151
|
Dimauro I, Paronetto MP, Caporossi D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 2020; 35:101477. [PMID: 32127290 PMCID: PMC7284912 DOI: 10.1016/j.redox.2020.101477] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-translational histone modification and non-coding RNA transcripts. Initially considered as merely damaging molecules, it is now well recognized that both reactive oxygen (ROS) and nitrogen species (RNS) produced under voluntary exercise play an important role as regulatory mediators in signaling processes. While robust scientific evidences highlight the role of exercise-associated redox modifications in modulating gene expression through the genetic machinery, the understanding of their specific impact on epigenomic profile is still at an early stage. This review will provide an overview of the role of ROS and RNS in modulating the epigenetic landscape in the context of exercise-related adaptations. Physical exercise can modulate gene expression through epigenetic modifications. Epigenetic regulation of ROS/RNS generating, sensing and neutralizing enzymes can impact the cellular levels of ROS and RNS. ROS might act as modulators of epigenetic machinery, interfering with DNA methylation, hPTMs and ncRNAs expression. Redox homeostasis might hold a relevant role in the epigenetic landscape modulating exercise-related adaptations.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
152
|
Goutianos G, Margaritelis NV, Sparopoulou T, Veskoukis AS, Vrabas IS, Paschalis V, Nikolaidis MG, Kyparos A. Chronic administration of plasma from exercised rats to sedentary rats does not induce redox and metabolic adaptations. J Physiol Sci 2020; 70:3. [PMID: 32039695 PMCID: PMC6995785 DOI: 10.1186/s12576-020-00737-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
The present study aimed to investigate whether endurance exercise-induced changes in blood plasma composition may lead to adaptations in erythrocytes, skeletal muscle and liver. Forty sedentary rats were randomly distributed into two groups: a group that was injected with pooled plasma from rats that swam until exhaustion and a group that was injected with the pooled plasma from resting rats (intravenous administration at a dose of 2 mL/kg body weight for 21 days). Total antioxidant capacity, malondialdehyde and protein carbonyls were higher in the plasma collected from the exercised rats compared to the plasma from the resting rats. Νo significant difference was found in blood and tissue redox biomarkers and in tissue metabolic markers between rats that received the "exercised" or the "non-exercised" plasma (P > 0.05). Our results demonstrate that plasma injections from exercised rats to sedentary rats do not induce redox or metabolic adaptations in erythrocytes, skeletal muscle and liver.
Collapse
Affiliation(s)
- Georgios Goutianos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - Theodora Sparopoulou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aristidis S Veskoukis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Ioannis S Vrabas
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110, Serres, Greece.
| |
Collapse
|
153
|
Studer N, Gurtner C, Levionnois OLR, Droegemueller C, Grahofer A. Suspected unusual hypermetabolic syndrome after chemical immobilisation in two Mangalica pigs. VETERINARY RECORD CASE REPORTS 2020. [DOI: 10.1136/vetreccr-2020-001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Nicole Studer
- Veterinary Anaesthesiology and Pain TherapyVetsuisse FacultyUniversity of BernBernSwitzerland
| | - Corinne Gurtner
- Veterinary PathologyVetsuisse FacultyUniversity of BernBernSwitzerland
| | | | - Cord Droegemueller
- Institute of GeneticsVetsuisse FacultyUniversity of BernBernBernSwitzerland
| | - Alexander Grahofer
- Department of Clinical Veterinary MedicineClinic for SwineVetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
154
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
155
|
Ashikawa H, Adachi T, Ueyama J, Yamada S. Association between redox state of human serum albumin and exercise capacity in older women: A cross-sectional study. Geriatr Gerontol Int 2019; 20:256-260. [PMID: 31854142 DOI: 10.1111/ggi.13849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/17/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022]
Abstract
AIM Oxidative stress plays a key role in declining exercise capacity, which is one of the major health problems in old age. The redox state of human serum albumin (HSA) has been considered a biomarker reflecting oxidative stress; however, its relationship to exercise capacity in older people remains to be examined. We aimed to examine the redox state of HSA as a potential biomarker of exercise capacity in community-dwelling older women. METHODS We analyzed 125 women aged ≥75 years. Exercise capacity was evaluated using 6-min walk distance (6MWD). The redox state of HSA was analyzed using the high-performance liquid chromatography post-column bromocresol green reaction method. The fraction of human mercaptalbumin in HSA (f[HMA]) was considered the redox state of HSA. Pearson's correlation coefficient (r) or Spearman's correlation coefficient (ρ) was used to assess correlations between 6MWD, f(HMA) and HSA. The association between 6MWD and f(HMA) was further examined using multivariate linear regression analysis adjusted for age, diabetes mellitus, renal function, number of medications, HSA and knee extensor isometric strength. RESULTS The 6MWD was significantly correlated with f(HMA; ρ = 0.44, P < 0.001), but not with HSA (r = 0.05, P = 0.562). The f(HMA) was not significantly correlated with HSA (ρ = 0.03, P = 0.769). Multivariate linear regression analysis showed that f(HMA) was independently associated with 6MWD (standardized β = 0.27, P = 0.004). CONCLUSIONS The findings of this study suggest that f(HMA) might serve as a novel biomarker for exercise capacity in community-dwelling older women. Geriatr Gerontol Int 2019; ••: ••-••.
Collapse
Affiliation(s)
- Hironobu Ashikawa
- Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takuji Adachi
- Department of Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Field of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumio Yamada
- Department of Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
156
|
Jeremic N, Weber GJ, Theilen NT, Tyagi SC. Cardioprotective effects of high-intensity interval training are mediated through microRNA regulation of mitochondrial and oxidative stress pathways. J Cell Physiol 2019; 235:5229-5240. [PMID: 31823395 DOI: 10.1002/jcp.29409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Human studies have shown high-intensity interval training (HIIT) has beneficial cardiovascular effects and is typically more time-efficient compared with traditional endurance exercise. The main goal of this study is to show the potential molecular and functional cardiovascular benefits of HIIT compared with endurance training (ET). Three groups of mice were used including sedentary-control, ET mice, and HIIT mice groups. Results indicated ejection fraction was increased in HIIT compared with ET while fractional shortening was increased in the HIIT group compared with both groups. Blood flow of the abdominal aorta was increased in both exercise groups compared with control. Increases in cross-sectional area and mitochondrial and antioxidative markers in HIIT compared with control were observed, along with several microRNAs. These findings indicate HIIT has specific cardiac-protective effects and may be a viable alternative to traditional ET as a cardiovascular preventative medicine intervention.
