151
|
Shi L, Zhang N, Xue Z, Luo G. Mechanistic Insights into Rare-Earth-Catalyzed Alternating Copolymerization through C-H Polyaddition of Functionalized Organic Compounds to Unconjugated Dienes. Inorg Chem 2024; 63:8079-8091. [PMID: 38663005 DOI: 10.1021/acs.inorgchem.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Density functional theory (DFT) calculations have been conducted to elucidate the detailed mechanisms of yttrium-catalyzed C-H polyaddition of 1,4-dimethoxybenzene (DMB) to 1,4-divinylbenzene (DVB). It was computationally determined that DMB not only serves as a substrate but also performs a crucial role as a ligand, stabilizing the catalytically active species and promoting alkene insertion. Side pathways involving Cβ-H activation and C═C continuous insertion were excluded due to steric and electronic factors, respectively, explaining why the reaction occurred efficiently and selectively to give perfectly alternating DMB-DVB polymers. Interestingly, the theoretical prediction of the reactivity of N,N-dimethyl-1,4-phenylenediamine and 2,2'-biethyl-4,4'-bipyridine reveals significant differences in the coordination effects of these substrates, leading to distinct mechanisms, primarily influenced by their steric effects. These findings shed new light on the previously overlooked role of substrate ligand effects in rare-earth-catalyzed step-growth copolymerization reactions.
Collapse
Affiliation(s)
- Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
152
|
Zhou J, Gong P, Ji A, Xia M, Jin J, Wu Q. Polymorphism of Niobium Phosphate Bronze Na 4Nb 8P 4O 32 Deduced by the Packings of Structural Units: A Centrosymmetric Phase. Inorg Chem 2024; 63:8440-8448. [PMID: 38646875 DOI: 10.1021/acs.inorgchem.4c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Herein, a new centrosymmetric phase Na4Nb8P4O32 (referred to as CS-Na4Nb8P4O32) was obtained by a molten salt method, which is a polymorph of niobium phosphate bronze Na4Nb8P4O32. CS-Na4Nb8P4O32 displays high structural similarity to the noncentrosymmetric Na4Nb8P4O32 phase (referred to as NCS-Na4Nb8P4O32): Distorted NbO6 octahedra are corner-coordinated to form ReO3-type layers, which are further joined together by isolated PO4 tetrahedra. However, two polymorphous phases adopt different packings of structural units, resulting in distinct symmetries. NbO3 layers and PO4 tetrahedra are reversely arranged along the crystallographic a direction in CS-Na4Nb8P4O32, thereby producing a centrosymmetric structure. The reverse packing cancels out all contributions of dipole moments originating from the distorted NbO6 octahedra; NCS-Na4Nb8P4O32 exhibits the C2-rotation distribution of NbO3 layers and PO4 tetrahedra, thus generating a noncentrosymmetric and polar structure. The C2-rotation packing of structural units brings a constructive addition of the dipole moments, further obtaining large calculated independent second harmonic generation susceptibilities. The study of structural evolution deduced by the packings of structural units in polymorphous Na4Nb8P4O32 might provide valuable insights into polymorphism and structural regulation.
Collapse
Affiliation(s)
- Jingfang Zhou
- Ocean College, Tangshan Normal University, Hebei Tangshan 063000, China
| | - Pifu Gong
- Functional Crystals Lab, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100049, China
| | - Aimin Ji
- Ocean College, Tangshan Normal University, Hebei Tangshan 063000, China
| | - Mingjun Xia
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Jin
- Ocean College, Tangshan Normal University, Hebei Tangshan 063000, China
| | - Qian Wu
- Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
153
|
Lee SY, Cho E, Suh BL, Choi JW, Lee S, Kim J, Lee C, Jung KW. Unveiling interfacial interaction between antimony oxyanions and boehmite nanorods: Spectroscopic evidence and density functional theory analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133902. [PMID: 38422738 DOI: 10.1016/j.jhazmat.2024.133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
In natural environments, the fate and migratory behavior of metalloid contaminants such as antimony (Sb) significantly depend on the interfacial reactivity of mineral surfaces. Although boehmite (γ-AlOOH) is widely observed in (sub)surface environments, its underlying interaction mechanism with Sb oxyanions at the molecular scale remains unclear. Considering Sb-contaminated environmental conditions in this study, we prepared boehmite under weakly acidic conditions for use in the systematic investigation of interfacial interactions with Sb(III) and Sb(V). The as-synthesized boehmite showed a nanorod morphology and comprised four crystal facets in the following order: 48.4% (010), 27.1% (101), 15.0% (001), and 9.5% (100). The combined results of spectroscopic analyses and theoretical calculations revealed that Sb(III) formed hydrogen bonding outer-sphere complexation on the (100), (010), and (001) facets and that Sb(V) preferred to form bidentate inner-sphere complexation via mononuclear edge-sharing configuration on the (100), (001), and (101) facets and binuclear corner-sharing configuration on the (010) facet. These findings indicate that the facet-mediated thermodynamic stability of the surface complexation determines the interaction affinity toward the Sb species. This work is the first to document the contribution of boehmite to (sub)surface media, improving the ability to forecast the fate and behavior of Sb oxyanions at mineral-water interfaces.
Collapse
Affiliation(s)
- Seon Yong Lee
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Eun Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong Lim Suh
- Mechatronics Research, Samsung Electronics co., Ltd, Gyeonggi-do 18448, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seunghak Lee
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
154
|
Steiner M, Reiher M. A human-machine interface for automatic exploration of chemical reaction networks. Nat Commun 2024; 15:3680. [PMID: 38693117 PMCID: PMC11063077 DOI: 10.1038/s41467-024-47997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Autonomous reaction network exploration algorithms offer a systematic approach to explore mechanisms of complex chemical processes. However, the resulting reaction networks are so vast that an exploration of all potentially accessible intermediates is computationally too demanding. This renders brute-force explorations unfeasible, while explorations with completely pre-defined intermediates or hard-wired chemical constraints, such as element-specific coordination numbers, are not flexible enough for complex chemical systems. Here, we introduce a STEERING WHEEL to guide an otherwise unbiased automated exploration. The STEERING WHEEL algorithm is intuitive, generally applicable, and enables one to focus on specific regions of an emerging network. It also allows for guiding automated data generation in the context of mechanism exploration, catalyst design, and other chemical optimization challenges. The algorithm is demonstrated for reaction mechanism elucidation of transition metal catalysts. We highlight how to explore catalytic cycles in a systematic and reproducible way. The exploration objectives are fully adjustable, allowing one to harness the STEERING WHEEL for both structure-specific (accurate) calculations as well as for broad high-throughput screening of possible reaction intermediates.
Collapse
Affiliation(s)
- Miguel Steiner
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
- ETH Zurich, NCCR Catalysis, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
155
|
Liu D, Zhu H, Gong X, Yuan S, Ma H, He P, Fan Y, Zhao W, Ren H, Guo W. Understanding and controlling the formation of single-atom site from supported Cu 10 cluster by tuning CeO 2 reducibility: Theoretical insight into the Gd-doping effect on electronic metal-support interaction. J Colloid Interface Sci 2024; 661:720-729. [PMID: 38320408 DOI: 10.1016/j.jcis.2024.01.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Controlling the formation of single-atom (SA) sites from supported metal clusters is an important and interesting issue to effectively improve the catalytic performance of heterogeneous catalysts. For extensively studied CO oxidation over metal/CeO2 systems, the SA formation and stabilization under reaction conditions is generally attributed to CO adsorption, however, the pivotal role played by the reducible CeO2 support and the underlying electronic metal-support interaction (EMSI) are not yet fully understood. Based on a ceria-supported Cu10 catalyst model, we performed density functional theory calculations to investigate the intrinsic SA formation mechanism and discussed the synergistic effect of Gd-doped CeO2 and CO adsorption on the SA formation. The CeO2 reducibility is tuned with doped Gd content ranging from 12.5 % ∼ 25 %. Based on ab initio thermodynamic and ab initio molecular dynamics, the critical condition for SA formation was identified as 21.875 % Gd-doped CeO2 with CO-saturated adsorption on Cu10. Electronic analysis revealed that the open-shell lattice Oδ- (δ < 2) generated by Gd doping facilitates the charge transfer from the bottom-corner Cu (Cubc) to CeO2. The CO-saturated adsorption further promotes this charge transfer process and enhances the EMSI between Cubc and CeO2, leading to the disintegration of Cubc from Cu10 and subsequent formation of the active SA site.
Collapse
Affiliation(s)
- Dongyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| | - Xiaoxiao Gong
- State Key Laboratory of Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 10083, PR China
| | - Saifei Yuan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Hao Ma
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Ping He
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Yucheng Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wen Zhao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China.
| |
Collapse
|
156
|
He D, Zhang D, Yang L, Ye L, Xu RX, Zheng X. Unconventional Surface Doping Effect on the Spin State of an Adsorbed Magnetic Molecule. J Phys Chem Lett 2024; 15:4333-4341. [PMID: 38619466 DOI: 10.1021/acs.jpclett.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Magnetic molecules adsorbed on two-dimensional (2D) substrates have attracted broad attention because of their potential applications in quantum device applications. Experimental observations have demonstrated substantial alteration in the spin excitation energy of iron phthalocyanine (FePc) molecules when adsorbed on nitrogen-doped graphene substrates. However, the underlying mechanism responsible for this notable change remains unclear. To shed light on this, we employ an embedding method and ab initio quantum chemistry calculations to investigate the effects of surface doping on molecular properties. Our study unveils an unconventional chemical bonding at the interface between the FePc molecule and the N-doped graphene. This bonding interaction, stronger than non-covalent interactions, significantly modifies the magnetic anisotropy energy of the adsorbed molecule, consistent with experimental observations. These findings provide valuable insights into the electronic and magnetic properties of molecules on 2D substrates, offering a promising pathway for precise manipulation of molecular spin states.
