151
|
A Universal Photochemical Method to Prepare Carbohydrate Sensors Based on Perfluorophenylazide Modified Polydopamine for Study of Carbohydrate-Lectin Interactions by QCM Biosensor. Polymers (Basel) 2019; 11:polym11061023. [PMID: 31185633 PMCID: PMC6631999 DOI: 10.3390/polym11061023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/27/2023] Open
Abstract
A universal photochemical method to prepare carbohydrate sensors based on perfluorophenylazide (PFPA) modified polydopamine (PDA) for the study of carbohydrate–lectin interactions by a quartz crystal microbalance (QCM) biosensor was developed. The PFPA was immobilized on PDA-coated gold sensors via Schiff base reactions. Upon light irradiation, the underivatized carbohydrates were inserted into the sensor surface, including mannose, galactose, fucose and N-acetylglucosamine (GlcNAc). Carbohydrate sensors were evaluated for the binding to a series of plant lectins. A kinetic study of the interactions between mannose and concanavalin A (Con A), fucose and Ulex europaeus agglutinin I (UEA-I) were performed. This method can eliminate the tedious modification of carbohydrates, improve the experimental efficiency, and reduce the experimental cost, which is of great significance for the development of QCM biosensors and the study of biomolecular interactions.
Collapse
|
152
|
Wang Y, Zhang Y, Shao J, Wu B, Li B. Potential immunomodulatory activities of a lectin from the mushroom Latiporus sulphureus. Int J Biol Macromol 2019; 130:399-406. [DOI: 10.1016/j.ijbiomac.2019.02.150] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023]
|
153
|
Rahimi V, Hajizadeh J, Zibaee A, Sendi JJ. Changes in immune responses of Helicoverpa armigera Hübner followed by feeding on Knotgrass, Polygonum persicaria agglutinin. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21543. [PMID: 30854723 DOI: 10.1002/arch.21543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
There is no study implying the effect of plant lectins on insect immune elements in both challenged and non-challenged conditions with entomopathogenic agents. Lectins may bind to immune receptors on the surface of insect hemocytes, thus inducing or even disabling common immune functions including hemocyte counts, nodulation/encapsulation, phenoloxidase activity, and synthesis of antimicrobial peptides. In the present study, effect of Polygonum persicaria L. agglutinin (PPA) on immune responses of Helicoverpa armigera Hübner was investigated by feeding artificial diet treated to the larvae. Subsequently hemocyte count and expression of some immune-related genes were considered for analyses. The two groups of larvae including control and PPA-treated (1%) were divided into four subgroups of intact, Tween-80 injected, latex-bead injected and Beauveria bassiana-injected. Except for intact larvae, the highest numbers of total and differential hemocyte counts were recorded 12 hr postinjection, however, the PPA-fed larvae showed a significantly lower hemocyte counts compared to control. The number of nodules in PPA-fed larvae was significantly lower than control, but the injected larvae of both control and PPA showed the highest nodulation 24 hr postinjection. Although the highest activity of phenoloxidase was observed 12 and 24 hr postinjection but its activity significantly decreased in PPA-fed larvae compared to control. Gene expression of antimicrobial peptides including attacin, cecropin, and peptidoglycan receptor proteins were significantly decreased in artificial diet-fed larvae containing PPA and then injected by B. bassiana spores and latex bead compared to control. These results clearly indicate adverse effects of PPA on immune responses in H. armigera.
Collapse
Affiliation(s)
- Vahid Rahimi
- Department of Plant Protection, Faculty of agricultural sciences, University of Guilan, Rasht, Iran
| | - Jalil Hajizadeh
- Department of Plant Protection, Faculty of agricultural sciences, University of Guilan, Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of agricultural sciences, University of Guilan, Rasht, Iran
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of agricultural sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
154
|
Han Y, Song L, Peng C, Liu X, Liu L, Zhang Y, Wang W, Zhou J, Wang S, Ebbole D, Wang Z, Lu GD. A Magnaporthe Chitinase Interacts with a Rice Jacalin-Related Lectin to Promote Host Colonization. PLANT PHYSIOLOGY 2019; 179:1416-1430. [PMID: 30696749 PMCID: PMC6446787 DOI: 10.1104/pp.18.01594] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/18/2019] [Indexed: 05/21/2023]
Abstract
The genome of rice blast fungus (Magnaporthe oryzae) encodes 15 glycoside hydrolase 18 family chitinases. In this study, we characterized the function of an M. oryzae extracellular chitinase, MoChi1, and its interaction with a host protein, OsMBL1, a jacalin-related Mannose-Binding Lectin (MBL) in rice (Oryza sativa). Deletion of MoChi1 resulted in reduced aerial hyphal formation and reduced virulence in rice by activating the expression of defense-responsive genes. We confirmed MoChi1 interaction with rice OsMBL1 in vitro and in vivo. OsMBL1 was induced by pathogen-associated molecular patterns and M. oryzae infection. Overexpression of OsMBL1 led to activation of rice defense-responsive genes and a chitin-induced reactive oxygen species burst, thereby enhancing resistance to M. oryzae Knockdown of OsMBL1 enhances susceptibility of rice plants to M. oryzae Furthermore, MoChi1 suppressed chitin-induced reactive oxygen species in rice cells and competed with OsMBL1 for chitin binding. Taken together, our study reveals a mechanism in which MoChi1 targets a host lectin to suppress rice immunity.
Collapse
Affiliation(s)
- Yijuan Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Changlin Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihua Liu
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunhui Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daniel Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Biopesticide and Chemistry Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
155
|
Sun Y, Liu J, Huang Y, Li M, Lu J, Jin N, He Y, Fan B. Phytohemagglutinin content in fresh kidney bean in China. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1590399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yufeng Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Minmin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jia Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Nuo Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences / Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
156
|
Bhagat YS, Bhat RS, Kolekar RM, Patil AC, Lingaraju S, Patil RV, Udikeri SS. Remusatia vivipara lectin and Sclerotium rolfsii lectin interfere with the development and gall formation activity of Meloidogyne incognita in transgenic tomato. Transgenic Res 2019; 28:299-315. [PMID: 30868351 DOI: 10.1007/s11248-019-00121-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
Root knot nematodes are serious threats to growth and yield of solaneous crops including tomato. In this study, a binary vector carrying Remusatia vivipara (rvl1) and Sclerotium rolfsii (srl1) lectin genes were introduced independently into Lycopersicon esculentum cv. Pusa Ruby via Agrobacterium tumefaciens for resistance against root knot nematode, Meloidogyne incognita. In total, one hundred and one rvl1 and srl1-transformed plants exhibiting kanamycin resistance were confirmed to carry transgenes as detected by polymerase chain reaction (PCR) with 4.59% transformation efficiency. Genetic analysis of T1 progeny confirmed Mendelian segregation of the introduced genes. Three events each of rvl1 and srl1 transgenic tomato were randomly selected for further confirmation by Southern and TAIL-PCR analyses. All three events of srl1 transgenics showed single copy transgene, whereas two rvl1 transgenic events showed single copy of transgene, while remaining event showed two copies of transgenes. Site of integration obtained for rvl1 and srl1 transgenic events by TAIL-PCR revealed that all the three events of rvl1 and srl1 transgenics differed for their site of integration and insertion sites did not contain any predicted gene. Moreover, expression of the rvl1 and srl1 transgenes was detected by haemagglutination assay in all three events of rvl1 and srl1, but not in non-transgenic tomato plant. Homozygous progenies of these events were grown and inoculated with M. incognita. Development and reproduction of M. incognita was severely affected in transgenic tomato plants expressing RVL1 and SRL1 exhibiting the high levels of resistance compared to non-transgenic plants. Therefore, these transgenic lines demonstrate a promising potential for variety development of tomato lines with enhanced resistance against M. incognita.
Collapse
Affiliation(s)
- Yogesh S Bhagat
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India.
| | - Ramesh S Bhat
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - Rohini M Kolekar
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - Ashlesha C Patil
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Bangalore, Bengaluru, 560065, India
| | - S Lingaraju
- Insititute of Organic Farming, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - R V Patil
- Department of Horticulture, College of Agriculture, Bijapur, University of Agricultural Sciences, Dharwad, 586103, India
| | - S S Udikeri
- Agriculture Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| |
Collapse
|
157
|
Villard C, Larbat R, Munakata R, Hehn A. Defence mechanisms of Ficus: pyramiding strategies to cope with pests and pathogens. PLANTA 2019; 249:617-633. [PMID: 30689053 DOI: 10.1007/s00425-019-03098-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Ficus species have adapted to diverse environments and pests by developing physical or chemical protection strategies. Physical defences are based on the accumulation of minerals such as calcium oxalate crystals, amorphous calcium carbonates and silica that lead to tougher plants. Additional cellular structures such as non-glandular trichomes or laticifer cells make the leaves rougher or sticky upon injury. Ficus have also established structures that are able to produce specialized metabolites (alkaloids, terpenoids, and phenolics) or proteins (proteases, protease inhibitors, oxidases, and chitinases) that are toxic to predators. All these defence mechanisms are distributed throughout the plant and can differ depending on the genotype, the stage of development or the environment. In this review, we present an overview of these strategies and discuss how these complementary mechanisms enable effective and flexible adaptation to numerous hostile environments.
