151
|
Moehninsi, Miura K, Nakajyo H, Yamada K, Hasegawa K, Shigemori H. Comparative transcriptional profiling-based identification of raphanusanin-inducible genes. BMC PLANT BIOLOGY 2010; 10:111. [PMID: 20553608 PMCID: PMC3095276 DOI: 10.1186/1471-2229-10-111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/16/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Raphanusanin (Ra) is a light-induced growth inhibitor involved in the inhibition of hypocotyl growth in response to unilateral blue-light illumination in radish seedlings. Knowledge of the roles of Ra still remains elusive. To understand the roles of Ra and its functional coupling to light signalling, we constructed the Ra-induced gene library using the Suppression Subtractive Hybridisation (SSH) technique and present a comparative investigation of gene regulation in radish seedlings in response to short-term Ra and blue-light exposure. RESULTS The predicted gene ontology (GO) term revealed that 55% of the clones in the Ra-induced gene library were associated with genes involved in common defence mechanisms, including thirty four genes homologous to Arabidopsis genes implicated in R-gene-triggered resistance in the programmed cell death (PCD) pathway. Overall, the library was enriched with transporters, hydrolases, protein kinases, and signal transducers. The transcriptome analysis revealed that, among the fifty genes from various functional categories selected from 88 independent genes of the Ra-induced library, 44 genes were up-regulated and 4 were down-regulated. The comparative analysis showed that, among the transcriptional profiles of 33 highly Ra-inducible genes, 25 ESTs were commonly regulated by different intensities and duration of blue-light irradiation. The transcriptional profiles, coupled with the transcriptional regulation of early blue light, have provided the functional roles of many genes expected to be involved in the light-mediated defence mechanism. CONCLUSIONS This study is the first comprehensive survey of transcriptional regulation in response to Ra. The results described herein suggest a link between Ra and cellular defence and light signalling, and thereby contribute to further our understanding of how Ra is involved in light-mediated mechanisms of plant defence.
Collapse
Affiliation(s)
- Moehninsi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Haruyuki Nakajyo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kosumi Yamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Koji Hasegawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
- KNC Laboratories Co, Ltd, Hyogo 651-2271, Japan
| | - Hideyuki Shigemori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
152
|
Potters G, Horemans N, Jansen MAK. The cellular redox state in plant stress biology--a charging concept. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:292-300. [PMID: 20137959 DOI: 10.1016/j.plaphy.2009.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 05/20/2023]
Abstract
Different redox-active compounds, such as ascorbate, glutathione, NAD(P)H and proteins from the thioredoxin superfamily, contribute to the general redox homeostasis in the plant cell. The myriad of interactions between redox-active compounds, and the effect of environmental parameters on them, has been encapsulated in the concept of a cellular redox state. This concept has facilitated progress in understanding stress signalling and defence in plants. However, despite the proven usefulness of the concept of a redox state, there is no single, operational definition that allows for quantitative analysis and hypothesis testing.
Collapse
Affiliation(s)
- Geert Potters
- Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | |
Collapse
|
153
|
Traverso JA, López-Jaramillo FJ, Serrato AJ, Ortega-Muñoz M, Aguado-Llera D, Sahrawy M, Santoyo-Gonzalez F, Neira JL, Chueca A. Evidence of non-functional redundancy between two pea h-type thioredoxins by specificity and stability studies. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:423-9. [PMID: 20005595 DOI: 10.1016/j.jplph.2009.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 05/28/2023]
Abstract
The largest group of plant thioredoxins (TRXs) consists of the so-called h-type; their great number raises questions about their specific or redundant roles in plant cells. Pisum sativum thioredoxin h1 (PsTRXh1) and Pisum sativum thioredoxin h2 (PsTRXh2) are both h-type TRXs from pea (Pisum sativum) previously identified and biochemically characterized. While both are involved in redox regulation and show a high-sequence identity (60%), they display different behavior during in vitro and in vivo assays. In this work, we show that these two proteins display different specificity in the capturing of protein targets in vitro, by the use of a new stringent method. PsTRXh2 interacted with classical antioxidant proteins, whereas PsTRXh1 showed a completely different pattern of targeted proteins, and was able to capture a transcription factor. We also showed that the two proteins display very different thermal and chemical stabilities. We suggest that the differences in thermal and chemical stability point to a distinct and characteristic pattern of protein specificity.
Collapse
Affiliation(s)
- José A Traverso
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental Zaidin, CSIC 18008 Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication. Proc Natl Acad Sci U S A 2010; 107:3900-5. [PMID: 20133584 DOI: 10.1073/pnas.0913759107] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thioredoxins (Trxs) are small ubiquitous regulatory disulfide proteins. Plants have an unusually complex complement of Trxs composed of six well-defined types (Trxs f, m, x, y, h, and o) that reside in different cell compartments and function in an array of processes. The extraplastidic h type consists of multiple members that in general have resisted isolation of a specific phenotype. In analyzing mutant lines in Arabidopsis thaliana, we identified a phenotype of dwarf plants with short roots and small yellowish leaves for AtTrx h9 (henceforth, Trx h9), a member of the Arabidopsis Trx h family. Trx h9 was found to be associated with the plasma membrane and to move from cell to cell. Controls conducted in conjunction with the localization of Trx h9 uncovered another h-type Trx in mitochondria (Trx h2) and a Trx in plastids earlier described as a cytosolic form in tomato. Analysis of Trx h9 revealed a 17-amino acid N-terminal extension in which the second Gly (Gly(2)) and fourth cysteine (Cys(4)) were highly conserved. Mutagenesis experiments demonstrated that Gly(2) was required for membrane binding, possibly via myristoylation. Both Gly(2) and Cys(4) were needed for movement, the latter seemingly for protein structure and palmitoylation. A three-dimensional model was consistent with these predictions as well as with earlier evidence showing that a poplar ortholog is reduced by a glutaredoxin rather than NADP-thioredoxin reductase. In demonstrating the membrane location and intercellular mobility of Trx h9, the present results extend the known boundaries of Trx and suggest a role in cell-to-cell communication.
