151
|
Niego B, Medcalf RL. Improved method for the preparation of a human cell-based, contact model of the blood-brain barrier. J Vis Exp 2013:e50934. [PMID: 24300849 DOI: 10.3791/50934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The blood-brain barrier (BBB) comprises impermeable but adaptable brain capillaries which tightly control the brain environment. Failure of the BBB has been implied in the etiology of many brain pathologies, creating a need for development of human in vitro BBB models to assist in clinically-relevant research. Among the numerous BBB models thus far described, a static (without flow), contact BBB model, where astrocytes and brain endothelial cells (BECs) are cocultured on the opposite sides of a porous membrane, emerged as a simplified yet authentic system to simulate the BBB with high throughput screening capacity. Nevertheless the generation of such model presents few technical challenges. Here, we describe a protocol for preparation of a contact human BBB model utilizing a novel combination of primary human BECs and immortalized human astrocytes. Specifically, we detail an innovative method for cell-seeding on inverted inserts as well as specify insert staining techniques and exemplify how we use our model for BBB-related research.
Collapse
Affiliation(s)
- Be'eri Niego
- Australian Centre for Blood Diseases, Monash University
| | | |
Collapse
|
152
|
Accelerated Caco-2 cell permeability model for drug discovery. J Pharmacol Toxicol Methods 2013; 68:334-9. [DOI: 10.1016/j.vascn.2013.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 11/21/2022]
|
153
|
Pieper C, Pieloch P, Galla HJ. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood–brain barrier. Brain Res 2013; 1524:1-11. [DOI: 10.1016/j.brainres.2013.05.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 01/13/2023]
|
154
|
Dohgu S, Banks WA. Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro blood-brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids Barriers CNS 2013; 10:23. [PMID: 23816186 PMCID: PMC3710206 DOI: 10.1186/2045-8118-10-23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/23/2013] [Indexed: 11/30/2024] Open
Abstract
Background Human immunodeficiency virus-1 (HIV-1) enters the brain by crossing the blood–brain barrier (BBB) as both free virus and within infected immune cells. Previous work showed that activation of the innate immune system with lipopolysaccharide (LPS) enhances free virus transport both in vivo and across monolayer monocultures of brain microvascular endothelial cells (BMECs) in vitro. Methods Here, we used monocultures and co-cultures of brain pericytes and brain endothelial cells to examine the crosstalk between these cell types in mediating the LPS-enhanced permeation of radioactively-labeled HIV-1 (I-HIV) across BMEC monolayers. Results We found that brain pericytes when co-cultured with BMEC monolayers magnified the LPS-enhanced transport of I-HIV without altering transendothelial electrical resistance, indicating that pericytes affected the transcytotic component of HIV-1 permeation. As LPS crosses the BBB poorly if at all, and since pericytes are on the abluminal side of the BBB, we postulated that luminal LPS acts indirectly on pericytes through abluminal secretions from BMECs. Consistent with this, we found that the pattern of secretion of cytokines by pericytes directly exposed to LPS was different than when the pericytes were exposed to the abluminal fluid from LPS-treated BMEC monolayers. Conclusion These results are evidence for a cellular crosstalk in which LPS acts at the luminal surface of the brain endothelial cell, inducing abluminal secretions that stimulate pericytes to release substances that enhance the permeability of the BMEC monolayer to HIV.
Collapse
Affiliation(s)
- Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | |
Collapse
|
155
|
Watson PMD, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci 2013; 14:59. [PMID: 23773766 PMCID: PMC3694476 DOI: 10.1186/1471-2202-14-59] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 06/05/2013] [Indexed: 12/16/2022] Open
Abstract
Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.
Collapse
|
156
|
Kitic M, Hochmeister S, Wimmer I, Bauer J, Misu T, Mader S, Reindl M, Fujihara K, Lassmann H, Bradl M. Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats. Acta Neuropathol Commun 2013; 1:5. [PMID: 24252536 PMCID: PMC3776214 DOI: 10.1186/2051-5960-1-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neuromyelitis optica (NMO) is a severe, disabling disease of the central nervous system (CNS) characterized by the formation of astrocyte-destructive, neutrophil-dominated inflammatory lesions in the spinal cord and optic nerves. These lesions are initiated by the binding of pathogenic aquaporin 4 (AQP4)-specific autoantibodies to astrocytes and subsequent complement-mediated lysis of these cells. Typically, these lesions form in a setting of CNS inflammation, where the blood-brain barrier is open for the entry of antibodies and complement. However, it remained unclear to which extent pro-inflammatory cytokines and chemokines contribute to the formation of NMO lesions. To specifically address this question, we injected the cytokines interleukin-1 beta, tumor necrosis factor alpha, interleukin-6, interferon gamma and the chemokine CXCL2 into the striatum of NMO-IgG seropositive rats and analyzed the tissue 24 hours later by immunohistochemistry. RESULTS All injected cytokines and chemokines led to profound leakage of immunoglobulins into the injected hemisphere, but only interleukin-1 beta induced the formation of perivascular, neutrophil-infiltrated lesions with AQP4 loss and complement-mediated astrocyte destruction distant from the needle tract. Treatment of rat brain endothelial cells with interleukin-1 beta, but not with any other cytokine or chemokine applied at the same concentration and over the same period of time, caused profound upregulation of granulocyte-recruiting and supporting molecules. Injection of interleukin-1 beta caused higher numbers of blood vessels with perivascular, cellular C1q reactivity than any other cytokine tested. Finally, the screening of a large sample of CNS lesions from NMO and multiple sclerosis patients revealed large numbers of interleukin-1 beta-reactive macrophages/activated microglial cells in active NMO lesions but not in MS lesions with comparable lesion activity and location. CONCLUSIONS Our data strongly suggest that interleukin-1 beta released in NMO lesions and interleukin-1 beta-induced production/accumulation of complement factors (like C1q) facilitate neutrophil entry and BBB breakdown in the vicinity of NMO lesions, and might thus be an important secondary factor for lesion formation, possibly by paving the ground for rapid lesion growth and amplified immune cell recruitment to this site.
Collapse
Affiliation(s)
- Maja Kitic
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| | | | - Isabella Wimmer
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| | - Tatsuro Misu
- Departments of Multiple Sclerosis Therapeutics and Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi,Aobaku, Sendai, 980-8574, Japan
| | - Simone Mader
- Clinical Department of Neurology, Innsbruck Medical University, Anich0strasse 35, Innsbruck, A-6020, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Innsbruck Medical University, Anich0strasse 35, Innsbruck, A-6020, Austria
| | - Kazuo Fujihara
- Department of Neurology, Medical University Graz, Graz, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Medical University Vienna, Center for Brain Research, Spitalgasse 4, Vienna, A-1090, Austria
| |
Collapse
|
157
|
Toyoda K, Tanaka K, Nakagawa S, Thuy DHD, Ujifuku K, Kamada K, Hayashi K, Matsuo T, Nagata I, Niwa M. Initial contact of glioblastoma cells with existing normal brain endothelial cells strengthen the barrier function via fibroblast growth factor 2 secretion: a new in vitro blood-brain barrier model. Cell Mol Neurobiol 2013; 33:489-501. [PMID: 23385422 PMCID: PMC11498008 DOI: 10.1007/s10571-013-9913-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/25/2013] [Indexed: 01/14/2023]
Abstract
Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood-brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.
Collapse
Affiliation(s)
- Keisuke Toyoda
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Kunihiko Tanaka
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Shinsuke Nakagawa
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
| | - Dinh Ha Duy Thuy
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
| | - Kenta Ujifuku
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Kensaku Kamada
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Kentaro Hayashi
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Izumi Nagata
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Masami Niwa
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
| |
Collapse
|
158
|
A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res 2013; 1521:16-30. [PMID: 23603406 PMCID: PMC3694295 DOI: 10.1016/j.brainres.2013.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/18/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels and forms the critical interface regulating molecular flux between blood and brain. It contributes to homoeostasis of the microenvironment of the central nervous system and protection from pathogens and toxins. Key features of the BBB phenotype are presence of complex intercellular tight junctions giving a high transendothelial electrical resistance (TEER), and strongly polarised (apical:basal) localisation of transporters and receptors. In vitro BBB models have been developed from primary culture of brain endothelial cells of several mammalian species, but most require exposure to astrocytic factors to maintain the BBB phenotype. Other limitations include complicated procedures for isolation, poor yield and batch-to-batch variability. Some immortalised brain endothelial cell models have proved useful for transport studies but most lack certain BBB features and have low TEER. We have developed an in vitro BBB model using primary cultured porcine brain endothelial cells (PBECs) which is relatively simple to prepare, robust, and reliably gives high TEER (mean~800 Ω cm(2)); it also shows good functional expression of key tight junction proteins, transporters, receptors and enzymes. The model can be used either in monoculture, for studies of molecular flux including permeability screening, or in co-culture with astrocytes when certain specialised features (e.g. receptor-mediated transcytosis) need to be maximally expressed. It is also suitable for a range of studies of cell:cell interaction in normal physiology and in pathology. The method for isolating and growing the PBECs is given in detail to facilitate adoption of the model. This article is part of a Special Issue entitled Companion Paper.