Collapse
Affiliation(s)
- Dawei He
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Daochi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Longqing Yang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Lyuzhou Ye
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Rui-Xue Xu
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
157
|
Zhang J, Wang W, Chen X, Jin J, Yan X, Huang J. Single-Atom Ni Supported on TiO 2 for Catalyzing Hydrogen Storage in MgH 2. J Am Chem Soc 2024; 146:10432-10442. [PMID: 38498436 DOI: 10.1021/jacs.3c13970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
As an efficient and clean energy carrier, hydrogen is expected to play a key role in future energy systems. However, hydrogen-storage technology must be safe with a high hydrogen-storage density, which is difficult to achieve. MgH2 is a promising solid-state hydrogen-storage material owing to its large hydrogen-storage capacity (7.6 wt %) and excellent reversibility, but its large-scale utilization is restricted by slow hydrogen-desorption kinetics. Although catalysts can improve the hydrogen-storage kinetics of MgH2, they reduce the hydrogen-storage capacity. Single-atom catalysts maximize the atom utilization ratio and the number of interfacial sites to boost the catalytic activity, while easy aggregation at high temperatures limits further application. Herein, we designed a single-atom Ni-loaded TiO2 catalyst with superior thermal stability and catalytic activity. The optimized 15wt%-Ni0.034@TiO2 catalyst reduced the onset dehydrogenation temperature of MgH2 to 200 °C. At 300 °C, the H2 released and absorbed 4.6 wt % within 5 min and 6.53 wt % within 10 s, respectively. The apparent activation energies of MgH2 dehydrogenation and hydrogenation were reduced to 64.35 and 35.17 kJ/mol of H2, respectively. Even after 100 cycles of hydrogenation and dehydrogenation, there was still a capacity retention rate of 97.26%. The superior catalytic effect is attributed to the highly synergistic catalytic activity of single-atom Ni, numerous oxygen vacancies, and multivalent Tix+ in the TiO2 support, in which the single-atom Ni plays the dominant role, accelerating electron transfer between Mg2+ and H- and weakening the Mg-H bonds. This work paves the way for superior hydrogen-storage materials for practical unitization and also extends the application of single-atom catalysis in high-temperature solid-state reactions.
Collapse
Affiliation(s)
- Jiyue Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Wenda Wang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiaowei Chen
- School of Science, Jimei University, Xiamen 361021, China
| | - Jinlong Jin
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiaojun Yan
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191, China
- Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China
| | - Jianmei Huang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191, China
- Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China
| |
Collapse
|
158
|
Mehrez JAA, Zhang Y, Zeng M, Yang J, Hu N, Wang T, Xu L, Li B, González-Alfaro Y, Yang Z. Nitrogen-Based Gas Molecule Adsorption on a ReSe 2 Monolayer via Single-Atom Doping: A First-Principles Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7843-7859. [PMID: 38557084 DOI: 10.1021/acs.langmuir.3c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Two-dimensional materials have shown immense promise for gas-sensing applications due to their remarkable surface-to-volume ratios and tunable chemical properties. However, despite their potential, the utilization of ReSe2 as a gas-sensing material for nitrogen-containing molecules, including NO2, NO, and NH3, has remained unexplored. The choice of doping atoms in ReSe2 plays a pivotal role in enhancing the gas adsorption and gas-sensing capabilities. Herein, the adsorption properties of nitrogen-containing gas molecules on metal and non-metal single-atom (Au, Pt, Ni, P, and S)-doped ReSe2 monolayers have been evaluated systematically via ab initio calculations based on density functional theory. The findings strongly suggest that intrinsic ReSe2 has better selectivity toward NO2 than toward NO and NH3. Moreover, our results provide compelling evidence that all of the dopants, with the exception of S, significantly enhance both the adsorption strength and charge transfer between ReSe2 and the investigated molecules. Notably, P-decorated ReSe2 showed the highest adsorption energy for NO2 and NO (-1.93 and -1.52 eV, respectively) with charge transfer above 0.5e, while Ni-decorated ReSe2 exhibited the highest adsorption energy for NH3 (-0.76 eV). In addition, on the basis of transition theory, we found that only Au-ReSe2 and Ni-ReSe2 can serve as reusable chemiresisitve gas sensors for reliable detection of NO and NH3, respectively. Hence, our findings indicate that gas-sensing applications can be significantly improved by utilizing a single-atom-doped ReSe2 monolayer.
Collapse
Affiliation(s)
- Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongwei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lin Xu
- Shanghai Eye Diseases Prevention & Treatment Center/Shanghai Eye Hospital, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, P. R. China
| | - Bin Li
- Research Center for Photovoltaics, Shanghai Institute of Space Power-Sources, Shanghai 200245, P. R. China
| | | | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
159
|
Schwade M, Schilcher MJ, Reverón Baecker C, Grumet M, Egger DA. Temperature-transferable tight-binding model using a hybrid-orbital basis. J Chem Phys 2024; 160:134102. [PMID: 38557853 DOI: 10.1063/5.0197986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Finite-temperature calculations are relevant for rationalizing material properties, yet they are computationally expensive because large system sizes or long simulation times are typically required. Circumventing the need for performing many explicit first-principles calculations, tight-binding and machine-learning models for the electronic structure emerged as promising alternatives, but transferability of such methods to elevated temperatures in a data-efficient way remains a great challenge. In this work, we suggest a tight-binding model for efficient and accurate calculations of temperature-dependent properties of semiconductors. Our approach utilizes physics-informed modeling of the electronic structure in the form of hybrid-orbital basis functions and numerically integrating atomic orbitals for the distance dependence of matrix elements. We show that these design choices lead to a tight-binding model with a minimal amount of parameters that are straightforwardly optimized using density functional theory or alternative electronic-structure methods. The temperature transferability of our model is tested by applying it to existing molecular-dynamics trajectories without explicitly fitting temperature-dependent data and comparison with density functional theory. We utilize it together with machine-learning molecular dynamics and hybrid density functional theory for the prototypical semiconductor gallium arsenide. We find that including the effects of thermal expansion on the onsite terms of the tight-binding model is important in order to accurately describe electronic properties at elevated temperatures in comparison with experiment.
Collapse
Affiliation(s)
- Martin Schwade
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Maximilian J Schilcher
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Christian Reverón Baecker
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Manuel Grumet
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - David A Egger
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
160
|
Zhang Y, Ke D, Wu J, Zhang C, Hou L, Lin B, Chen Z, Perdew JP, Sun J. Challenges for density functional theory in simulating metal-metal singlet bonding: A case study of dimerized VO2. J Chem Phys 2024; 160:134101. [PMID: 38557836 DOI: 10.1063/5.0180315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
VO2 is renowned for its electric transition from an insulating monoclinic (M1) phase, characterized by V-V dimerized structures, to a metallic rutile (R) phase above 340 K. This transition is accompanied by a magnetic change: the M1 phase exhibits a non-magnetic spin-singlet state, while the R phase exhibits a state with local magnetic moments. Simultaneous simulation of the structural, electric, and magnetic properties of this compound is of fundamental importance, but the M1 phase alone has posed a significant challenge to the density functional theory (DFT). In this study, we show none of the commonly used DFT functionals, including those combined with on-site Hubbard U to treat 3d electrons better, can accurately predict the V-V dimer length. The spin-restricted method tends to overestimate the strength of the V-V bonds, resulting in a small V-V bond length. Conversely, the spin-symmetry-breaking method exhibits the opposite trends. Each of these two bond-calculation methods underscores one of the two contentious mechanisms, i.e., Peierls lattice distortion or Mott localization due to electron-electron repulsion, involved in the metal-insulator transition in VO2. To elucidate the challenges encountered in DFT, we also employ an effective Hamiltonian that integrates one-dimensional magnetic sites, thereby revealing the inherent difficulties linked with the DFT computations.
Collapse
Affiliation(s)
- Yubo Zhang
- Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, China
| | - Da Ke
- Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, China
| | - Junxiong Wu
- Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, China
| | - Chutong Zhang
- Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou, China
| | - Lin Hou
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - Baichen Lin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Zuhuang Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - John P Perdew
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
161
|
Velja S, Krumland J, Cocchi C. Electronic properties of MoSe 2 nanowrinkles. NANOSCALE 2024; 16:7134-7144. [PMID: 38501908 DOI: 10.1039/d3nr06261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Mechanical deformations, either spontaneously occurring during sample preparation or purposely induced in their nanoscale manipulation, drastically affect the electronic and optical properties of transition metal dichalcogenide monolayers. In this first-principles work based on density-functional theory, we shed light on the interplay among strain, curvature, and electronic structure of MoSe2 nanowrinkles. We analyze their structural properties highlighting the effects of coexisting local domains of tensile and compressive strain in the same system. By contrasting the band structures of the nanowrinkles against counterparts obtained for flat monolayers subject to the same amount of strain, we clarify that the specific features of the former, such as the moderate variation of the band-gap size and its persisting direct nature, are ruled by curvature rather than strain. The analysis of the wave-function distribution indicates strain-dependent localization of the frontier states in the conduction region while in the valence, the sensitivity to strain is much less pronounced. The discussion about transport properties, based on inspection of the effective masses, reveals excellent perspectives for these systems as active components for (opto)electronic devices.
Collapse
Affiliation(s)
- Stefan Velja
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany.
| | - Jannis Krumland
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany.
- Department of Physics and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Caterina Cocchi
- Institute of Physics, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany.
- Department of Physics and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
162
|
Yang S, Hu M, Liang X, Xie Z, Wang Z, Zhou K. In situ construction of robust artificial solid-electrolyte interphase layer on lithium-metal anode by a facile one-step solution route. J Colloid Interface Sci 2024; 659:886-894. [PMID: 38219307 DOI: 10.1016/j.jcis.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Development of high energy density lithium-metal batteries (LMBs) is markedly hindered by the interfacial instability on lithium-metal anode side. Solid-electrolyte interphase (SEI) is a fundamental factor to regulate dendrite growth and enhance the stability of lithium-metal anodes. Here, trithiocyanuric acid, a triazine derivative with sulfhydryl groups, is used as an efficient promoter to favor the construction of a robust artificial SEI layer on the lithium metal surface, which greatly benefits the stability and efficiency of LMBs. With the assistance of trithiocyanuric acid facilely introduced on the Li surface via a one-step solution route, a highly uniform artificial SEI layer rich in Li2S and Li3N is formed, which efficiently facilitates uniform lithium deposition and suppresses lithium dendrite growth. Remarkably, the Li|Li cell displays stable lithium plating/stripping cycling over 800 h at 0.5 mA cm-2, 1 mAh cm-2, and the Li|LFP cells exhibit prolonged lifespan over 700 cycles at 3 C and superior rate performance from 2 to 20 C. This work provides a facile design strategy for constructing a superb artificial SEI layer for high-performance LMBs.
Collapse
Affiliation(s)
- Shitu Yang
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingzhen Hu
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinhu Liang
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhe Wang
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Kebin Zhou
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, PR China.
| |
Collapse
|
163
|
Mirnezhad M, Ansari R, Falahatgar SR, Aghdasi P. Analyzing fine scaling quantum effects on the buckling of axially-loaded carbon nanotubes based on the density functional theory and molecular mechanics method. Sci Rep 2024; 14:7435. [PMID: 38548779 PMCID: PMC10978868 DOI: 10.1038/s41598-024-55701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/27/2024] [Indexed: 04/01/2024] Open
Abstract
In this paper, the quantum effects of fine scaling on the buckling behavior of carbon nanotubes (CNTs) under axial loading are investigated. Molecular mechanics and quantum mechanics are respectively utilized to study the buckling behavior and to obtain the molecular mechanics coefficients of fine-scale nanotubes. The results of buckling behavior of CNTs with different chiralities with finite and infinite dimensions are given, and a comparison study is presented on them. The differences between finite and infinite nanotubes reflect the quantum effects of fine scaling on the buckling behavior. In addition, the results show that the dimensional changes highly affect the mechanical properties and the buckling behavior of CNTs to certain dimensions. Moreover, dimensional changes have a significant effect on the critical buckling strain. Beside, in addition to the structure dimensions, the arrangement of structural and boundary atoms have a major influence on the buckling behavior.