Collapse
Affiliation(s)
- Nevena Jeremic
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Gregory J Weber
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Nicholas T Theilen
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
157
|
Brendel H, Shahid A, Hofmann A, Mittag J, Bornstein SR, Morawietz H, Brunssen C. NADPH oxidase 4 mediates the protective effects of physical activity against obesity-induced vascular dysfunction. Cardiovasc Res 2019; 116:1767-1778. [DOI: 10.1093/cvr/cvz322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/13/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
Physical activity is one of the most potent strategies to prevent endothelial dysfunction. Recent evidence suggests vaso-protective properties of hydrogen peroxide (H2O2) produced by main endothelial NADPH oxidase isoform 4 (Nox4) in the vasculature. Therefore, we hypothesized that Nox4 connects physical activity with vaso-protective effects.
Methods and results
Analysis of the endothelial function using Mulvany Myograph showed endothelial dysfunction in wild-type (WT) as well as in C57BL/6J/ Nox4−/− (Nox4−/−) mice after 20 weeks on high-fat diet (HFD). Access to running wheels during the HFD prevented endothelial dysfunction in WT but not in Nox4−/− mice. Mechanistically, exercise led to an increased H2O2 release in the aorta of WT mice with increased phosphorylation of eNOS pathway member AKT serine/threonine kinase 1 (AKT1). Both H2O2 release and phosphorylation of AKT1 were diminished in aortas of Nox4−/− mice. Deletion of Nox4 also resulted in lower intracellular calcium release proven by reduced phenylephrine-mediated contraction, whilst potassium-induced contraction was not affected. H2O2 scavenger catalase reduced phenylephrine-induced contraction in WT mice. Supplementing H2O2 increased phenylephrine-induced contraction in Nox4−/− mice. Exercise-induced peroxisome proliferative-activated receptor gamma, coactivator 1 alpha (Ppargc1a), as key regulator of mitochondria biogenesis in WT but not Nox4−/− mice. Furthermore, exercise-induced citrate synthase activity and mitochondria mass were reduced in the absence of Nox4. Thus, Nox4−/− mice became less active and ran less compared with WT mice.
Conclusions
Nox4 derived H2O2 plays a key role in exercise-induced adaptations of eNOS and Ppargc1a pathway and intracellular calcium release. Hence, loss of Nox4 diminished physical activity performance and vascular protective effects of exercise.
Collapse
Affiliation(s)
- Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Amna Shahid
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Jennifer Mittag
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Medical Faculty Carl Gustav Carus, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| |
Collapse
|
158
|
Jakovljevic B, Plecevic S, Petkovic A, Turnic TN, Milosavljevic I, Radoman K, Srejovic I. Is 3 Weeks of Exercise Enough to Change Blood Pressure and Cardiac Redox State in Hypertensive Rats? SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.1515/sjecr-2017-0049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
The investigation was aimed to evaluate the effects of 3-weeks swimming exercise on blood pressure and redox status in high-salt-induced hypertensive rats. Male Wistar albino rats (n=40, 6 weeks old) were divided into 4 groups: 1. hypertensive rats that swam for 3 weeks; 2. sedentary hypertensive control rats; 3. normotensive rats that swam for 3 weeks; 4. sedentary normotensive control rats. Hypertensive animals were on high concentrated sodium (8% NaCl) solution for 4 weeks (period of induction of hypertension). After sacrificing, hearts were isolated and perfused according to Langendorff technique at gradually increased coronary per-fusion pressure from 40–120 cmH2O. The oxidative stress markers were determined in coronary venous effluent: the index of lipid peroxidation (measured as TBARS), nitrites (NO2
−), superoxide anion radical (O2
−) and hydrogen peroxide (H2O2). Swimming did not lead to significant changes in levels of TBARS, NO2
−, O2
− in any of compared groups while levels of H2O2 were significantly higher in swimming hyper-tensive group comparing to swimming normotensive group at coronary perfusion pressure of 80–120 cmH2O. Our results indicate that the short-term swimming start to reduce blood pressure. In addition it seems that this type of swimming duration does not promote cardiac oxidative stress damages.
Collapse
Affiliation(s)
| | - Sasa Plecevic
- Sports Medicine Association of Serbia , Belgrade , Serbia
| | - Anica Petkovic
- University of Kragujevac , Faculty of Medical Sciences, Department of Pharmacy , Kragujevac , Serbia
| | - Tamara Nikolic Turnic
- University of Kragujevac , Faculty of Medical Sciences, Department of Pharmacy , Kragujevac , Serbia
| | - Isidora Milosavljevic
- University of Kragujevac , Faculty of Medical Sciences, Department of Pharmacy , Kragujevac , Serbia
| | | | - Ivan Srejovic
- University of Kragujevac , Faculty of Medical Sciences, Department of Physiology , Kragujevac , Serbia
| |
Collapse
|
159
|
Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2019; 1:24-32. [PMID: 35782463 PMCID: PMC9219277 DOI: 10.1016/j.smhs.2019.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increased cardiovascular fitness, V˙O2max, is associated with enhanced endurance capacity and a decreased rate of mortality. High intensity interval training (HIIT) is one of the best methods to increase V˙O2max and endurance capacity for top athletes and for the general public as well. Because of the high intensity of this type of training, the adaptive response is not restricted to Type I fibers, as found for moderate intensity exercise of long duration. Even with a short exercise duration, HIIT can induce activation of AMPK, PGC-1α, SIRT1 and ROS pathway as well as by the modulation of Ca2+ homeostasis, leading to enhanced mitochondrial biogenesis, and angiogenesis. The present review summarizes the current knowledge of the adaptive response of HIIT.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Zoltan Gombos
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Matyas Jokai
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Japan
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Zsolt Radak
- Research Center of Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Corresponding author. Alkotas u. 44, Budapest, H-1123, Hungary.
| |
Collapse
|
160
|
Abstract
Reactive oxygen species (ROS) are essential for cellular signaling and physiological function. An imbalance between ROS production and antioxidant protection results in a state of oxidative stress (OS), which is associated with perturbations in reduction/oxidation (redox) regulation, cellular dysfunction, organ failure, and disease. The pathophysiology of OS is closely interlinked with inflammation, mitochondrial dysfunction, and, in the case of surgery, ischemia/reperfusion injury (IRI). Perioperative OS is a complex response that involves patient, surgical, and anesthetic factors. The magnitude of tissue injury inflicted by the surgery affects the degree of OS, and both duration and nature of the anesthetic procedure applied can modify this. Moreover, the interindividual susceptibility to the impact of OS is likely to be highly variable and potentially linked to underlying comorbidities. The pathological link between OS and postoperative complications remains unclear, in part due to the complexities of measuring ROS- and OS-mediated damage. Exogenous antioxidant use and exercise have been shown to modulate OS and may have potential as countermeasures to improve postoperative recovery. A better understanding of the underlying mechanisms of OS, redox signaling, and regulation can provide an opportunity for patient-specific phenotyping and development of targeted interventions to reduce the disruption that surgery can cause to our physiology. Anesthesiologists are in a unique position to deliver countermeasures to OS and improve physiological resilience. To shy away from a process so fundamental to the welfare of these patients would be foolhardy and negligent, thus calling for an improved understanding of this complex facet of human biology.