Collapse
|
159
|
Chen C, Mei H, Shi W, Deng J, Zhang B, Guo T, Wang H, Hu Y. EGFP-EGF1-conjugated PLGA nanoparticles for targeted delivery of siRNA into injured brain microvascular endothelial cells for efficient RNA interference. PLoS One 2013; 8:e60860. [PMID: 23593330 PMCID: PMC3622655 DOI: 10.1371/journal.pone.0060860] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/03/2013] [Indexed: 01/23/2023] Open
Abstract
Injured endothelium is an important target for drug and/or gene therapy because brain microvascular endothelial cells (BMECs) play critical roles in various pathophysiological conditions. RNA-mediated gene silencing presents a new therapeutic approach for treating such diseases, but major challenge is to ensure minimal toxicity and target delivery of siRNA to injured BMECs. Injured BMECs overexpress tissue factor (TF), which the fusion protein EGFP-EGF1 could be targeted to. In this study, TNF alpha (TNF-α) was chosen as a stimulus for primary BMECs to produce injured endothelium in vitro. The EGFP-EGF1-PLGA nanoparticles (ENPs) with loaded TF-siRNA were used as a new carrier for targeted delivery to the injured BMECs. The nanoparticles then produced intracellular RNA interference against TF. We compared ENP-based transfections with NP-mediated transfections, and our studies show that the ENP-based transfections result in a more efficient downregulation of TF. Our findings also show that the TF siRNA-loaded ENPs had minimal toxicity, with almost 96% of the cells viable 24 h after transfection while Lipofectamine-based transfections resulted in only 75% of the cells. Therefore, ENP-based transfection could be used for efficient siRNA transfection to injured BMECs and for efficient RNA interference (RNAi). This transfection could serve as a potential treatment for diseases, such as stroke, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Targeted Biotherapy Key Laboratory of Ministry of Education, Wuhan, Hubei, PR China
| |
Collapse
|
160
|
Abstract
A range of in vitro BBB models are available, that can simplify the complexities associated with the in vivo study of the BBB. However, the adoption of these models, especially for studying the pathology of the BBB, is still poor, despite their ability to complement and reduce animal experiments
Collapse
Affiliation(s)
- Adjanie Patabendige
- University of Liverpool, Institute of Infection & Global Health, Liverpool, UK.
| |
Collapse
|
161
|
Lemmen J, Tozakidis IE, Bele P, Galla HJ. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood–brain barrier after CITCO activation. Brain Res 2013; 1501:68-80. [DOI: 10.1016/j.brainres.2013.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 01/22/2023]
|
162
|
Horai S, Nakagawa S, Tanaka K, Morofuji Y, Couraud PO, Deli MA, Ozawa M, Niwa M. Cilostazol strengthens barrier integrity in brain endothelial cells. Cell Mol Neurobiol 2013; 33:291-307. [PMID: 23224787 PMCID: PMC11497939 DOI: 10.1007/s10571-012-9896-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/16/2012] [Indexed: 12/14/2022]
Abstract
We studied the effect of cilostazol, a selective inhibitor of phosphodiesterase 3, on barrier functions of blood-brain barrier (BBB)-related endothelial cells, primary rat brain capillary endothelial cells (RBEC), and the immortalized human brain endothelial cell line hCMEC/D3. The pharmacological potency of cilostazol was also evaluated on ischemia-related BBB dysfunction using a triple co-culture BBB model (BBB Kit™) subjected to 6-h oxygen glucose deprivation (OGD) and 3-h reoxygenation. There was expression of phosphodiesterase 3B mRNA in RBEC, and a significant increase in intracellular cyclic AMP (cAMP) content was detected in RBEC treated with both 1 and 10 μM cilostazol. Cilostazol increased the transendothelial electrical resistance (TEER), an index of barrier tightness of interendothelial tight junctions (TJs), and decreased the endothelial permeability of sodium fluorescein through the RBEC monolayer. The effects on these barrier functions were significantly reduced in the presence of protein kinase A (PKA) inhibitor H-89. Microscopic observation revealed smooth and even localization of occludin immunostaining at TJs and F-actin fibers at the cell borders in cilostazol-treated RBEC. In hCMEC/D3 cells treated with 1 and 10 μM cilostazol for 24 and 96 h, P-glycoprotein transporter activity was increased, as assessed by rhodamine 123 accumulation. Cilostazol improved the TEER in our triple co-culture BBB model with 6-h OGD and 3-h reoxygenation. As cilostazol stabilized barrier integrity in BBB-related endothelial cells, probably via cAMP/PKA signaling, the possibility that cilostazol acts as a BBB-protective drug against cerebral ischemic insults to neurons has to be considered.
Collapse
Affiliation(s)
- Shoji Horai
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Shinsuke Nakagawa
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
| | - Kunihiko Tanaka
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Yoichi Morofuji
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Pierre-Oliver Couraud
- Inserm U1016 Institute Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, 22 rue Méchain, Paris, 75014 France
| | - Maria A. Deli
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Temesvári körút 62, Szeged, 6726 Hungary
| | - Masaki Ozawa
- Department of Neuropsychiatry, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Masami Niwa
- Department of Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- BBB Laboratory, PharmaCo-Cell Company Ltd., 1-43 Dejima, Nagasaki, 850-0862 Japan
| |
Collapse
|
163
|
Takata F, Dohgu S, Yamauchi A, Matsumoto J, Machida T, Fujishita K, Shibata K, Shinozaki Y, Sato K, Kataoka Y, Koizumi S. In vitro blood-brain barrier models using brain capillary endothelial cells isolated from neonatal and adult rats retain age-related barrier properties. PLoS One 2013; 8:e55166. [PMID: 23383092 PMCID: PMC3561369 DOI: 10.1371/journal.pone.0055166] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 12/19/2012] [Indexed: 11/18/2022] Open
Abstract
The blood-brain barrier (BBB) restricts the entry of circulating drugs and xenobiotics into the brain, and thus its permeability to substances is a critical factor that determines their central effects. The infant brain is vulnerable to neurotoxic substances partly due to the immature BBB. The employment of in vitro BBB models to evaluate permeability of compounds provides higher throughput than that of in vivo animal experiments. However, existing in vitro BBB models have not been able to simulate the intrinsic neonatal BBB. To establish a neonatal BBB model that mimics age-related BBB properties, the neonatal and adult in vitro BBB models were constructed with brain endothelial cells isolated from 2- and 8-week-old rats, respectively. To evaluate BBB functions, transendothelial electrical resistance, permeability of sodium fluorescein and Evans blue-albumin, and transport of rhodamine123 were measured. Radiolabelled drugs were used for BBB permeability studies in the neonatal and adult BBB models (in vitro) and in age-matched rats (in vivo). The neonatal BBB model showed lower barrier and p-glycoprotein (P-gp) functions than the adult BBB model; these were well associated with lower expressions of the barrier-related proteins and P-gp, and a different distribution pattern of immunostained barrier-related proteins. Verapamil (a P-gp inhibitor) significantly increased the influx of rhodamine 123, supporting functional P-gp expression in the neonatal BBB model. Valproic acid, but not nicotine, showed higher BBB permeability in the neonatal BBB model, which was well in accordance with the in vivo BBB property. We established a neonatal BBB model in vitro. This could allow us to assess the age-dependent BBB permeability of drugs.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- BBB Laboratory, PharmaCo-Cell Co., Ltd., Nagasaki, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Atsushi Yamauchi
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Takashi Machida
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kayoko Fujishita
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Keisuke Shibata
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
| | - Kaoru Sato
- Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| | - Yasufumi Kataoka
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- BBB Laboratory, PharmaCo-Cell Co., Ltd., Nagasaki, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
- Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan
- * E-mail:
| |
Collapse
|
164
|
Katakam PVG, Wappler EA, Katz PS, Rutkai I, Institoris A, Domoki F, Gáspár T, Grovenburg SM, Snipes JA, Busija DW. Depolarization of mitochondria in endothelial cells promotes cerebral artery vasodilation by activation of nitric oxide synthase. Arterioscler Thromb Vasc Biol 2013; 33:752-9. [PMID: 23329133 DOI: 10.1161/atvbaha.112.300560] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mitochondrial depolarization after ATP-sensitive potassium channel activation has been shown to induce cerebral vasodilation by the generation of calcium sparks in smooth muscle. It is unclear, however, whether mitochondrial depolarization in endothelial cells is capable of promoting vasodilation by releasing vasoactive factors. Therefore, we studied the effect of endothelial mitochondrial depolarization by mitochondrial ATP-sensitive potassium channel activators, BMS-191095 (BMS) and diazoxide, on endothelium-dependent vasodilation. APPROACH AND RESULTS Diameter studies in isolated rat cerebral arteries showed BMS- and diazoxide-induced vasodilations that were diminished by endothelial denudation. Mitochondrial depolarization-induced vasodilation was reduced by inhibition of mitochondrial ATP-sensitive potassium channels, phosphoinositide-3 kinase, or nitric oxide synthase. Scavenging of reactive oxygen species, however, diminished vasodilation induced by diazoxide, but not by BMS. Fluorescence studies in cultured rat brain microvascular endothelial cells showed that BMS elicited mitochondrial depolarization and enhanced nitric oxide production; diazoxide exhibited largely similar effects, but unlike BMS, increased mitochondrial reactive oxygen species production. Measurements of intracellular calcium ([Ca(2+)]i) in cultured rat brain microvascular endothelial cells and arteries showed that both diazoxide and BMS increased endothelial [Ca(2+)]i. Western blot analyses revealed increased phosphorylation of protein kinase B and endothelial nitric oxide synthase (eNOS) by BMS and diazoxide. Increased phosphorylation of eNOS by diazoxide was abolished by phosphoinositide-3 kinase inhibition. Electron spin resonance spectroscopy confirmed vascular nitric oxide generation in response to diazoxide and BMS. CONCLUSIONS Pharmacological depolarization of endothelial mitochondria promotes activation of eNOS by dual pathways involving increased [Ca(2+)]i as well as by phosphoinositide-3 kinase-protein kinase B-induced eNOS phosphorylation. Both mitochondrial reactive oxygen species-dependent and -independent mechanisms mediate activation of eNOS by endothelial mitochondrial depolarization.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Lemmen J, Tozakidis IE, Galla HJ. Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood-brain barrier. Brain Res 2013; 1491:1-13. [DOI: 10.1016/j.brainres.2012.10.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/17/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