Collapse
|
155
|
Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP. Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. THE PLANT CELL 2010; 22:376-91. [PMID: 20164444 PMCID: PMC2845418 DOI: 10.1105/tpc.109.071225] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/21/2010] [Accepted: 01/29/2010] [Indexed: 05/18/2023]
Abstract
Intracellular redox status is a critical parameter determining plant development in response to biotic and abiotic stress. Thioredoxin (TRX) and glutathione are key regulators of redox homeostasis, and the TRX and glutathione pathways are essential for postembryonic meristematic activities. Here, we show by associating TRX reductases (ntra ntrb) and glutathione biosynthesis (cad2) mutations that these two thiol reduction pathways interfere with developmental processes through modulation of auxin signaling. The triple ntra ntrb cad2 mutant develops normally at the rosette stage, undergoes the floral transition, but produces almost naked stems, reminiscent of the phenotype of several mutants affected in auxin transport or biosynthesis. In addition, the ntra ntrb cad2 mutant shows a loss of apical dominance, vasculature defects, and reduced secondary root production, several phenotypes tightly regulated by auxin. We further show that auxin transport capacities and auxin levels are perturbed in the mutant, suggesting that the NTR-glutathione pathways alter both auxin transport and metabolism. Analysis of ntr and glutathione biosynthesis mutants suggests that glutathione homeostasis plays a major role in auxin transport as both NTR and glutathione pathways are involved in auxin homeostasis.
Collapse
Affiliation(s)
- Talaat Bashandy
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement-Université de Perpignan Via Domitia 5096, 66860 Perpignan, France
| | - Jocelyne Guilleminot
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement-Université de Perpignan Via Domitia 5096, 66860 Perpignan, France
| | - Teva Vernoux
- Reproduction et Développement des Plantes, Ecole Nationale Supérieure, Unité Mixte de Recherche 879, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 69364 Lyon, France
| | - David Caparros-Ruiz
- Centre for Research in Agricultural Genomics, Consorci Consejo Superior de Investigaciones Científicas, Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, 08034 Barcelona, Spain
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Yves Meyer
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement-Université de Perpignan Via Domitia 5096, 66860 Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement-Université de Perpignan Via Domitia 5096, 66860 Perpignan, France
- Address correspondence to
| |
Collapse
|
156
|
Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 2009; 43:335-67. [PMID: 19691428 DOI: 10.1146/annurev-genet-102108-134201] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families with multiple and partially redundant genes. The number of genes clearly increased with the appearance of multicellular organisms, in part because of new types of Trx and Grx with orthologs throughout the animal and plant kingdoms. The function of Trx and Grx also broadened as cells achieved increased complexity, especially in the regulation arena. In view of these progressive changes, the ubiquitous distribution of Trx and the wide occurrence of Grx enable these proteins to serve as indicators of the evolutionary history of redox regulation. In so doing, they add a unifying element that links the diverse forms of life to one another in an uninterrupted continuum. It is anticipated that future research will embellish this continuum and further elucidate the properties of these proteins and their impact on biology. The new information will be important not only to our understanding of the role of Trx and Grx in fundamental cell processes but also to future societal benefits as the proteins find new applications in a range of fields.
Collapse
Affiliation(s)
- Yves Meyer
- Université de Perpignan, Génome et dévelopement des plantes, CNRS-UP-IRD UMR 5096, F 66860 Perpignan Cedex, France.
| | | | | | | |
Collapse
|
157
|
Conrad M. Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta Gen Subj 2009; 1790:1575-85. [DOI: 10.1016/j.bbagen.2009.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 04/23/2009] [Accepted: 05/05/2009] [Indexed: 12/25/2022]
|
158
|
Bedhomme M, Zaffagnini M, Marchand CH, Gao XH, Moslonka-Lefebvre M, Michelet L, Decottignies P, Lemaire SD. Regulation by glutathionylation of isocitrate lyase from Chlamydomonas reinhardtii. J Biol Chem 2009; 284:36282-36291. [PMID: 19847013 DOI: 10.1074/jbc.m109.064428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of protein cysteine residues is emerging as an important regulatory and signaling mechanism. We have identified numerous putative targets of redox regulation in the unicellular green alga Chlamydomonas reinhardtii. One enzyme, isocitrate lyase (ICL), was identified both as a putative thioredoxin target and as an S-thiolated protein in vivo. ICL is a key enzyme of the glyoxylate cycle that allows growth on acetate as a sole source of carbon. The aim of the present study was to clarify the molecular mechanism of the redox regulation of Chlamydomonas ICL using a combination of biochemical and biophysical methods. The results clearly show that purified C. reinhardtii ICL can be inactivated by glutathionylation and reactivated by glutaredoxin, whereas thioredoxin does not appear to regulate ICL activity, and no inter- or intramolecular disulfide bond could be formed under any of the conditions tested. Glutathionylation of the protein was investigated by mass spectrometry analysis, Western blotting, and site-directed mutagenesis. The enzyme was found to be protected from irreversible oxidative inactivation by glutathionylation of its catalytic Cys(178), whereas a second residue, Cys(247), becomes artifactually glutathionylated after prolonged incubation with GSSG. The possible functional significance of this post-translational modification of ICL in Chlamydomonas and other organisms is discussed.
Collapse
Affiliation(s)
- Mariette Bedhomme
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Mirko Zaffagnini
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Christophe H Marchand
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS/Université Paris-Sud, Bâtiment 430, 91405 Orsay, Cedex, France
| | - Xing-Huang Gao
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Mathieu Moslonka-Lefebvre
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Laure Michelet
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France
| | - Paulette Decottignies
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619, CNRS/Université Paris-Sud, Bâtiment 430, 91405 Orsay, Cedex, France
| | - Stéphane D Lemaire
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud, Bâtiment 630, 91405 Orsay, Cedex, France.
| |
Collapse
|
159
|
Kühn K, Richter U, Meyer EH, Delannoy E, de Longevialle AF, O'Toole N, Börner T, Millar AH, Small ID, Whelan J. Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana. THE PLANT CELL 2009; 21:2762-79. [PMID: 19783760 PMCID: PMC2768943 DOI: 10.1105/tpc.109.068536] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/23/2009] [Accepted: 09/01/2009] [Indexed: 05/18/2023]
Abstract
Transcription of mitochondrial genes in animals, fungi, and plants relies on the activity of T3/T7 phage-type RNA polymerases. Two such enzymes, RPOTm and RPOTmp, are present in the mitochondria of eudicotyledonous plants; RPOTmp is additionally found in plastids. We have characterized the transcriptional role of the dual-targeted RNA polymerase in mitochondria of Arabidopsis thaliana. Examination of mitochondrial transcripts in rpoTmp mutants revealed major differences in transcript abundances between wild-type and rpoTmp plants. Decreased levels of specific transcripts were correlated with reduced abundances of the respiratory chain complexes I and IV. Altered transcript levels in rpoTmp were found to result from gene-specific transcriptional changes, establishing that RPOTmp functions in distinct transcriptional processes within mitochondria. Decreased transcription of specific genes in rpoTmp was not associated with changes in promoter utilization; therefore, RPOTmp function is not promoter specific but gene specific. This implies that additional gene-specific elements direct the transcription of a subset of mitochondrial genes by RPOTmp.