Collapse
Affiliation(s)
- Jia L Stevens
- From the Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, United Kingdom
- Royal Free Perioperative Research Group, Department of Anaesthesia, Royal Free Hospital, London, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences and Integrative Physiology and Critical Illness Group, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Daniel S Martin
- From the Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, United Kingdom
- Royal Free Perioperative Research Group, Department of Anaesthesia, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
161
|
Kawamura T, Fujii R, Higashida K, Muraoka I. Hydrogen water intake may suppress liver glycogen utilization without affecting redox biomarkers during exercise in rats. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2019. [DOI: 10.23736/s0393-3660.18.03912-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
162
|
Corbianco S, Dini M, Bongioanni P, Carboncini MC, Cavallini G. Exercise training in ad libitum and food-restricted old rats: effects on metabolic and physiological parameters. Biogerontology 2019; 21:69-82. [PMID: 31641969 DOI: 10.1007/s10522-019-09844-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022]
Abstract
Aging is accompanied by a decline in the healthy function of multiple organs, leading to increased incidence and mortality from diseases such as cancer and inflammatory, cardiovascular and neurodegenerative diseases. Dietary restriction is the most effective experimental intervention known to consistently slow the aging process and with positive effects on health span in different organisms, from invertebrates to mammals. Age is also associated with progressive decline in physical activity levels in a wide range of animal species: therefore, regular physical exercise could represent a safe intervention to antagonize aging. In this research we explore the effects of exercise training initiated in late middle aged rats fed with different lifelong dietary regimens: one group was fed ad libitum and the second group was subjected to every-other-day fasting. These two groups might represent examples of "normal" aging and "successful" aging. The study shows the effects of exercise and food restriction and their interaction on plasma levels of total antioxidant capacity, lactate, amino acids, and on products of protein oxidation in soleus and tibialis anterior muscles. In addition, we evaluated body composition measurement by bioelectrical impedance analysis and muscle strength by grasping test. Results show that late-onset exercise training has the potential to improve some metabolic and physiological parameters in rats with the same "chronological age" but different "biological age", without negative effects, and highlight the relevance of a personalised and selected exercise protocol, since the responsiveness to exercise may depend on the individual's "biological age".
Collapse
Affiliation(s)
- Silvia Corbianco
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Marco Dini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Paolo Bongioanni
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Maria Chiara Carboncini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.,Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Gabriella Cavallini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
163
|
Henríquez-Olguin C, Knudsen JR, Raun SH, Li Z, Dalbram E, Treebak JT, Sylow L, Holmdahl R, Richter EA, Jaimovich E, Jensen TE. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 2019; 10:4623. [PMID: 31604916 PMCID: PMC6789013 DOI: 10.1038/s41467-019-12523-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) act as intracellular compartmentalized second messengers, mediating metabolic stress-adaptation. In skeletal muscle fibers, ROS have been suggested to stimulate glucose transporter 4 (GLUT4)-dependent glucose transport during artificially evoked contraction ex vivo, but whether myocellular ROS production is stimulated by in vivo exercise to control metabolism is unclear. Here, we combined exercise in humans and mice with fluorescent dyes, genetically-encoded biosensors, and NADPH oxidase 2 (NOX2) loss-of-function models to demonstrate that NOX2 is the main source of cytosolic ROS during moderate-intensity exercise in skeletal muscle. Furthermore, two NOX2 loss-of-function mouse models lacking either p47phox or Rac1 presented striking phenotypic similarities, including greatly reduced exercise-stimulated glucose uptake and GLUT4 translocation. These findings indicate that NOX2 is a major myocellular ROS source, regulating glucose transport capacity during moderate-intensity exercise.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguin
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.,Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Jonas R Knudsen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Steffen H Raun
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Zhencheng Li
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influence, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Metabolism and Environmental Influence, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200, Copenhagen, Denmark
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, 171 65, Solna, Sweden
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
164
|
Goncalves RLS, Watson MA, Wong HS, Orr AL, Brand MD. The use of site-specific suppressors to measure the relative contributions of different mitochondrial sites to skeletal muscle superoxide and hydrogen peroxide production. Redox Biol 2019; 28:101341. [PMID: 31627168 PMCID: PMC6812158 DOI: 10.1016/j.redox.2019.101341] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species are important signaling molecules crucial for muscle differentiation and adaptation to exercise. However, their uncontrolled generation is associated with an array of pathological conditions. To identify and quantify the sources of superoxide and hydrogen peroxide in skeletal muscle we used site-specific suppressors (S1QELs, S3QELs and NADPH oxidase inhibitors). We measured the rates of hydrogen peroxide release from isolated rat muscle mitochondria incubated in media mimicking the cytosol of intact muscle. By measuring the extent of inhibition caused by the addition of different site-specific suppressors of mitochondrial superoxide/hydrogen peroxide production (S1QELs for site IQ and S3QELs for site IIIQo), we determined the contributions of these sites to the total signal. In media mimicking resting muscle, their contributions were each 12–18%, consistent with a previous method. In C2C12 myoblasts, site IQ contributed 12% of cellular hydrogen peroxide production and site IIIQo contributed about 30%. When C2C12 myoblasts were differentiated to myotubes, hydrogen peroxide release increased five-fold, and the proportional contribution of site IQ doubled. The use of S1QELs and S3QELs is a powerful new way to measure the relative contributions of different mitochondrial sites to muscle hydrogen peroxide production under different conditions. Our results show that mitochondrial sites IQ and IIIQo make a substantial contribution to superoxide/hydrogen peroxide production in muscle mitochondria and C2C12 myoblasts. The total hydrogen peroxide release rate and the relative contribution of site IQ both increase substantially upon differentiation to myotubes. S1QELs, S3QELs and NOX inhibitors report sites of superoxide/H2O2 generation. Mitochondria and NOXs are the major sources of H2O2 in C2C12 cells. H2O2 release increases 5-fold during differentiation of C2C12 myoblasts to myotubes. The relative contribution of site IQ doubles during differentiation. The relative contributions of site IIIQo and NOXs remain the same.