166
|
Teow HM, Zhou Z, Najlah M, Yusof SR, Abbott NJ, D’Emanuele A. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier. Int J Pharm 2013; 441:701-11. [DOI: 10.1016/j.ijpharm.2012.10.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 12/13/2022]
|
167
|
Gesuete R, Packard AEB, Vartanian KB, Conrad VK, Stevens SL, Bahjat FR, Yang T, Stenzel-Poore MP. Poly-ICLC preconditioning protects the blood-brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem 2012; 123 Suppl 2:75-85. [PMID: 23050645 DOI: 10.1111/j.1471-4159.2012.07946.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Preconditioning with a low dose of harmful stimulus prior to injury induces tolerance to a subsequent ischemic challenge resulting in neuroprotection against stroke. Experimental models of preconditioning primarily focus on neurons as the cellular target of cerebral protection, while less attention has been paid to the cerebrovascular compartment, whose role in the pathogenesis of ischemic brain injury is crucial. We have shown that preconditioning with polyinosinic polycytidylic acid (poly-ICLC) protects against cerebral ischemic damage. To delineate the mechanism of poly-ICLC protection, we investigated whether poly-ICLC preconditioning preserves the function of the blood-brain barrier (BBB) in response to ischemic injury. Using an in vitro BBB model, we found that poly-ICLC treatment prior to exposure to oxygen-glucose deprivation maintained the paracellular and transcellular transport across the endothelium and attenuated the drop in transendothelial electric resistance. We found that poly-ICLC treatment induced interferon (IFN) β mRNA expression in astrocytes and microglia and that type I IFN signaling in brain microvascular endothelial cells was required for protection. Importantly, this implicates a potential mechanism underlying neuroprotection in our in vivo experimental stroke model, where type I IFN signaling is required for poly-ICLC-induced neuroprotection against ischemic injury. In conclusion, we are the first to show that preconditioning with poly-ICLC attenuates ischemia-induced BBB dysfunction. This mechanism is likely an important feature of poly-ICLC-mediated neuroprotection and highlights the therapeutic potential of targeting BBB signaling pathways to protect the brain against stroke.
Collapse
Affiliation(s)
- Raffaella Gesuete
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Membrane configuration optimization for a murine in vitro blood-brain barrier model. J Neurosci Methods 2012; 212:211-21. [PMID: 23131353 DOI: 10.1016/j.jneumeth.2012.10.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/09/2012] [Accepted: 10/25/2012] [Indexed: 11/24/2022]
Abstract
A powerful experimental tool used to study the dynamic functions of the blood-brain barrier (BBB) is an in vitro cellular based system utilizing cell culture inserts in multi-well plates. Currently, usage of divergent model configurations without explanation of selected variable set points renders data comparisons difficult and limits widespread understanding. This work presents for the first time in literature a comprehensive screening study to optimize membrane configuration, with aims to unveil influential membrane effects on the ability of cerebral endothelial cells to form a tight monolayer. First, primary murine brain endothelial cells and astrocytes were co-cultured in contact and non-contact orientations on membranes of pore diameter sizes ranging from 0.4 μm to 8.0 μm, and the non-contact orientation and smallest pore diameter size were shown to support a significantly tighter monolayer formation. Then, membranes made from polyethylene terephthalate (PET) and polycarbonate (PC) purchased from three different commercial sources were compared, and PET membranes purchased from two manufacturers facilitated a significantly tighter monolayer formation. Models were characterized by transendothelial electrical resistance (TEER), sodium fluorescein permeability, and immunocytochemical labeling of tight junction proteins. Finally, a murine brain endothelial cell line, bEnd.3, was grown on the different membranes, and similar results were obtained with respect to optimal membrane configuration selection. The results and methodology presented here on high throughput 24-well plate inserts can be translated to other BBB systems to advance model understanding.
Collapse
|
169
|
Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. Immunol Rev 2012; 248:228-39. [PMID: 22725965 DOI: 10.1111/j.1600-065x.2012.01127.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) is the brain-specific capillary barrier that is critical for preventing toxic substances from entering the central nervous system (CNS). In contrast to vessels of peripheral organs, the BBB limits the exchange of inflammatory cells and mediators under physiological and pathological conditions. Clarifying these limitations and the role of chemokines in regulating the BBB would provide new insights into neuroprotective strategies in neuroinflammatory diseases. Because there is a paucity of in vitro BBB models, however, some mechanistic aspects of transmigration across the BBB still remain largely unknown. In this review, we summarize current knowledge of BBB cellular components, the multistep process of inflammatory cells crossing the BBB, functions of CNS-derived chemokines, and in vitro BBB models for transmigration, with a particular focus on new and recent findings.
Collapse
Affiliation(s)
- Yukio Takeshita
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
170
|
Repositioning antimicrobial agent pentamidine as a disruptor of the lateral interactions of transmembrane domain 5 of EBV latent membrane protein 1. PLoS One 2012; 7:e47703. [PMID: 23094078 PMCID: PMC3477141 DOI: 10.1371/journal.pone.0047703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 09/14/2012] [Indexed: 01/07/2023] Open
Abstract
The lateral transmembrane protein-protein interactions (PPI) have been regarded as "undruggable" despite their importance in many essential biological processes. The homo-trimerization of transmembrane domain 5 (TMD-5) of latent membrane protein 1 (LMP-1) is critical for the constitutive oncogenic activation of the Epstein-Barr virus (EBV). Herein we repurpose the antimicrobial agent pentamidine as a regulator of LMP-1 TMD-5 lateral interactions. The results of ToxR assay, tryptophan fluorescence assay, courmarin fluorescence dequenching assay, and Bis-Tris sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) consistently show pentamidine disrupts LMP-1 TMD-5 lateral interactions. Furthermore, pentamidine inhibits LMP-1 signaling, inducing cellular apoptosis and suppressing cell proliferation in the EBV infected B cells. In contrast, EBV negative cells are less susceptible to pentamidine. This study provides a novel non-peptide small molecule agent for regulating LMP-1 TMD-5 lateral interactions.
Collapse
|
171
|
Clark D, Tuor UI, Thompson R, Institoris A, Kulynych A, Zhang X, Kinniburgh DW, Bari F, Busija DW, Barber PA. Protection against recurrent stroke with resveratrol: endothelial protection. PLoS One 2012; 7:e47792. [PMID: 23082218 PMCID: PMC3474795 DOI: 10.1371/journal.pone.0047792] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022] Open
Abstract
Despite increased risk of a recurrent stroke following a minor stroke, information is minimal regarding the interaction between injurious mild cerebral ischemic episodes and the possible treatments which might be effective. The aim of the current study was to investigate recurrent ischemic stroke and whether resveratrol, a nutritive polyphenol with promising cardio- and neuro- protective properties, could ameliorate the associated brain damage. Experiments in adult rats demonstrated that a mild ischemic stroke followed by a second mild cerebral ischemia exacerbated brain damage, and, daily oral resveratrol treatment after the first ischemic insult reduced ischemic cell death with the recurrent insult (P<0.002). Further investigation demonstrated reduction of both inflammatory changes and markers of oxidative stress in resveratrol treated animals. The protection observed with resveratrol treatment could not be explained by systemic effects of resveratrol treatment including effects either on blood pressure or body temperature measured telemetrically. Investigation of resveratrol effects on the blood-brain barrier in vivo demonstrated that resveratrol treatment reduced blood-brain barrier disruption and edema following recurrent stroke without affecting regional cerebral blood flow. Investigation of the mechanism in primary cell culture studies demonstrated that resveratrol treatment significantly protected endothelial cells against an in vitro ‘ischemia’ resulting in improved viability against oxygen and glucose deprivation (39.6±6.6% and 81.3±9.5% in vehicle and resveratrol treated cells, respectively). An inhibition of nitric oxide synthesis did not prevent the improved cell viability following oxygen glucose deprivation but SIRT-1 inhibition with sirtinol partially blocked the protection (P<0.001) suggesting endothelial protection is to some extent SIRT-1 dependent. Collectively, the results support that oral resveratrol treatment provides a low risk strategy to protect the brain from enhanced damage produced by recurrent stroke which is mediated in part by a protective effect of resveratrol on the endothelium of the cerebrovasculature.