Collapse
Affiliation(s)
- Cloé Villard
- UMR1121, Université de Lorraine-INRA Laboratoire Agronomie et Environnement ENSAIA, 2 Avenue Forêt de Haye, 54518, Vandœuvre-lès-Nancy, France
| | - Romain Larbat
- UMR1121, Université de Lorraine-INRA Laboratoire Agronomie et Environnement ENSAIA, 2 Avenue Forêt de Haye, 54518, Vandœuvre-lès-Nancy, France
| | - Ryosuke Munakata
- UMR1121, Université de Lorraine-INRA Laboratoire Agronomie et Environnement ENSAIA, 2 Avenue Forêt de Haye, 54518, Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- UMR1121, Université de Lorraine-INRA Laboratoire Agronomie et Environnement ENSAIA, 2 Avenue Forêt de Haye, 54518, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
158
|
Zhuo K, Naalden D, Nowak S, Xuan Huy N, Bauters L, Gheysen G. A Meloidogyne graminicola C-type lectin, Mg01965, is secreted into the host apoplast to suppress plant defence and promote parasitism. MOLECULAR PLANT PATHOLOGY 2019; 20:346-355. [PMID: 30315612 PMCID: PMC6637863 DOI: 10.1111/mpp.12759] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
C-type lectins (CTLs), a class of multifunctional proteins, are numerous in nematodes. One CTL gene, Mg01965, shown to be expressed in the subventral glands, especially in the second-stage juveniles of the root-knot nematode Meloidogyne graminicola, was further analysed in this study. In vitro RNA interference targeting Mg01965 in the preparasitic juveniles significantly reduced their ability to infect host plant roots. Immunolocalizations showed that Mg01965 is secreted by M. graminicola into the roots during the early parasitic stages and accumulates in the apoplast. Transient expression of Mg01965 in Nicotiana benthamiana and targeting it to the apoplast suppressed the burst of reactive oxygen species triggered by flg22. The CTL Mg01965 suppresses plant innate immunity in the host apoplast, promoting nematode parasitism in the early infection stages.
Collapse
Affiliation(s)
- Kan Zhuo
- Laboratory of Plant NematologySouth China Agricultural UniversityGuangzhou510642China
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhou510642China
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Diana Naalden
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Silke Nowak
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Nguyen Xuan Huy
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
- Biology Department, College of EducationHue University34 Le LoiHueVietnam
| | - Lander Bauters
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| |
Collapse
|
159
|
Sousa MFD, Guimarães RM, Araújo MDO, Barcelos KR, Carneiro NS, Lima DS, Santos DCD, Batista KDA, Fernandes KF, Lima MCPM, Egea MB. Characterization of corn (Zea mays L.) bran as a new food ingredient for snack bars. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
160
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
161
|
Ryva B, Zhang K, Asthana A, Wong D, Vicioso Y, Parameswaran R. Wheat Germ Agglutinin as a Potential Therapeutic Agent for Leukemia. Front Oncol 2019; 9:100. [PMID: 30847305 PMCID: PMC6393371 DOI: 10.3389/fonc.2019.00100] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/04/2019] [Indexed: 01/22/2023] Open
Abstract
Dietary lectins are carbohydrate-binding proteins found in food sources. We used a panel of seven dietary lectins to analyze cytotoxicity against hematological cancers. Wheat germ agglutinin (WGA), even at low doses, demonstrated maximum toxicity toward acute myeloid leukemia (AML) cells. Using AML cell lines, we show time- and dose-dependent killing by WGA. We also show that low doses of WGA kills primary patient AML cells, irrespective of subtype, with no significant toxicity to normal cells. WGA caused AML cell agglutination, but failed to agglutinate RBC's at this dose. WGA, primarily, binds to N-acetyl-D-glucosamine (GlcNAc) and is also reported to interact with sialic-acid-containing glycoconjugates and oligosaccharides. After neuraminidase pre-treatment, which catalyzes the hydrolysis of terminal sialic acid residues, AML cells were less sensitive to WGA-induced cell death. AML cells were also not sensitive to succinyl-WGA, which does not react with sialic acid. Incubation with LEL lectin, which recognizes GlcNAc or SNA, which binds preferentially to sialic acid attached to terminal galactose in α-2,6 and to a lesser degree α-2,3 linkage, did not alter AML cell viability. These data indicate that WGA-induced AML cell death is dependent on both GlcNAc binding and interaction with sialic acids. We did not observe any in vitro or in vivo toxicity of WGA toward normal cells at the concentrations tested. Finally, low doses of WGA injection demonstrated significant in vivo toxicity toward AML cells, using xenograft mouse model. Thus, WGA is a potential candidate for leukemia therapy.
Collapse
Affiliation(s)
- Bradley Ryva
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Keman Zhang
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Abhishek Asthana
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Derek Wong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yorleny Vicioso
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Reshmi Parameswaran
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
162
|
Khattak A, Ahmad B, Rauf A, Bawazeer S, Farooq U, Ali J, Patel S, Ramadan El-Sharkawy E, Ikram R, Linfang H. Green synthesis, characterisation and biological evaluation of plant-based silver nanoparticles using Quercus semecarpifolia Smith aqueous leaf extract. IET Nanobiotechnol 2019; 13:36-41. [PMID: 30964035 PMCID: PMC8676298 DOI: 10.1049/iet-nbt.2018.5063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/21/2018] [Accepted: 07/09/2018] [Indexed: 01/16/2023] Open
Abstract
The development of reliable and green methods for the fabrication of metallic nanoparticles (NPs) has many advantages in the field of nanotechnology. In this direction, the present work describes an eco-friendly and cost-effective protocol for the production of silver NPs (AgNPs) using an aqueous extract of Quercus semecarpifolia leaves. Different techniques were carried out for the characterisation of the synthesised AgNPs. The ultraviolet-visible spectroscopic analysis showed the highest absorbance peak at 430 nm. The particle size and structure were confirmed by scanning electron microscopy as well as transmission electron microscopy (TEM) analysis. From TEM imaging, it was revealed that the formed particles were spherical with an average size of 20-50 nm. The crystalline nature of the NPs was determined by X-ray powder diffraction patterns. Thermogravimetry and differential thermal analysis were also evaluated by a temperature increment from 100 to 1000°C. Bio-inspired synthesis of AgNPs was performed for their pharmacological evaluation in relation to the activities of the crude methanolic, n-hexane, chloroform, ethyl acetate, and aqueous extracts. Good cytotoxic activity was exhibited by the green-synthesised AgNPs (77%). Furthermore, the AgNPs were found to exhibit significant antioxidant activity at 300 μg/ml (82%). The AgNPs also exhibited good phytotoxic potential (75%).
Collapse
Affiliation(s)
- Aishma Khattak
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| | - Bashir Ahmad
- Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar Swabi, KP, Pakistan.
| | - Sami Bawazeer
- Department of EMS Paramedic, College of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Umar Farooq
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Jawad Ali
- Department of Chemistry, University of Swabi, Anbar Swabi, KP, Pakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego- 92182, USA
| | | | - Rabia Ikram
- Department of Chemistry, Center for Natural Products and Drug Research (CENAR), University of Malaysia, Kuala Lumpur, Malaysia
| | - Huang Linfang
- Institute of Medicinal Plant Development (IMPLAD), Peking Union Medical College, Chinese Academy of Medical Sciences (CAMS), No.151, Malianwa North Road, HaiDian District, Beijing, 100193, People's Republic of China
| |
Collapse
|
163
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
164
|
Choi JS. Strategies for Rot Control of Soybean Sprouts. Recent Pat Food Nutr Agric 2019; 10:93-105. [PMID: 30444205 DOI: 10.2174/2212798410666181116121957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Soybean sprouts are nutrient-rich, contain plentiful proteins, vitamin C, and minerals and are packed in small numbers after production. As soybean sprouts were mass produced in a factory, the occurrence of rotting in soybean sprouts has become a serious problem. To overcome these problems, many efforts have been made to provide healthy soybean sprouts in Korea. This paper reviewed the physicochemical techniques used for supplying water with antibacterial properties and the natural antimicrobial materials developed for soybean sprout cultivation. On the basis of this review, 11 of the antimicrobial agents and/or techniques currently used originated from mineral, non-metal ions, and metal ions, 4 from antagonistic microorganisms, 7 from agents originating from animals, 31 from medicinal and herbal plants, and 11 from physicochemical agents and/or techniques. In addition, these agents and/or techniques showed potential not only for the inhibition of spoilage and rot of soybean sprouts but also for the extension of product shelf life, the enhancement of taste and aroma, the enhancement of nutrition and functional components, growth promotion, and/or the reduction of production costs. Continuous scientific innovations and improved processing technology will aid in further advancements and improvements in this area. Therefore, this study offers useful insights suggesting direction for future research and provides information on the different anti-rotting agents and/or techniques for soybean sprouts developed to date, also as discussed in various patents.