Collapse
Affiliation(s)
- M Mirnezhad
- Faculty of Mechanical Engineering, University Campus 2, University of Guilan, Rasht, Iran
| | - R Ansari
- Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran.
| | - S R Falahatgar
- Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
| | - P Aghdasi
- Faculty of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran.
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2H5, Canada.
| |
Collapse
|
164
|
Wensink FJ, Smink CE, Armentrout PB, Bakker JM. IR spectroscopic characterization of 3d transition metal carbene cations, FeCH 2+ and CoCH 2+: periodic trends and a challenge for DFT approaches. Phys Chem Chem Phys 2024; 26:9948-9962. [PMID: 38497938 PMCID: PMC10968520 DOI: 10.1039/d4cp00026a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
A combination of IR multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+ (M = Fe and Co) species. These were formed by reacting laser ablated M+ ions with oxirane (ethylene oxide, c-C2H4O) in a room temperature ion trap. IRMPD spectra for the Fe and Co species are very similar and exhibit one major band. Comparison with density functional theory (DFT) and coupled cluster with single and double excitations (CCSD) calculations allows assignment of the spectra to MCH2+ carbene structures. For these 3d transition metal systems, experimental IRMPD spectra compare relatively poorly with DFT calculated IR spectra, but CCSD calculated spectra are a much better match primarily because the M-C stretch gains significant intensity. The origins of this behavior are explored in some detail. The present results are also compared to previous results for the 4d and 5d congeners and the periodic trends in these structures are evaluated.
Collapse
Affiliation(s)
- Frank J Wensink
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Corry E Smink
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
| | - Joost M Bakker
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| |
Collapse
|
165
|
Gao P, Chen X, Liu Z, Li J, Wang N. Investigation of the lattice thermal transport properties of Janus XClO (X = Cr, Ir) monolayers by first-principles calculations. Phys Chem Chem Phys 2024; 26:10136-10143. [PMID: 38487978 DOI: 10.1039/d3cp04306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In the context of the global energy crisis, the development of high-performance heat transport devices within nano scales has become increasingly important. Theoretical discovery and evaluation of novel structures with high performance in thermal conductivity by affordable calculations could provide significant instructions for experimental studies focusing on thermoelectric device development. For 2-dimensional (2D) functional materials, their heat transport efficiency is correlated with their electronic properties and structural features. In this study, we computationally investigated the heat transport within Janus XClO (X = Cr, Ir); its structural and electronic properties were well solved by first-principles calculations. Furthermore, to evaluate thermodynamics stability and applicability, ab initio molecular dynamics (AIMD) simulations are conducted. Through a benchmarking study upon these XClO monolayers with different compositions, we noticed that their heat transport efficiency is associated with the percentage of doped magnetic atoms. The theoretical insights provided by this study are highly instructive for future experimental studies focusing on thermal device development.
Collapse
Affiliation(s)
- Peng Gao
- School of Chemistry and Molecular Bioscience, University of Wollongong, NSW 2500, Australia
| | - Xihao Chen
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zonghang Liu
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiwen Li
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ning Wang
- School of Science, Xihua University, Chengdu 610039, China.
| |
Collapse
|
166
|
Li D, Wang Y. DFT study on isothiourea-catalyzed C-C bond activation of cyclobutenone: the role of the catalyst and the origin of stereoselectivity. Org Biomol Chem 2024; 22:2662-2669. [PMID: 38477235 DOI: 10.1039/d4ob00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The organocatalytic C-C bond activation strategy stands out as a new reaction mode for the release of ring strain and expands the scope of organocatalysts. Thus, disclosing the role of the organocatalyst in the C-C bond cleavage process would be of interest. Here, an isothiourea-catalyzed C-C bond activation/cycloaddition reaction of cyclobutenone is selected as a computational model to uncover the role of the catalyst. Based on the calculations, the electrocyclic cleavage of cyclobutenone is calculated to be energetically more favorable than the isothiourea-catalyzed C-C bond cleavage, which is different from the NHC-catalyzed C-C bond activation of cyclobutenone. The computational results show that the isothiourea promotes the reaction by increasing the nucleophilicity of vinyl ketene and thus lowers the energy barrier of the cycloaddition process. Moreover, NCI and AIM analyses are performed to disclose the origin of stereoselectivity.
Collapse
Affiliation(s)
- Daochang Li
- Department of Chemical and Material Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China.
| | - Yang Wang
- Department of Chemical and Material Engineering, Zhengzhou University of Light Industry, 136 Science Avenue, Zhengzhou, Henan Province, 450002, P. R. China.
| |
Collapse
|
167
|
Kretschmer A, Mayrhofer PH. Explaining the entropy forming ability for carbides with the effective atomic size mismatch. Sci Rep 2024; 14:7210. [PMID: 38531899 DOI: 10.1038/s41598-024-57456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
To quickly screen for single-phased multi-principal-element materials, a so-called entropy forming ability (EFA) parameter is sometimes used as a descriptor. The larger the EFA, the larger is the propensity to form a single-phase structure. We have investigated this EFA descriptor with atomic relaxations in special-quasi-random structures and discovered that the EFA correlates inversely with the lattice distortion. Large effective atomic size differences lead to multi-phase compounds, and little size differences to single-phase compounds. Instead of configurational entropy, we therefore demonstrate the applicability of the Hume-Rothery rules to phase stability of solid solutions even in compositionally complex ceramics.
Collapse
Affiliation(s)
- Andreas Kretschmer
- Institute of Materials Science and Technology E308, TU Wien, Gumpendorferstrasse 7, 1060, Vienna, Austria.
| | - Paul Heinz Mayrhofer
- Institute of Materials Science and Technology E308, TU Wien, Gumpendorferstrasse 7, 1060, Vienna, Austria
| |
Collapse
|
168
|
Mamatkulov K, Zavatski S, Arynbek Y, Esawii HA, Burko A, Bandarenka H, Arzumanyan G. Conformational analysis of lipid membrane mimetics modified with A β42 peptide by Raman spectroscopy and computer simulations. J Biomol Struct Dyn 2024:1-14. [PMID: 38520152 DOI: 10.1080/07391102.2024.2330706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
Peptide-lipid interactions play an important role in maintaining the integrity and function of the cell membrane. Even slight changes in these interactions can induce the development of various diseases. Specifically, peptide misfolding and aggregation in the membrane is considered to be one of the triggers of Alzheimer's disease (AD), however its exact mechanism is still unclear. To this end, an increase of amyloid-beta (Aβ) peptide concentration in the human brain is widely accepted to gradually produce cytotoxic Aβ aggregates (plaques). These plaques initiate a sequence of pathogenic events ending up in observable symptoms of dementia. Understanding the mechanism of the Aβ interaction with cells is crucial for early detection and prevention of Alzheimer's disease. Hence, in this work, a comprehensive Raman analysis of the Aβ42 conformational dynamics in water and in liposomes and lipodiscs that mimic the membrane system is presented. The obtained results show that the secondary structure of Aβ42 in liposomes is dominated by the α-helix conformation, which remains stable over time. However, it comes as a surprise to reveal that the lipodisc environment induces the transformation of the Aβ42 secondary structure to a β-turn/random coil. Our Raman spectroscopy findings are supported with molecular dynamics (MD) and density functional theory (DFT) simulations, showing their good agreement.
Collapse
Affiliation(s)
- Kahramon Mamatkulov
- Laboratory of Neutron Physics, Sector of Raman Spectroscopy, Joint Institute for Nuclear Research, Dubna, Russia
| | - Siarhei Zavatski
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
| | - Yersultan Arynbek
- Laboratory of Neutron Physics, Sector of Raman Spectroscopy, Joint Institute for Nuclear Research, Dubna, Russia
- Faculty of Physics and Technology, al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | - Heba A Esawii
- Laboratory of Neutron Physics, Sector of Raman Spectroscopy, Joint Institute for Nuclear Research, Dubna, Russia
- Biophysics Department, Faculty of Science, Cairo University, Egypt
| | - Aliaksandr Burko
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
| | - Hanna Bandarenka
- Applied Plasmonics Laboratory, Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
| | - Grigory Arzumanyan
- Laboratory of Neutron Physics, Sector of Raman Spectroscopy, Joint Institute for Nuclear Research, Dubna, Russia
| |
Collapse
|
169
|
Berešová M, Bufka J, Šafařík M, Bouř P, Šebestík J. Conformations and hydration of halopropionic acids studied by molecular dynamics and Raman optical activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123852. [PMID: 38217987 DOI: 10.1016/j.saa.2024.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Chiral 2-halopropionic acids and their derivatives were synthesized and their properties studied computationally using Raman and Raman optical activity (ROA) spectroscopy. For neat acids present as liquids small amount of water led to significant changes in the spectra, resulting even to flipping of some ROA band signs. We find this interesting for the role water plays in interpretation of vibrational optical activity spectra of biomolecules. Analysis of the results shows that when the water is present, it can change ROA band signs due to the changes in acidobasic equilibrium. Corresponding esters without acidic hydrogens do not exhibit such effects.