Collapse
Affiliation(s)
- Darren Clark
- Departments of Physiology and Pharmacology, Clinical Neurosciences and Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ursula I. Tuor
- Departments of Physiology and Pharmacology, Clinical Neurosciences and Radiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
- * E-mail:
| | - Roger Thompson
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Adam Institoris
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Angela Kulynych
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Xu Zhang
- Alberta Centre for Toxicology, University of Calgary, Calgary, Canada
| | | | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - David W. Busija
- Department of Pharmacology, Tulane University, New Orleans, Louisiana, United States of America
| | - Philip A. Barber
- Hotchkiss Brain Institute and Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
172
|
Burek M, Salvador E, Förster CY. Generation of an immortalized murine brain microvascular endothelial cell line as an in vitro blood brain barrier model. J Vis Exp 2012:e4022. [PMID: 22951995 PMCID: PMC3486758 DOI: 10.3791/4022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epithelial and endothelial cells (EC) are building paracellular barriers which protect the tissue from the external and internal environment. The blood-brain barrier (BBB) consisting of EC, astrocyte end-feet, pericytes and the basal membrane is responsible for the protection and homeostasis of the brain parenchyma. In vitro BBB models are common tools to study the structure and function of the BBB at the cellular level. A considerable number of different in vitro BBB models have been established for research in different laboratories to date. Usually, the cells are obtained from bovine, porcine, rat or mouse brain tissue (discussed in detail in the review by Wilhelm et al.). Human tissue samples are available only in a restricted number of laboratories or companies. While primary cell preparations are time consuming and the EC cultures can differ from batch to batch, the establishment of immortalized EC lines is the focus of scientific interest. Here, we present a method for establishing an immortalized brain microvascular EC line from neonatal mouse brain. We describe the procedure step-by-step listing the reagents and solutions used. The method established by our lab allows the isolation of a homogenous immortalized endothelial cell line within four to five weeks. The brain microvascular endothelial cell lines termed cEND (from cerebral cortex) and cerebEND (from cerebellar cortex), were isolated according to this procedure in the Förster laboratory and have been effectively used for explanation of different physiological and pathological processes at the BBB. Using cEND and cerebEND we have demonstrated that these cells respond to glucocorticoid- and estrogen-treatment as well as to pro-infammatory mediators, such as TNFalpha. Moreover, we have studied the pathology of multiple sclerosis and hypoxia on the EC-level. The cEND and cerebEND lines can be considered as a good tool for studying the structure and function of the BBB, cellular responses of ECs to different stimuli or interaction of the EC with lymphocytes or cancer cells.
Collapse
Affiliation(s)
- Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, University of Wurzburg
| | | | | |
Collapse
|
173
|
Cantrill CA, Skinner RA, Rothwell NJ, Penny JI. An immortalised astrocyte cell line maintains the in vivo phenotype of a primary porcine in vitro blood-brain barrier model. Brain Res 2012; 1479:17-30. [PMID: 22940232 DOI: 10.1016/j.brainres.2012.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 08/01/2012] [Accepted: 08/16/2012] [Indexed: 12/11/2022]
Abstract
Whilst it is well documented that all components of the neurovascular unit contribute to the restrictive nature of the blood-brain barrier (BBB), astrocytes have been identified as the cellular component most likely to play an essential role in maintaining the barrier properties. The aim of this study was to examine the impact of the rat astrocyte cell line, CTX-TNA2, on the structural and functional characteristics of an in vitro BBB and determine the capacity of this astrocyte cell line to maintain the BBB phenotype. Co-culture of the CTX-TNA2 cells with primary porcine brain endothelial cells produced an in vitro BBB model which retains key features of the in vivo BBB. High transendothelial electrical resistances, comparable to those reported in vivo, were obtained. Ultrastructural analysis revealed distinct intercellular tight junction protein complexes and immunocytochemistry confirmed expression of the tight junction proteins ZO-1 and occludin. Western blotting and fluorescent tracer assays confirmed expression and functional activity of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) efflux transporters. Studies employing Alexa-fluor 555-conjugated human transferrin revealed temperature-sensitive internalisation indicating the BBB model retains functional receptor-mediated transferrin uptake. The findings of this study indicate that a robust BBB model has been produced and this is the first report of the inductive capacity of the CTX-TNA2 cell line. Since this in vitro BBB model possesses many key characteristics of the BBB in vivo it has the potential to be a valuable tool for the study of biochemical and physiological processes associated with the BBB.
Collapse
Affiliation(s)
- Carina A Cantrill
- School of Pharmacy and Pharmaceutical Sciences, Stopford Building, University of Manchester, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
174
|
Puentes S, Kurachi M, Shibasaki K, Naruse M, Yoshimoto Y, Mikuni M, Imai H, Ishizaki Y. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage. Brain Res 2012; 1469:43-53. [DOI: 10.1016/j.brainres.2012.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
|
175
|
Shi W, Mei H, Deng J, Chen C, Wang H, Guo T, Zhang B, Li L, Pang Z, Jiang X, Shen S, Hu Y. A tissue factor targeted nanomedical system for thrombi-specific drug delivery. Biomaterials 2012; 33:7643-54. [PMID: 22819496 DOI: 10.1016/j.biomaterials.2012.06.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
Abstract
Tissue factor (TF) is a 47 kDa membrane-bound glycoprotein, which is present at high concentrations on damaged endothelium, atherosclerotic plaques or tumor vasculature, and is an important trigger of coagulation cascade. In this study, we have expressed and purified the TF targeting protein-EGFP-EGF1, which was thiolated and conjugated to the malemide of the PEG-PLGA nanoparticle to form a TF targeting nanomedical system: EGF1-EGFP-NP. The system was carefully characterized and the targeting efficiency was systematically evaluated. The EGF1-EGFP-NP could significantly facilitate specific uptake by TF overexpressed BCEC via EGF1/TF mediated endocytosis pathway. In addition, the pharmacokinetic study demonstrated that EGF1-EGFP-NP has the same blood circulation time as NP. Enhanced accumulation of EGF1-EGFP-NP in the cortex infarction region was also observed by real-time fluorescence image. Confocal microscopy and TEM further showed that EGF1-EGFP-NP combined with TF and further transfected through the damaged endothelium. Moreover, in vitro cell viability experiment and in vivo coagulation ability confirmed that the EGF1-EGFP-NP was safe.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 2012; 1521:1-15. [PMID: 22789905 PMCID: PMC3694297 DOI: 10.1016/j.brainres.2012.06.057] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/14/2012] [Accepted: 06/28/2012] [Indexed: 12/11/2022]
Abstract
Good in vitro blood-brain barrier (BBB) models that mimic the in vivo BBB phenotype are essential for studies on BBB functionality and for initial screening in drug discovery programmes, as many potential therapeutic drug candidates have poor BBB permeation. Difficulties associated with the availability of human brain tissue, coupled with the time and cost associated with using animals for this kind of research have led to the development of non-human cell culture models. However, most BBB models display a low transendothelial electrical resistance (TEER), which is a measure of the tightness of the BBB. To address these issues we have established and optimised a robust, simple to use in vitro BBB model using porcine brain endothelial cells (PBECs). The PBEC model gives high TEER without the need for co-culture with astrocytes (up to 1300 O cm(2) with a mean TEER of ~800 O cm(2)) with well organised tight junctions as shown by immunostaining for occludin and claudin-5. Functional assays confirmed the presence of high levels of alkaline phosphatase (ALP), and presence of the efflux transporter, P-glycoprotein (P-gp, ABCB1). Presence of the breast cancer resistance protein (BCRP, ABCG2) was confirmed by TaqMan real-time RT-PCR assay. Real-time RT-PCR assays for BCRP, occludin and claudin-5 demonstrated no significant differences between batches of PBECs, and also between primary and passage 1 PBECs. A permeability screen of 10 compounds demonstrated the usefulness of the model as a tool for drug permeability studies. Qualitative and quantitative results from this study confirm that this in vitro porcine BBB model is reliable and robust; it is also simpler to generate than most other BBB models. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Adjanie Patabendige
- King's College London, Institute of Pharmaceutical Science, BBB Group, Franklin Wilkins Building, 150 Stamford St, London SE1 9NH, UK
| | | | | |
Collapse
|
177
|
Erickson MA, Hartvigson PE, Morofuji Y, Owen JB, Butterfield DA, Banks WA. Lipopolysaccharide impairs amyloid β efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood-brain barrier. J Neuroinflammation 2012; 9:150. [PMID: 22747709 PMCID: PMC3410805 DOI: 10.1186/1742-2094-9-150] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/29/2012] [Indexed: 11/18/2022] Open
Abstract
Background Defects in the low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein (Pgp) clearance of amyloid beta (Aβ) from brain are thought to contribute to Alzheimer’s disease (AD). We have recently shown that induction of systemic inflammation by lipopolysaccharide (LPS) results in impaired efflux of Aβ from the brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at the blood–brain barrier. Methods CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral ventricle of the brain (intracerebroventricular (ICV)) or into the jugular vein (intravenous (IV)) was used to quantify LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance, respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of cerebrospinal fluid (CSF). Brain microvascular protein expression of LRP-1 and Pgp was measured by immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine. Results We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain endothelial cells. Conclusions These results suggest that LRP-1 undergoes complex functional regulation following systemic inflammation which may depend on cell type, subcellular location, and post-translational modifications. Our findings that systemic inflammation causes deficits in both Aβ transport and bulk flow like those observed in AD indicate that inflammation could induce and promote the disease.