Collapse
Affiliation(s)
| | - Mark A Watson
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Hoi-Shan Wong
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Adam L Orr
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA
| | - Martin D Brand
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
165
|
The metabolic face of migraine - from pathophysiology to treatment. Nat Rev Neurol 2019; 15:627-643. [PMID: 31586135 DOI: 10.1038/s41582-019-0255-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Migraine can be regarded as a conserved, adaptive response that occurs in genetically predisposed individuals with a mismatch between the brain's energy reserve and workload. Given the high prevalence of migraine, genotypes associated with the condition seem likely to have conferred an evolutionary advantage. Technological advances have enabled the examination of different aspects of cerebral metabolism in patients with migraine, and complementary animal research has highlighted possible metabolic mechanisms in migraine pathophysiology. An increasing amount of evidence - much of it clinical - suggests that migraine is a response to cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity and that the attack itself helps to restore brain energy homeostasis and reduces harmful oxidative stress levels. Greater understanding of metabolism in migraine offers novel therapeutic opportunities. In this Review, we describe the evidence for abnormalities in energy metabolism and mitochondrial function in migraine, with a focus on clinical data (including neuroimaging, biochemical, genetic and therapeutic studies), and consider the relationship of these abnormalities with the abnormal sensory processing and cerebral hyper-responsivity observed in migraine. We discuss experimental data to consider potential mechanisms by which metabolic abnormalities could generate attacks. Finally, we highlight potential treatments that target cerebral metabolism, such as nutraceuticals, ketone bodies and dietary interventions.
Collapse
|
166
|
Guigni BA, Fix DK, Bivona JJ, Palmer BM, Carson JA, Toth MJ. Electrical stimulation prevents doxorubicin-induced atrophy and mitochondrial loss in cultured myotubes. Am J Physiol Cell Physiol 2019; 317:C1213-C1228. [PMID: 31532714 DOI: 10.1152/ajpcell.00148.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Muscle contraction may protect against the effects of chemotherapy to cause skeletal muscle atrophy, but the mechanisms underlying these benefits are unclear. To address this question, we utilized in vitro modeling of contraction and mechanotransduction in C2C12 myotubes treated with doxorubicin (DOX; 0.2 μM for 3 days). Myotubes expressed contractile proteins and organized these into functional myofilaments, as electrical field stimulation (STIM) induced intracellular calcium (Ca2+) transients and contractions, both of which were prevented by inhibition of membrane depolarization. DOX treatment reduced myotube myosin content, protein synthesis, and Akt (S308) and forkhead box O3a (FoxO3a; S253) phosphorylation and increased muscle RING finger 1 (MuRF1) expression. STIM (1 h/day) prevented DOX-induced reductions in myotube myosin content and Akt and FoxO3a phosphorylation, as well as increases in MuRF1 expression, but did not prevent DOX-induced reductions in protein synthesis. Inhibition of myosin-actin interaction during STIM prevented contraction and the antiatrophic effects of STIM without affecting Ca2+ cycling, suggesting that the beneficial effect of STIM derives from mechanotransductive pathways. Further supporting this conclusion, mechanical stretch of myotubes recapitulated the effects of STIM to prevent DOX suppression of FoxO3a phosphorylation and upregulation of MuRF1. DOX also increased reactive oxygen species (ROS) production, which led to a decrease in mitochondrial content. Although STIM did not alter DOX-induced ROS production, peroxisome proliferator-activated receptor-γ coactivator-1α and antioxidant enzyme expression were upregulated, and mitochondrial loss was prevented. Our results suggest that the activation of mechanotransductive pathways that downregulate proteolysis and preserve mitochondrial content protects against the atrophic effects of chemotherapeutics.
Collapse
Affiliation(s)
- Blas A Guigni
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont.,Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Dennis K Fix
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina
| | - Joseph J Bivona
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont
| | - James A Carson
- Department of Exercise Science, University of South Carolina, Columbia, South Carolina.,Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont, Burlington, Vermont.,Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont, Burlington, Vermont.,Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
167
|
Mosavat M, Mohamed M, Ooi FK, Mirsanjari M, Mat Zin AA, Che Romli A. Histological changes of female reproductive organs subjected to different jumping exercise intensities and honey supplementation in rats. PeerJ 2019; 7:e7646. [PMID: 31565571 PMCID: PMC6743611 DOI: 10.7717/peerj.7646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/08/2019] [Indexed: 11/25/2022] Open
Abstract
Background We assessed histopathological changes of ovaries and uterus in female rats subjected to different jumping exercise intensities combined with honey supplementation at one g/kg body weight/day. Methods A total of 72 rats were divided into six groups, 12 rats in each: control (C), 20 and 80 jumps (20E, 80E), honey (H), and 20 and 80 jump with honey (20EH, 80EH). Results The endometrium was significantly thicker in the rats in H, 20EH and 80EH groups compared to C, 20E, and 80E. The myometrium thickness was significantly lower in 80E and significantly higher in 80EH compared to C, respectively. There was significantly higher myometrium thickness in 20EH and 80EH compared to 20E and 80E and H. The number of glands of the uterus in 20E and 80E was significantly lower than C. However, there was a significantly higher number of glands in H, 20EH, and 80EH compared to 20E and 80E. The numbers of uterus vessels were significantly lower in 80E compared to 20E. However, the numbers of vessels were significantly higher in H, 20EH, and 80EH compared to 80E. The number of ovarian haemorregia was significantly lower in 20E, 80E, H, 20EH, and 80EH compared to C. The number of corpora lutea was significantly lower in 80EH, H, 80E, and 20E compared to C. However, the number of corpora lutea was significantly higher in 20EH compared to J20 and H. Conclusion This study suggested that jumping exercises in particularly high-intensity exercise may induce histopathological changes in uterus and ovary in rats, and honey supplementation may ameliorate these effects.