Collapse
Affiliation(s)
- Kristina Kühn
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Suvorova ES, Lucas O, Weisend CM, Rollins MF, Merrill GF, Capecchi MR, Schmidt EE. Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes. PLoS One 2009; 4:e6158. [PMID: 19584930 PMCID: PMC2703566 DOI: 10.1371/journal.pone.0006158] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/01/2009] [Indexed: 01/05/2023] Open
Abstract
Background Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Principal Findings Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Txnrd1-deficient livers exhibited a transcriptome response in which 56 mRNAs were induced and 12 were repressed. Based on the global hybridization profile, this represented only 0.3% of the liver transcriptome. Since most liver mRNAs were unaffected, compensatory responses were evidently effective. Nuclear pre-mRNA levels indicated the response was transcriptional. Twenty-one of the induced genes contained known antioxidant response elements (AREs), which are binding sites for the oxidative and chemical stress-induced transcription factor Nrf2. Txnrd1-deficient livers showed increased accumulation of nuclear Nrf2 protein and chromatin immunoprecipitation on the endogenous nqo1 and aox1 promoters in fibroblasts indicated that Txnrd1 ablation triggered in vivo assembly of Nrf2 on each. Conclusions Chronic deletion of Txnrd1 results in induction of the Nrf2 pathway, which contributes to an effective compensatory response.
Collapse
Affiliation(s)
- Elena S. Suvorova
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Olivier Lucas
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Carla M. Weisend
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - MaryClare F. Rollins
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Gary F. Merrill
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Mario R. Capecchi
- Howard Hughes Medical Institute (HHMI), University of Utah, Salt Lake City, Utah, United States of America
| | - Edward E. Schmidt
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
161
|
Jacquot JP, Eklund H, Rouhier N, Schürmann P. Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. TRENDS IN PLANT SCIENCE 2009; 14:336-43. [PMID: 19446492 DOI: 10.1016/j.tplants.2009.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 05/24/2023]
Abstract
Thioredoxins (Trxs) are small oxidoreductases that are involved in redox homeostasis and are found in large numbers in the subcellular compartments of eukaryotic plant cells, including the chloroplasts. Also present in chloroplasts are two forms of thioredoxin reductase (TR), which use either NADPH or ferredoxin as an electron donor. In other compartments, two additional TR forms also use NADPH: one is distributed in all photosynthetic organisms and is similar to prokaryotic enzymes, whereas the other is restricted to algae and is similar to mammalian selenoproteins. Here, we review current knowledge of the different forms of TRs across organisms and discuss the possible evolutionary fate of this class of enzymes, which provide an example of convergent functional evolution.
Collapse
Affiliation(s)
- Jean-Pierre Jacquot
- Interactions Arbres Microorganismes UMR 1136, IFR 110, Nancy University, BP 239, 54506 Vandoeuvre Cedex, France.
| | | | | | | |
Collapse
|
162
|
The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 2009; 106:9109-14. [PMID: 19451637 DOI: 10.1073/pnas.0900206106] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tight control of cellular redox homeostasis is essential for protection against oxidative damage and for maintenance of normal metabolism as well as redox signaling events. Under oxidative stress conditions, the tripeptide glutathione can switch from its reduced form (GSH) to oxidized glutathione disulfide (GSSG), and thus, forms an important cellular redox buffer. GSSG is normally reduced to GSH by 2 glutathione reductase (GR) isoforms encoded in the Arabidopsis genome, cytosolic GR1 and GR2 dual-targeted to chloroplasts and mitochondria. Measurements of total GR activity in leaf extracts of wild-type and 2 gr1 deletion mutants revealed that approximately 65% of the total GR activity is attributed to GR1, whereas approximately 35% is contributed by GR2. Despite the lack of a large share in total GR activity, gr1 mutants do not show any informative phenotype, even under stress conditions, and thus, the physiological impact of GR1 remains obscure. To elucidate its role in plants, glutathione-specific redox-sensitive GFP was used to dynamically measure the glutathione redox potential (E(GSH)) in the cytosol. Using this tool, it is shown that E(GSH) in gr1 mutants is significantly shifted toward more oxidizing conditions. Surprisingly, dynamic reduction of GSSG formed during induced oxidative stress in gr1 mutants is still possible, although significantly delayed compared with wild-type plants. We infer that there is functional redundancy in this critical pathway. Integrated biochemical and genetic assays identify the NADPH-dependent thioredoxin system as a backup system for GR1. Deletion of both, NADPH-dependent thioredoxin reductase A and GR1, prevents survival due to a pollen lethal phenotype.
Collapse
|
163
|
Pellny TK, Locato V, Vivancos PD, Markovic J, De Gara L, Pallardó FV, Foyer CH. Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. MOLECULAR PLANT 2009; 2:442-56. [PMID: 19825628 DOI: 10.1093/mp/ssp008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pyridine nucleotides, ascorbate and glutathione are major redox metabolites in plant cells, with specific roles in cellular redox homeostasis and the regulation of the cell cycle. However, the regulation of these metabolite pools during exponential growth and their precise functions in the cell cycle remain to be characterized. The present analysis of the abundance of ascorbate, glutathione, and pyridine nucleotides during exponential growth of Arabidopsis cells in culture provides evidence for the differential regulation of each of these redox pools. Ascorbate was most abundant early in the growth cycle, but glutathione was low at this point. The cellular ascorbate to dehydroascorbate and reduced glutathione (GSH) to glutathione disulphide ratios were high and constant but the pyridine nucleotide pools were largely oxidized over the period of exponential growth and only became more reduced once growth had ceased. The glutathione pool increased in parallel with poly (ADP-ribose) polymerase (PARP) activities and with increases in the abundance of PARP1 and PARP2 mRNAs at a time of high cell cycle activity as indicated by transcriptome information. Marked changes in the intracellular partitioning of GSH between the cytoplasm and nucleus were observed. Extension of the exponential growth phase by dilution or changing the media led to increases in the glutathione and nicotinamide adenine dinucleotide, oxidized form (NAD)-plus-nicotinamide adenine dinucleotide, reduced form (NADH) pools and to higher NAD/NADH ratios but the nicotinamide adenine dinucleotide phosphate, oxidized form (NADP)-plus-nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) pool sizes, and NAPD/NADPH ratios were much less affected. The ascorbate, glutathione, and pyridine nucleotide pools and PARP activity decreased before the exponential growth phase ended. We conclude that there are marked changes in intracellular redox state during the growth cycle but that redox homeostasis is maintained by interplay of the major redox pyridine nucleotides, glutathione, and ascorbate pools. The correlation between PARP expression and activity and GSH accumulation and the finding that GSH can be recruited to the nucleus suggest a relationship between redox regulation and nuclear enzyme activity.