Collapse
Affiliation(s)
- Marie Berešová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Jiří Bufka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic; Department of Pediatrics, Faculty of Medicine in Pilsen, Faculty Hospital, Charles University in Prague, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Martin Šafařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| |
Collapse
|
170
|
Zhang P, Chen HC, Zhu H, Chen K, Li T, Zhao Y, Li J, Hu R, Huang S, Zhu W, Liu Y, Pan Y. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat Commun 2024; 15:2062. [PMID: 38453927 PMCID: PMC10920901 DOI: 10.1038/s41467-024-46389-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores. Fe SAs-HP exhibits robust ORR performance with half-wave potential of 0.94 V and turnover frequency of 5.99 e-1s-1site-1 at 0.80 V. Theoretical simulations unravel a structural heterogeneity induced optimization, where mesoporous Fe-N4 acts as real active centers as a result of long-range electron regulation by adjacent microporous sites, facilitating O2 activation and desorption of key intermediate *OH. Multilevel operando characterization results identify active Fe sites undergo a dynamic evolution from basic Fe-N4 to active Fe-N3 under working conditions. Our findings reveal the structural origin of enhanced intrinsic activity for hierarchically porous Fe-N4 sites.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Houyu Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Tuya Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yilin Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ruanbo Hu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siying Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
171
|
Liu H, Li X, Chen H, Chen J, Shi Z. Graphyne-based 3D porous structure and its sandwich-type graphene structure for alkali metal ion battery anode materials. Phys Chem Chem Phys 2024; 26:8426-8435. [PMID: 38407835 DOI: 10.1039/d3cp06164g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In order to develop candidate materials for more metal ion battery anodes, a three-dimensional (3D) porous structure 3D-PGY was designed based on graphyne, and a sandwich structure graphene/PGY/graphene (G/PGY/G) was constructed by adjusting the distance between two layers of graphene with 3D-PGY as the middle layer. Systematic calculations have shown that 3D-PGY is thermally and mechanically stable even at temperatures up to 1000 K. Li can migrate in multiple diffusion directions in two structures because of its smaller radius while Na and K ions can only migrate through the larger pores. The energy barriers of Li, Na and K ions in 3D-PGY are 0.18, 0.43 and 0.27 eV respectively. After forming the sandwich structure with graphene, the minimum energy barriers of Li, Na and K ions are decreased to 0.12, 0.37 and 0.24 eV, respectively. As the anode for Li, Na, and K ion batteries, the theoretical specific capacities of 3D-PGY are about 558 mA h g-1, and the average open circuit voltages of 3D-PGY and G/PGY/G are about 0.48/0.52/0.29 and 1.08/1.04/1.39 V, respectively. Finally, using ab initio molecular dynamics simulations, the diffusion coefficients for 3D-PGY at different temperatures, as well as for G/PGY/G at 400 K were obtained. The Li, Na and K ions in both structures can diffuse rapidly and have good rate capabilities. These excellent performances show that the graphyne-based 3D porous structure and its sandwich-type graphene structure are very promising for the development of new battery materials.
Collapse
Affiliation(s)
- Haidong Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Xiaowei Li
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Haotian Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Jin Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| | - Zixun Shi
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
172
|
Martínez-Vollbert E, Philouze C, Cavignac T, Latouche C, Loiseau F, Lanoë PH. Neutral 2-phenylbenzimidazole-based iridium(III) complexes with picolinate ancillary ligand: tuning the emission properties by manipulating the substituent on the benzimidazole ring. Dalton Trans 2024; 53:4705-4718. [PMID: 38362807 DOI: 10.1039/d3dt03498d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We report the synthesis and characterization of ten neutral bisheteroleptic iridium(III) complexes with 2-phenylbenzimidazole cyclometallating ligand and picolinate as ancillary ligand. The 2-phenylbenzimidazole has been modified by selected substituents introduced on the cyclometallating ring and/or on the benzimidazole moiety. The integrity of the complexes has been assessed by NMR spectroscopy, by high-resolution mass spectrometry and by elemental analysis. The complexes are demonstrated to be highly phosphorescent at room temperature and a luminescence study with comprehensive ab initio calculations allow us to determine the lowest emitting excited state which depends on the substituent nature and its position on the cyclometallating ligand.
Collapse
Affiliation(s)
| | | | - Théo Cavignac
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France.
| | - Camille Latouche
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France.
- Insitut universitaire de France (IUF), France
| | | | | |
Collapse
|
173
|
Strasser N, Wieser S, Zojer E. Predicting Spin-Dependent Phonon Band Structures of HKUST-1 Using Density Functional Theory and Machine-Learned Interatomic Potentials. Int J Mol Sci 2024; 25:3023. [PMID: 38474269 DOI: 10.3390/ijms25053023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The present study focuses on the spin-dependent vibrational properties of HKUST-1, a metal-organic framework with potential applications in gas storage and separation. Employing density functional theory (DFT), we explore the consequences of spin couplings in the copper paddle wheels (as the secondary building units of HKUST-1) on the material's vibrational properties. By systematically screening the impact of the spin state on the phonon bands and densities of states in the various frequency regions, we identify asymmetric -COO- stretching vibrations as being most affected by different types of magnetic couplings. Notably, we also show that the DFT-derived insights can be quantitatively reproduced employing suitably parametrized, state-of-the-art machine-learned classical potentials with root-mean-square deviations from the DFT results between 3 cm-1 and 7 cm-1. This demonstrates the potential of machine-learned classical force fields for predicting the spin-dependent properties of complex materials, even when explicitly considering spins only for the generation of the reference data used in the force-field parametrization process.
Collapse
Affiliation(s)
- Nina Strasser
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | - Sandro Wieser
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | - Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
174
|
Rodríguez-Kessler PL, Muñoz-Castro A. Ligand-free supermolecules: [Pd 2@Ge 18] 4- and [Pd 2@Sn 18] 4- as multiple-bonded Zintl-ion clusters based on Pd@Ge 9 and Pd@Sn 9 assembled units. NANOSCALE 2024. [PMID: 38436401 DOI: 10.1039/d4nr00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Understanding intercluster bonding interactions is important in the rational synthesis of building blocks for molecular materials. Such characteristics have been developed for coinage metal clusters resembling single-, double-, and triple-bonded species, coined as supermolecules. Herein, we extend such an approach for understanding main-group clusters, thus evaluating [Pd2@E18]4- clusters (E = Ge, Sn) involving the fusion of parent spherical aromatic [Pd@E12]2- building units. Our results indicate intercluster bonding provided by contribution from 2P and 1G shells centered at each building motif, leading to an overall bond order of 2.70 and 2.31 for [Pd2@Ge18]4- and [Pd2@Sn18]4-, respectively. In addition, 119Sn-NMR patterns were evaluated to complement the experimental characterization of a single peak owing to the insolution fluxional behavior of [Pd2@Sn18]4- as three peaks owing to the three sets of unique Sn atoms within the structure. Magnetic response properties revealed that spherical aromatic characteristics from parent [Pd@E12]2- building units are retained in the overall [Pd2@E18]4- oblate cluster as two spherical aromatic units. Hence, the notion of superatomic molecules is extended to Zintl-ion clusters, favoring further rationalization for the fabrication of cluster-assembled solids.
Collapse
Affiliation(s)
- Peter L Rodríguez-Kessler
- Centro de Investigaciones en Óptica A.C., Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150, Mexico
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
175
|
Ritacco I, Gatta G, Caporaso L, Farnesi Camellone M. Ab initio molecular dynamics of solvation effects and reactivity at the interface between water and ascorbic acid covered anatase TiO 2 (101). Chemphyschem 2024; 25:e202300768. [PMID: 38153248 DOI: 10.1002/cphc.202300768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
In this work, we present a detailed study of the interaction between ascorbic acid (L-asc) and anatase TiO2 (101) surface both in gas phase and in contact with water by using density functional theory and ab initio molecular dynamics simulations. In gas phase, L-asc strongly binds the TiO2 (101) surface as a dianion (L-asc2- ), adopting a bridging bidentate coordination mode (BB), with the two acid protons transferred to two surface 2-fold bridging oxygens (O2c). AIMD simulations show that the interaction between the organic ligand and the anatase surface is stable and comparable to the vacuum one despite the possible solvent effects and/or possible structural distortions of the ligand. In addition, during the AIMD simulations hydroxylation phenomena occur forming transient H3 O+ ions at the solid-liquid interface. For the first time, our results provide insight into the role of the ascorbic acid on the electronic properties of the TiO2 (101), the influence of the water environment on the ligand-surface interaction and the nature of the solid-liquid interface.
Collapse
Affiliation(s)
- Ida Ritacco
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Gianluca Gatta
- Dipartimento di Medicina di Precisione Divisione di Radiologia, Università della Campania Luigi Vanvitelli, Napoli, Italia, 80131
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Matteo Farnesi Camellone
- CNR-IOM, Consiglio Nazionale delle Ricerche -, Istituto Officina dei Materiali, c/o SISSA, 34136, Trieste, Italy
| |
Collapse
|
176
|
ÖZDEMİR EG. Ab-initio Calculations of the Half-metallic Ferromagnetic New Variant Perovskites Li2CrO6 and Li2CuO6. GAZI UNIVERSITY JOURNAL OF SCIENCE 2024. [DOI: 10.35378/gujs.1073140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The half-metallic calculations of new variant perovskites Li2CrO6 and Li2CuO6 were carried out by using WIEN2k computational code. First, the ferromagnetic (FM) and non-magnetic (NM) phases were compared, and FM phases were obtained energetically more stable. The equilibrium lattice constants were obtained as 7.63 Å and 7.66 Å for Li2CrO6 and Li2CuO6, respectively. Second, the electronic calculations were performed, and the semiconduction properties were seen in spin-up states while spin-down states showed metallic nature. The band gaps were obtained as 1.806 eV and 1.177 eV for Li2CrO6 and Li2CuO6, respectively. Since variant perovskites Li2CrO6 and Li2CuO6 showed 100% spin polarizations, these were obtained as true half-metallic ferromagnetic materials. Then the total magnetic moments were obtained as 4.00 μB/f.u., 5.00 μB/f.u. When both the electronic and magnetic properties of the compounds are examined, the variant perovskites Li2CrO6 and Li2CuO6 are suitable materials for spintronics applications.
Collapse
|
177
|
Laestadius A, Csirik MA, Penz M, Tancogne-Dejean N, Ruggenthaler M, Rubio A, Helgaker T. Exchange-only virial relation from the adiabatic connection. J Chem Phys 2024; 160:084115. [PMID: 38421067 DOI: 10.1063/5.0184934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
The exchange-only virial relation due to Levy and Perdew is revisited. Invoking the adiabatic connection, we introduce the exchange energy in terms of the right-derivative of the universal density functional w.r.t. the coupling strength λ at λ = 0. This agrees with the Levy-Perdew definition of the exchange energy as a high-density limit of the full exchange-correlation energy. By relying on v-representability for a fixed density at varying coupling strength, we prove an exchange-only virial relation without an explicit local-exchange potential. Instead, the relation is in terms of a limit (λ ↘ 0) involving the exchange-correlation potential vxcλ, which exists by assumption of v-representability. On the other hand, a local-exchange potential vx is not warranted to exist as such a limit.