Collapse
Affiliation(s)
- Maryam Mosavat
- Sport Science Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Foong Kiew Ooi
- Sport Science Unit, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mitra Mirsanjari
- Nutrition Programme, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Mazandaran University of Medical Sciences, Emam Khomeini Hospital, Fereidonkenar, Mazandaran, Iran
| | - Anani Aila Mat Zin
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Aminah Che Romli
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
168
|
Gagnon DD, Dorman S, Ritchie S, Mutt SJ, Stenbäck V, Walkowiak J, Herzig KH. Multi-Day Prolonged Low- to Moderate-Intensity Endurance Exercise Mimics Training Improvements in Metabolic and Oxidative Profiles Without Concurrent Chromosomal Changes in Healthy Adults. Front Physiol 2019; 10:1123. [PMID: 31551806 PMCID: PMC6733972 DOI: 10.3389/fphys.2019.01123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/14/2019] [Indexed: 01/12/2023] Open
Abstract
Background Oxidative stress results in lipid, protein, and DNA oxidation, resulting in telomere erosion, chromosomal damage, and accelerated cellular aging. Training promotes healthy metabolic and oxidative profiles whereas the effects of multi-day, prolonged, and continuous exercise are unknown. This study investigated the effects of multi-day prolonged exercise on metabolic and oxidative stress as well as telomere integrity in healthy adults. Methods Fifteen participants performed a 14-day, 260-km, wilderness canoeing expedition (12 males) (EXP) (24 ± 7 years, 72 ± 6 kg, 178 ± 8.0 cm, 18.4 ± 8.4% BF, 47.5 ± 9.3 mlO2 kg–1 min–1), requiring 6–9 h of low- to moderate-intensity exercise daily. Ten controls participated locally (seven males) (CON) (31 ± 11 years, 72 ± 15 kg, 174 ± 10 cm, 22.8 ± 10.0% BF, 47.1 ± 9.0 mlO2 kg–1 min–1). Blood plasma, serum, and mononuclear cells were sampled before and after the expedition to assess hormonal, metabolic, and oxidative changes. Results Serum cholesterol, high- and low-density lipoprotein, testosterone, insulin, sodium, potassium, urea, and chloride concentrations were not different between groups, whereas triglycerides, glucose, and creatinine levels were lower following the expedition (p < 0.001). Malondialdehyde and relative telomere length (TL) were unaffected (EXP: 4.2 ± 1.3 vs. CON: 4.1 ± 0.7 μM; p > 0.05; EXP: 1.00 ± 0.48 vs. CON: 0.89 ± 0.28 TS ratio; p = 0.77, respectively); however, superoxidase dismutase activity was greater in the expedition group (3.1 ± 0.4 vs. 0.8 ± 0.5 U ml–1; p < 0.001). Conclusion These results indicate a modest improvement in metabolic and oxidative profiles with increased superoxidase dismutase levels, suggesting an antioxidative response to counteract the exercise-associated production of free radicals and reactive oxygen species during prolonged exercise, mimicking the effects from long-term training. Although improved antioxidant activity may lead to increased TL, the present exercise stimulus was insufficient to promote a positive cellular aging profile with concordant chromosomal changes in our healthy and young participants.
Collapse
Affiliation(s)
- Dominique D Gagnon
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, ON, Canada.,Center of Research in Occupational Safety and Health, Laurentian University, Sudbury, ON, Canada
| | - Sandra Dorman
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, ON, Canada.,Center of Research in Occupational Safety and Health, Laurentian University, Sudbury, ON, Canada.,Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Stephen Ritchie
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, ON, Canada.,Center of Research in Occupational Safety and Health, Laurentian University, Sudbury, ON, Canada
| | - Shivaprakash Jagalur Mutt
- Research Unit of Biomedicine, Department of Physiology and Biocenter of Oulu, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ville Stenbäck
- Research Unit of Biomedicine, Department of Physiology and Biocenter of Oulu, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jarosław Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznań, Poland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Department of Physiology and Biocenter of Oulu, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
169
|
González-Bartholin R, Mackay K, Valladares D, Zbinden-Foncea H, Nosaka K, Peñailillo L. Changes in oxidative stress, inflammation and muscle damage markers following eccentric versus concentric cycling in older adults. Eur J Appl Physiol 2019; 119:2301-2312. [DOI: 10.1007/s00421-019-04213-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023]
|
170
|
Bevelacqua JJ, Welsh J, Mortazavi SMJ. Commentary: Introduction to the Frontiers Research Topic: Optimization of Exercise Countermeasures for Human Space Flight-Lessons From Terrestrial Physiology and Operational Considerations. Front Physiol 2019; 10:915. [PMID: 31379613 PMCID: PMC6659347 DOI: 10.3389/fphys.2019.00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/04/2019] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - James Welsh
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Chicago, IL, United States
| | - S M J Mortazavi
- Medical Physics Department, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
171
|
Delort F, Segard BD, Hakibilen C, Bourgois-Rocha F, Cabet E, Vicart P, Huang ME, Clary G, Lilienbaum A, Agbulut O, Batonnet-Pichon S. Alterations of redox dynamics and desmin post-translational modifications in skeletal muscle models of desminopathies. Exp Cell Res 2019; 383:111539. [PMID: 31369751 DOI: 10.1016/j.yexcr.2019.111539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 11/24/2022]
Abstract
Desminopathies are a type of myofibrillar myopathy resulting from mutations in DES, encoding the intermediate filament protein desmin. They display heterogeneous phenotypes, suggesting environment influences. Patient muscle proteins show oxidative features linking oxidative stress, protein aggregation, and abnormal protein deposition. To improve understanding of redox balance in desminopathies, we further developed cellular models of four pathological mutants localized in 2B helical domain (the most important region for desmin polymerization) to explore desmin behavior upon oxidative stress. We show that the mutations desQ389P and desD399Y share common stress-induced aggregates, desR406W presents more scattered cytoplasmic aggregative pattern, and pretreatment with N-acetyl-l-cysteine (NAC), an antioxidant molecule, prevents all type of aggregation. Mutants desD399Y and desR406W had delayed oxidation kinetics following H2O2 stress prevented by NAC pretreatment. Further, we used AAV-injected mouse models to confirm in vivo effects of N-acetyl-l-cysteine. AAV-desD399Y-injected muscles displayed similar physio-pathological characteristics as observed in patients. However, after 2 months of NAC treatment, they did not have reduced aggregates. Finally, in both models, stress induced some post-translational modifications changing Isoelectric Point, such as potential hyperphosphorylations, and/or molecular weight of human desmin by proteolysis. However, each mutant presented its own pattern that seemed to be post-aggregative. In conclusion, our results indicate that individual desmin mutations have unique pathological molecular mechanisms partly linked to alteration of redox homeostasis. Integrating these mutant-specific behaviors will be important when considering future therapeutics.