Collapse
Affiliation(s)
- Jae-Suk Choi
- Major in Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan, 46958, Korea
| |
Collapse
|
165
|
Singh SS, Wong JH, Ng TB, Singh WS, Thangjam R. Biomedical Applications of Lectins from Traditional Chinese Medicine. Curr Protein Pept Sci 2019; 20:220-230. [DOI: 10.2174/1389203719666180612081709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/13/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
Abstract
Lectins are proteins or glycoproteins of non-immune origin which have at least one noncatalytic
domain that bind reversibly to specific mono or oligosaccharides. Traditional Chinese Medicine
(TCM) involves a broad range of medicinal practices sharing common concepts which have been
developed in China and are based on a tradition of more than thousands of years. Plant materials which
are commonly used in TCM as a complementary or alternative for Western medical treatments contain a
considerable number of important lectins. These lectins have been reported to have various applications
and uses such as cancer treatment, glycoconjugate research, biomarker development, and others. Here,
we summarize the available literature related to lectins from TCM and recent trends in their potential
biomedical applications.
Collapse
Affiliation(s)
- Senjam Sunil Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal-795003, India
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wayenbam Sobhachandra Singh
- Laboratory of Protein Biochemistry, Biochemistry Department, Manipur University, Canchipur, Imphal-795003, India
| | - Robert Thangjam
- Department of Biotechnology, School of Life Sciences, Mizoram University, Aizawl - 796 004, India
| |
Collapse
|
166
|
Andrade LM, Peixoto-Junior RF, Ribeiro RV, Nóbile PM, Brito MS, Marchiori PER, Carlin SD, Martins APB, Goldman MHS, Llerena JPP, Fregonesi C, Perecin D, Nebó JFCDO, Figueira A, Benatti TR, da Silva J, Mazzafera P, Creste S. Biomass Accumulation and Cell Wall Structure of Rice Plants Overexpressing a Dirigent-Jacalin of Sugarcane ( ShDJ) Under Varying Conditions of Water Availability. FRONTIERS IN PLANT SCIENCE 2019; 10:65. [PMID: 30815002 PMCID: PMC6381051 DOI: 10.3389/fpls.2019.00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 05/03/2023]
Abstract
A sugarcane gene encoding a dirigent-jacalin, ShDJ, was induced under drought stress. To elucidate its biological function, we integrated a ShDJ-overexpression construction into the rice Nipponbare genome via Agrobacterium-mediated transformation. Two transgenic lines with a single copy gene in T0 were selected and evaluated in both the T1 and T4 generations. Transgenic lines had drastically improved survival rate under water deficit conditions, at rates close to 100%, while WT did not survive. Besides, transgenic lines had improved biomass production and higher tillering under water deficit conditions compared with WT plants. Reduced pectin and hemicellulose contents were observed in transgenic lines compared with wild-type plants under both well-watered and water deficit conditions, whereas cellulose content was unchanged in line #17 and reduced in line #29 under conditions of low water availability. Changes in lignin content under water deficit were only observed in line #17. However, improvements in saccharification were found in both transgenic lines along with changes in the expression of OsNTS1/2 and OsMYB58/63 secondary cell wall biosynthesis genes. ShDJ-overexpression up-regulated the expression of the OsbZIP23, OsGRAS23, OsP5CS, and OsLea3 genes in rice stems under well-watered conditions. Taken together, our data suggest that ShDJ has the potential for improving drought tolerance, plant biomass accumulation, and saccharification efficiency.
Collapse
Affiliation(s)
- Larissa Mara Andrade
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rafael Fávero Peixoto-Junior
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | - Michael Santos Brito
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Paulo Eduardo Ribeiro Marchiori
- Instituto Agronômico (IAC), Centro de Ecofisiologia e Biofísica, Campinas, Brazil
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil
| | | | - Alexandre Palma Boer Martins
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | - Dilermando Perecin
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Jaboticabal, Brazil
| | | | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), University of São Paulo, Piracicaba, Brazil
| | | | - Jorge da Silva
- Texas A&M Agrilife Research & Extension Center, Weslaco, TX, United States
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Silvana Creste
- Instituto Agronômico (IAC), Centro de Cana, Ribeirão Preto, Brazil
- *Correspondence: Silvana Creste,
| |
Collapse
|
167
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Nascimento KS. ConA-Like Lectins: High Similarity Proteins as Models to Study Structure/Biological Activities Relationships. Int J Mol Sci 2018; 20:ijms20010030. [PMID: 30577614 PMCID: PMC6337138 DOI: 10.3390/ijms20010030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023] Open
Abstract
Lectins are a widely studied group of proteins capable of specific and reversible binding to carbohydrates. Undoubtedly, the best characterized are those extracted from plants of the Leguminosae family. Inside this group of proteins, those from the Diocleinae subtribe have attracted attention, in particular Concanavalin A (ConA), the best-studied lectin of the group. Diocleinae lectins, also called ConA-like lectins, present a high similarity of sequence and three-dimensional structure and are known to present inflammatory, vasoactive, antibiotic, immunomodulatory and antitumor activities, among others. This high similarity of lectins inside the ConA-like group makes it possible to use them to study structure/biological activity relationships by the variability of both carbohydrate specificity and biological activities results. It is in this context the following review aims to summarize the most recent data on the biochemical and structural properties, as well as biological activities, of ConA-like lectins and the use of these lectins as models to study structure/biological activity relationships.
Collapse
Affiliation(s)
- Benildo S Cavada
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Vanir R Pinto-Junior
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Vinicius J S Osterne
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Kyria S Nascimento
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| |
Collapse
|
168
|
Clemente-Napimoga JT, Silva MASM, Peres SNC, Lopes AHP, Lossio CF, Oliveira MV, Osterne VJS, Nascimento KS, Abdalla HB, Teixeira JM, Cavada BS, Napimoga MH. Dioclea violacea lectin ameliorates inflammation in the temporomandibular joint of rats by suppressing intercellular adhesion molecule-1 expression. Biochimie 2018; 158:34-42. [PMID: 30557594 DOI: 10.1016/j.biochi.2018.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Inflammation of temporomandibular joint (TMJ) tissues are the most common cause of pain conditions associated with temporomandibular disorders (TMDs). After a tissue and/or neural damage, the inflammatory response is characterized by plasma extravasation and leukocytes infiltration in the TMJ tissues, which in turn, release inflammatory cytokines cascades responsible for inflammatory pain. Lectins are glycoproteins widely distributed in nature that may exhibit anti-inflammatory properties. This study demonstrated by molecular docking and MM/PBSA that the lectin from Dioclea violacea (DVL) interacts favorably with α-methyl-D-mannoside, N-acetyl-D-glucosamine, and core1-sialyl-Lewis X which are associated with leukocytes migration during an inflammatory response. Wistar rats pretreated with intravenously injection of DVL demonstrated a significant inhibition of plasma extravasation induced by carrageenan (a non-neurogenic inflammatory inductor) and mustard oil (a neurogenic inflammatory inductor) in the TMJ periarticular tissues (p < 0.05; ANOVA, Tukey's test). In addition, DVL significantly reduced carrageenan-induced leukocyte migration in the TMJ periarticular tissues mediated by down-regulation of ICAM-1 expression. These results suggest a potential anti-inflammatory effect of DVL in inflammatory conditions of TMJ.
