151
|
Page DT, Kuti OJ, Sur M. Computerized assessment of social approach behavior in mouse. Front Behav Neurosci 2009; 3:48. [PMID: 20198104 PMCID: PMC2802322 DOI: 10.3389/neuro.08.048.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 10/29/2009] [Indexed: 11/26/2022] Open
Abstract
Altered sociability is a core feature of a variety of human neurological disorders, including autism. Social behaviors may be tested in animal models, such as mice, to study the biological basis of sociability and how this is altered in neurodevelopmental disorders. A quantifiable social behavior frequently used to assess sociability in the mouse is the tendency to approach and interact with an unfamiliar mouse. Here we present a novel computer-assisted method for scoring social approach behavior in mice using a three-chambered apparatus and freely available software. We find consistent results between data scored using the computer-assisted method and a human observer, making computerized assessment a reliable, low cost, high-throughput method for testing sociability.
Collapse
Affiliation(s)
- Damon T. Page
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Orsolya J. Kuti
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|
152
|
Dahlhaus R, El-Husseini A. Altered neuroligin expression is involved in social deficits in a mouse model of the fragile X syndrome. Behav Brain Res 2009; 208:96-105. [PMID: 19932134 DOI: 10.1016/j.bbr.2009.11.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/04/2009] [Accepted: 11/06/2009] [Indexed: 01/06/2023]
Abstract
The fragile X syndrome (FXS) is the most common form of inherited mental retardation. Caused by a transcriptional silencing of the fragile X mental retardation protein (FMRP), a mRNA binding protein itself, misregulated translation is thought to be the leading cause of the fragile X syndrome. Interestingly, recent results indicated several neuroligin interacting proteins to be affected by this misregulation, including neurexin1 and PSD95, which have also been implicated in autism spectrum disorders. Using co-immunoprecipitation assays and RT-PCR, FMRP is shown to interact with neuroligin1- and 2-mRNA, while no interaction with neuroligin3-mRNA is observed. In line with FMRP's role in translation regulation, Western blot as well as immunohistochemistry analysis reveal changes in protein expression levels suggesting impaired synaptic function. As increasing evidence indicates neuroligin expression to be critical for synapse maturation and function, consequences of impaired neuroligin1 expression in FXS are assessed by overexpressing HA-neuroligin1 in FMR1-/- mice, a model for FXS. Behavioural assessments demonstrate that enhanced neuroligin1 expression improves social behaviour in FMR1-/- mice, whereas no positive effect on learning and memory is seen. These results provide for the first time evidence for an involvement of a neuroligin-neurexin protein network in core symptoms of FXS.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
153
|
Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 2009; 106:17998-8003. [PMID: 19822762 DOI: 10.1073/pnas.0910297106] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deletions in the neurexin-1alpha gene were identified in large-scale unbiased screens for copy-number variations in patients with autism or schizophrenia. To explore the underlying biology, we studied the electrophysiological and behavioral phenotype of mice lacking neurexin-1alpha. Hippocampal slice physiology uncovered a defect in excitatory synaptic strength in neurexin-1alpha deficient mice, as revealed by a decrease in miniature excitatory postsynaptic current (EPSC) frequency and in the input-output relation of evoked postsynaptic potentials. This defect was specific for excitatory synaptic transmission, because no change in inhibitory synaptic transmission was observed in the hippocampus. Behavioral studies revealed that, compared with littermate control mice, neurexin-1alpha deficient mice displayed a decrease in prepulse inhibition, an increase in grooming behaviors, an impairment in nest-building activity, and an improvement in motor learning. However, neurexin-1alpha deficient mice did not exhibit any obvious changes in social behaviors or in spatial learning. Together, these data indicate that the neurexin-1alpha deficiency induces a discrete neural phenotype whose extent correlates, at least in part, with impairments observed in human patients.