Collapse
Affiliation(s)
- Florence Delort
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Bertrand-David Segard
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Coralie Hakibilen
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Fany Bourgois-Rocha
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Eva Cabet
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Patrick Vicart
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Meng-Er Huang
- Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Sud, Université Paris-Saclay, Orsay, 91405, France
| | - Guilhem Clary
- Inserm U1016, Institut Cochin, CNRS UMR8104, Université Paris-Descartes, Sorbonne Paris Cité, Plateforme Protéomique 3P5, Paris, France
| | - Alain Lilienbaum
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Sabrina Batonnet-Pichon
- Université de Paris, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75013, Paris, France.
| |
Collapse
|
172
|
Tissue-Specific Oxidative Stress Modulation by Exercise: A Comparison between MICT and HIIT in an Obese Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1965364. [PMID: 31396298 PMCID: PMC6664693 DOI: 10.1155/2019/1965364] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/16/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Background and Aim Exercise is an effective strategy to reduce obesity-induced oxidative stress. The purpose of this study was to compare the effects of two training modalities (moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT)) on the pro/antioxidant status of different tissues in obese Zucker rats. Methods Eight-week-old male Zucker rats (fa/fa, n = 36) were subdivided in three groups: MICT, HIIT, and control (no exercise) groups. Trained animals ran on a treadmill (0° slope), 5 days/week for 10 weeks (MICT: 51 min at 12 m·min-1; HIIT: 6 sets of 3 min at 10 m·min-1 followed by 4 min at 18 m·min-1). Epididymal (visceral) and subcutaneous adipose tissue, gastrocnemius muscle, and plasma samples were collected to measure oxidative stress markers (advanced oxidation protein products (AOPP), oxidized low-density lipoprotein (oxLDL)), antioxidant system markers (ferric-reducing ability of plasma (FRAP), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities), and prooxidant enzymes (NADPH oxidase and xanthine oxidase (XO) activities, myeloperoxidase content). Results Compared with the control, MICT increased GPx and catalase activities and the FRAP level in epididymal adipose tissue. HIIT increased the AOPP level in subcutaneous adipose tissue. In the muscle, HIIT increased both SOD and GPx activities and reduced the AOPP level, whereas MICT increased only SOD activity. Finally, plasma myeloperoxidase content was similarly decreased by both training modalities, whereas oxLDL was reduced only in the MICT group. Conclusion Both HIIT and MICT improved the pro/antioxidant status. However, HIIT was more efficient than MICT in the skeletal muscle, whereas MICT was more efficient in epididymal adipose tissue. This suggests that oxidative stress responses to HIIT and MICT are tissue-specific. This could result in ROS generation via different pathways in these tissues. From a practical point of view, the two training modalities should be combined to obtain a global response in people with obesity.
Collapse
|
173
|
Vicencio F, Jiménez P, Huerta F, Cofré-Bolados C, Gutiérrez Zamorano S, Garcia-Diaz DF, Rodrigo R, Poblete-Aro C. Effects of physical exercise on oxidative stress biomarkers in hypertensive animals and non-diabetic subjects with prehypertension/hypertension: a review. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00561-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
174
|
El Abed K, Ammar A, Boukhris O, Trabelsi K, Masmoudi L, Bailey SJ, Hakim A, Bragazzi NL. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front Physiol 2019; 10:842. [PMID: 31354512 PMCID: PMC6630067 DOI: 10.3389/fphys.2019.00842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/19/2019] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to assess oxidative stress biomarkers prior to and following different forms of exercise. Ten elite male judokas (age: 18.1 ± 1.7 years, athletic experience: 6 years with a training frequency of 6 Judo-sessions/week) performed three cycle ergometry sessions comprising a 30 s Wingate test (MAX), 30 min at 60% maximal-aerobic-power-output (LOW) or these two exercise protocols combined (COMBINED) in a repeated-measures design. Venous blood-samples were collected before, and 0(P0), 5(P5), 10(P10) and 20(P20) min after each exercise protocol and assessed for malondialdehyde concentration ([MDA]), glutathione peroxidase (GPX), superoxide dismutase (SOD) and glutathione reductase (GR) content, and total-antioxidant-status (TAS). Plasma [MDA] was found to be increased above baseline at P0 and P5 in the MAX, LOW and COMBINED conditions (p < 0.05), but was greater at P10 and P20 in the LOW condition compared to MAX and COMBINED conditions (p < 0.05). Blood GPX and SOD content increased above baseline at P0 in MAX and COMBINED and at P5 in LOW (p < 0.05), with GR content being similar between groups at P0 and P5 (p > 0.05). 20 min post-exercise, GPX, SOD, GR content and TAS were lower in the MAX compared to the LOW and COMBINED conditions (p < 0.05). In conclusion, the findings from this study reveal that redox-related biomarkers exhibited divergent response dynamics following different forms of exercise, which might have implications for understanding the mechanisms of exercise-induced skeletal muscle fatigue and adaptive remodeling.