Collapse
Affiliation(s)
- Juliana T Clemente-Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Área de Fisiologia, Campinas, Brazil
| | - Maria A S M Silva
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Área de Fisiologia, Campinas, Brazil
| | - Sylvia N C Peres
- Laboratory of Biopathology and Molecular Biology, University of Uberaba, Uberaba, Brazil
| | - Alexandre H P Lopes
- Department of Pharmacology, Medical School of Ribeirão Preto - University of São Paulo, Ribeirão Preto, Brazil
| | - Claudia F Lossio
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Messias V Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Vinicius J S Osterne
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Kyria S Nascimento
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Henrique B Abdalla
- Laboratory of Orofacial Pain, Department of Physiology, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Juliana M Teixeira
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Área de Fisiologia, Campinas, Brazil
| | - Benildo S Cavada
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil.
| | - Marcelo H Napimoga
- Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic, Área de Imunologia, Campinas, Brazil.
| |
Collapse
|
169
|
Warneys R, Gaucher M, Robert P, Aligon S, Anton S, Aubourg S, Barthes N, Braud F, Cournol R, Gadenne C, Heintz C, Brisset MN, Degrave A. Acibenzolar- S-Methyl Reprograms Apple Transcriptome Toward Resistance to Rosy Apple Aphid. FRONTIERS IN PLANT SCIENCE 2018; 9:1795. [PMID: 30619387 PMCID: PMC6299034 DOI: 10.3389/fpls.2018.01795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 05/09/2023]
Abstract
Acibenzolar-S-methyl (ASM) is a chemical compound, which is able to induce resistance in several model and non-model plants, but the end-players of this induced defense remain ill-defined. Here, we test the hypothesis that treatment with ASM can protect apple (Malus × domestica) against the rosy apple aphid (Dysaphis plantaginea) and investigate the defense molecules potentially involved in resistance. We measured aphid life traits and performed behavioral assays to study the effect of ASM on plant resistance against the aphid, and then combined transcriptomic, bioinformatics, metabolic and biochemical analyses to identify the plant compounds involved in resistance. Plants treated with ASM negatively affected several life traits of the aphid and modified its feeding and host seeking behaviors. ASM treatment elicited up-regulation of terpene synthase genes in apple and led to the emission of (E,E)-α-farnesene, a sesquiterpene that was repellent to the aphid. Several genes encoding amaranthin-like lectins were also strongly up-regulated upon treatment and the corresponding proteins accumulated in leaves, petioles and stems. Our results link the production of specific apple proteins and metabolites to the antibiosis and antixenosis effects observed against Dysaphis plantaginea, providing insight into the mechanisms underlying ASM-induced herbivore resistance.
Collapse
Affiliation(s)
- Romain Warneys
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Matthieu Gaucher
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Philippe Robert
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Sophie Aligon
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Sylvia Anton
- IGEPP, INRA, Agrocampus-Ouest, Université de Rennes 1, Angers, France
| | - Sébastien Aubourg
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Nicolas Barthes
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS – Université de Montpellier – Université Paul Valery Montpellier 3 – EPHE – IRD, Montpellier, France
| | - Ferréol Braud
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Raphaël Cournol
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | | | - Christelle Heintz
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Marie-Noëlle Brisset
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Alexandre Degrave
- IRHS, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
170
|
Surya S, Haridas M. A New Galactose-Specific Lectin from Clerodendrum infortunatum.. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1449. [PMID: 31457028 PMCID: PMC6697831 DOI: 10.21859/ijb.1449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/19/2018] [Accepted: 01/17/2018] [Indexed: 01/12/2023]
Abstract
Background The ethno-medical significance of Clerodendrum genus raises the interest towards the characterization of its seed lectin by inexpensive and most effective technique. Objective The focus of this study is the purification, characterization, and evaluation of the antioxidant and antiproliferative potential of a galactose-specific lectin from Clerodendrum infortunatum L. seeds. Materials and Methods The crude extract, homogenized in 6 volumes of the saline containing 10 mM β-mercaptoethanol was subjected to pigment removal by Toyopeal HW-55 column prior to ammonium sulfate fractionation (40-80 %). The crude protein extract was then loaded to the gel filtration column Sephadex G-200 followed by affinity chromatography using activated galactose coupled Sepharose-4B. Results The SDS-PAGE analysis showed a single band of about 30 kDa which further determined by MALDI-TOF analysis. The MALDI-TOF spectra revealed that Clerodendrum infortunatum lectin (CIL) is a homo-tetramer of 120 kDa consisting of four identical subunits of 30 kDa. The haemagglutination inhibition assay was done with purified lectin by many sugars, among which N-acetyl-D-galactosmine (NAG), D-galactose and lactose exhibited high inhibition. NAG showed the highest inhibition amongst the tested sugars, having the minimum inhibitory concentration of about 0.97 mM. The lectin exhibited a moderate antioxidant activity with an IC50 value of 6.1 ± 0.1 mg.mL-1 and induced cell death with IC50 of 82.8 μg.mL-1 against human gastric cancer cell line, AGS, indicated the potential of CIL for clinical and therapeutic applications. Conclusion The present study demonstrated the moderate ability of the CIL to inhibit the growth of human gastric cancer cells, AGS either by causing cytotoxic or anti-proliferative effects. Thus, CIL due to its remarkable properties may be considered as a potential bio-molecule in tumor research and glycobiology.
Collapse
Affiliation(s)
- Sukumaran Surya
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| | - Madhathilkovilakathu Haridas
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| |
Collapse
|
171
|
Denecke S, Swevers L, Douris V, Vontas J. How do oral insecticidal compounds cross the insect midgut epithelium? INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:22-35. [PMID: 30366055 DOI: 10.1016/j.ibmb.2018.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The use of oral insecticidal molecules (small molecules, peptides, dsRNA) via spray or plant mediated applications represents an efficient way to manage damaging insect species. With the exception of Bt toxins that target the midgut epithelium itself, most of these compounds have targets that lie within the hemocoel (body) of the insect. Because of this, one of the greatest factors in determining the effectiveness of an oral insecticidal compound is its ability to traverse the gut epithelium and enter the hemolymph. However, for many types of insecticidal compounds, neither the pathway taken across the gut nor the specific genes which influence uptake are fully characterized. Here, we review how different types of insecticidal compounds enter or cross the midgut epithelium through passive (diffusion) or active (transporter based, endocytosis) routes. A deeper understanding of how insecticidal molecules cross the gut will help to best utilize current insecticides and also provide for more rational design of future ones.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences & Applications, NCSR "Demokritos", Athens, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
172
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
173
|
Toxicity of Potential Fungal Defense Proteins towards the Fungivorous Nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. Appl Environ Microbiol 2018; 84:AEM.02051-18. [PMID: 30242007 PMCID: PMC6238071 DOI: 10.1128/aem.02051-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/18/2018] [Indexed: 01/27/2023] Open
Abstract
Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops. Resistance of fungi to predation is thought to be mediated by toxic metabolites and proteins. Many of these fungal defense effectors are highly abundant in the fruiting body and not produced in the vegetative mycelium. The defense function of fruiting body-specific proteins, however, including cytoplasmically localized lectins and antinutritional proteins such as biotin-binding proteins, is mainly based on toxicity assays using bacteria as a heterologous expression system, with bacterivorous/omnivorous model organisms as predators. Here, we present an ecologically more relevant experimental setup to assess the toxicity of potential fungal defense proteins towards the fungivorous, stylet-feeding nematodes Aphelenchus avenae and Bursaphelenchus okinawaensis. As a heterologous expression host, we exploited the filamentous fungus Ashbya gossypii. Using this new system, we assessed the toxicity of six previously characterized, cytoplasmically localized, potential defense proteins from fruiting bodies of different fungal phyla against the two fungivorous nematodes. We found that all of the tested proteins were toxic against both nematodes, albeit to various degrees. The toxicity of these proteins against both fungivorous and bacterivorous nematodes suggests that their targets have been conserved between the different feeding groups of nematodes and that bacterivorous nematodes are valid model organisms to assess the nematotoxicity of potential fungal defense proteins. IMPORTANCE Our results support the hypothesis that cytoplasmic proteins abundant in fungal fruiting bodies are involved in fungal resistance against predation. The toxicity of these proteins toward stylet-feeding nematodes, which are also capable of feeding on plants, and the abundance of these proteins in edible mushrooms, may open possible avenues for biological crop protection against parasitic nematodes, e.g., by expression of these proteins in crops.
Collapse
|
174
|
Brzezicka KA, Serna S, Reichardt NC. Fluorescent Neoglycoprotein Gold Nanoclusters: Synthesis and Applications in Plant Lectin Sensing and Cell Imaging. NANOSCALE RESEARCH LETTERS 2018; 13:360. [PMID: 30421263 PMCID: PMC6232188 DOI: 10.1186/s11671-018-2772-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Carbohydrate-protein interactions mediate fundamental biological processes, such as fertilization, cell signaling, or host-pathogen communication. However, because of the enormous complexity of glycan recognition events, new tools enabling their analysis or applications emerge in recent years. Here, we describe the first preparation of neoglycoprotein functionalized fluorescent gold nanoclusters, containing a biantennary N-glycan G0 as targeting molecule, ovalbumin as carrier/model antigen, and a fluorescent gold core as imaging probe (G0-OVA-AuNCs). Subsequently, we demonstrate the utility of generated G0-OVA-AuNCs for specific sensing of plant lectins and in vitro imaging of dendritic cells.