Collapse
Affiliation(s)
- Andre Laestadius
- Department of Computer Science, Oslo Metropolitan University, 0130 Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Mihály A Csirik
- Department of Computer Science, Oslo Metropolitan University, 0130 Oslo, Norway
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Markus Penz
- Department of Computer Science, Oslo Metropolitan University, 0130 Oslo, Norway
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science and Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicolas Tancogne-Dejean
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science and Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science and Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science and Department of Physics, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
178
|
Potla KM, Nuthalapati P, Sasi Mohan JT, Osório FAP, Valverde C, Vankayalapati S, Adimule SP, Armaković SJ, Armaković S, Mary YS. Multifaceted Study of a Y-Shaped Pyrimidine Compound: Assessing Structural Properties, Docking Interactions, and Third-Order Nonlinear Optics. ACS OMEGA 2024; 9:7424-7438. [PMID: 38405509 PMCID: PMC10882687 DOI: 10.1021/acsomega.3c04380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
In this study, we report the synthesis of a new compound, N4,N4-dimethyl-2-(methylsulfanyl)-N6-(4-phenoxyphenyl)pyrimidine-4,6-diamine (DMS), and its comprehensive analysis through structural and spectroscopic characterizations, reactivity parameters, and nonlinear optical properties, utilizing a combination of experimental and computational techniques. The experimental aspect of the investigation encompassed structural characterization using X-ray diffraction and spectroscopic assessments employing Fourier-transform infrared, Raman, and nuclear magnetic resonance techniques, along with thermal analysis. Our computational approach involved density functional theory (DFT) calculations and molecular dynamics (MD) simulations to examine the local reactivity properties of DMS. We employed fundamental reactivity descriptors to evaluate DMS's local reactivity and utilized MD simulations to identify DMS atoms engaging in significant interactions with water molecules. We conducted periodic DFT calculations on DMS's crystal structure to investigate the contributions of specific atoms and groups to the compound's overall stability as well as to analyze noncovalent interactions between DMS molecules. We assessed the nonlinear optical properties through dynamic second hyperpolarizability and third-order nonlinear susceptibility calculations. Additionally, we conducted a comparative analysis of the static and dynamic second hyperpolarizability for the DMS molecule within the sum-over-states framework. The obtained value for the third-order nonlinear susceptibility, (λ = 1907 nm), exceeds those of other organic materials reported in previous studies, indicating that the DMS crystal holds promise as a nonlinear optical material for potential application in photonic device fabrication. Furthermore, molecular docking studies were performed with the 3E5A, 4EUT, and 4EUU proteins, yielding binding affinities of -8.1, -8.2, and -8.3 kcal/mol, respectively, in association with the ligand.
Collapse
Affiliation(s)
- Krishna Murthy Potla
- Department of Chemistry, Velagapudi Ramakrishna Siddhartha Engineering College (Autonomous), 520 007 Kanuru, Vijayawada, Andhra Pradesh, India
| | - Poojith Nuthalapati
- Department of Pharmacology, Sri Ramachandra Institute of Higher Education and Research, 600 116 Ramachandra Nagar, Porur, Chennai, Tamil Nadu, India
| | - Jahnavi Thokala Sasi Mohan
- Department of General Medicine, Narayana Medical College and Hospital, 524002 Nellore, Andhra Pradesh, India
| | - Francisco A P Osório
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia, Goiás, Brazil
- Pontifícia Universidade Católica de Goiás, 74605-100 Goiânia, Goiás, Brazil
| | - Clodoaldo Valverde
- Laboratório de Modelagem Molecular Aplicada e Simulação (LaMMAS), Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75001-970 Anápolis, Goiás, Brazil
- Universidade Paulista, 74845-090 Goiânia, Goiás, Brazil
| | - Suneetha Vankayalapati
- Department of Chemistry, Velagapudi Ramakrishna Siddhartha Engineering College (Autonomous), 520 007 Kanuru, Vijayawada, Andhra Pradesh, India
| | - Suchetan Parameshwar Adimule
- Department of Studies and Research in Chemistry, University College of Science, Tumkur University, 572 103 Tumkur, Karnataka, India
| | - Sanja J Armaković
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| | - Stevan Armaković
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
- Faculty of Sciences, Department of Physics, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Y Sheena Mary
- Department of Physics, FMNC, University of Kerala, 691001 Kollam, Kerala, India
| |
Collapse
|
179
|
Shafei R, Strobel PJ, Schmidt PJ, Maganas D, Schnick W, Neese F. A theoretical spectroscopy study of the photoluminescence properties of narrow band Eu 2+-doped phosphors containing multiple candidate doping centers. Prediction of an unprecedented narrow band red phosphor. Phys Chem Chem Phys 2024; 26:6277-6291. [PMID: 38305760 DOI: 10.1039/d3cp06039j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
We have previously presented a computational protocol that is based on an embedded cluster model and operates in the framework of TD-DFT in conjunction with the excited state dynamics (ESD) approach. The protocol is able to predict the experimental absorption and emission spectral shapes of Eu2+-doped phosphors. In this work, the applicability domain of the above protocol is expanded to Eu2+-doped phosphors bearing multiple candidate Eu doping centers. It will be demonstrated that this protocol provides full control of the parameter space that describes the emission process. The stability of Eu doping at various centers is explored through local energy decomposition (LED) analysis of DLPNO-CCSD(T) energies. This enables further development of the understanding of the electronic structure of the targeted phosphors, the diverse interactions between Eu and the local environment, and their impact on Eu doping probability, and control of the emission properties. Hence, it can be employed to systematically improve deficiencies of existing phosphor materials, defined by the presence of various intensity emission bands at undesired frequencies, towards classes of candidate Eu2+-doped phosphors with desired narrow band red emission. For this purpose, the chosen study set consists of three UCr4C4-based narrow-band phosphors, namely the known alkali lithosilicates RbNa[Li3SiO4]2:Eu2+ (RNLSO2), RbNa3[Li3SiO4]4:Eu2+ (RNLSO) and their isotypic nitridolithoaluminate phosphors consisting of CaBa[LiAl3N4]2:Eu2+ (CBLA2) and the proposed Ca3Ba[LiAl3N4]4:Eu2+ (CBLA), respectively. The theoretical analysis presented in this work led us to propose a modification of the CBLA2 phosphor that should have improved and unprecedented narrow band red emission properties. Finally, we believe that the analysis presented here is important for the future rational design of novel Eu2+-doped phosphor materials, with a wide range of applications in science and technology.
Collapse
Affiliation(s)
- Rami Shafei
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
- Department of Chemistry, Faculty of Science, Beni-Suef University, Salah Salem Str., 62511 Beni-Suef, Egypt
| | - Philipp Jean Strobel
- Lumileds Phosphor Center Aachen, Lumileds Germany GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Peter J Schmidt
- Lumileds Phosphor Center Aachen, Lumileds Germany GmbH, Philipsstraße 8, 52068 Aachen, Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Wolfgang Schnick
- Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
180
|
De A, Mora Perez C, Liang A, Wang K, Dou L, Prezhdo O, Huang L. Tunneling-Driven Marcus-Inverted Triplet Energy Transfer in a Two-Dimensional Perovskite. J Am Chem Soc 2024; 146:4260-4269. [PMID: 38305175 DOI: 10.1021/jacs.4c00236] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Quantum tunneling, a phenomenon that allows particles to pass through potential barriers, can play a critical role in energy transfer processes. Here, we demonstrate that the proper design of organic-inorganic interfaces in two-dimensional (2D) hybrid perovskites allows for efficient triplet energy transfer (TET), where quantum tunneling of the excitons is the key driving force. By employing temperature-dependent and time-resolved photoluminescence and pump-probe spectroscopy techniques, we establish that triplet excitons can transfer from the inorganic lead-iodide sublattices to the pyrene ligands with rapid and weakly temperature-dependent characteristic times of approximately 50 ps. The energy transfer rates obtained based on the Marcus theory and first-principles calculations show good agreement with the experiments, indicating that the efficient tunneling of triplet excitons within the Marcus-inverted regime is facilitated by high-frequency molecular vibrations. These findings offer valuable insights into how one can effectively manipulate the energy landscape in 2D hybrid perovskites for energy transfer and the creation of diverse excitonic states.
Collapse
Affiliation(s)
- Angana De
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Aihui Liang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
181
|
Gigli L, Tisi D, Grasselli F, Ceriotti M. Mechanism of Charge Transport in Lithium Thiophosphate. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1482-1496. [PMID: 38370276 PMCID: PMC10870718 DOI: 10.1021/acs.chemmater.3c02726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
Lithium ortho-thiophosphate (Li3PS4) has emerged as a promising candidate for solid-state electrolyte batteries, thanks to its highly conductive phases, cheap components, and large electrochemical stability range. Nonetheless, the microscopic mechanisms of Li-ion transport in Li3PS4 are far from being fully understood, the role of PS4 dynamics in charge transport still being controversial. In this work, we build machine learning potentials targeting state-of-the-art DFT references (PBEsol, r2SCAN, and PBE0) to tackle this problem in all known phases of Li3PS4 (α, β, and γ), for large system sizes and time scales. We discuss the physical origin of the observed superionic behavior of Li3PS4: the activation of PS4 flipping drives a structural transition to a highly conductive phase, characterized by an increase in Li-site availability and by a drastic reduction in the activation energy of Li-ion diffusion. We also rule out any paddle-wheel effects of PS4 tetrahedra in the superionic phases-previously claimed to enhance Li-ion diffusion-due to the orders-of-magnitude difference between the rate of PS4 flips and Li-ion hops at all temperatures below melting. We finally elucidate the role of interionic dynamical correlations in charge transport, by highlighting the failure of the Nernst-Einstein approximation to estimate the electrical conductivity. Our results show a strong dependence on the target DFT reference, with PBE0 yielding the best quantitative agreement with experimental measurements not only for the electronic band gap but also for the electrical conductivity of β- and α-Li3PS4.
Collapse
Affiliation(s)
| | | | - Federico Grasselli
- Laboratory of Computational
Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational
Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
182
|
Qu M, Zhang FQ, Zhang GL, Qiao MM, Zhao LX, Li SL, Walter M, Zhang XM. Cocrystallization-driven Formation of fcc-based Ag 110 Nanocluster with Chinese Triple Luban Lock Shape. Angew Chem Int Ed Engl 2024; 63:e202318390. [PMID: 38117040 DOI: 10.1002/anie.202318390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Luban locks with mortise and tenon structure have structural diversity and architectural stability, and it is extremely challenging to synthesize Luban lock-like structures at the molecular level. In this work, we report the cocrystallization of two structurally related atom-precise fcc silver nanoclusters Ag110 (SPhF)48 (PPh3 )12 (Ag110 ) and Ag14 (μ6 -S)(SPhF)12 (PPh3 )8 (Ag14 ). It is worth noting that the Ag110 cluster is the first compound to simulate the complex Luban lock structure at the molecular level. Meanwhile, Ag110 is the largest known fcc-based silver nanocluster, so far, there is no precedent for fcc silver nanocluster with more than 100 silver atoms. DFT calculations show that Ag110 is a 58-electron superatom with an electronically closed shell1S2 1P6 1D10 2S2 1F14 2P6 1G18 . Ag110 ⋅Ag14 can rapidly catalyze the reduction of 4-nitrophenol within 4 minutes. In addition, Ag110 presents clear structural evidence to reveal the critical size and mechanism of the transformation of metal core from fcc stacking to quasi-spherical superatom. This research work provides an important structural model for studying the nucleation mechanism and structural assembly of silver nanoclusters.