Collapse
Affiliation(s)
- Till K Pellny
- Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2 JQ, UK
| | | | | | | | | | | | | |
Collapse
|
164
|
Shahpiri A, Svensson B, Finnie C. From proteomics to structural studies of cytosolic/mitochondrial-type thioredoxin systems in barley seeds. MOLECULAR PLANT 2009; 2:378-389. [PMID: 19825623 DOI: 10.1093/mp/ssn096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Thioredoxins (Trx) are ubiquitous proteins that participate in thiol disulfide reactions via two active site cysteine residues, allowing Trx to reduce disulfide bonds in target proteins. Recent progress in proteome analysis has resulted in identification of a wide range of potential target proteins for Trx, indicating that Trx plays a key role in several aspects of cell metabolism. In contrast to other organisms, plants contain multiple forms of Trx that are classified based on their primary structures and sub-cellular localization. The reduction of cytosolic and mitochondrial types of Trx is dependent on NADPH and catalyzed by NADPH-dependent thioredoxin reductase (NTR). In barley, two isoforms each of Trx and NTR have been identified and investigated using proteomics, gene expression, and structural studies. This review outlines the diverse roles suggested for cytosolic/mitochondrial-type Trx systems in cereal seeds and summarizes the current knowledge of the barley system including recent data on function, regulation, interactions, and structure. Directions for future research are discussed.
Collapse
Affiliation(s)
- Azar Shahpiri
- Enzyme and Protein Chemistry, Department of Systems Biology, Søltofts Plads, Building 224, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
165
|
Thioredoxin targets in plants: The first 30 years. J Proteomics 2009; 72:452-74. [DOI: 10.1016/j.jprot.2008.12.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 12/19/2022]
|
166
|
Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 2009; 11:861-905. [PMID: 19239350 DOI: 10.1089/ars.2008.2177] [Citation(s) in RCA: 729] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
167
|
Lepistö A, Kangasjärvi S, Luomala EM, Brader G, Sipari N, Keränen M, Keinänen M, Rintamäki E. Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1261-76. [PMID: 19151130 PMCID: PMC2649390 DOI: 10.1104/pp.108.133777] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 01/13/2009] [Indexed: 05/18/2023]
Abstract
Chloroplast NADPH-thioredoxin reductase (NTRC) belongs to the thioredoxin systems that control crucial metabolic and regulatory pathways in plants. Here, by characterization of T-DNA insertion lines of NTRC gene, we uncover a novel connection between chloroplast thiol redox regulation and the control of photoperiodic growth in Arabidopsis (Arabidopsis thaliana). Transcript and metabolite profiling revealed severe developmental and metabolic defects in ntrc plants grown under a short 8-h light period. Besides reduced chlorophyll and anthocyanin contents, ntrc plants showed alterations in the levels of amino acids and auxin. Furthermore, a low carbon assimilation rate of ntrc leaves was associated with enhanced transpiration and photorespiration. All of these characteristics of ntrc were less severe when plants were grown under a long 16-h photoperiod. Transcript profiling revealed that the mutant phenotypes of ntrc were accompanied by differential expression of genes involved in stomatal development, chlorophyll biosynthesis, chloroplast biogenesis, and circadian clock-linked light perception systems in ntrc plants. We propose that NTRC regulates several key processes, including chlorophyll biosynthesis and the shikimate pathway, in chloroplasts. In the absence of NTRC, imbalanced metabolic activities presumably modulate the chloroplast retrograde signals, leading to altered expression of nuclear genes and, ultimately, to the formation of the pleiotrophic phenotypes in ntrc mutant plants.
Collapse
Affiliation(s)
- Anna Lepistö
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Queval G, Thominet D, Vanacker H, Miginiac-Maslow M, Gakière B, Noctor G. H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. MOLECULAR PLANT 2009; 2:344-56. [PMID: 19825619 DOI: 10.1093/mp/ssp002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Glutathione is a key player in cellular redox homeostasis and, therefore, in the response to H(2)O(2), but the factors regulating oxidation-activated glutathione synthesis are still unclear. We investigated H(2)O(2)-induced glutathione synthesis in a conditional Arabidopsis catalase-deficient mutant (cat2). Plants were grown from seed at elevated CO(2) for 5 weeks, then transferred to air in either short-day or long-day conditions. Compared to cat2 at elevated CO(2) or wild-type plants in any condition, transfer of cat2 to air in both photoperiods caused measurable oxidation of the leaf glutathione pool within hours. Oxidation continued on subsequent days and was accompanied by accumulation of glutathione. This effect was stronger in cat2 transferred to air in short days, and was not linked to appreciable increases in the extractable activities of or transcripts encoding enzymes involved in the committed pathway of glutathione synthesis. In contrast, it was accompanied by increases in serine, O-acetylserine, and cysteine. These changes in metabolites were accompanied by induction of genes encoding adenosine phosphosulfate reductase (APR), particularly APR3, as well as a specific serine acetyltransferase gene (SAT2.1) encoding a chloroplastic SAT. Marked induction of these genes was only observed in cat2 transferred to air in short-day conditions, where cysteine and glutathione accumulation was most dramatic. Unlike other SAT genes, which showed negligible induction in cat2, the relative abundance of APR and SAT2.1 transcripts was closely correlated with marker transcripts for H(2)O(2) signaling. Together, the data underline the importance of cysteine synthesis in oxidant-induced up-regulation of glutathione synthesis and suggest that the chloroplast makes an important contribution to cysteine production under these circumstances.