Collapse
Affiliation(s)
- Katarzyna Alicja Brzezicka
- Glycotechnology Laboratory, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- Departments of Molecular Medicine and Microbiology and Immunology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sonia Serna
- Glycotechnology Laboratory, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Niels Christian Reichardt
- Glycotechnology Laboratory, CIC biomaGUNE, Paseo Miramon 182, 20014 San Sebastian, Spain
- CIBER-BBN, Paseo Miramon 182, 20014 San Sebastian, Spain
| |
Collapse
|
175
|
Whited J, Rama CK, Sun XL. Synthesis and Evaluation of Protein-Phenylboronic Acid Conjugates as Lectin Mimetics. ACS OMEGA 2018; 3:13467-13473. [PMID: 30411039 PMCID: PMC6217639 DOI: 10.1021/acsomega.8b00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Glycan-binding molecules, such as lectins, are very important tools for characterizing, imaging, or targeting glycans and are often involved in either physiological or pathological processes. However, their availability is far less compared to the diversity of native glycans. Therefore, development of lectin mimetics with desired specificity and affinity is in high demand. Boronic acid reacts with 1,2- and 1,3-diols of saccharides in aqueous media through reversible boronate ester formation and are regarded as synthetic lectin mimetics. In this study, bovine serum albumin (BSA)-phenylboronic acid (PBA) conjugates were synthesized in a density-controlled manner by targeting both aspartic and glutamic acids to afford lectin mimetics with multivalent PBA, as multivalency is a key factor for glycan recognition in both specificity and affinity. The resultant BSA-PBA conjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Their macrophage cell surface glycan-binding capacity was characterized by a competitive lectin-binding assay examined by flow cytometry, and 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed biocompatibility. These novel lectin mimetics will find a broad range of applications as they can be wittingly modified, altering binding specificity and capacity.
Collapse
|
176
|
Giglio M, Garro C, Caviedes-Vidal E, Heras H. Egg perivitelline fluid of the invasive snail Pomacea canaliculata affects mice gastrointestinal function and morphology. PeerJ 2018; 6:e5314. [PMID: 30397537 PMCID: PMC6211264 DOI: 10.7717/peerj.5314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 11/30/2022] Open
Abstract
Background Species beloging to the genus Pomacea (Ampullariidae), often referred as apple snails, are freshwater, amphibious snails native to South, Central and North America. Some species such as P. canaliculata have become a driver of ecosystem changes in wetlands and an important rice and taro pest after its introduction to Asia and other parts of the world. Females deposit colored egg clutches above the waterline, a reproductive strategy that exposes the eggs to harsh conditions and terrestrial predation. However, eggs have no reported predators in their native range, probably because of the acquisition of unparalleled biochemical defenses provided by a set of proteins (perivitellins) that nourish embryos and protect them from predators and abiotic factors. Notably, ingestion of egg perivitelline fluid (PVF) decreases rat growth rate and alters their gastrointestinal morphology. The aim of the study is to determine the effect of apple snail egg PVF on mice gut digestive activity, morphology and nutrient absorption. Methods Carbohydrate digestion by intestinal disaccharidases (sucrase-isomaltase and maltase-glucoamylase) was evaluated ex vivo in mice gavaged with 1 or 4 doses of PVF. Changes in gut morphological and absorptive surface were measured. In addition, alteration on nutrient absorption rates, transport pathways and intestinal permeability was evaluated by luminal perfusions of small intestine with radiolabeled L-proline (absorbed by paracellular and transcellular pathways) and L-arabinose (absorbed exclusively by paracellular pathway). Results Perivitelline fluid affected mice displayed significant morphological changes in the small intestine epithelium inducing the appearance of shorter and wider villi as well as fused villi. This resulted in a diminished absorptive surface, notably in the proximal portion. Likewise, the activity of disaccharidases diminished in the proximal portion of the intestine. Total absorption of L-proline increased in treated mice in a dose-dependent manner. There were no differences neither in the ratio of paracellular-to-transcellular absorption of L-proline nor in gut permeability as revealed by the clearance of L-arabinose. Discussion Oral administration of apple snail PVF to mice adversely alters gut morphophysiology by reducing the intestinal absorptive surface, affecting enzymes of sugar metabolism and increasing the absorption rate of nutrients without affecting the relative contribution of the absorption pathways or gut permeability. These results further support the role of PVF in passive anti-predator defenses in Pomacea snail eggs that target the digestive system.
Collapse
Affiliation(s)
- Matías Giglio
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional de La Plata, La Plata, Argentina
| | - Cintia Garro
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional de San Luis, San Luis, San Luis, Argentina.,Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis, San Luis, San Luis, Argentina
| | - Enrique Caviedes-Vidal
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional de San Luis, San Luis, San Luis, Argentina.,Departamento de Bioquímica y Ciencias Biológicas, Universidad Nacional de San Luis, San Luis, San Luis, Argentina
| | - Horacio Heras
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Argentina.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas y Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
177
|
Islam F, Gopalan V, Lam AKY, Kabir SR. Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. Int J Biol Macromol 2018; 117:1050-1057. [DOI: 10.1016/j.ijbiomac.2018.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022]
|
178
|
Kim BM, Lotter‐Stark HCT, Rybicki EP, Chikwamba RK, Palmer KE. Characterization of the hypersensitive response-like cell death phenomenon induced by targeting antiviral lectin griffithsin to the secretory pathway. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1811-1821. [PMID: 29509998 PMCID: PMC6131415 DOI: 10.1111/pbi.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 05/23/2023]
Abstract
Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)-like cell death, accompanied by H2 O2 generation and increased PR1 expression. Mannose-binding lectins surfactant protein D (SP-D), cyanovirin-N (CV-N) and human mannose-binding lectin (hMBL) also induce salicylic acid (SA)-dependent HR-like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α-xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co-expression of SA-degrading enzyme NahG, providing strategies for enhancing expression of oligomannose-binding lectins in plants.
Collapse
Affiliation(s)
- Bo Min Kim
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | | | - Edward P. Rybicki
- Department of Molecular & Cell BiologyInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Rachel K. Chikwamba
- BiosciencesCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
| | - Kenneth E. Palmer
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
179
|
|
180
|
Characterization of an Insecticidal Protein from Withania somnifera Against Lepidopteran and Hemipteran Pest. Mol Biotechnol 2018; 60:290-301. [PMID: 29492788 DOI: 10.1007/s12033-018-0070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lectins are carbohydrate-binding proteins with wide array of functions including plant defense against pathogens and insect pests. In the present study, a putative mannose-binding lectin (WsMBP1) of 1124 bp was isolated from leaves of Withania somnifera. The gene was expressed in E. coli, and the recombinant WsMBP1 with a predicted molecular weight of 31 kDa was tested for its insecticidal properties against Hyblaea puera (Lepidoptera: Hyblaeidae) and Probergrothius sanguinolens (Hemiptera: Pyrrhocoridae). Delay in growth and metamorphosis, decreased larval body mass and increased mortality was recorded in recombinant WsMBP1-fed larvae. Histological studies on the midgut of lectin-treated insects showed disrupted and diffused secretory cells surrounding the gut lumen in larvae of H. puera and P. sanguinolens, implicating its role in disruption of the digestive process and nutrient assimilation in the studied insect pests. The present study indicates that WsMBP1 can act as a potential gene resource in future transformation programs for incorporating insect pest tolerance in susceptible plant genotypes.