Collapse
Affiliation(s)
- Mei Qu
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Fu-Qiang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Gai-Li Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Miao-Miao Qiao
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Li-Xiang Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, 79110, Freiburg, Germany
- Fraunhofer IWM, MikroTribologie Centrum μTC, 79108, Freiburg, Germany
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information of Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P. R. China
| |
Collapse
|
183
|
De Waele DJS, Luyten S, Sonstrom RE, Bogaerts J, Neill JL, Viereck P, Goossens K, Baeten M, Vervoort N, Herrebout W. Absolute configuration assignment of highly fluorinated carboxylic acids via VCD and MRR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123625. [PMID: 37950934 DOI: 10.1016/j.saa.2023.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Chiral analysis has become a crucial step in studying the stereospecific synthesis of Active Pharmaceutical Ingredients (APIs). Both Vibrational Circular Dichroism (VCD) and Molecular Rotational Resonance (MRR) spectroscopy are capable of determining absolute configurations (ACs) via comparison of experimental and calculated data. In this regard, each technique has its own caveats. In VCD analysis, accurate prediction of the normal modes as well as rigorous conformational searches of both the analyte and potential (self-)aggregation products are required to optimally match experimental spectra. In MRR analysis, chiral species are resolved through complexation with a chiral tag to prepare spectrally distinct diastereomeric complexes. Although individual complex isomers can be distinguished, spectral assignments need to be matched to unique isomer geometries for unambiguous AC assignment. In this work, the ACs of two highly fluorinated carboxylic acids were successfully assigned using VCD and MRR spectroscopy. In the VCD analysis, the M06-2X functional was demonstrated to be superior to B3LYP and B3LYP-GD3 in accurately predicting the C-F normal modes and both monomeric and dimeric spectral contributions were observed. In a similar analysis with broadband MRR, most experimentally identified geometries had more than one possible computational match. Nevertheless, careful consideration of the chiral tag, as well as additional isomer assignments, resulted in successful assignment of the AC. This comparative study demonstrates the power of contemporary VCD analysis and the unique contributions of MRR to the analytical toolbox.
Collapse
Affiliation(s)
- Dimitri J S De Waele
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sjobbe Luyten
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Reilly E Sonstrom
- BrightSpec, Inc., 770 Harris Street Suite 104b, Charlottesville, VA 22903, United States
| | - Jonathan Bogaerts
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Justin L Neill
- BrightSpec, Inc., 770 Harris Street Suite 104b, Charlottesville, VA 22903, United States
| | - Peter Viereck
- Chemical Process R&D, Discovery Process Research, Janssen R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Karel Goossens
- Chemical Process R&D, Process Analytical Research, Janssen R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Mattijs Baeten
- Chemical Process R&D, Process Analytical Research, Janssen R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Nico Vervoort
- Chemical Process R&D, Process Analytical Research, Janssen R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| |
Collapse
|
184
|
Zhong W, Chen D, Wu Y, Yue J, Shen Z, Huang H, Wang Y, Li X, Lang JP, Xia Q, Cao Y. Screening of transition metal and boron atoms co-doped graphdiyne catalysts for electrocatalytic urea synthesis. J Colloid Interface Sci 2024; 655:80-89. [PMID: 37925971 DOI: 10.1016/j.jcis.2023.10.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Electrocatalytic CN coupling using nitrogen (N2) and carbon dioxide (CO2) as precursors offers a promising alternative for urea production under mild conditions, compared to traditional synthesis approaches. However, the design and screening of extremely efficient electrocatalysts remains a significant challenge in this field. Hence, we propose a systematic approach to screen efficient double-atom catalysts (DACs) with both metal and boron active sites, employing density functional theory (DFT). A comprehensive evaluation of 27 potential catalysts were performed, taking into account their stability, co-adsorption of N2 and CO2, as well as the potential-determining step (PDS) involved urea formation. The calculated results show that co-doped graphdiyne with CrB and MnB double atoms (CrB@GDY and MnB@GDY) emerge as potential electrocatalysts for urea production, displaying thermodynamic energy barriers of 0.41 eV and 0.66 eV, respectively. More importantly, these two DACs can significantly suppress the ammonia (NH3) and C1 products formation. Furthermore, a catalytic activity relationship between the d-band centers of the DACs and urea production performance were established. This study not only forecasts two promising DACs for subsequent experimental work but also establishes a theoretical framework for the evaluation of DACs in electrocatalytic urea synthesis.
Collapse
Affiliation(s)
- Weichan Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Dixing Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yuting Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jingxiu Yue
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China.
| | - Qineng Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Yongyong Cao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| |
Collapse
|
185
|
Ma S, Zhao Y, Li H, Farla R, Zhang Z, Zhou C, Zhao X, Huang Y, Liu Y, Bao K, Yang B, Yang X, Zhu P, Tao Q, Cui T. Self-Catalyzed Hydrogenated Carbon Nano-Onions Facilitates Mild Synthesis of Transparent Nano-Polycrystalline Diamond. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305512. [PMID: 37759410 DOI: 10.1002/smll.202305512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Transparent nano-polycrystalline diamond (t-NPD) possesses superior mechanical properties compared to single and traditional polycrystalline diamonds. However, the harsh synthetic conditions significantly limit its synthesis and applications. In this study, a synthesis routine is presented for t-NPD under low pressure and low temperature conditions, 10 GPa, 1600 °C and 15 GPa, 1350 °C similar with the synthesis condition of organic precursor. Self-catalyzed hydrogenated carbon nano-onions (HCNOs) from the combustion of naphthalene enable synthesis under nearly industrial conditions, which are like organic precursor and much lower than that of graphite and other carbon allotropes. This is made possible thanks to the significant impact of hydrogen on the thermodynamics, as it chemically facilitates phase transition. Ubiquitous nanotwinned structures are observed throughout t-NPD due to the high concentration of puckered layers and stacking faults of HCNOs, which impart a Vickers hardness about 140 GPa. This high hardness and optical transparency can be attributed to the nanocrystalline grain size, thin intergranular films, absence of secondary phase and pore-free features. The facile and industrial-scale synthesis of the HCNOs precursor, and mild synthesis conditions make t-NPD suitable for a wide range of potential applications.
Collapse
Affiliation(s)
- Shuailing Ma
- Institute of High Pressure Physics, School of Physical Scientific and Technology, Ningbo University, Ningbo, 315211, China
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100094, China
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse, 85, 22607, Hamburg, Germany
| | - Yongsheng Zhao
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100094, China
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse, 85, 22607, Hamburg, Germany
| | - Hailong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Max-Planck-Institute for Polymer Research, Department of Physics at Interfaces, Ackermannweg 10, 55128, Mainz, Germany
| | - Robert Farla
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse, 85, 22607, Hamburg, Germany
| | - Zihan Zhang
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Chao Zhou
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Xingbin Zhao
- Institute of High Pressure Physics, School of Physical Scientific and Technology, Ningbo University, Ningbo, 315211, China
| | - Yanping Huang
- Institute of High Pressure Physics, School of Physical Scientific and Technology, Ningbo University, Ningbo, 315211, China
| | - Yanhui Liu
- Institute of High Pressure Physics, School of Physical Scientific and Technology, Ningbo University, Ningbo, 315211, China
| | - Kuo Bao
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Bin Yang
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100094, China
| | - Xigui Yang
- Henan Key laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Mistry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Pinwen Zhu
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Qiang Tao
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Scientific and Technology, Ningbo University, Ningbo, 315211, China
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
186
|
Wan Z, Zhou C, Lin Y, Chen L, Tian Z. Computational understanding of Na-LTA for ethanol-water separation. Phys Chem Chem Phys 2024; 26:4505-4510. [PMID: 38240530 DOI: 10.1039/d3cp06046b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
There is a growing demand for high purity ethanol as an electronic chemical. The conventional distillation process is effective for separating ethanol from water but consumes a significant amount of energy. Selective membrane separation using the LTA-type molecular sieve has been introduced as an alternative. The density functional theory simulation indicates that aluminum (Al) sites are evenly distributed throughout the framework, while sodium (Na+) ions are preferentially located in the six-membered ring. The movement of ethanol molecules can cause Na+ ions to be transported towards the eight-membered ring, hindering the passage of ethanol through the channel. In contrast, the energy barrier for water molecules passing through the channel occupied by Na+ ions is significantly lower, leading to a high level of selectivity for ethanol-water separation.
Collapse
Affiliation(s)
- Zicheng Wan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 313001, P. R. China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Chen Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
187
|
Shu Y, Li T, Miao N, Gou J, Huang X, Cui Z, Xiong R, Wen C, Zhou J, Sa B, Sun Z. Contact engineering for 2D Janus MoSSe/metal junctions. NANOSCALE HORIZONS 2024; 9:264-277. [PMID: 38019263 DOI: 10.1039/d3nh00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The flourish of two-dimensional (2D) materials provides a versatile platform for building high-performance electronic devices in the atomic thickness regime. However, the presence of the high Schottky barrier at the interface between the metal electrode and the 2D semiconductors, which dominates the injection and transport efficiency of carriers, always limits their practical applications. Herein, we show that the Schottky barrier can be controllably lifted in the heterostructure consisting of Janus MoSSe and 2D vdW metals by different means. Based on density functional theory calculations and machine learning modelings, we studied the electrical contact between semiconducting monolayer MoSSe and various metallic 2D materials, where a crossover from Schottky to Ohmic/quasi-Ohmic contact is realized. We demonstrated that the band alignment at the interface of the investigated metal-semiconductor junctions (MSJs) deviates from the ideal Schottky-Mott limit because of the Fermi-level pinning effects induced by the interface dipoles. Besides, the effect of the thickness and applied biaxial strain of MoSSe on the electronic structure of the junctions are explored and found to be powerful tuning knobs for electrical contact engineering. It is highlighted that using the sure-independence-screening-and-sparsifying-operator machine learning method, a general descriptor WM3/exp(Dint) was developed, which enables the prediction of the Schottky barrier height for different MoSSe-based MSJ. These results provide valuable theoretical guidance for realizing ideal Ohmic contacts in electronic devices based on the Janus MoSSe semiconductors.
Collapse
Affiliation(s)
- Yu Shu
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Ting Li
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| | - Jian Gou
- School of Physics, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaochun Huang
- Department of Physics, University of Hamburg, D-20355 Hamburg, Germany.
| | - Zhou Cui
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Rui Xiong
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Cuilian Wen
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| | - Baisheng Sa
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
188
|
Yu JM, Tsai J, Rajabi A, Rappoport D, Furche F. Natural determinant reference functional theory. J Chem Phys 2024; 160:044102. [PMID: 38252940 DOI: 10.1063/5.0180319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
The natural determinant reference (NDR) or principal natural determinant is the Slater determinant comprised of the N most strongly occupied natural orbitals of an N-electron state of interest. Unlike the Kohn-Sham (KS) determinant, which yields the exact ground-state density, the NDR only yields the best idempotent approximation to the interacting one-particle reduced density matrix, but it is well-defined in common atom-centered basis sets and is representation-invariant. We show that the under-determination problem of prior attempts to define a ground-state energy functional of the NDR is overcome in a grand-canonical ensemble framework at the zero-temperature limit. The resulting grand potential functional of the NDR ensemble affords the variational determination of the ground state energy, its NDR (ensemble), and select ionization potentials and electron affinities. The NDR functional theory can be viewed as an "exactification" of orbital optimization and empirical generalized KS methods. NDR functionals depending on the noninteracting Hamiltonian do not require troublesome KS-inversion or optimized effective potentials.