Collapse
Affiliation(s)
- Michelle A Erickson
- Department of Pharmacology and Physiology, Saint Louis University, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
178
|
Strotmann F, Wolf I, Galla HJ. The biocompatibility of a polyelectrolyte vitreous body substitute on a high resistance in vitro model of the blood-retinal barrier. J Biomater Appl 2012; 28:334-42. [DOI: 10.1177/0885328212450597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The vitreous body can be regarded as a fascinating simple but important tissue, since it represents the main compartment of the eye and plays a crucial role for proper vision. Several diseases require its removal with following substitution using a liquid artificial vitreous body replacement. We explore the biocompatibility of a poly(AMPS-Na+)-graft-poly(NIPAAm) polyelectrolyte following the innovative concept of thermo-responsive behaviour, exhibiting enhanced shear viscosity at physiological temperatures. As a powerful model for the blood-retinal barrier, we use the well-established in vitro cell culture model based on highly differentiated porcine brain capillary endothelial cells. Via the quantification of the transendothelial electrical resistance and immunocytochemical staining of tight junction proteins, we are able to show that a barrier integrity affecting impact of the polyelectrolyte was only transient and nearly reversible. Furthermore, the polyelectrolyte hydrogel is characterized by the absence of any acute cell morphology, cell vitality or proliferation affecting impacts. It does not trigger acute apoptotic processes, as can be substantiated via caspase-3 activity and DNA fragmentation assays. In view of the results of this study, it is shown that the polyelectrolyte does not affect the vitality parameters of our porcine brain capillary endothelial cells. It can be suggested that the tested thermo-responsive polyelectrolyte does not affect the sensitive retinal barrier integrity. Thus from the cellular tolerance it might serve as a potential liquid artificial vitreous body replacement to overcome the most prominent difficulties of common vitreal endotamponades.
Collapse
Affiliation(s)
- Falko Strotmann
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Isabel Wolf
- Institute of Biochemistry, University of Münster, Münster, Germany
| | | |
Collapse
|
179
|
Role of ROS/RhoA/PI3K/PKB Signaling in NS1619-Mediated Blood–Tumor Barrier Permeability Increase. J Mol Neurosci 2012; 48:302-12. [DOI: 10.1007/s12031-012-9789-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/25/2012] [Indexed: 12/22/2022]
|
180
|
2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog 2012; 8:e1002698. [PMID: 22589727 PMCID: PMC3349756 DOI: 10.1371/journal.ppat.1002698] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/27/2012] [Indexed: 11/19/2022] Open
Abstract
Prior studies have shown that 2′-O methyltransferase activity of flaviviruses, coronaviruses, and poxviruses promotes viral evasion of Ifit1, an interferon-stimulated innate immune effector protein. Viruses lacking 2′-O methyltransferase activity exhibited attenuation in primary macrophages that was rescued in cells lacking Ifit1 gene expression. Here, we examined the role of Ifit1 in restricting pathogenesis in vivo of wild type WNV (WNV-WT) and a mutant in the NS5 gene (WNV-E218A) lacking 2′-O methylation of the 5′ viral RNA cap. While deletion of Ifit1 had marginal effects on WNV-WT pathogenesis, WNV-E218A showed increased replication in peripheral tissues of Ifit1−/− mice after subcutaneous infection, yet this failed to correlate with enhanced infection in the brain or lethality. In comparison, WNV-E218A was virulent after intracranial infection as judged by increased infection in different regions of the central nervous system (CNS) and a greater than 16,000-fold decrease in LD50 values in Ifit1−/− compared to wild type mice. Ex vivo infection experiments revealed cell-type specific differences in the ability of an Ifit1 deficiency to complement the replication defect of WNV-E218A. In particular, WNV-E218A infection was impaired in both wild type and Ifit1−/− brain microvascular endothelial cells, which are believed to participate in blood-brain barrier (BBB) regulation of virus entry into the CNS. A deficiency of Ifit1 also was associated with increased neuronal death in vivo, which was both cell-intrinsic and mediated by immunopathogenic CD8+ T cells. Our results suggest that virulent strains of WNV have largely evaded the antiviral effects of Ifit1, and viral mutants lacking 2′-O methylation are controlled in vivo by Ifit1-dependent and -independent mechanisms in different cell types. We recently showed that a West Nile virus (WNV) mutant in NS5 (WNV-E218A) lacking 2′-O methyltransferase activity was attenuated in primary macrophages but replicated well in cells lacking type I interferon (IFN) signaling or expression of Ifit1, an IFN-stimulated gene. Here, we follow-up these studies by examining the pathogenesis in Ifit1−/− mice of WNV-E218A, the mutant virus lacking 2′-O methyltransferase activity. Because a deficiency of Ifit1 did not alter pathogenesis of wild type WNV, we conclude that the viral 2′-O methyltransferase encoded by NS5 largely overcomes Ifit1-mediated control of infection. In comparison, WNV-E218A showed increased infection in peripheral tissues of Ifit1−/− mice after subcutaneous infection, yet this did not result in enhanced replication in the brain. However, WNV-E218A caused lethal infection when it was directly introduced into the brain. We observed cell-type specific differences in the ability of an Ifit1 deficiency to rescue replication of WNV-E218A; for example, WNV-E218A showed equivalently impaired infection in wild type and Ifit1−/− brain endothelial cells, which potentially allow virus access into the brain. Our results suggest that virulent strains of WNV have evaded the antiviral effects of Ifit1, and mutants lacking 2′-O methylation are restricted by cell-type specific Ifit1-dependent and -independent mechanisms.
Collapse
|
181
|
Cardoso FL, Kittel Á, Veszelka S, Palmela I, Tóth A, Brites D, Deli MA, Brito MA. Exposure to lipopolysaccharide and/or unconjugated bilirubin impair the integrity and function of brain microvascular endothelial cells. PLoS One 2012; 7:e35919. [PMID: 22586454 PMCID: PMC3346740 DOI: 10.1371/journal.pone.0035919] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/27/2012] [Indexed: 11/21/2022] Open
Abstract
Background Sepsis and jaundice are common conditions in newborns that can lead to brain damage. Though lipopolysaccharide (LPS) is known to alter the integrity of the blood-brain barrier (BBB), little is known on the effects of unconjugated bilirubin (UCB) and even less on the joint effects of UCB and LPS on brain microvascular endothelial cells (BMEC). Methodology/Principal Findings Monolayers of primary rat BMEC were treated with 1 µg/ml LPS and/or 50 µM UCB, in the presence of 100 µM human serum albumin, for 4 or 24 h. Co-cultures of BMEC with astroglial cells, a more complex BBB model, were used in selected experiments. LPS led to apoptosis and UCB induced both apoptotic and necrotic-like cell death. LPS and UCB led to inhibition of P-glycoprotein and activation of matrix metalloproteinases-2 and -9 in mono-cultures. Transmission electron microscopy evidenced apoptotic bodies, as well as damaged mitochondria and rough endoplasmic reticulum in BMEC by either insult. Shorter cell contacts and increased caveolae-like invaginations were noticeable in LPS-treated cells and loss of intercellular junctions was observed upon treatment with UCB. Both compounds triggered impairment of endothelial permeability and transendothelial electrical resistance both in mono- and co-cultures. The functional changes were confirmed by alterations in immunostaining for junctional proteins β-catenin, ZO-1 and claudin-5. Enlargement of intercellular spaces, and redistribution of junctional proteins were found in BMEC after exposure to LPS and UCB. Conclusions LPS and/or UCB exert direct toxic effects on BMEC, with distinct temporal profiles and mechanisms of action. Therefore, the impairment of brain endothelial integrity upon exposure to these neurotoxins may favor their access to the brain, thus increasing the risk of injury and requiring adequate clinical management of sepsis and jaundice in the neonatal period.