Collapse
|
154
|
Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, Zhang M, Paarmann I, Fuchs C, Harvey K, Jedlicka P, Schwarzacher SW, Betz H, Harvey RJ, Brose N, Zhang W, Varoqueaux F. Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin. Neuron 2009; 63:628-42. [DOI: 10.1016/j.neuron.2009.08.023] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 08/23/2009] [Accepted: 08/24/2009] [Indexed: 11/27/2022]
|
155
|
Hawasli AH, Koovakkattu D, Hayashi K, Anderson AE, Powell CM, Sinton CM, Bibb JA, Cooper DC. Regulation of hippocampal and behavioral excitability by cyclin-dependent kinase 5. PLoS One 2009; 4:e5808. [PMID: 19529798 PMCID: PMC2695674 DOI: 10.1371/journal.pone.0005808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/07/2009] [Indexed: 01/19/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that has been implicated in learning, synaptic plasticity, neurotransmission, and numerous neurological disorders. We previously showed that conditional loss of Cdk5 in adult mice enhanced hippocampal learning and plasticity via modulation of calpain-mediated N-methyl-D-aspartic acid receptor (NMDAR) degradation. In the present study, we characterize the enhanced synaptic plasticity and examine the effects of long-term Cdk5 loss on hippocampal excitability in adult mice. Field excitatory post-synaptic potentials (fEPSPs) from the Schaffer collateral CA1 subregion of the hippocampus (SC/CA1) reveal that loss of Cdk5 altered theta burst topography and enhanced post-tetanic potentiation. Since Cdk5 governs NMDAR NR2B subunit levels, we investigated the effects of long-term Cdk5 knockout on hippocampal neuronal excitability by measuring NMDAR-mediated fEPSP magnitudes and population-spike thresholds. Long-term loss of Cdk5 led to increased Mg2+-sensitive potentials and a lower threshold for epileptiform activity and seizures. Biochemical analyses were performed to better understand the role of Cdk5 in seizures. Induced-seizures in wild-type animals led to elevated amounts of p25, the Cdk5-activating cofactor. Long-term, but not acute, loss of Cdk5 led to decreased p25 levels, suggesting that Cdk5/p25 may be activated as a homeostatic mechanism to attenuate epileptiform activity. These findings indicate that Cdk5 regulates synaptic plasticity, controls neuronal and behavioral stimulus-induced excitability and may be a novel pharmacological target for cognitive and anticonvulsant therapies.
Collapse
Affiliation(s)
- Ammar H. Hawasli
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Della Koovakkattu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kanehiro Hayashi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Anne E. Anderson
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Craig M. Powell
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Christopher M. Sinton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James A. Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Donald C. Cooper
- Department of Psychology and Neuroscience, Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
156
|
Fu Z, Vicini S. Neuroligin-2 accelerates GABAergic synapse maturation in cerebellar granule cells. Mol Cell Neurosci 2009; 42:45-55. [PMID: 19463950 DOI: 10.1016/j.mcn.2009.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/07/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023] Open
Abstract
Neuroligins (NLGs) are postsynaptic cell adhesion molecules that are thought to function in synaptogenesis. To investigate the role of NLGs on synaptic transmission once the synapse is formed, we transfected neuroligin-2 (NLG-2) in cultured mouse cerebellar granule cells (CGCs), and recorded GABA(A) (gamma-aminobutyric acid) receptor mediated miniature postsynaptic currents (mIPSCs). NLG-2 transfected cells had mIPSCs with faster decay than matching GFP expressing controls at young culture ages (days in vitro, DIV7-8). Down-regulation of NLG-2 by the isoform specific shRNA-NLG-2 resulted in an opposite effect. We and others have shown that the switch of alpha subunits of GABA(A)Rs from alpha2/3 to alpha1 underlies developmental speeding of the IPSC decay in various CNS regions, including the cerebellum. To assess whether the reduced decay time of mIPSCs by NLG-2 is due to the recruitment of more alpha1 containing GABA(A)Rs at the synapses, we examined the prolongation of current decay by the Zolpidem, which has been shown to preferentially enhance the activity of alpha1 subunit-containing GABA channel. The application of Zolpidem resulted in a significantly greater prolongation kinetics of synaptic currents in NLG-2 over-expressing cells than control cells, suggesting that NLG-2 over-expression accelerates synapse maturation by promoting incorporation of the alpha1 subunit-containing GABA(A)Rs at postsynaptic sites in immature cells. In addition, the effect of NLG-2 on the speeding of decay time course of synaptic currents was abolished when we used CGC cultures from alpha1-/- mice. Lastly, to exclude the possibility that the fast decay of mIPSCs induced by NLG-2 could be also due to the impacts of NLG-2 on the GABA transient in synaptic cleft, we measured the sensitivity of mIPSCs to the fast-off competitive antagonists TPMPA. We found that TPMPA similarly inhibits mIPSCs in control and NLG-2 over-expressing CGCs both at young age (DIV8) and old age (DIV14) of cultures. However, we confirm our previous finding of a greater inhibition of mIPSCs in young (DIV8) than more mature (DIV14) cultures. Together, our results suggest that NLG-2 does not alter uniquantal GABA release, and the fast decay of mIPSC induced by NLG-2 is due to the differential expression of postsynaptic GABA(A) receptor subtypes. Taken all together, we propose that NLG-2 plays important functional role in inhibitory synapse development and maturation.
Collapse
Affiliation(s)
- Zhanyan Fu
- Department of Psychiatry, Box 3209, Duke University Medical Center, 401I Bryan Research Building, Research Drive, Durham, NC 27710, USA.
| | | |
Collapse
|