Collapse
Affiliation(s)
- Kais El Abed
- Research Unit of Pharmacology and Toxicology of Xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, Sfax, Tunisia.,UR15JS01: Education, Motricité, Sport et Santé (EM2S), High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Achraf Ammar
- Institute of Sport Science, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Unit of Research Molecular Bases of Human Diseases, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Omar Boukhris
- UR15JS01: Education, Motricité, Sport et Santé (EM2S), High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Khaled Trabelsi
- Research Unit of Pharmacology and Toxicology of Xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, Sfax, Tunisia.,UR15JS01: Education, Motricité, Sport et Santé (EM2S), High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Liwa Masmoudi
- UR15JS01: Education, Motricité, Sport et Santé (EM2S), High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Ahmad Hakim
- Research Unit of Pharmacology and Toxicology of Xenobiotics (UR12 ES13), Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, Genoa, Italy.,Department of Mathematics and Statistics, Laboratory for Industrial and Applied Mathematics (LIAM), York University, Toronto, ON, Canada
| |
Collapse
|
175
|
de Oliveira DC, Rosa FT, Simões-Ambrósio L, Jordao AA, Deminice R. Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition 2019; 63-64:29-35. [DOI: 10.1016/j.nut.2019.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 11/26/2022]
|
176
|
Zhou W, Zeng G, Lyu C, Kou F, Zhang S, Wei H. The Effect of Exhaustive Exercise on Plasma Metabolic Profiles of Male and Female Rats. J Sports Sci Med 2019; 18:253-263. [PMID: 31191095 PMCID: PMC6543993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
The objective of the study was to evaluate the alteration in biochemical composition and gender difference within exhaustive exercise in male and female rats using a metabolomics strategy. Sixty male and female rats were randomly assigned to control, exhaustive exercise and one-week recovery groups, respectively. The metabolic profiles of plasma were investigated by gas chromatograph-mass spectrometry (GC-MS) and data further underwent orthogonal partial least-squares (OPLS) analysis. The current study found that gender was a significant determinant of the effects of exhaustive exercise on the cortisol, blood urea nitrogen, creatine kinase, and the ratio of reduced glutathione to oxidized glutathione, whereas, no significant interaction effects between gender and exhaustive exercise were found on the levels of testosterone, malonaldehyde, reduced glutathione, oxidized glutathione and lactic dehydrogenase. In male rats, the altered metabolites within exhaustive exercise included increased tricarboxylic acid cycle intermediates (citric acid, fumaric acid, butanedioic acid), branch-chain amino acids (valine, leucine), fatty acids and metabolite (oleic acid, linoleic acid, 3-hydroxybutyric acid), phosphate and decreased glucose, lactic acid, serine, and glutamic acid. In female rats, the levels of fatty acids and metabolite (linoleic acid, oleic acid, arachidonic acid, 3-hydroxybutyric acid), amino acids (valine, leucine, glutamic acid, 5-oxo-proline, methionine, ornithine), other metabolites urea, myo-inositol and phosphate were increased. The results indicated that exhaustive exercise increased the rates of energy metabolism, glucose metabolism, amino acid catabolism and fatty acid metabolism in male rats, whereas, female rats showed an increased propensity to oxidize lipid and conserve carbohydrate and protein metabolism against physical stress. Disordered urea cycle and inositol metabolism also occurred in female rats with exhaustive exercise. Exhaustive exercise affected the balance of hormone adjustment and caused oxidative stress, subsequent cell membrane damage both in male and female rats. A significant gender-related difference in the metabolic profiles was also found between male and female rats within exhaustive exercise.
Collapse
Affiliation(s)
- Wenbin Zhou
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guigang Zeng
- Department of Rehabilitation, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Chunming Lyu
- Shanghai Zhulian Intelligent Technology CO., LTD, Shanghai 201323, China
| | - Fang Kou
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shen Zhang
- Department of Rehabilitation, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Hai Wei
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
177
|
Nabuco HCG, Tomeleri CM, Fernandes RR, Sugihara Junior P, Venturini D, Barbosa DS, Deminice R, Sardinha LB, Cyrino ES. Effects of pre- or post-exercise whey protein supplementation on oxidative stress and antioxidant enzymes in older women. Scand J Med Sci Sports 2019; 29:1101-1108. [PMID: 31050066 DOI: 10.1111/sms.13449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/08/2019] [Accepted: 04/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oxidative stress is an imbalance between antioxidant system and production of free radicals and has been associated with the age-related deleterious changes. The defense system can be modulated by exercise and nutrition. OBJECTIVE The purpose of this investigation was to evaluate the effect of whey protein supplementation pre- or post-resistance training on oxidative stress and antioxidant enzyme activity in pre-conditioned older women. METHODS In a randomized, double-blind, and placebo-controlled design, 70 older women (≥60 years) were randomly assigned to one of the following three groups: whey protein-placebo (WP-PLA, n = 24), placebo-whey protein (PLA-WP, n = 23), and placebo-placebo (PLA-PLA, n = 23). Each group received 35 g of whey product or placebo pre- and post-training. The RT program was carried out over 12 weeks (3x/week; 3x 8-12 repetitions maximal). Oxidative stress and blood markers were assessed before and after intervention period. ANOVA for repeated measures was used for data analysis. RESULTS There was a significant time effect (P < 0.05), with all groups showing improvements in all oxidative stress markers and antioxidant enzyme activity. A significant (P < 0.001) interaction time vs group was observed for uric acid, with both WP-PLA and PLA-WP presenting greater reductions compared with the PLA-PLA, without differences between the timing of protein intake (WP-PLA: -8.3%; PLA-WP: -11.0%; PLA-PLA:-2.0%). CONCLUSION In already pre-conditioned older women, whey protein supplementation reduces plasma uric acid concentration with no further effect on antioxidant enzyme activity and oxidative stress markers. ClinicalTrials.gov: NCT03247192.
Collapse
Affiliation(s)
- Hellen C G Nabuco
- Federal Institute of Science and Technology of Mato Grosso, Cuiabá, Brazil.,Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Crisieli M Tomeleri
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil.,Exercise Physiology Laboratory, Faculty of Physical Education, University of Campinas - Unicamp, Campinas, Brazil
| | - Rodrigo R Fernandes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Paulo Sugihara Junior
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil
| | - Danielle Venturini
- Clinical Analyses Laboratory, Londrina State University, Londrina, Brazil
| | - Décio S Barbosa
- Clinical Analyses Laboratory, Londrina State University, Londrina, Brazil
| | - Rafael Deminice
- Faculty of Physical Education and Sport, Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Dafundo, Portugal
| | - Edilson S Cyrino
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Londrina, Brazil.,Faculty of Physical Education and Sport, Department of Physical Education, State University of Londrina, Londrina, Brazil
| |
Collapse
|
178
|
Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radic Res 2019; 53:497-521. [PMID: 31039624 DOI: 10.1080/10715762.2019.1612059] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.
