun-Ju Chang
- Department of Cell and Developmental Biology, BK21 Program, and DRI, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
The zinc finger transcription factor GATA-2 has been implicated in the regulation of hematopoietic stem cells. Herein, we explored the role of GATA-2 as a candidate regulator of the hematopoietic progenitor cell compartment. We showed that bone marrow from GATA-2 heterozygote (GATA-2(+/-)) mice displayed attenuated granulocyte-macrophage progenitor function in colony-forming cell (CFC) and serial replating CFC assays. This defect was mapped to the Lin(-)CD117(+)Sca-1(-)CD34(+)CD16/32(high) granulocyte-macrophage progenitor (GMP) compartment of GATA-2(+/-) marrow, which was reduced in size and functionally impaired in CFC assays and competitive transplantation. Similar functional impairments were obtained using a RNA interference approach to stably knockdown GATA-2 in wild-type GMP. Although apoptosis and cell-cycle distribution remained unperturbed in GATA-2(+/-) GMP, quiescent cells from GATA-2(+/-) GMP exhibited altered functionality. Gene expression analysis showed attenuated expression of HES-1 mRNA in GATA-2-deficient GMP. Binding of GATA-2 to the HES-1 locus was detected in the myeloid progenitor cell line 32Dcl3, and enforced expression of HES-1 expression in GATA-2(+/-) GMP rectified the functional defect, suggesting that GATA-2 regulates myeloid progenitor function through HES-1. These data collectively point to GATA-2 as a novel, pivotal determinant of GMP cell fate.
Collapse
|
199
|
Eisenhoffer GT, Kang H, Sánchez Alvarado A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 2008; 3:327-39. [PMID: 18786419 PMCID: PMC2614339 DOI: 10.1016/j.stem.2008.07.002] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/12/2008] [Accepted: 07/02/2008] [Indexed: 12/20/2022]
Abstract
In adult planarians, the replacement of cells lost to physiological turnover or injury is sustained by the proliferation and differentiation of stem cells known as neoblasts. Neoblast lineage relationships and the molecular changes that take place during differentiation into the appropriate cell types are poorly understood. Here we report the identification and characterization of a cohort of genes specifically expressed in neoblasts and their descendants. We find that genes with severely downregulated expression after irradiation molecularly define at least three discrete subpopulations of cells. Simultaneous BrdU labeling and in situ hybridization experiments in intact and regenerating animals indicate that these cell subpopulations are related by lineage. Our data demonstrate not only the ability to measure and study the in vivo population dynamics of adult stem cells during tissue homeostasis and regeneration, but also the utility of studies in planarians to broadly inform stem cell biology in adult organisms.
Collapse
Affiliation(s)
- George T Eisenhoffer
- Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
200
|
Competition and collaboration: GATA-3, PU.1, and Notch signaling in early T-cell fate determination. Semin Immunol 2008; 20:236-46. [PMID: 18768329 DOI: 10.1016/j.smim.2008.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 07/06/2008] [Accepted: 07/10/2008] [Indexed: 12/15/2022]
Abstract
T-cell precursors remain developmentally plastic for multiple cell generations after entering the thymus, preserving access to developmental alternatives of macrophage, dendritic-cell, and even mast-cell fates. The underlying regulatory basis of this plasticity is that early T-cell differentiation depends on transcription factors which can also promote alternative developmental programs. Interfactor competition, together with environmental signals, keep these diversions under control. Here the pathways leading to several lineage alternatives for early pro-T-cells are reviewed, with close focus on the mechanisms of action of three vital factors, GATA-3, PU.1, and Notch-Delta signals, whose counterbalance appears to be essential for T-cell specification.
Collapse
|