Collapse
Affiliation(s)
- Guillaume Queval
- Institut de Biotechnologie des Plantes, UMR CNRS 8618, Université de Paris Sud, 91405 Orsay cedex, France
| | | | | | | | | | | |
Collapse
|
169
|
Chandran D, Tai YC, Hather G, Dewdney J, Denoux C, Burgess DG, Ausubel FM, Speed TP, Wildermuth MC. Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1435-51. [PMID: 19176722 PMCID: PMC2649394 DOI: 10.1104/pp.108.132985] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/23/2009] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is a critical mediator of plant innate immunity. It plays an important role in limiting the growth and reproduction of the virulent powdery mildew (PM) Golovinomyces orontii on Arabidopsis (Arabidopsis thaliana). To investigate this later phase of the PM interaction and the role played by SA, we performed replicated global expression profiling for wild-type and SA biosynthetic mutant isochorismate synthase1 (ics1) Arabidopsis from 0 to 7 d after infection. We found that ICS1-impacted genes constitute 3.8% of profiled genes, with known molecular markers of Arabidopsis defense ranked very highly by the multivariate empirical Bayes statistic (T(2) statistic). Functional analyses of T(2)-selected genes identified statistically significant PM-impacted processes, including photosynthesis, cell wall modification, and alkaloid metabolism, that are ICS1 independent. ICS1-impacted processes include redox, vacuolar transport/secretion, and signaling. Our data also support a role for ICS1 (SA) in iron and calcium homeostasis and identify components of SA cross talk with other phytohormones. Through our analysis, 39 novel PM-impacted transcriptional regulators were identified. Insertion mutants in one of these regulators, PUX2 (for plant ubiquitin regulatory X domain-containing protein 2), results in significantly reduced reproduction of the PM in a cell death-independent manner. Although little is known about PUX2, PUX1 acts as a negative regulator of Arabidopsis CDC48, an essential AAA-ATPase chaperone that mediates diverse cellular activities, including homotypic fusion of endoplasmic reticulum and Golgi membranes, endoplasmic reticulum-associated protein degradation, cell cycle progression, and apoptosis. Future work will elucidate the functional role of the novel regulator PUX2 in PM resistance.
Collapse
Affiliation(s)
- Divya Chandran
- Department of Plant and Microbial Biology , University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Bashandy T, Taconnat L, Renou JP, Meyer Y, Reichheld JP. Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C. MOLECULAR PLANT 2009; 2:249-58. [PMID: 19825611 DOI: 10.1093/mp/ssn065] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of thioredoxins. There are two genes encoding NTRs (NTRA and NTRB) in the Arabidopsis genome, each encoding a cytosolic and a mitochondrial isoform. A double ntra ntrb mutant has recently been characterized and shows slower plant growth, slightly wrinkled seeds and a remarkable hypersensitivity to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis. In this paper, we demonstrate that this mutant also accumulates higher level of flavonoids. Analysis of transcriptome data showed that several genes of the flavonoid pathway are overexpressed in the ntra ntrb mutant. Accumulation of flavonoids is generally considered a hallmark of plant stress. Nevertheless, no elevation of the expression of genes encoding ROS-detoxification enzymes was observed, suggesting that the ntra ntrb plants do not suffer from oxidative disease. Another hypothesis suggests that flavonoids are specifically synthesized in the ntra ntrb mutant in order to rescue the inactivation of NTR. To test this, the ntra ntrb mutant was crossed with transparent testa 4 (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis. As ntra ntrb plants are more resistant to UV-C treatment than wild-type plants, this higher resistance was abolished in the ntra ntrb tt4 mutant, suggesting that accumulation of flavonoids in the ntra ntrb mutant protects plants against UV-light.
Collapse
Affiliation(s)
- Talaat Bashandy
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, UMR CNRS 5096, 52 avenue Paul Alduy, 66860 Perpignan, France
| | | | | | | | | |
Collapse
|
171
|
Chibani K, Wingsle G, Jacquot JP, Gelhaye E, Rouhier N. Comparative genomic study of the thioredoxin family in photosynthetic organisms with emphasis on Populus trichocarpa. MOLECULAR PLANT 2009; 2:308-22. [PMID: 19825616 DOI: 10.1093/mp/ssn076] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The recent genome sequencing of Populus trichocarpa and Vitis vinifera, two models of woody plants, of Sorghum bicolor, a model of monocot using C4 metabolism, and of the moss Physcomitrella patens, together with the availability of photosynthetic organism genomes allows performance of a comparative genomic study with organisms having different ways of life, reproduction modes, biological traits, and physiologies. Thioredoxins (Trxs) are small ubiquitous proteins involved in the reduction of disulfide bridges in a variety of target enzymes present in all sub-cellular compartments and involved in many biochemical reactions. The genes coding for these enzymes have been identified in these newly sequenced genomes and annotated. The gene content, organization and distribution were compared to other photosynthetic organisms, leading to a refined classification. This analysis revealed that higher plants and bryophytes have a more complex family compared to algae and cyanobacteria and to non-photosynthetic organisms, since poplar exhibits 49 genes coding for typical and atypical thioredoxins and thioredoxin reductases, namely one-third more than monocots such as Oryza sativa and S. bicolor. The higher number of Trxs in poplar is partially explained by gene duplication in the Trx m, h, and nucleoredoxin classes. Particular attention was paid to poplar genes with emphasis on Trx-like classes called Clot, thioredoxin-like, thioredoxins of the lilium type and nucleoredoxins, which were not described in depth in previous genomic studies.
Collapse
Affiliation(s)
- Kamel Chibani
- UMR 1136 Nancy University-INRA, Interactions Arbres Microorganismes, IFR 110 GEEF, Faculté des Sciences, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | |
Collapse
|
172
|
Ströher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ. Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:357-67. [PMID: 19825620 DOI: 10.1093/mp/ssn084] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The stress-associated protein SAP12 belongs to the stress-associated protein (SAP) family with 14 members in Arabidopsis thaliana. SAP12 contains two AN1 zinc fingers and was identified in diagonal 2D redox SDS-PAGE as a protein undergoing major redox-dependent conformational changes. Its transcript was strongly induced under cold and salt stress in a time-dependent manner similar to SAP10, with high levels after 6 h and decreasing levels after 24 and 48 h. The transcript regulation resembled those of the stress marker peroxiredoxin PrxIID at 24 and 48 h. Recombinant SAP12 protein showed redox-dependent changes in quaternary structure as visualized by altered electrophoretic mobility in non-reducing SDS polyacrylamide gel electrophoresis. The oxidized oligomer was reduced by high dithiothreitol concentrations, and also by E. coli thioredoxin TrxA with low dithiothreitol (DTT) concentrations or NADPH plus NADPH-dependent thioredoxin reductase. From Western blots, the SAP12 protein amount was estimated to be in the range of 0.5 ng mug(-1) leaf protein. SAP12 protein decreased under salt and cold stress. These data suggest a redox state-linked function of SAP12 in plant cells particularly under cold and salt stress.