Collapse
Affiliation(s)
- Jason M Yu
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Jeffrey Tsai
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Ahmadreza Rajabi
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Filipp Furche
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
189
|
Vasilyev D. Thermal expansion anisotropy of Fe 23Mo 16 and Fe 7Mo 6 μ-phases predicted using first-principles calculations. Phys Chem Chem Phys 2024; 26:3482-3499. [PMID: 38205841 DOI: 10.1039/d3cp04266a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The intermetallic μ-phase, which precipitates in steels and superalloys, can noticeably soften the mechanical properties of their matrix. Despite the importance of developing superalloys and steels, the thermodynamic properties and directions of thermal expansion of the μ-phase are still poorly studied. In this work, the thermal expansion paths, elastic, thermal and thermodynamic properties of the Fe23Mo16 and Fe7Mo6 μ-phases are studied using the first-principles-based quasi-harmonic Debye-Grüneisen approach. A method that avoids differentiation in many variables is used. The free energies consisting of the electronic, vibrational and magnetic energy contributions, calculated along different paths of thermal expansions, were compared among themselves. A path with the least free energy was chosen as the trajectory of thermal expansion. Negative thermal expansion of the Fe7Mo6 compound was predicted, while Fe23Mo16 exhibits conventional thermal expansion. The thermal expansions of both these compounds are not isotropic. The elastic constants, moduli, heat capacities, Curie and Debye temperatures were predicted. The obtained results satisfactorily agree with the available experimental data. Physical factors affecting the stability of Fe23Mo16 and Fe7Mo6 have been studied. This study presents an essential feature of thermal expansion of the μ-phase of the Fe-Mo system, which can provide an insight into future developments.
Collapse
Affiliation(s)
- Dmitry Vasilyev
- Baikov Institute of Metallurgy and Materials Science of RAS, Leninsky Prospekt 49, 119334, Moscow, Russia.
| |
Collapse
|
190
|
Ali MA, Alothman AA, Mushab M, Faizan M. Optoelectronic and thermoelectric properties of novel stable lead-free cubic double perovskites A 2NaIO 6 (A = Ca, Sr) for renewable energy applications. Phys Chem Chem Phys 2024; 26:3614-3622. [PMID: 38223943 DOI: 10.1039/d3cp04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Over the past decade, perovskites have received considerable attention because of their record power conversion efficiency (25.7%) in solar cells. These materials have also received recent research interest in thermoelectrics, most likely due to their high carrier mobility, large power factor, and ultralow thermal conductivity. Therefore, in the present work, we have examined the optoelectronic and thermoelectric properties of A2NaIO6 (A = Ca, Sr) double perovskites using first-principles calculations. Stability has been confirmed using reliable and accurate descriptors of formation energy and phonon calculations. The optimized lattice constant and volume show an increasing tendency with changing A site cation (Ca → Sr). The computed band structures depict the semiconducting nature with direct band gap values of 2.64 eV (Ca2NaIO6) and 2.48 eV (Sr2NaIO6). The absorption was found to start in the visible range where the reflectivity was less than 10%. Moreover, the high Seebeck coefficient, large electrical conductivity, and fairly low thermal conductivity result in ZT values of 0.724 for Ca2NaIO6 and 0.686 for Sr2NaIO6 at 1000 K. With their optimum band gap, excellent light absorption capacity, and high ZT values, A2NaIO6 emerge as promising candidates for optoelectronic and thermoelectric applications.
Collapse
Affiliation(s)
- Malak Azmat Ali
- Department of Physics, Government Post Graduate Jahanzeb College Saidu Sharif, Swat 19130, Khyber Paktunkhwa, Pakistan.
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Mushab
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Faizan
- College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
191
|
Rani D, Jana S, K Niranjan M, Samal P. First-principle investigation of structural, electronic, and phase stabilities in chalcopyrite semiconductors: insights from Meta-GGA functionals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:165502. [PMID: 38194716 DOI: 10.1088/1361-648x/ad1ca3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
We undertake a comprehensive first-principles investigation into the factors influencing the optoelectronic efficiencies of PIQIIIR2VIchalcopyrite semiconductors. The structural attributes, electronic properties, and phase stabilities are explored using various meta-GGA exchange-correlation (XC) functionals within the density functional framework. In particular, we assess the relative performance of these XC functionals in obtaining estimates of various relevant parameters. The structural parameteruin chalcopyrite semiconductors is a noteworthy aspect, as it is intrinsically tied to the extent of orbital hybridization between distinct atoms and thereby strongly influences the electronic properties. In general, the application of widely used GGA-PBE XC functional to these chalcopyrites results in unreliable predictions of band gaps and 'u' parameter due to delocalization errors that in turn arise due to the inclusion ofdandfcore electrons. While hybrid functionals offer remarkable accuracy through state-of-the-art methods, their main drawback lies in their computational expense and resource demands. Our findings strongly suggest that in comparison to GGA-PBE, the meta-GGA XC functionals perform quite well and provide results that closely align with experimental values. In particular, ther2SCAN andrMGGAC XC functionals are preferable and superior for investigating chalcopyrites and other solid-state systems. This preference is rooted in their excellent performance and substantially reduced computational costs compared to hybrid functionals.
Collapse
Affiliation(s)
- Dimple Rani
- School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, India
| | - Subrata Jana
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Manish K Niranjan
- Department of Physics, Indian Institute of Technology, Hyderabad, India
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute, Jatni 752050, India
| |
Collapse
|
192
|
Nawarathne CP, Aranda DG, Hoque A, Dangel GR, Seminario JM, Alvarez NT. Creating covalent bonds between Cu and C at the interface of metal/open-ended carbon nanotubes. NANOSCALE ADVANCES 2024; 6:428-442. [PMID: 38235085 PMCID: PMC10791115 DOI: 10.1039/d3na00500c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
The unique electrical properties of carbon nanotubes (CNTs) are highly desired in many technological applications. Unfortunately, in practice, the electrical conductivity of most CNTs and their assemblies has fallen short of expectations. One reason for this poor performance is that electrical resistance develops at the interface between carbon nanomaterials and metal surfaces when traditional metal-metal type contacts are employed. Here, a method for overcoming this resistance using covalent bond formation between open-ended CNTs and Cu surfaces is investigated experimentally and supported by theoretical calculations. The open-ended CNTs are vertically oriented compared to the substrate and have carboxylic functional groups that react with aminophenyl groups (linkers) grafted on metal surfaces. The covalent bond formation, crosslinking carboxylic and amine, via amide bond formation occurs at 120 °C. The covalent bonding nature of the aminophenyl linker is demonstrated theoretically using (100), (110), and (111) Cu surfaces, and bridge-like bond formation between carbon and two adjacent Cu atoms is revealed. The electrical conductivity calculated for a single intramolecular-type junction supports covalent bond formation between Cu and CNTs. Experimentally, the robustness of the covalent bonding between vertically oriented CNTs is tested by exposing CNTs on Cu to sonication, which reveals that CNTs remain fixed to the Cu supports. Since bonding CNTs to metals was performed at low temperatures, the reported method of covalent bond formation is expected to facilitate the application of CNTs in multiple fields, including electronics.
Collapse
Affiliation(s)
| | - Diego Galvez Aranda
- The Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
| | - Abdul Hoque
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Gabrielle R Dangel
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| | - Jorge M Seminario
- The Department of Chemical Engineering, Texas A&M University College Station TX 77843 USA
| | - Noe T Alvarez
- Department of Chemistry, University of Cincinnati Cincinnati OH 45221 USA
| |
Collapse
|
193
|
Tsao CW, Narra S, Kao JC, Lin YC, Chen CY, Chin YC, Huang ZJ, Huang WH, Huang CC, Luo CW, Chou JP, Ogata S, Sone M, Huang MH, Chang TFM, Lo YC, Lin YG, Diau EWG, Hsu YJ. Dual-plasmonic Au@Cu 7S 4 yolk@shell nanocrystals for photocatalytic hydrogen production across visible to near infrared spectral region. Nat Commun 2024; 15:413. [PMID: 38195553 PMCID: PMC10776726 DOI: 10.1038/s41467-023-44664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
Near infrared energy remains untapped toward the maneuvering of entire solar spectrum harvesting for fulfilling the nuts and bolts of solar hydrogen production. We report the use of Au@Cu7S4 yolk@shell nanocrystals as dual-plasmonic photocatalysts to achieve remarkable hydrogen production under visible and near infrared illumination. Ultrafast spectroscopic data reveal the prevalence of long-lived charge separation states for Au@Cu7S4 under both visible and near infrared excitation. Combined with the advantageous features of yolk@shell nanostructures, Au@Cu7S4 achieves a peak quantum yield of 9.4% at 500 nm and a record-breaking quantum yield of 7.3% at 2200 nm for hydrogen production in the absence of additional co-catalysts. The design of a sustainable visible- and near infrared-responsive photocatalytic system is expected to inspire further widespread applications in solar fuel generation. In this work, the feasibility of exploiting the localized surface plasmon resonance property of self-doped, nonstoichiometric semiconductor nanocrystals for the realization of wide-spectrum-driven photocatalysis is highlighted.
Collapse
Affiliation(s)
- Chun-Wen Tsao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Sudhakar Narra
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yu-Chang Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, 226-8503, Japan
| | - Yu-Cheng Chin
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ze-Jiung Huang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wei-Hong Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Wei Luo
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Shigenobu Ogata
- Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, 560-8531, Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, 226-8503, Japan
| | - Michael H Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, 226-8503, Japan.