Collapse
Affiliation(s)
- Filipa L. Cardoso
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ágnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Veszelka
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Inês Palmela
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Andrea Tóth
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Dora Brites
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Mária A. Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Maria A. Brito
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
182
|
Qiao R, Jia Q, Hüwel S, Xia R, Liu T, Gao F, Galla HJ, Gao M. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS NANO 2012; 6:3304-10. [PMID: 22443607 DOI: 10.1021/nn300240p] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A brain delivery probe was prepared by covalently conjugating lactoferrin (Lf) to a poly(ethylene glycol) (PEG)-coated Fe(3)O(4) nanoparticle in order to facilitate the transport of the nanoparticles across the blood-brain barrier (BBB) by receptor-mediated transcytosis via the Lf receptor present on cerebral endothelial cells. The efficacy of the Fe(3)O(4)-Lf conjugate to cross the BBB was evaluated in vitro using a cell culture model for the blood-brain barrier as well as in vivo in SD rats. For an in vitro experiment, a well-established porcine BBB model was used based on the primary culture of cerebral capillary endothelial cells grown on filter supports, thus allowing one to follow the transfer of nanoparticles from the apical (blood) to the basolateral (brain) side. For in vivo experiments, SD rats were used as animal model to detect the passage of the nanoparticles through the BBB by MRI techniques. The results of both in vitro and in vivo experiments revealed that the Fe(3)O(4)-Lf probe exhibited an enhanced ability to cross the BBB in comparison to the PEG-coated Fe(3)O(4) nanoparticles and further suggested that the Lf-receptor-mediated transcytosis was an effective measure for delivering the nanoparticles across the BBB.
Collapse
Affiliation(s)
- Ruirui Qiao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Qiaojuan Jia
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Sabine Hüwel
- Institute for Biochemistry, Westfälische Wilhelms-Universität, Wilhelm Klemm Straße 2, 48149 Münster, Germany
| | - Rui Xia
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Liu
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fabao Gao
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hans-Joachim Galla
- Institute for Biochemistry, Westfälische Wilhelms-Universität, Wilhelm Klemm Straße 2, 48149 Münster, Germany
| | - Mingyuan Gao
- Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
183
|
Schrade A, Sade H, Couraud PO, Romero IA, Weksler BB, Niewoehner J. Expression and localization of claudins-3 and -12 in transformed human brain endothelium. Fluids Barriers CNS 2012; 9:6. [PMID: 22373538 PMCID: PMC3305566 DOI: 10.1186/2045-8118-9-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/29/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to characterize the hCMEC/D3 cell line, an in vitro model of the human Blood Brain Barrier (BBB) for the expression of brain endothelial specific claudins-3 and -12. FINDINGS hCMEC/D3 cells express claudins-3 and -12. Claudin-3 is distinctly localized to the TJ whereas claudin -12 is observed in the perinuclear region and completely absent from TJs. We show that the expression of both proteins is lost in cell passage numbers where the BBB properties are no longer fully conserved. Expression and localization of claudin-3 is not modulated by simvastatin shown to improve barrier function in vitro and also recommended for routine hCMEC/D3 culture. CONCLUSIONS These results support conservation of claudin-3 and -12 expression in the hCMEC/D3 cell line and make claudin-3 a potential marker for BBB characteristics in vitro.
Collapse
Affiliation(s)
- Anja Schrade
- Pharma Research and Early Development (pRED), LMR Penzberg, Roche, Penzberg, Germany.
| | | | | | | | | | | |
Collapse
|
184
|
Vaccinia virus-induced smallpox postvaccinal encephalitis in case of blood–brain barrier damage. Vaccine 2012; 30:1397-405. [DOI: 10.1016/j.vaccine.2011.08.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 11/19/2022]
|
185
|
Naud J, Laurin LP, Michaud J, Beauchemin S, Leblond FA, Pichette V. Effects of chronic renal failure on brain drug transporters in rats. Drug Metab Dispos 2012; 40:39-46. [PMID: 21969519 DOI: 10.1124/dmd.111.041145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Studies demonstrated that chronic renal failure (CRF) affects the expression and activity of intestinal, hepatic, and renal drug transporters. Such drug transporters are expressed in brain cells and at the blood-brain barrier (BBB), where they limit the entry and distribution of drugs in the brain. Perturbations in brain drug transporter equilibrium by CRF could lead to central drug toxicity. This study evaluates how CRF affects BBB drug transporters using a 5/6 nephrectomized rat model. Protein and mRNA expression of influx transporters [organic anion-transporting polypeptide (Oatp), organic anion transporter (Oat)] and efflux transporters [P-glycoprotein (P-gp), multidrug resistance-related protein (Mrp), breast cancer resistance protein (Bcrp)] were measured in CRF and control rat brain. Intracerebral accumulation of radiolabeled benzylpenicillin, digoxin, doxorubicin, and verapamil was used to evaluate BBB drug permeability. Protein expression of the transporters was evaluated in rat brain endothelial cells (RBECs) and astrocytes incubated with control and CRF rat serum. We demonstrated significant decreases (30-50%) in protein and mRNA levels of Bcrp, Mrp2 to -4, Oat3, Oatp2 and -3, and P-gp in CRF rat brain biopsies, as well as in astrocytes and RBECs incubated with CRF serum. These decreases did not correlate with in vivo changes because BBB permeability of benzylpenicillin was decreased by 30% in CRF rats, whereas digoxin, doxorubicin, and verapamil permeabilities were unchanged. It thus seems that even with decreased drug transporters, BBB integrity and function is conserved in CRF.
Collapse
Affiliation(s)
- Judith Naud
- Service de Néphrologie et Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, 5415 boul. de l'Assomption, Montréal, Québec, Canada H1T 2M4
| | | | | | | | | | | |
Collapse
|
186
|
Abstract
The chapter provides an introduction and brief overview of currently available in vitro blood-brain barrier models, pointing out the major advantages and disadvantages of the respective models and potential applications. Bovine brain microvessel endothelial cell isolation, culture, and transendothelial permeability measurement procedures are discussed in detail as a model system for a laboratory to begin brain vascular investigations.
Collapse
Affiliation(s)
- Kaushik K Shah
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | | |
Collapse
|
187
|
Abbott NJ, Dolman DEM, Drndarski S, Fredriksson SM. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol 2012; 814:415-30. [PMID: 22144323 DOI: 10.1007/978-1-61779-452-0_28] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2 weeks, using pre-frozen astrocytes, from isolation of RBECs to generation of high-resistance/low-permeability RBEC monolayers.
Collapse
Affiliation(s)
- N Joan Abbott
- Institute of Pharmaceutical Science, Blood-Brain Barrier Group, King's College London, London, UK.
| | | | | | | |
Collapse
|
188
|
Wuest DM, Lee KH. Optimization of endothelial cell growth in a murine in vitro blood-brain barrier model. Biotechnol J 2011; 7:409-17. [PMID: 22095877 PMCID: PMC3488296 DOI: 10.1002/biot.201100189] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/29/2011] [Accepted: 11/11/2011] [Indexed: 11/06/2022]
Abstract
In vitro cell culture models of the blood-brain barrier (BBB) are important tools used to study cellular physiology and brain disease therapeutics. Although the number of model configurations is expanding across neuroscience laboratories, it is not clear that any have been effectively optimized. A sequential screening study to identify optimal primary mouse endothelial cell parameter set points, grown alone and in combination with common model enhancements, including co-culturing with primary mouse or rat astrocytes and addition of biochemical agents in the media, was performed. A range of endothelial cell-seeding densities (1-8 × 10(5) cells/cm(2) ) and astrocyte-seeding densities (2-8 × 10(4) cells/cm(2) ) were studied over seven days in the system, and three distinct media-feeding strategies were compared to optimize biochemical agent exposure time. Implementation of all optimal set points increased transendothelial electrical resistance by over 200% compared to an initial model and established a suitable in vitro model for brain disease application studies. These results demonstrate the importance of optimizing cell culture growth, which is the most important parameter in creating an in vitro BBB model as it directly relates the model to the in vivo arrangement.
Collapse
Affiliation(s)
- Diane M Wuest
- Chemical Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | |
Collapse
|
189
|
Wisniewska-Kruk J, Hoeben KA, Vogels IMC, Gaillard PJ, Van Noorden CJF, Schlingemann RO, Klaassen I. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes. Exp Eye Res 2011; 96:181-90. [PMID: 22200486 DOI: 10.1016/j.exer.2011.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/11/2011] [Accepted: 12/03/2011] [Indexed: 12/13/2022]
Abstract
Loss of blood-retinal barrier (BRB) properties is an important feature in the pathology of diabetic macular edema (DME), but cellular mechanisms underlying BRB dysfunction are poorly understood. Therefore, we developed and characterized a novel in vitro BRB model, based on primary bovine retinal endothelial cells (BRECs). These cells were shown to maintain specific in vivo BRB properties by expressing high levels of the endothelial junction proteins occludin, claudin-5, VE-cadherin and ZO-1 at cell borders, and the specific pumps glucose transporter-1 (GLUT1) and efflux transporter P-glycoprotein (MDR1). To investigate the influence of pericytes and astrocytes on BRB maintenance in vitro, we compared five different co-culture BRB models, based on BRECs, bovine retinal pericytes (BRPCs) and rat glial cells. Co-cultures of BRECs with BRPCs and glial cells showed the highest trans-endothelial resistance (TEER) as well as decreased permeability of tracers after vascular endothelial growth factor (VEGF) stimulation, suggesting a major role for these cell types in maintaining barrier properties. To mimic the in vivo situation of DME, we stimulated BRECs with VEGF, which downregulated MDR1 and GLUT1 mRNA levels, transiently reduced expression levels of endothelial junctional proteins and altered their organization, increased the number of intercellular gaps in BRECs monolayers and influence the permeability of the model to differently-sized molecular tracers. Moreover, as has been shown in vivo, expression of plasmalemma vesicle-associated protein (PLVAP) was increased in endothelial cells in the presence of VEGF. This in vitro model is the first co-culture model of the BRB that mimicks in vivo VEGF-dependent changes occurring in DME.