Collapse
Affiliation(s)
- Elke Ströher
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
173
|
Arnér ESJ. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta Gen Subj 2009; 1790:495-526. [PMID: 19364476 DOI: 10.1016/j.bbagen.2009.01.014] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/30/2009] [Indexed: 02/07/2023]
Abstract
Thioredoxin systems, involving redox active thioredoxins and thioredoxin reductases, sustain a number of important thioredoxin-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense and redox-regulated signaling cascades. Mammalian thioredoxin reductases are selenium-containing flavoprotein oxidoreductases, dependent upon a selenocysteine residue for reduction of the active site disulfide in thioredoxins. Their activity is required for normal thioredoxin function. The mammalian thioredoxin reductases also display surprisingly multifaceted properties and functions beyond thioredoxin reduction. Expressed from three separate genes (in human named TXNRD1, TXNRD2 and TXNRD3), the thioredoxin reductases can each reduce a number of different types of substrates in different cellular compartments. Their expression patterns involve intriguingly complex transcriptional mechanisms resulting in several splice variants, encoding a number of protein variants likely to have specialized functions in a cell- and tissue-type restricted manner. The thioredoxin reductases are also targeted by a number of drugs and compounds having an impact on cell function and promoting oxidative stress, some of which are used in treatment of rheumatoid arthritis, cancer or other diseases. However, potential specific or essential roles for different forms of human or mouse thioredoxin reductases in health or disease are still rather unclear, although it is known that at least the murine Txnrd1 and Txnrd2 genes are essential for normal development during embryogenesis. This review is a survey of current knowledge of mammalian thioredoxin reductase function and expression, with a focus on human and mouse and a discussion of the striking complexity of these proteins. Several yet open questions regarding their regulation and roles in different cells or tissues are emphasized. It is concluded that the intriguingly complex regulation and function of mammalian thioredoxin reductases within the cellular context and in intact mammals strongly suggests that their functions are highly fi ne-tuned with the many pathways involving thioredoxins and thioredoxin-related proteins. These selenoproteins furthermore propagate many functions beyond a reduction of thioredoxins. Aberrant regulation of thioredoxin reductases, or a particular dependence upon these enzymes in diseased cells, may underlie their presumed therapeutic importance as enzymatic targets using electrophilic drugs. These reductases are also likely to mediate several of the effects on health and disease that are linked to different levels of nutritional selenium intake. The thioredoxin reductases and their splice variants may be pivotal components of diverse cellular signaling pathways, having importance in several redox-related aspects of health and disease. Clearly, a detailed understanding of mammalian thioredoxin reductases is necessary for a full comprehension of the thioredoxin system and of selenium dependent processes in mammals.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
174
|
Li S, Lauri A, Ziemann M, Busch A, Bhave M, Zachgo S. Nuclear activity of ROXY1, a glutaredoxin interacting with TGA factors, is required for petal development in Arabidopsis thaliana. THE PLANT CELL 2009; 21:429-41. [PMID: 19218396 PMCID: PMC2660636 DOI: 10.1105/tpc.108.064477] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/08/2009] [Accepted: 01/17/2009] [Indexed: 05/19/2023]
Abstract
Glutaredoxins (GRXs) have thus far been associated mainly with redox-regulated processes participating in stress responses. However, ROXY1, encoding a GRX, has recently been shown to regulate petal primorida initiation and further petal morphogenesis in Arabidopsis thaliana. ROXY1 belongs to a land plant-specific class of GRXs that has a CC-type active site motif, which deviates from ubiquitously occurring CPYC and CGFS GRXs. Expression studies of yellow fluorescent protein-ROXY1 fusion genes driven by the cauliflower mosaic virus 35S promoter reveal a nucleocytoplasmic distribution of ROXY1. We demonstrate that nuclear localization of ROXY1 is indispensable and thus crucial for its activity in flower development. Yeast two-hybrid screens identified TGA transcription factors as interacting proteins, which was confirmed by bimolecular fluorescence complementation experiments showing their nuclear interaction in planta. Overlapping expression patterns of ROXY1 and TGA genes during flower development demonstrate that ROXY1/TGA protein interactions can occur in vivo and support their biological relevance in petal development. Deletion analysis of ROXY1 demonstrates the importance of the C terminus for its functionality and for mediating ROXY1/TGA protein interactions. Phenotypic analysis of the roxy1-2 pan double mutant and an engineered chimeric repressor mutant from PERIANTHIA (PAN), a floral TGA gene, supports a dual role of ROXY1 in petal development. Together, our results show that the ROXY1 protein functions in the nucleus, likely by modifying PAN posttranslationally and thereby regulating its activity in petal primordia initiation. Additionally, ROXY1 affects later petal morphogenesis, probably by modulating other TGA factors that might act redundantly during differentiation of second whorl organs.
Collapse
Affiliation(s)
- Shutian Li
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
175
|
Locato V, Gadaleta C, De Gara L, De Pinto MC. Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. PLANT, CELL & ENVIRONMENT 2008; 31:1606-19. [PMID: 18684242 DOI: 10.1111/j.1365-3040.2008.01867.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Exposure to adverse temperature conditions is a common stress factor for plants. In order to cope with heat stress, plants activate several defence mechanisms responsible for the control of reactive oxygen species (ROS) and redox homeostasis. Specific heat shocks (HSs) are also able to activate programmed cell death (PCD). In this paper, the alteration of several oxidative markers and ROS scavenging enzymes were studied after subjecting cells to two different HSs. Our results suggest that, under moderate HS, the redox homeostasis is mainly guaranteed by an increase in glutathione (GSH) content and in the ascorbate peroxidase (APX) and catalase (CAT) activities. These two enzymes undergo different regulatory mechanisms. On the other hand, the HS-induced PCD determines an increase in the activity of the enzymes recycling the ascorbate- and GSH-oxidized forms and a reduction of APX; whereas, CAT decreases only after a transient rise of its activity, which occurs in spite of the decrease of its gene expression. These results suggest that the enzyme-dependent ROS scavenging is enhanced under moderate HS and suppressed under HS-induced PCD. Moreover, the APX suppression occurring very early during PCD, could represent a hallmark of cells that have activated a suicide programme.
Collapse
Affiliation(s)
- Vittoria Locato
- Dipartimento di Biologia e Patologia Vegetale, Università degli Studi di Bari, Bari, Italy
| | | | | | | |
Collapse
|
176
|
Rouhier N, Koh CS, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot JP. Redox based anti-oxidant systems in plants: Biochemical and structural analyses. Biochim Biophys Acta Gen Subj 2008; 1780:1249-60. [DOI: 10.1016/j.bbagen.2007.12.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 12/18/2022]
|
177
|
Affiliation(s)
- Abderrakib Zahid
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
| | - Samia Afoulous
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
| | - Roland Cazalis
- Université de Toulouse–Ecole d'Ingénieurs de Purpan, Laboratoire d'Agrophysiologie, UPSP/DGER 115, 75 voie du Toec, BP 57611, 31076 Toulouse cedex 03, France
- Corresponding author. Phone: 33-561152989. Fax: 33-561153060. E-mail address:
| |
Collapse
|
178
|
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 2008. [PMID: 18635760 DOI: 10.1126/science.1156970>] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Changes in redox status have been observed during immune responses in different organisms, but the associated signaling mechanisms are poorly understood. In plants, these redox changes regulate the conformation of NPR1, a master regulator of salicylic acid (SA)-mediated defense genes. NPR1 is sequestered in the cytoplasm as an oligomer through intermolecular disulfide bonds. We report that S-nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at cysteine-156 facilitates its oligomerization, which maintains protein homeostasis upon SA induction. Conversely, the SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins (TRXs). Mutations in both NPR1 cysteine-156 and TRX compromised NPR1-mediated disease resistance. Thus, the regulation of NPR1 is through the opposing action of GSNO and TRX. These findings suggest a link between pathogen-triggered redox changes and gene regulation in plant immunity.