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Eric Wei-Guang Diau
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, 226-8503, Japan.
| |
Collapse
|
194
|
Ali SA, Ahmad T. Decorating Thermodynamically Stable (101) Facets of TiO 2 with MoO 3 for Multifunctional Sustainable Hydrogen Energy and Ammonia Gas Sensing Applications. Inorg Chem 2024; 63:304-315. [PMID: 38146688 DOI: 10.1021/acs.inorgchem.3c03176] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The simultaneous realization of sustainable energy and gas sensors dealing with the emission of pollutants is indispensable as the former thrives on the minimization of the latter. However, there is a dearth of multifunctional nanocatalysts in the literature. This ascertains the importance of multifunctional semiconductors which can be utilized in H2 generation via overall water splitting and in the gas sensing of global pollutants such as NH3. MoO3-decorated TiO2 Z-scheme heterostructures exceptionally escalate the photochemical and photo/electrochemical H2 evolution performance and gas sensing response of TiO2 owing to the synergistic relationship between TiO2 and MoO3. Extensive structural, morphological, and optical characterizations, theoretical studies, and XPS results were exploited to develop a mechanistic framework of photochemical H2 evolution. The photochemical response of the optimum TiO2-MoO3 composition (20 wt % MoO3-TiO2) was found to be nearly 12- and 20-fold superior to the pristine TiO2 and MoO3 photocatalysts, respectively, with the remarkable H2 evolution rate of 9.18 mmol/g/h and AQY of 36.02%. In addition, 20 wt % MoO3-TiO2 also showed advanced photo/electrochemical efficiency with 0.61/0.7 V overpotential values toward HER due to the higher electrochemically active surface area and Tafel slope as low as 65 mV/dec. The gas sensing response of 20 wt % MoO3-TiO2 toward NH3 gas turned out to be 2.5-fold higher than that of the pristine TiO2 gas sensor.
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
195
|
Ahmed MT, Islam S, Ahmed F. A-Site Cation Replacement of Hydrazinium Lead Iodide Perovskites by Borane Ammonium Ions: A DFT Calculation. ChemistryOpen 2024; 13:e202300207. [PMID: 38047541 PMCID: PMC10784623 DOI: 10.1002/open.202300207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Organometallic perovskites have become one of the most common multifunctional materials in optoelectronic research fields. This research studies density functional theory calculation on orthorhombic hydrazinium lead iodide (N2 H5 PbI3 ) perovskite by replacing A-site cation with a borane ammonium (BH2 NH3 + ) ion. The perovskite showed a significant structural deformation and an orthorhombic to triclinic phase transition due to A-site ion replacement. The N2 H5 PbI3 perovskite has a band gap of 1.64 eV, suitable for the solar cell absorber layer. The band gap has increased to 2.12 eV after complete A-site ion replacement. All structures showed a high absorption coefficient over 104 cm-1 in the low wavelength region and an increase in refractive index from 2.5 to 2.75 due to ion replacement. All the structures showed high optical conductivity of 1015 s-1 order in the blue wavelength region. These new perovskite structures hold the potential to provide a revolution in optoelectronic research.
Collapse
Affiliation(s)
| | - Shariful Islam
- Department of PhysicsJahangirnagar UniversityDhakaBangladesh
| | - Farid Ahmed
- Department of PhysicsJahangirnagar UniversityDhakaBangladesh
| |
Collapse
|
196
|
Nagarajan V, Vaishnavi M, Bhuvaneswari R, Chandiramouli R. Novel chair graphene nanotubes as adsorbing medium for alanine and asparagine amino acids - A DFT outlook. J Mol Graph Model 2024; 126:108637. [PMID: 37801810 DOI: 10.1016/j.jmgm.2023.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Amino acids are required to make protein. The deficiency of amino acids leads to a lack of sleep and mood. Among various amino acids, we conducted the adsorption studies of alanine and asparagine amino acids on a novel one-dimensional material, chair graphene nanotube. The stability of the chair graphene nanotube is ensured with the negative formation energy, which is -6.490 eV/atom. The energy band gap of bare chair graphene nanotube is 1.022 eV, which possesses a semiconductor nature. The stable chair graphene nanotube is used as adsorbing material for alanine and asparagine amino acids. Besides, alanine and asparagine are physisorbed on chair graphene nanotubes that are confirmed by the range of adsorption energy from -0.107 eV to -0.718 eV. Upon adsorption of amino acids, the charge transfer outcome shows that chair graphene nanotubes behave as donors of electrons to alanine and asparagine. Further, the changes in the band gap of the chair graphene nanotube are noticed from the results of band structure and PDOS spectrum. The changes in the electron density also reveal the changes in the electronic properties of the chair graphene nanotube owing to alanine and asparagine sorption. The proposed report portrays the adsorption attributes of alanine and asparagine amino acids on 1D chair graphene nanotubes.
Collapse
Affiliation(s)
- V Nagarajan
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - M Vaishnavi
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Bhuvaneswari
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India
| | - R Chandiramouli
- School of Electrical & Electronics Engineering, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, India.
| |
Collapse
|
197
|
Yu Y, Xiong T, Liu YY, Yang J, Xia JB, Wei Z. Polarization Reversal of Group IV-VI Semiconductors with Pucker-Like Structure: Mechanism Dissecting and Function Demonstration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307769. [PMID: 37696251 DOI: 10.1002/adma.202307769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Polarization imaging presents advantages in capturing spatial, spectral, and polarization information across various spectral bands. It can improve the perceptual ability of image sensors and has garnered more applications. Despite its potential, challenges persist in identifying band information and implementing image enhancement using polarization imaging. These challenges often necessitate integrating spectrometers or other components, resulting in increased complexities within image processing systems and hindering device miniaturization trends. Here, the characteristics of anisotropic absorption reversal are systematically elucidated in pucker-like group IV-VI semiconductors MX (M = Ge, Sn; X = S, Se) through theoretical predictions and experimental validations. Additionally, the fundamental mechanisms behind anisotropy reversal in different bands are also explored. The photodetector is constructed by utilizing MX as a light-absorbing layer, harnessing polarization-sensitive photoresponse for virtual imaging. The results indicate that the utilization of polarization reversal photodetectors holds advantages in achieving further multifunctional integration within the device structure while simplifying its configuration, including band information identification and image enhancement. This study provides a comprehensive analysis of polarization reversal mechanisms and presents a promising and reliable approach for achieving dual-band image band identification and image enhancement without additional auxiliary components.
Collapse
Affiliation(s)
- Yali Yu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Xiong
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Jian-Bai Xia
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
198
|
Xiong J, Gong Q, Feng T, Wang M, Zhang X, Liu G, Qiao G, Xu Z. Enhance Hydrogen Evolution Reaction Performance via Double-Stacked Edges of Black Phosphorene. Inorg Chem 2023; 62:21115-21127. [PMID: 38063020 DOI: 10.1021/acs.inorgchem.3c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Based on the density functional theory (DFT) calculations, we explored the structures and HER catalytic properties of reconstructed and double-stacked black phosphorene (BP) edges. Ten bilayer BP edges were constructed by the double stacking of three typical monolayer edges, i.e., zigzag (ZZ) edge, armchair (AC) edge, skewed diagonal (SD) edge, and their reconstructed derivatives with their layer's configurations, edge deformations and thermodynamic stabilities were discussed. Based on these edges, five chemical sites on four bilayer BP edges were selected to be promising candidates for a HER catalyst, which present higher HER activities than that of Pt(111). Besides, among these four edges, two edges have even lower energetic barriers for the Tafel reaction. Compared with the monolayer edges, these selected bilayer BP edges confirm the remarkable enhancement of the HER catalytic properties, which can be attributed to their unique edge structures and the enhanced electronic densities after the hydrogen adsorptions. Finally, the thermostability of these edges at room temperature has also been proved by the DFT-MD simulations. This theoretic study deepens our fundamental understanding of the double-stacked edge structures of the BP and provides a new way for the rational design of highly efficient and noble-metal-free HER catalysts.
Collapse
Affiliation(s)
- Jianling Xiong
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Qiang Gong
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Tianliang Feng
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Mingsong Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Xiuyun Zhang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Ziwei Xu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
199
|
Kuznetsova AA, Chachkov DV, Belogorlova NA, Malysheva SF, Vereshchagina YA. Structure of Tris[2-(4-pyridyl)ethyl]phosphine, Tris[2-(2-pyridyl)ethyl]phosphine, and Their Chalcogenides in Solution: Dipole Moments, IR Spectroscopy, and DFT Study. Molecules 2023; 29:110. [PMID: 38202693 PMCID: PMC10779502 DOI: 10.3390/molecules29010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Tris(hetaryl)substituted phosphines and their chalcogenides are promising polydentate ligands for the design of metal complexes. An experimental and theoretical conformational analysis of tris[2-(4-pyridyl)ethyl]phosphine, tris[2-(2-pyridyl)ethyl]phosphine, and their chalcogenides was carried out by the methods of dipole moments, IR spectroscopy and DFT B3PW91/6-311++G(df,p) calculations. In solution, these compounds exist as an equilibrium of mainly non-eclipsed (synclinal or antiperiplanar) forms with a predominance of a symmetrical conformer having a gauche-orientation of the Csp3-Csp3 bonds of pyridylethyl substituents relative to the P=X bond (X = lone pair, O, S, Se) and a gauche-orientation of the pyridyl rings relative to the zigzag ethylene bridges. Regardless of the presence and nature of the chalcogen atom (oxygen, sulfur, or selenium) in the studied molecules with many axes of internal rotation, steric factors-the different position of the nitrogen atoms in the pyridyl rings and the configuration of ethylene bridges-determine the realization and spatial structure of preferred conformers.
Collapse
Affiliation(s)
- Anastasiia A. Kuznetsova
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| | - Denis V. Chachkov
- Kazan Department of Joint Supercomputer Center of Russian Academy of Sciences—Branch of Federal Scientific Center “Scientific Research Institute for System Analysis of the RAS”, Lobachevskogo 2/31, 420111 Kazan, Russia;
| | - Natalia A. Belogorlova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorskogo 1, 664033 Irkutsk, Russia; (N.A.B.); (S.F.M.)
| | - Svetlana F. Malysheva
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorskogo 1, 664033 Irkutsk, Russia; (N.A.B.); (S.F.M.)
| | - Yana A. Vereshchagina
- Department of Physical Chemistry, A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| |
Collapse
|
200
|
Gurunani B, Gupta DC. Exploring the electronic structure, mechanical behaviour, thermal and high-temperature thermoelectric response of CoZrSi and CoZrGe Heusler alloys. Sci Rep 2023; 13:22834. [PMID: 38129465 PMCID: PMC10739807 DOI: 10.1038/s41598-023-48316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
By using density functional theory, we have explored the structural, electro-mechanical, thermophysical and thermoelectric properties of CoZrSi and CoZrGe Heusler alloys. The ground state stability was determined by optimising the energy in various configurations like type I, II, and III. It was found that these alloys stabilized in the ferromagnetic phase in type I. We employed the Generalised Gradient Approximation and modified Becke-Johnson potentials to explore the electronic structure. The band structures of each of these Heusler alloys exhibit a half-metallic nature. Additionally, the computed second-order elastic parameters reveal their ductile nature of them. To understand the stability of the alloys at different pressures and temperatures, we investigated various thermodynamic parameters using the Quasi-Harmonic Debye model. We obtained the transport coefficients using the Boltzmann theory. Our findings indicate that these alloys can be used in spintronics and thermoelectric domains.
Collapse
Affiliation(s)
- Bharti Gurunani
- Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474011, India
| | - Dinesh C Gupta
- Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474011, India.
| |
Collapse
|