Collapse
|
181
|
Homology modeling, molecular docking, and dynamics of two α-methyl-d-mannoside-specific lectins from Arachis genus. J Mol Model 2018; 24:251. [DOI: 10.1007/s00894-018-3800-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 08/16/2018] [Indexed: 02/04/2023]
|
182
|
Nakamura M, Yasukawa Y, Furusawa A, Fuchiwaki T, Honda T, Okamura Y, Fujita K, Iwai H. Functional characterization of unique enzymes in Xanthomonas euvesicatoria related to degradation of arabinofurano-oligosaccharides on hydroxyproline-rich glycoproteins. PLoS One 2018; 13:e0201982. [PMID: 30092047 PMCID: PMC6085000 DOI: 10.1371/journal.pone.0201982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022] Open
Abstract
In this study, we clarified the functions of three uncharacterized enzymes, XCV2724, XCV2728, and XCV2729, in Xanthomonas euvesicatoria, the causal agent of bacterial spot of tomato and pepper. The genes corresponding to the three enzymes are homologs of hypBA1, hypBA2, and hypAA from Bifidobacterium longum and are unique to Xanthomonas spp. among plant pathogenic bacteria. Functional characterization of the recombinant enzymes expressed using microbial systems revealed that they degrade the arabinofurano-oligosaccharides present on hydroxyproline (Hyp)-rich glycoproteins (HRGPs) such as extensin and solanaceous lectins in plant cell walls. These enzymes work coordinately to degrade the oligosaccharides. First, XeHypAA (XCV2728), belonging to the glycoside hydrolase (GH) 43 family, releases L-arabinose from L-arabinofuranose (Araf)-α1,3-Araf-ß1,2-Araf-ß1,2-Araf-ß-Hyp (Ara4-Hyp), cleaving its α1,3 bond; second, XeHypBA2 (XCV2729), belonging to the GH121 family, releases the disaccharide Araf-ß1,2-Araf from Araf-ß1,2-Araf-ß1,2-Araf-ß-Hyp (Ara3-Hyp); finally, XeHypBA1 (XCV2724), belonging to GH family 127, releases L-arabinose from Araf-ß-Hyp (Ara-Hyp). In summary, the main oligosaccharide structure of Ara4-Hyp on the HRGPs is degraded to Ara3-Hyp, then to Ara-Hyp, and finally to Ara monosaccharides by the action of these three enzymes. HRGPs containing oligosaccharide substrates have been reported to contribute to plant defense, and interestingly, the promoter region of the operon (xehypBA2 and xehypAA) contains the plant-inducible promoter box for binding the regulator protein HrpX involved in pathogenicity. We then analyzed the expression level of the operon gene in hrp-inducing medium and in plants and constructed gene-deletion mutants. However, although the operon was evidently upregulated by HrpX, three single-gene deletion mutants (ΔxehypBA1, ΔxehypBA2, ΔxehypAA) and even a triple-gene deletion mutant (ΔxehypBA1-BA2-AA) remained pathogenic, and had no effect on nonhost resistance, either, indicating that these three enzymes are not involved in either pathogenicity or nonhost resistance reactions. This is the first report of enzymes in plant pathogenic bacteria that catalyze the degradation of Hyp-linked-L-arabinofuranosides in plant cell walls.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- * E-mail:
| | - Yuino Yasukawa
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Akira Furusawa
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Tamao Fuchiwaki
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Takashi Honda
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Yuta Okamura
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Hisashi Iwai
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
183
|
Djafari J, McConnell MT, Santos HM, Capelo JL, Bertolo E, Harvey SC, Lodeiro C, Fernández-Lodeiro J. Synthesis of Gold Functionalised Nanoparticles with the Eranthis hyemalis Lectin and Preliminary Toxicological Studies on Caenorhabditis elegans. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1363. [PMID: 30082665 PMCID: PMC6119933 DOI: 10.3390/ma11081363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022]
Abstract
The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant (EHL) is a Type II Ribosome Inactivating Protein (RIP). Type II RIPs have shown anti-cancer properties and have great potential as therapeutic agents. Similarly, colloidal gold nanoparticles are successfully used in biomedical applications as they can be functionalised with ligands with high affinity and specificity for target cells to create therapeutic and imaging agents. Here we present the synthesis and characterization of gold nanoparticles conjugated with EHL and the results of a set of initial assays to establish whether the biological effect of EHL is altered by the conjugation. Gold nanoparticles functionalised with EHL (AuNPs@EHL) were successfully synthesised by bioconjugation with citrate gold nanoparticles (AuNPs@Citrate). The conjugates were analysed by UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Zeta Potential analysis, and Transmission Electron Microscopy (TEM). Results indicate that an optimal functionalisation was achieved with the addition of 100 µL of EHL (concentration 1090 ± 40 µg/mL) over 5 mL of AuNPs (concentration [Au⁰] = 0.8 mM). Biological assays on the effect of AuNPs@EHL were undertaken on Caenorhabditis elegans, a free-living nematode commonly used for toxicological studies, that has previously been shown to be strongly affected by EHL. Citrate gold nanoparticles did not have any obvious effect on the nematodes. For first larval stage (L1) nematodes, AuNPs@EHL showed a lower biological effect than EHL. For L4 stage, pre-adult nematodes, both EHL alone and AuNPs@EHL delayed the onset of reproduction and reduced fecundity. These assays indicate that EHL can be conjugated to gold nanoparticles and retain elements of biocidal activity.
Collapse
Affiliation(s)
- Jamila Djafari
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Marie T McConnell
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| | - Hugo M Santos
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - José Luis Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Emilia Bertolo
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Javier Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| |
Collapse
|
184
|
Xue D, Guang-Hua W, Yan-Li S, Min Z, Yong-Hua H. Black rockfish C-type lectin, SsCTL4: A pattern recognition receptor that promotes bactericidal activity and virus escape from host immune defense. FISH & SHELLFISH IMMUNOLOGY 2018; 79:340-350. [PMID: 29803666 DOI: 10.1016/j.fsi.2018.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
C-type lectin (CTL) is an immune receptor and is received extensive attention of its important roles in immune response and immune escape. Some CTL, such as CTL4, has been well characterized in human and several other mammals, but much less documentation exists about the immunological function of CTL4 in lower vertebrates. In the present study, a C-type lectin domain family 4 member, SsCTL4, which is also high homology with CD209 antigen-like protein, from the teleost fish black rockfish (Sebastes schlegelii) was identified and examined at expression and functional levels. The open reading frame of SsCTL4 is 765 bp, and the deduced amino acid sequence of SsCTL4 shares 78%-84% overall identities with the C-type lectin of several fish species. In silico analysis identified several conserved C-type lectin features, including a carbohydrate-recognition domain and four disulfide bond-forming cysteine residues. Expression of SsCTL4 occurred in multiple tissues and was upregulated during bacterial and viral infection. Recombinant SsCTL4 (rSsCTL4) exhibited apparent binding activities against bacteria (Edwardsiella tarda and Vibrio anguillarum) and virus (infectious spleen and kidney necrosis virus, ISKNV). rSsCTL4 was able to agglutinate the Gram-negative and Gram-positive bacteria in a Ca2+-dependent manner. The agglutinating ability of rSsCTL4 was abolished in the absence of calcium or presence of mannose. rSsCTL4 also increased macrophage bactericidal activity. In the presence of rSsCTL4, fish exhibited enhanced resistance against bacterial infection but increased susceptibility to viral infections. Collectively, these results indicate that SsCTL4 serves as a pattern recognition receptor that not only promotes bactericidal activity, but may also serve as targets for virus manipulation of host defense system.
Collapse
Affiliation(s)
- Du Xue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wang Guang-Hua
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Su Yan-Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhang Min
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Hu Yong-Hua
- Institute of Tropical Biosciece and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
185
|
Rivanor RLDC, Do Val DR, Ribeiro NA, Silveira FD, de Assis EL, Franco ÁX, Vieira LV, de Queiroz INL, Chaves HV, Bezerra MM, Benevides NMB. A lectin fraction from green seaweed Caulerpa cupressoides inhibits inflammatory nociception in the temporomandibular joint of rats dependent from peripheral mechanisms. Int J Biol Macromol 2018; 115:331-340. [DOI: 10.1016/j.ijbiomac.2018.04.065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022]
|
186
|
Azarkan M, Feller G, Vandenameele J, Herman R, El Mahyaoui R, Sauvage E, Vanden Broeck A, Matagne A, Charlier P, Kerff F. Biochemical and structural characterization of a mannose binding jacalin-related lectin with two-sugar binding sites from pineapple (Ananas comosus) stem. Sci Rep 2018; 8:11508. [PMID: 30065388 PMCID: PMC6068142 DOI: 10.1038/s41598-018-29439-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
A mannose binding jacalin-related lectin from Ananas comosus stem (AcmJRL) was purified and biochemically characterized. This lectin is homogeneous according to native, SDS-PAGE and N-terminal sequencing and the theoretical molecular mass was confirmed by ESI-Q-TOF-MS. AcmJRL was found homodimeric in solution by size-exclusion chromatography. Rat erythrocytes are agglutinated by AcmJRL while no agglutination activity is detected against rabbit and sheep erythrocytes. Hemagglutination activity was found more strongly inhibited by mannooligomannosides than by D-mannose. The carbohydrate-binding specificity of AcmJRL was determined in some detail by isothermal titration calorimetry. All sugars tested were found to bind with low affinity to AcmJRL, with Ka values in the mM range. In agreement with hemagglutination assays, the affinity increased from D-mannose to di-, tri- and penta-mannooligosaccharides. Moreover, the X-ray crystal structure of AcmJRL was obtained in an apo form as well as in complex with D-mannose and methyl-α-D-mannopyranoside, revealing two carbohydrate-binding sites per monomer similar to the banana lectin BanLec. The absence of a wall separating the two binding sites, the conformation of β7β8 loop and the hemagglutinating activity are reminiscent of the BanLec His84Thr mutant, which presents a strong anti-HIV activity in absence of mitogenic activity.