Collapse
Affiliation(s)
- Yasuomi Tada
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 2008; 321:952-6. [PMID: 18635760 PMCID: PMC3833675 DOI: 10.1126/science.1156970] [Citation(s) in RCA: 715] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in redox status have been observed during immune responses in different organisms, but the associated signaling mechanisms are poorly understood. In plants, these redox changes regulate the conformation of NPR1, a master regulator of salicylic acid (SA)-mediated defense genes. NPR1 is sequestered in the cytoplasm as an oligomer through intermolecular disulfide bonds. We report that S-nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at cysteine-156 facilitates its oligomerization, which maintains protein homeostasis upon SA induction. Conversely, the SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins (TRXs). Mutations in both NPR1 cysteine-156 and TRX compromised NPR1-mediated disease resistance. Thus, the regulation of NPR1 is through the opposing action of GSNO and TRX. These findings suggest a link between pathogen-triggered redox changes and gene regulation in plant immunity.
Collapse
Affiliation(s)
- Yasuomi Tada
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | - Steven H. Spoel
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | | | - Zhonglin Mou
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | - Junqi Song
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| | - Chun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinnian Dong
- Department of Biology, Post Office Box 90338, Duke University, Durham, NC 27708, USA
| |
Collapse
|
180
|
Yano H, Kuroda S. Introduction of the Disulfide Proteome: Application of a Technique for the Analysis of Plant Storage Proteins as Well as Allergens. J Proteome Res 2008; 7:3071-9. [DOI: 10.1021/pr8003453] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroyuki Yano
- National Institute of Crop Science, Tsukuba 305-8518, Japan, and BRAIN Tokyo Office, Minato-ku, Tokyo 105-0001, Japan
| | - Shigeru Kuroda
- National Institute of Crop Science, Tsukuba 305-8518, Japan, and BRAIN Tokyo Office, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
181
|
Barranco-Medina S, Krell T, Bernier-Villamor L, Sevilla F, Lázaro JJ, Dietz KJ. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3259-69. [PMID: 18632730 PMCID: PMC2529245 DOI: 10.1093/jxb/ern177] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/21/2008] [Accepted: 06/05/2008] [Indexed: 05/19/2023]
Abstract
Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a K(D) of 126+/-14 pM. Binding was driven by a favourable enthalpy change (DeltaH= -60.6 kcal mol(-1)) which was counterbalanced by unfavourable entropy changes (TDeltaS= -47.1 kcal mol(-1)). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein-protein interaction and function.
Collapse
Affiliation(s)
- Sergio Barranco-Medina
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, D-33501 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
182
|
Spínola MC, Pérez-Ruiz JM, Pulido P, Kirchsteiger K, Guinea M, González M, Cejudo FJ. NTRC new ways of using NADPH in the chloroplast. PHYSIOLOGIA PLANTARUM 2008; 133:516-524. [PMID: 18346073 DOI: 10.1111/j.1399-3054.2008.01088.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite being the primary source of energy in the biosphere, photosynthesis is a process that inevitably produces reactive oxygen species. Chloroplasts are a major source of hydrogen peroxide production in plant cells; therefore, different systems for peroxide reduction, such as ascorbate peroxidase and peroxiredoxins (Prxs), are found in this organelle. Most of the reducing power required for hydrogen peroxide reduction by these systems is provided by Fd reduced by the photosynthetic electron transport chain; hence, the function of these systems is highly dependent on light. Recently, it was described a novel plastidial enzyme, stated NTRC, formed by a thioredoxin reductase (NTR) domain at the N-terminus and a thioredoxin (Trx) domain at the C-terminus. NTRC is able to conjugate both NTR and Trx activities to efficiently reduce 2-Cys Prx using NADPH as a source of reducing power. Based on these results, it was proposed that NTRC is a new pathway to transfer reducing power to the chloroplast detoxification system, allowing the use of NADPH, besides reduced Fd, for such function. In this article, the most important features of NTRC are summarized and the implications of this novel activity in the context of chloroplast protection against oxidative damage are discussed.
Collapse
Affiliation(s)
- María C Spínola
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y CSIC, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
Recent research has established redox-dependent thiol modification of proteins as a major regulatory layer superimposed on most cell functional categories in plants. Modern proteomics and forward as well as reverse genetics approaches have enabled the identification of a high number of novel targets of redox regulation. Redox-controlled processes range from metabolism to transport, transcription and translation. Gene activity regulation by transcription factors such as TGA, Athb-9 and RAP2 directly or indirectly is controlled by the redox state. Knowledge on putative redox sensors such as the peroxiredoxins, on redox transmitters including thioredoxins and glutaredoxins and biochemical mechanisms of their linkage to the metabolic redox environment has emerged as the framework of a functional redox regulatory network. Its basic principle is similar in eukaryotic cells and particularly complex in the photosynthesizing chloroplast. Methods and knowledge are now at hand to develop a quantitative understanding of redox signalling and the redox regulatory network in the eukaryotic cell.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, D-33501 Bielefeld, Germany.
| |
Collapse
|
184
|
Serrato AJ, Guilleminot J, Meyer Y, Vignols F. AtCXXS: atypical members of the Arabidopsis thaliana thioredoxin h family with a remarkably high disulfide isomerase activity. PHYSIOLOGIA PLANTARUM 2008; 133:611-622. [PMID: 18384502 DOI: 10.1111/j.1399-3054.2008.01093.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Arabidopsis thaliana thioredoxin subgroup h III is composed of four members and includes the two monocysteinic (CXXS) thioredoxins encoded by the genome. We show that AtCXXS1 is the ortholog of monocysteinic thioredoxins present in all higher plants. In contrast, unicellular algae and the moss Physcomitrella patens do not encode monocysteinic thioredoxin. AtCXXS2, the second monocysteinic thioredoxin of Arabidopsis has no ortholog in any other higher plants. It probably appeared recently by duplications of a dicysteinic thioredoxin of the same subgroup h III. Both monocysteinic thioredoxins show a low disulfide reductase activity in vitro but are very efficient as disulfide isomerases in RNAse refolding tests. The possible interactions of these proteins with the glutathione glutaredoxin pathway are discussed on the basis of recent papers.