Collapse
|
190
|
Dohgu S, Fleegal-DeMotta MA, Banks WA. Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J Neuroinflammation 2011; 8:167. [PMID: 22129063 PMCID: PMC3260201 DOI: 10.1186/1742-2094-8-167] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/30/2011] [Indexed: 01/18/2023] Open
Abstract
Elevated levels of cytokines/chemokines contribute to increased neuroinvasion of human immunodeficiency virus type 1 (HIV-1). Previous work showed that lipopolysaccharide (LPS), which is present in the plasma of patients with HIV-1, enhanced transcellular transport of HIV-1 across the blood-brain barrier (BBB) through the activation of p38 mitogen-activated protein kinase (MAPK) signaling in brain microvascular endothelial cells (BMECs). Here, we found that LPS (100 μg/mL, 4 hr) selectively increased interleukin (IL)-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) release from BMECs. The enhancement of HIV-1 transport induced by luminal LPS was neutralized by treatment with luminal, but not with abluminal, antibodies to IL-6 and GM-CSF without affecting paracellular permeability as measured by transendothelial electrical resistance (TEER). Luminal, but not abluminal, IL-6 or GM-CSF also increased HIV-1 transport. U0126 (MAPK kinase (MEK)1/2 inhibitor) and SB203580 (p38 MAPK inhibitor) decreased the LPS-enhanced release of IL-6 and GM-CSF. These results show that p44/42 and p38 MAPK signaling pathways mediate the LPS-enhanced release of IL-6 and GM-CSF. These cytokines, in turn, act at the luminal surface of the BMEC to enhance the transcellular transport of HIV-1 independently of actions on paracellular permeability.
Collapse
Affiliation(s)
- Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | | |
Collapse
|
191
|
Osada T, Gu YH, Kanazawa M, Tsubota Y, Hawkins BT, Spatz M, Milner R, del Zoppo GJ. Interendothelial claudin-5 expression depends on cerebral endothelial cell-matrix adhesion by β(1)-integrins. J Cereb Blood Flow Metab 2011; 31:1972-85. [PMID: 21772312 PMCID: PMC3208159 DOI: 10.1038/jcbfm.2011.99] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hypothesis tested by these studies states that in addition to interendothelial cell tight junction proteins, matrix adhesion by β(1)-integrin receptors expressed by endothelial cells have an important role in maintaining the cerebral microvessel permeability barrier. Primary brain endothelial cells from C57 BL/6 mice were incubated with β(1)-integrin function-blocking antibody (Ha2/5) or isotype control and the impacts on claudin-5 expression and microvessel permeability were quantified. Both flow cytometry and immunofluorescence studies demonstrated that the interendothelial claudin-5 expression by confluent endothelial cells was significantly decreased in a time-dependent manner by Ha2/5 exposure relative to isotype. Furthermore, to assess the barrier properties, transendothelial electrical resistance and permeability measurements of the monolayer, and stereotaxic injection into the striatum of mice were performed. Ha2/5 incubation reduced the resistance of endothelial cell monolayers significantly, and significantly increased permeability to 40 and 150 kDa dextrans. Ha2/5 injection into mouse striatum produced significantly greater IgG extravasation than the isotype or the control injections. This study demonstrates that blockade of β(1)-integrin function changes interendothelial claudin-5 expression and increases microvessel permeability. Hence, endothelial cell-matrix interactions via β(1)-integrin directly affect interendothelial cell tight junction claudin-5 expression and brain microvascular permeability.
Collapse
Affiliation(s)
- Takashi Osada
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98104, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV. Blood-brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem 2011; 119:507-20. [PMID: 21854389 DOI: 10.1111/j.1471-4159.2011.07434.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In vitro blood-brain barrier (BBB) models often consist of brain microvascular endothelial cells (BMECs) that are co-cultured with other cells of the neurovascular unit, such as astrocytes and neurons, to enhance BBB properties. Obtaining primary astrocytes and neurons for co-culture models can be laborious, while yield and heterogeneity of primary isolations can also be limiting. Neural progenitor cells (NPCs), because of their self-renewal capacity and ability to reproducibly differentiate into tunable mixtures of neurons and astrocytes, represent a facile, readily scalable alternative. To this end, differentiated rat NPCs were co-cultured with rat BMECs and shown to induce BBB properties such as elevated trans-endothelial electrical resistance, improved tight junction continuity, polarized p-glycoprotein efflux, and low passive permeability at levels indistinguishable from those induced by primary rat astrocyte co-culture. An NPC differentiation time of 12 days, with the presence of 10% fetal bovine serum, was found to be crucial for generating NPC-derived progeny capable of inducing the optimal response. This approach could also be extended to human NPC-derived astrocytes and neurons which similarly regulated BBB induction. The distribution of rat or human NPC-derived progeny under these conditions was found to be a roughly 3 : 1 mixture of astrocytes to neurons with varying degrees of cellular maturity. BMEC gene expression analysis was conducted using a BBB gene panel, and it was determined that 23 of 26 genes were similarly regulated by either differentiated rat NPC or rat astrocyte co-culture while three genes were differentially altered by the rat NPC-derived progeny. Taken together, these results demonstrate that NPCs are an attractive alternative to primary neural cells for use in BBB co-culture models.
Collapse
Affiliation(s)
- Ethan S Lippmann
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
193
|
Glycosaminoglycan binding facilitates entry of a bacterial pathogen into central nervous systems. PLoS Pathog 2011; 7:e1002082. [PMID: 21731486 PMCID: PMC3121876 DOI: 10.1371/journal.ppat.1002082] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 04/11/2011] [Indexed: 11/26/2022] Open
Abstract
Certain microbes invade brain microvascular endothelial cells (BMECs) to breach the blood-brain barrier (BBB) and establish central nervous system (CNS) infection. Here we use the leading meningitis pathogen group B Streptococcus (GBS) together with insect and mammalian infection models to probe a potential role of glycosaminoglycan (GAG) interactions in the pathogenesis of CNS entry. Site-directed mutagenesis of a GAG-binding domain of the surface GBS alpha C protein impeded GBS penetration of the Drosophila BBB in vivo and diminished GBS adherence to and invasion of human BMECs in vitro. Conversely, genetic impairment of GAG expression in flies or mice reduced GBS dissemination into the brain. These complementary approaches identify a role for bacterial-GAG interactions in the pathogenesis of CNS infection. Our results also highlight how the simpler yet genetically conserved Drosophila GAG pathways can provide a model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications. Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of meningitis in human newborn infants. The bacterial and host factors that allow this pathogen to cross the blood-brain barrier (BBB) and cause central nervous system (CNS) infection are not well understood. Here we demonstrate that GBS expresses a specific protein on its surface that can bind to sugar molecules known as glycosaminoglycans (GAGs) on the surface of brain capillary cells, initiating infection of the BBB. Fruit flies or mice genetically engineered to have reduced GAGs showed decreased dissemination of GBS into the brain tissues following experimental infection. Our results identify a role for bacterial-GAG interactions in the pathogenesis of newborn meningitis and highlight how the simpler yet genetically conserved fruit fly GAG biosynthetic pathways make the fruit fly a good model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications.
Collapse
|
194
|
Targeting the neurovascular unit: development of a new model and consideration for novel strategy for Alzheimer's disease. Brain Res Bull 2011; 86:13-21. [PMID: 21700401 DOI: 10.1016/j.brainresbull.2011.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/19/2011] [Accepted: 05/27/2011] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease involves the complex and interconnected cascade of cellular and molecular events. Only a few treatments are available to slow the course of the disease at present. Recent studies suggest that neurovascular unit serves to maintain cerebral homeostasis, and pathological interactions between components of neurovascular unit lead to cerebral dysfunction. In present study, we established a functional unit trying to target major components of the neurovascular unit by the co-culture of rat cortical parenchymal culture and cerebral microvascular endothelial cells. This entity allowed the application of techniques such as immunofluorescent imaging and biological assays under defined conditions. The morphology of cell types, blood-brain barrier function and neuronal activation were investigated. The insight revealed that targeting components of the neurovascular unit, rather than just the neuron, might be a priority in Alzheimer's disease and more likely to provide cerebroprotection.