Collapse
Affiliation(s)
- Mohamed Azarkan
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070, Brussels, Belgium
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, Institute of Chemistry B6a, University of Liège, 4000, Liège, Belgium
| | - Julie Vandenameele
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering-InBioS, Institut de Chimie B6, University of Liège, 4000, Liège, Belgium
| | - Raphaël Herman
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium
| | - Rachida El Mahyaoui
- Université Libre de Bruxelles, Faculty of Medicine, Protein Chemistry Unit, Campus Erasme (CP 609), 808 route de Lennik, 1070, Brussels, Belgium
| | - Eric Sauvage
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium
| | - Arnaud Vanden Broeck
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering-InBioS, Institut de Chimie B6, University of Liège, 4000, Liège, Belgium
| | - Paulette Charlier
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium
| | - Frédéric Kerff
- Laboratory of crystallography, Center for Protein Engineering-InBioS, B5a, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
187
|
Bai CZ, Hao JQ, Hao XL, Feng ML. Preparation of Astragalus membranaceus lectin and evaluation of its biological function. Biomed Rep 2018; 9:345-349. [PMID: 30233788 DOI: 10.3892/br.2018.1132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/05/2018] [Indexed: 01/17/2023] Open
Abstract
Astragalus membranaceus lectin (AML) was abstracted as a supposedly novel agglutinin of 67 kDa from the seeds of Astragalus membranaceus. The seeds of Astragalus membranaceus were treated with acetate, ammonium sulfate precipitation, and purified by HiTrap SP XL ion column and Superdex G25 gel filtration chromatography to obtain the AML. AML contained 16.4% sugar, ~70% polar amino acids and ~30% hydrophobic amino acids. The AML exhibited agglutination activity toward human and animal erythrocytes, particularly human blood type O and rabbit erythrocytes. It also exhibited acid/alkali resistance and thermal denaturation above 64°C. Compared with human normal liver HL-7702 cells, different concentrations of AML (6.25, 12.50, 25.00 and 50.00 µg/ml) exhibited superior inhibitory effects on the growth of SGC-7901, HepG2 and H22 carcinoma cell lines, and displayed marked antibacterial effects on bacteria; the half maximal inhibitory concentration for B. dysenteriae, S. aureus and E. coli were 85.4, 80.2 and 65.3 µg/ml, respectively.
Collapse
Affiliation(s)
- Chong-Zhi Bai
- Central Laboratory, Chinese Medicine Hospital of Shanxi Province, Taiyuan, Shanxi 030012, P.R. China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 010010, P.R. China
| | - Jian-Qing Hao
- Institute of Biotechnology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China
| | - Xu-Liang Hao
- Central Laboratory, Chinese Medicine Hospital of Shanxi Province, Taiyuan, Shanxi 030012, P.R. China
| | - Ma-Li Feng
- Central Laboratory, Chinese Medicine Hospital of Shanxi Province, Taiyuan, Shanxi 030012, P.R. China
| |
Collapse
|
188
|
Pereira PR, Corrêa ACNTF, Vericimo MA, Paschoalin VMF. Tarin, a Potential Immunomodulator and COX-Inhibitor Lectin Found in Taro ( Colocasia esculenta). Compr Rev Food Sci Food Saf 2018; 17:878-891. [PMID: 32313515 PMCID: PMC7162284 DOI: 10.1111/1541-4337.12358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
Taro (Colocasia esculenta) corm is a rustic staple food, rich in small starch granules, fibers, and bioactive phytoconstituents such as flavonoids, alkaloids, sterols, tannins, phytates, micronutrients, and proteins, including tarin, a GNA-related lectin. Tarin exhibits recognized biocide activities against viruses and insects, has antitumoral properties and is an immunomodulator molecule candidate. It has been isolated in highly purified form (>90%) from taro corms through low-cost and single-step affinity chromatography. It comprises 2-domain 27 to 28 kDa protomer, posttranslational cleaved into 2 nonidentical monomers, 11.9 and 12.6 kDa, held by noncovalent binding. At least 10 tarin isoforms sharing over 70% similarity have been described. The monomers assume the β-prism II fold, consisting of 3 antiparallel β-sheets formed by 4 β-strands each. Tarin exhibits an expanded-binding site for complex and high-mannose N-glycan chains 49, 212, 213, 358, 465, and 477 found on cell surface antigens of viruses, insects, cancer, and hematopoietic cells, explaining its broad biological activities. Tarin may stimulate innate and adaptive immune responses, enabling hosts to recover from infections or immunosuppressed status inherent to several pathological conditions. In a murine model, tarin stimulates the in vitro and in vivo proliferation of total spleen and bone marrow cells, especially B lymphocytes. Granulocyte repopulation has also been demonstrated in long-term mice bone marrow cell cultures. As a potential immunomodulator, tarin, administered to immunosuppressed mice, attenuated cyclophosphamide-induced leukopenia. We propose a molecular model that unites the potential prophylactic and therapeutic action of tarin on hematopoietic and cancer cells, as a potential immunomodulator.
Collapse
Affiliation(s)
- Patricia Ribeiro Pereira
- Inst. de QuímicaUniv. Federal do Rio de JaneiroAvenida Athos da Silveira Ramos 149 ‐ 21941‐909 ‐ Rio de Janeiro (RJ)Brazil
| | | | - Mauricio Afonso Vericimo
- Inst. de BiologiaUniv. Federal FluminenseAlameda Barros Terra S/N ‐ 4020‐141‐ Niterói (RJ)Brazil
| | | |
Collapse
|
189
|
Vanti GL, Katageri IS, Inamdar SR, Hiremathada V, Swamy BM. Potent insect gut binding lectin from Sclerotium rolfsii impart resistance to sucking and chewing type insects in cotton. J Biotechnol 2018; 278:20-27. [DOI: 10.1016/j.jbiotec.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
|
190
|
Palanisamy R, Bhatt P, Kumaresan V, Pasupuleti M, Arockiaraj J. Innate and adaptive immune molecules of striped murrel Channa striatus. REVIEWS IN AQUACULTURE 2018; 10:296-319. [DOI: 10.1111/raq.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/09/2016] [Indexed: 10/16/2023]
Abstract
AbstractChanna striatus, also called snakehead murrel, is an important freshwater teleost fish which has been widely cultured for its tasty flesh along with nutritional and medicinal values. The growth of both cultured and wild murrels is affected by various physical, chemical and biological factors. As a teleost fish, C. striatus is an intermediate organism between invertebrates and vertebrates. They have a well‐developed innate immune system than invertebrates and a primitive adaptive immune system compared to that of higher vertebrates, thus an interesting unique immune structure to explore. Studies have identified that a few external stimulants do instigate the immune system to fight against the pathogens at the time of infection in C. striatus. This review discusses the physicochemical and biological stress factors, immune system and immune molecules of C. striatus which are potentially involved in combating the stress factors.
Collapse
Affiliation(s)
- Rajesh Palanisamy
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| | - Mukesh Pasupuleti
- Lab PCN 206 Microbiology Division CSIR‐Central Drug Research Institute Lucknow India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology and Molecular Biology Department of Biotechnology Faculty of Science and Humanities SRM University Chennai India
| |
Collapse
|
191
|
Ituarte S, Brola TR, Fernández PE, Mu H, Qiu JW, Heras H, Dreon MS. A lectin of a non-invasive apple snail as an egg defense against predation alters the rat gut morphophysiology. PLoS One 2018; 13:e0198361. [PMID: 29856808 PMCID: PMC5983499 DOI: 10.1371/journal.pone.0198361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/17/2018] [Indexed: 01/07/2023] Open
Abstract
The eggs of the freshwater Pomacea apple snails develop above the water level, exposed to varied physical and biological stressors. Their high hatching success seems to be linked to their proteins or perivitellins, which surround the developing embryo providing nutrients, sunscreens and varied defenses. The defensive mechanism has been unveiled in P. canaliculata and P. maculata eggs, where their major perivitellins are pigmented, non-digestible and provide a warning coloration while another perivitellin acts as a toxin. In P. scalaris, a species sympatric to the former, the defense strategy seems different, since no toxin was found and the major perivitellin, PsSC, while also colored and non-digestible, is a carbohydrate-binding protein. In this study we examine the structure and function of PsSC by sequencing its subunits, characterizing its carbohydrate binding profile and evaluating its effect on gut cells. Whereas cDNA sequencing and database search showed no lectin domain, glycan array carbohydrate binding profile revealed a strong specificity for glycosphingolipids and ABO group antigens. Moreover, PsSC agglutinated bacteria in a dose-dependent manner. Inspired on the defensive properties of seed lectins we evaluated the effects of PsSC on intestinal cells both in vitro (Caco-2 and IEC-6 cells) and in the gastrointestinal tract of rats. PsSC binds to Caco-2 cell membranes without reducing its viability, while a PsSC-containing diet temporarily induces large epithelium alterations and an increased absorptive surface. Based on these results, we propose that PsSC is involved in embryo defenses by altering the gut morphophysiology of potential predators, a convergent role to plant defensive lectins.
Collapse
Affiliation(s)
- Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
| | - Tabata Romina Brola
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
| | - Patricia Elena Fernández
- Instituto de Patología B. Epstein, Cátedra de Patología General Veterinaria, Facultad Ciencias Veterinarias, UNLP, La Plata, Argentina
| | - Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Marcos Sebastián Dreon
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)–CONICET, La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
192
|
Biochemical and functional properties of a lectin purified from the seeds of Cicer arietinum L. 3 Biotech 2018; 8:272. [PMID: 29868310 DOI: 10.1007/s13205-018-1272-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023] Open
Abstract
A 35 kDa rabbit erythrocyte agglutinating lectin from the seeds of Cicer arietinum was purified and designated as CAL. The lectin was inhibited by fetuin and N-acetyl-d-galactosamine at a concentration of 20 and 50 mM respectively, but not by simple mono or oligosaccharides. CAL is active between pH 5 and 10 presented thermo stability up to 50 °C and demonstrated DNA damage inhibition at 30 µg concentration. The lectin elicited maximum mitogenic activity towards mice splenocytes at 7.5 µg ml- 1. CAL exerted an inhibitory activity on HIV-1 reverse transcriptase with IC50 of 180 µM. CAL abilities in animal bioassay resulted decreased levels of total triglyceride and creatinine. In vitro and in vivo studies revealed that CAL may constitute an important role impending biomedical applications.