Collapse
Affiliation(s)
- Antonio Jesús Serrato
- Laboratoire Génome et Développement des Plantes, UMR CNRS-IRD-UPVD 5096, Université de Perpignan, Perpignan, Cedex, France
| | | | | | | |
Collapse
|
185
|
Koh CS, Navrot N, Didierjean C, Rouhier N, Hirasawa M, Knaff DB, Wingsle G, Samian R, Jacquot JP, Corbier C, Gelhaye E. An atypical catalytic mechanism involving three cysteines of thioredoxin. J Biol Chem 2008; 283:23062-72. [PMID: 18552403 DOI: 10.1074/jbc.m802093200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike other thioredoxins h characterized so far, a poplar thioredoxin of the h type, PtTrxh4, is reduced by glutathione and glutaredoxin (Grx) but not NADPH:thioredoxin reductase (NTR). PtTrxh4 contains three cysteines: one localized in an N-terminal extension (Cys(4)) and two (Cys(58) and Cys(61)) in the classical thioredoxin active site ((57)WCGPC(61)). The property of a mutant in which Cys(58) was replaced by serine demonstrates that it is responsible for the initial nucleophilic attack during the catalytic cycle. The observation that the C4S mutant is inactive in the presence of Grx but fully active when dithiothreitol is used as a reductant indicates that Cys(4) is required for the regeneration of PtTrxh4 by Grx. Biochemical and x-ray crystallographic studies indicate that two intramolecular disulfide bonds involving Cys(58) can be formed, linking it to either Cys(61) or Cys(4). We propose thus a four-step disulfide cascade mechanism involving the transient glutathionylation of Cys(4) to convert this atypical thioredoxin h back to its active reduced form.
Collapse
Affiliation(s)
- Cha San Koh
- Equipe Biocristallographie, UMR 7036 CNRS-Université Henri Poincaré, URAFPA, Equipe PB2P, Faculté des Sciences et Techniques, Nancy Université, BP 239, 54506 Vandoeuvre Cedex France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Watson WH, Heilman JM, Hughes LL, Spielberger JC. Thioredoxin reductase-1 knock down does not result in thioredoxin-1 oxidation. Biochem Biophys Res Commun 2008; 368:832-6. [PMID: 18267104 PMCID: PMC2387252 DOI: 10.1016/j.bbrc.2008.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/02/2008] [Indexed: 10/22/2022]
Abstract
The active site of thioredoxin-1 (Trx1) is oxidized in cells with increased reactive oxygen species (ROS) and is reduced by thioredoxin reductase-1 (TrxR1). The purpose of the present study was to determine the extent to which the redox state of Trx1 is sensitive to changes in these opposing reactions. Trx1 redox state and ROS generation were measured in cells exposed to the TrxR1 inhibitors aurothioglucose (ATG) and monomethylarsonous acid (MMA(III)) and in cells depleted of TrxR1 activity by siRNA knock down. The results showed that all three treatments inhibited TrxR1 activity to similar extents (90% inhibition), but that only MMA(III) exposure resulted in oxidation of Trx1. Similarly, ROS levels were elevated in response to MMA(III), but not in response to ATG or TrxR1 siRNA. Therefore, TrxR1 inhibition alone was not sufficient to oxidize Trx1, suggesting that Trx1-independent pathways should be considered when evaluating pharmacological and toxicological mechanisms involving TrxR1 inhibition.
Collapse
Affiliation(s)
- Walter H Watson
- Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Toxicology, 615 N. Wolfe Street, Room E7545, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
187
|
Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP. Glutaredoxins and thioredoxins in plants. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:589-600. [DOI: 10.1016/j.bbamcr.2007.10.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 12/22/2022]
|
188
|
Traverso JA, Vignols F, Cazalis R, Serrato AJ, Pulido P, Sahrawy M, Meyer Y, Cejudo FJ, Chueca A. Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1267-77. [PMID: 18356145 DOI: 10.1093/jxb/ern037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plants are the organisms containing the most complex multigenic family for thioredoxins (TRX). Several types of TRXs are targeted to chloroplasts, which have been classified into four subgroups: m, f, x, and y. Among them, TRXs f and m were the first plastidial TRXs characterized, and their function as redox modulators of enzymes involved in carbon assimilation in the chloroplast has been well-established. Both TRXs, f and m, were named according to their ability to reduce plastidial fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase (MDH), respectively. Evidence is presented here based on the immunocytochemistry of the localization of f and m-type TRXs from Pisum sativum in non-photosynthetic tissues. Both TRXs showed a different spatial pattern. Whilst PsTRXm was localized to vascular tissues of all the organs analysed (leaves, stems, and roots), PsTRXf was localized to more specific cells next to xylem vessels and vascular cambium. Heterologous complementation analysis of the yeast mutant EMY63, deficient in both yeast TRXs, by the pea plastidial TRXs suggests that PsTRXm, but not PsTRXf, is involved in the mechanism of reactive oxygen species (ROS) detoxification. In agreement with this function, the PsTRXm gene was induced in roots of pea plants in response to hydrogen peroxide.
Collapse
Affiliation(s)
- José A Traverso
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (CSIC), C/ Prof. Albareda 1, E-18008-Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Rouhier N, Lemaire SD, Jacquot JP. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:143-66. [PMID: 18444899 DOI: 10.1146/annurev.arplant.59.032607.092811] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glutathione, a tripeptide with the sequence gamma-Glu-Cys-Gly, exists either in a reduced form with a free thiol group or in an oxidized form with a disulfide between two identical molecules. We describe here briefly the pathways involved in the synthesis, reduction, polymerization, and degradation of glutathione, as well as its distribution throughout the plant and its redox buffering capacities. The function of glutathione in xenobiotic and heavy metal detoxification, plant development, and plant-pathogen interactions is also briefly discussed. Several lines of evidence indicate that glutathione and glutaredoxins (GRXs) are implicated in the response to oxidative stress through the regeneration of enzymes involved in peroxide and methionine sulfoxide reduction. Finally, emerging functions for plant GRXs and glutathione concern the regulation of protein activity via glutathionylation and the capacity of some GRXs to bind iron sulfur centers and for some of them to transfer FeS clusters into apoproteins.
Collapse
Affiliation(s)
- Nicolas Rouhier
- Unité Mixte de Recherches, 1136 INRA-UHP Interaction Arbres-Microorganismes, IFR 110 GEEF, Nancy University, Faculté des Sciences, 54506 Vandoeuvre Cedex, France.
| | | | | |
Collapse
|