Collapse
|
195
|
Shayan G, Shuler ML, Lee KH. The effect of astrocytes on the induction of barrier properties in aortic endothelial cells. Biotechnol Prog 2011; 27:1137-45. [PMID: 21626719 DOI: 10.1002/btpr.620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 04/08/2011] [Indexed: 11/06/2022]
Abstract
Construction of in vitro models of the blood-brain barrier (BBB) using primary brain microvascular endothelial cells (BMEC) is time intensive and not high throughput, in part due to a lack of culture purity, low yields, and cellular dedifferentiation after the first passage. This problem has created interest in the substitution of BMEC with immortalized brain endothelial cells (EC), or peripheral EC such as bovine aortic EC (BAEC). Many BBB models have focused on further inducing the brain and peripheral ECs by incorporating astrocyte back-to-back or nonback-to-back cocultures. However, previous studies demonstrating induction effects of astrocytes on BAEC in back-to-back cocultures failed to recognize the extensive barrier properties of astrocytes alone, which can have a significant effect on interpreting the results. This manuscript reports the establishment of back-to-back and nonback-to-back cocultures between astrocytes and BAEC or BMEC (as a control) with primary focus on the properties of astrocytes alone and with a linear contrast statistical methodology to interpret the results. Transendothelial electrical resistance and permeability studies revealed that astrocytes can significantly increase the barrier tightening of BMEC by 167%, while having no effect on BAEC. Immunocytochemical studies also revealed the reorganization of BMEC occludin junctions in the presence of astrocytes, while indicating the absence of this junctional protein in BAEC. In contrast to a previous report, here the linear contrast statistical analysis revealed that observed decreases in permeability of BAEC in back-to-back cocultures is due to the addition of astrocytes' properties in series and not due to induction.
Collapse
Affiliation(s)
- Gilda Shayan
- Dept. of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
196
|
The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol 2011; 43:1284-93. [PMID: 21601005 DOI: 10.1016/j.biocel.2011.05.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/20/2011] [Accepted: 05/03/2011] [Indexed: 11/21/2022]
Abstract
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes and neurons. In this study we analyzed the differentiation stage dependent influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells. At first, we were able to induce two distinct differentiation stages of the primary pericytes in vitro. TGFβ treated pericytes expressed more α-SMA and actin while desmin, vimentin and nestin expression was decreased when compared to bFGF induced cells. Further analysis of α-SMA revealed that most of the pericytes differentiated with TGFβ expressed functional α-SMA while only few cells expressed functional α-SMA in the presence of bFGF. In addition the permeability factors VEGF, MMP-2 and MMP-9 were higher secreted by the α-SMA positive phenotype indicating a proangiogenic role of this TGFβ induced pericyte differentiation stage. Higher level of VEGF, MMP-2 and MMP-9 were as well detected in the TGFβ pretreated pericyte coculture with endothelial cells when compared to the influence of the bFGF pretreated pericytes. The TEER measurement of the barrier integrity of endothelial cells revealed that bFGF induced α-SMA negative pericytes stabilize the barrier integrity while α-SMA positive pericytes differentiated by TGFβ decrease the barrier integrity. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity in a differentiation stage dependant pathway.
Collapse
|
197
|
Dong D, Stapleton C, Luo B, Xiong S, Ye W, Zhang Y, Jhaveri N, Zhu G, Ye R, Liu Z, Bruhn KW, Craft N, Groshen S, Hofman FM, Lee AS. A critical role for GRP78/BiP in the tumor microenvironment for neovascularization during tumor growth and metastasis. Cancer Res 2011; 71:2848-57. [PMID: 21467168 DOI: 10.1158/0008-5472.can-10-3151] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucose-regulated protein 78 (GRP78)/BiP is a multifunctional protein which plays a major role in endoplasmic reticulum (ER) protein processing, protein quality control, maintaining ER homeostasis, and controlling cell signaling and viability. Previously, using a transgene-induced mammary tumor model, we showed that Grp78 heterozygosity impeded cancer growth through suppression of tumor cell proliferation and promotion of apoptosis and the Grp78(+/-) mice exhibited dramatic reduction (70%) in the microvessel density (MVD) of the endogenous mammary tumors, while having no effect on the MVD of normal organs. This observation suggests that GRP78 may critically regulate the function of the host vasculature within the tumor microenvironment. In this article, we interrogated the role of GRP78 in the tumor microenvironment. In mouse tumor models in which wild-type (WT), syngeneic mammary tumor cells were injected into the host, we showed that Grp78(+/-) mice suppressed tumor growth and angiogenesis during the early phase but not during the late phase of tumor growth. Growth of metastatic lesions of WT, syngeneic melanoma cells in the Grp78(+/-) mice was potently suppressed. We created conditional heterozygous knockout of GRP78 in the host endothelial cells and showed severe reduction of tumor angiogenesis and metastatic growth, with minimal effect on normal tissue MVD. Furthermore, knockdown of GRP78 expression in immortalized human endothelial cells showed that GRP78 is a critical mediator of angiogenesis by regulating cell proliferation, survival, and migration. Our findings suggest that concomitant use of current chemotherapeutic agents and novel therapies against GRP78 may offer a powerful dual approach to arrest cancer initiation, progression, and metastasis.
Collapse
Affiliation(s)
- Dezheng Dong
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Rempe R, Cramer S, Hüwel S, Galla HJ. Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood–brain barrier in vitro and their influence on barrier integrity. Biochem Biophys Res Commun 2011; 406:64-9. [DOI: 10.1016/j.bbrc.2011.01.110] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
199
|
Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P, Wright M, McCandless EE, Patel JR, Luker GD, Littman DR, Russell JH, Klein RS. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. ACTA ACUST UNITED AC 2011; 208:327-39. [PMID: 21300915 PMCID: PMC3039853 DOI: 10.1084/jem.20102010] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During CNS autoimmunity, brain endothelial cell CXCR7 internalizes CXCL12 from the perivascular space, thereby permitting leukocyte migration into the CNS parenchyma. Loss of CXCL12, a leukocyte localizing cue, from abluminal surfaces of the blood–brain barrier occurs in multiple sclerosis (MS) lesions. However, the mechanisms and consequences of reduced abluminal CXCL12 abundance remain unclear. Here, we show that activation of CXCR7, which scavenges CXCL12, is essential for leukocyte entry via endothelial barriers into the central nervous system (CNS) parenchyma during experimental autoimmune encephalomyelitis (EAE), a model for MS. CXCR7 expression on endothelial barriers increased during EAE at sites of inflammatory infiltration. Treatment with a CXCR7 antagonist ameliorated EAE, reduced leukocyte infiltration into the CNS parenchyma and parenchymal VCAM-1 expression, and increased abluminal levels of CXCL12. Interleukin 17 and interleukin 1β increased, whereas interferon-γ decreased, CXCR7 expression on and CXCL12 internalization in primary brain endothelial cells in vitro. These findings identify molecular requirements for the transvascular entry of leukocytes into the CNS and suggest that CXCR7 blockade may have therapeutic utility for the treatment of MS.
Collapse
Affiliation(s)
- Lillian Cruz-Orengo
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Yang WM, Jung KJ, Lee MO, Lee YS, Lee YH, Nakagawa S, Niwa M, Cho SS, Kim DW. Transient expression of iron transport proteins in the capillary of the developing rat brain. Cell Mol Neurobiol 2011; 31:93-9. [PMID: 21061168 PMCID: PMC11498480 DOI: 10.1007/s10571-010-9558-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/11/2010] [Indexed: 11/28/2022]
Abstract
Iron is essential for normal brain function and its uptake in the developing rat brain peaks during the first two weeks after birth, prior to the formation of the blood–brain barrier (BBB). The first step of iron transport from the blood to the brain is transferrin receptor (TfR)-mediated endocytosis in the capillary endothelial cells. However, the subsequent step from the endothelium into interstitium has not been fully described. The goal of this study was to examine the expression of iron transport proteins by immunodetection and RT–PCR in the developing rat brain. Tf and TfR are transiently expressed in perivascular NG2+ cells of the capillary wall during the early postnatal weeks in the rat brain. However, MTP-1 and hephaestin were expressed in endothelial cells, but not in the NG2+ perivascular cells. Immunoblot analysis for these iron transfer proteins in the developing brain generally confirmed the immunochemical findings. Furthermore, the expression of Tf and TfR in the blood vessels precedes its expression in oligodendrocytes, the main iron-storing cells in the vertebrate brain. RT–PCR analysis for the primary culture of endothelial cells and pericytes revealed that Tf and TfR were highly expressed in the pericytes while MTP-1 and hephaestin were expressed in the endothelial cells. The specific expression of Tf and TfR in brain perivascular cells and MTP-1 and hephaestin in endothelial cells suggest the possibility that trafficking of elemental iron through perivascular cells may be instrumental in the distribution of iron in the developing central nervous system.
Collapse
Affiliation(s)
- W. M. Yang
- Department of Anatomy, Research Institute for Medical Sciences, Chungnam National University School of Medicine, Daejeon, South Korea
| | - K. J. Jung
- Department of Anatomy, Research Institute for Medical Sciences, Chungnam National University School of Medicine, Daejeon, South Korea
| | - M. O. Lee
- Department of Anatomy, Research Institute for Medical Sciences, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Y. S. Lee
- Department of Anatomy, Research Institute for Medical Sciences, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Y. H. Lee
- Department of Anatomy, Research Institute for Medical Sciences, Chungnam National University School of Medicine, Daejeon, South Korea
| | - S. Nakagawa
- Department of Pharmacology 1, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - M. Niwa
- Department of Pharmacology 1, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - S. S. Cho
- Department of Anatomy, Jeju National University School of Medicine, Jeju, South Korea
| | - D. W. Kim
- Department of Anatomy, Research Institute for Medical Sciences, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|