Collapse
|
193
|
Wang Y, Wu B, Shao J, Jia J, Tian Y, Shu X, Ren X, Guan Y. Extraction, purification and physicochemical properties of a novel lectin from Laetiporus sulphureus mushroom. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
194
|
Liu D, Jiao S, Cheng G, Li X, Pei Z, Pei Y, Yin H, Du Y. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. Int J Biol Macromol 2018; 111:1083-1090. [DOI: 10.1016/j.ijbiomac.2018.01.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/12/2023]
|
195
|
Rahimi V, Hajizadeh J, Zibaee A, Sendi JJ. Effect of Polygonum persicaria (Polygonales: Polygonaceae) Extracted Agglutinin on Life Table and Antioxidant Responses in Helicoverpa armigera (Lepidoptera: Noctuidae) Larvae. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:662-671. [PMID: 29385554 DOI: 10.1093/jee/toy006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant lectins could reduce insect populations by imposing imbalances in biology and physiology. Here, an agglutinin was extracted from Polygonum persicaria L. (PPA; Polygonales: Polygonaceae) and its effects were investigated on life table parameters and antioxidant system of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). PPA significantly changed demographic parameters showing adverse effects on age-stage survival rate (Sxj), age-specific survival rate (lx), age-specific fecundity rate (mx), age stage specific fecundity (fxj), and life expectancy (exj). Also, life table parameters including net reproduction rate (R0) (Offspring/female), intrinsic rate of population increase (rm) (days-1), finite rate of increase (λ) (days-1), gross reproduction rate (GRR) (Offspring/female) significantly decreased in the PPA-treated H. armigera compared to control except for mean generation time (T) (days). Activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CA), peroxidase (POX), glutathione S-transferase (GST) and glucose 6-phosphate dehydrogenase (GPDH) increased statistically in the PPA-treated larvae compared to control while no significant difference was observed in the activity of ascorbate peroxidase (APOX) activity. Moreover, ratio of RSSR/RSH and concentration of malondialdehyde (MDA) were found to be statistically higher in PPA-treated larvae than control. The current results clearly showed that PPA not only had a negative impact on demography of H. armigera but also induced antioxidant raise by releasing free radicals. These released radicals, together with impaired digestion and absorption observed in our previous report, could be considered as a reason for reducing biological fitness of H. armigera.
Collapse
Affiliation(s)
- Vahid Rahimi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Jalil Hajizadeh
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Jalal Jalali Sendi
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
196
|
Ruotolo R, Maestri E, Pagano L, Marmiroli M, White JC, Marmiroli N. Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2451-2467. [PMID: 29377685 DOI: 10.1021/acs.est.7b04121] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The increasing use of engineered nanomaterials (ENMs) raises questions regarding their environmental impact. Improving the level of understanding of the genetic and molecular basis of the response to ENM exposure in biota is necessary to accurately assess the true risk to sensitive receptors. The aim of this Review is to compare the plant response to several metal-based ENMs widely used, such as quantum dots, metal oxides, and silver nanoparticles (NPs), integrating available "omics" data (transcriptomics, miRNAs, and proteomics). Although there is evidence that ENMs can release their metal components into the environment, the mechanistic basis of both ENM toxicity and tolerance is often distinct from that of metal ions and bulk materials. We show that the mechanisms of plant defense against ENM stress include the modification of root architecture, involvement of specific phytohormone signaling pathways, and activation of antioxidant mechanisms. A critical meta-analysis allowed us to identify relevant genes, miRNAs, and proteins involved in the response to ENMs and will further allow a mechanistic understanding of plant-ENM interactions.
Collapse
Affiliation(s)
| | - Elena Maestri
- Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA) , Parma 43124 , Italy
| | | | | | - Jason C White
- Department of Analytical Chemistry , The Connecticut Agricultural Experiment Station (CAES) , New Haven , Connecticut 06504 , United States
| | - Nelson Marmiroli
- Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA) , Parma 43124 , Italy
| |
Collapse
|
197
|
Malekzad H, Mirshekari H, Sahandi Zangabad P, Moosavi Basri SM, Baniasadi F, Sharifi Aghdam M, Karimi M, Hamblin MR. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems. Crit Rev Biotechnol 2018; 38:47-67. [PMID: 28434263 PMCID: PMC5654697 DOI: 10.1080/07388551.2017.1312267] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.
Collapse
Affiliation(s)
- Hedieh Malekzad
- a Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG) , Iran University of Medical Sciences , Tehran , Iran
| | - Hamed Mirshekari
- b Department of Biotechnology , University of Kerala , Trivandrum , India
| | - Parham Sahandi Zangabad
- c Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS) , Tabriz , Iran
- d Department of Material Science and Engineering , Sharif University of technology , Tehran , Iran
- e Universal Scientific Education and Research Network (USERN) , Tehran, Iran
| | - S M Moosavi Basri
- f Bioenvironmental Research Center, Sharif University of Technology , Tehran , Iran
- g Civil & Environmental Engineering Department , Shahid Beheshti University , Tehran , Iran
| | - Fazel Baniasadi
- d Department of Material Science and Engineering , Sharif University of technology , Tehran , Iran
| | | | - Mahdi Karimi
- i Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
- j Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran , Iran
- k Applied Biotechnology Research Center, School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University , Tehran , Iran
| | - Michael R Hamblin
- l Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA
- m Department of Dermatology , Harvard Medical School , Boston , MA , USA
- n Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
198
|
Del Rio M, de la Canal L, Pinedo M, Regente M. Internalization of a sunflower mannose-binding lectin into phytopathogenic fungal cells induces cytotoxicity. JOURNAL OF PLANT PHYSIOLOGY 2018; 221:22-31. [PMID: 29223879 DOI: 10.1016/j.jplph.2017.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/18/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
Lectins are carbohydrate-affinity proteins with the ability to recognize and reversibly bind specific glycoconjugates. We have previously isolated a bioactive sunflower mannose-binding lectin belonging to the jacalin-related family called Helja. Despite of the significant number of plant lectins described in the literature, only a small group exhibits antifungal activity and the mechanism by which they kill fungi is still not understood. The aim of this work was to explore Helja activity on plant pathogenic fungi, and provide insights into its mechanism of action. Through cellular and biochemical experimental approaches, here we show that Helja exerts an antifungal effect on Sclerotinia sclerotiorum, a sunflower pathogen. The lectin interacts with the fungal spore surface, permeabilizes its plasma membrane, can be internalized into the cell and induces oxidative stress, finally leading to the cell death. On the other hand, Helja is inactive towards Fusarium solani, a non-pathogen of sunflower, showing the selective action of the lectin. The mechanistic basis for the antifungal activity of an extracellular jacalin lectin is presented, suggesting its initial interaction with fungal cell wall carbohydrates and further internalization. The implication of our findings for plant defense is discussed.
Collapse
Affiliation(s)
- Marianela Del Rio
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Mar del Plata, Argentina.
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Mar del Plata, Argentina.
| | - Marcela Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Mar del Plata, Argentina.
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - CONICET, Mar del Plata, Argentina.
| |
Collapse
|
199
|
Zhang C, Rodriguez E, Bi C, Zheng X, Suresh D, Suh K, Li Z, Elsebaei F, Hage DS. High performance affinity chromatography and related separation methods for the analysis of biological and pharmaceutical agents. Analyst 2018; 143:374-391. [PMID: 29200216 PMCID: PMC5768458 DOI: 10.1039/c7an01469d] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The last few decades have witnessed the development of many high-performance separation methods that use biologically related binding agents. The combination of HPLC with these binding agents results in a technique known as high performance affinity chromatography (HPAC). This review will discuss the general principles of HPAC and related techniques, with an emphasis on their use for the analysis of biological compounds and pharmaceutical agents. Various types of binding agents for these methods will be considered, including antibodies, immunoglobulin-binding proteins, aptamers, enzymes, lectins, transport proteins, lipids, and carbohydrates. Formats that will be discussed for these methods range from the direct detection of an analyte to indirect detection based on chromatographic immunoassays, as well as schemes based on analyte extraction or depletion, post-column detection, and multi-column systems. The use of biological agents in HPLC for chiral separations will also be considered, along with the use of HPAC as a tool to screen or study biological interactions. Various examples will be presented to illustrate these approaches and their applications in fields such as biochemistry, clinical chemistry, and pharmaceutical research.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Ribeiro AC, Ferreira R, Freitas R. Plant Lectins: Bioactivities and Bioapplications. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64056-7.00001-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|