Collapse
Affiliation(s)
- Joanna Kruk
- a Faculty of Physical Culture and Health Promotion , University of Szczecin , Cukrowa 12 , Szczecin , Poland
| | - Hassan Y Aboul-Enein
- b Department of National Pharmaceutical and Medicinal Chemistry, Division of Pharmaceutical and Drug Industries Research , National Research Centre , Dokki , Egypt
| | - Aleksandra Kładna
- c Faculty of Medicine, Biotechnology and Laboratory Medicine , Pomeranian Medical University , Szczecin , Poland
| | - Jacquelyn E Bowser
- d John Hazen White College of Arts & Sciences , Johnson & Wales University , Providence , USA
| |
Collapse
|
179
|
Association of physical activity and fitness with S-Klotho plasma levels in middle-aged sedentary adults: The FIT-AGEING study. Maturitas 2019; 123:25-31. [DOI: 10.1016/j.maturitas.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
|
180
|
Przyborowski K, Proniewski B, Czarny J, Smeda M, Sitek B, Zakrzewska A, Zoladz JA, Chlopicki S. Vascular Nitric Oxide-Superoxide Balance and Thrombus Formation after Acute Exercise. Med Sci Sports Exerc 2019; 50:1405-1412. [PMID: 29470281 DOI: 10.1249/mss.0000000000001589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION An acute bout of strenuous exercise in humans results in transient impairment of nitric oxide (NO)-dependent function, but it remains unknown whether this phenomenon is associated with increased risk of thrombotic events after exercise. This study aimed to evaluate effects of a single bout of exhaustive running in mice on the balance of vascular NO/reactive oxygen species production, and on thrombogenicity. METHODS At different time points (0, 2, and 4 h) after exercise and in sedentary C57BL/6 mice, the production of NO and superoxide (O2) in aorta was measured by electron paramagnetic resonance spin trapping and by dihydroethidium/high-performance liquid chromatography-based method, respectively, whereas collagen-induced thrombus formation was analyzed in a microchip-based flow-chamber system (total thrombus-formation analysis system). We also measured pre- and postexercise plasma concentration of nitrite/nitrate and 6-keto-PGF1α. RESULTS An acute bout of exhaustive running in mice resulted in decreased production of NO and increased production of O2 in aorta, with maximum changes 2 h after completion of exercise when compared with sedentary mice. However, platelet thrombus formation was not changed by exercise as evidenced by unaltered time to start of thrombus formation, capillary occlusion time, and total thrombogenicity (area under the flow pressure curve) as measured in a flow-chamber system. Strenuous exercise increased the plasma concentration of nitrite but did not affect nitrate and 6-keto-PGF1α concentrations. CONCLUSION An acute bout of strenuous exercise in mice reduced NO and in parallel increased O2 production in aorta. This response was most pronounced 2 h after exercise. Surprisingly, the reduced NO and increased O2 production in mice after exercise did not result in increased platelet-dependent thrombogenicity. These results show that transient reduction in NO bioavailability does not modify thromboresistance in healthy mice after exercise.
Collapse
Affiliation(s)
- Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, POLAND
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, POLAND
| | - Joanna Czarny
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, POLAND
| | - Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, POLAND
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, POLAND
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, POLAND
| | - Jerzy A Zoladz
- Department of Muscle Physiology, Chair of Physiology and Biochemistry, Faculty of Rehabilitation, University School of Physical Education, Krakow, POLAND
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, POLAND.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, POLAND
| |
Collapse
|
181
|
Guest NS, Horne J, Vanderhout SM, El-Sohemy A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front Nutr 2019; 6:8. [PMID: 30838211 PMCID: PMC6389634 DOI: 10.3389/fnut.2019.00008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
An individual's dietary and supplement strategies can influence markedly their physical performance. Personalized nutrition in athletic populations aims to optimize health, body composition, and exercise performance by targeting dietary recommendations to an individual's genetic profile. Sport dietitians and nutritionists have long been adept at placing additional scrutiny on the one-size-fits-all general population dietary guidelines to accommodate various sporting populations. However, generic "one-size-fits-all" recommendations still remain. Genetic differences are known to impact absorption, metabolism, uptake, utilization and excretion of nutrients and food bioactives, which ultimately affects a number of metabolic pathways. Nutrigenomics and nutrigenetics are experimental approaches that use genomic information and genetic testing technologies to examine the role of individual genetic differences in modifying an athlete's response to nutrients and other food components. Although there have been few randomized, controlled trials examining the effects of genetic variation on performance in response to an ergogenic aid, there is a growing foundation of research linking gene-diet interactions on biomarkers of nutritional status, which impact exercise and sport performance. This foundation forms the basis from which the field of sport nutrigenomics continues to develop. We review the science of genetic modifiers of various dietary factors that impact an athlete's nutritional status, body composition and, ultimately athletic performance.
Collapse
Affiliation(s)
- Nanci S Guest
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Justine Horne
- Department of Health and Rehabilitation Sciences, University of Western Ontario, London, ON, Canada
| | - Shelley M Vanderhout
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Nutrigenomix Inc., Toronto, ON, Canada
| |
Collapse
|
182
|
Breed D, Meyer LCR, Steyl JCA, Goddard A, Burroughs R, Kohn TA. Conserving wildlife in a changing world: Understanding capture myopathy-a malignant outcome of stress during capture and translocation. CONSERVATION PHYSIOLOGY 2019; 7:coz027. [PMID: 31304016 PMCID: PMC6612673 DOI: 10.1093/conphys/coz027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 05/18/2023]
Abstract
The number of species that merit conservation interventions is increasing daily with ongoing habitat destruction, increased fragmentation and loss of population connectivity. Desertification and climate change reduce suitable conservation areas. Physiological stress is an inevitable part of the capture and translocation process of wild animals. Globally, capture myopathy-a malignant outcome of stress during capture operations-accounts for the highest number of deaths associated with wildlife translocation. These deaths may not only have considerable impacts on conservation efforts but also have direct and indirect financial implications. Such deaths usually are indicative of how well animal welfare was considered and addressed during a translocation exercise. Importantly, devastating consequences on the continued existence of threatened and endangered species succumbing to this known risk during capture and movement may result. Since first recorded in 1964 in Kenya, many cases of capture myopathy have been described, but the exact causes, pathophysiological mechanisms and treatment for this condition remain to be adequately studied and fully elucidated. Capture myopathy is a condition with marked morbidity and mortality that occur predominantly in wild animals around the globe. It arises from inflicted stress and physical exertion that would typically occur with prolonged or short intense pursuit, capture, restraint or transportation of wild animals. The condition carries a grave prognosis, and despite intensive extended and largely non-specific supportive treatment, the success rate is poor. Although not as common as in wildlife, domestic animals and humans are also affected by conditions with similar pathophysiology. This review aims to highlight the current state of knowledge related to the clinical and pathophysiological presentation, potential treatments, preventative measures and, importantly, the hypothetical causes and proposed pathomechanisms by comparing conditions found in domestic animals and humans. Future comparative strategies and research directions are proposed to help better understand the pathophysiology of capture myopathy.
Collapse
Affiliation(s)
- Dorothy Breed
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Biodiversity Management Branch, Environmental Management Department, City of Cape Town, Maitland, South Africa
| | - Leith C R Meyer
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
| | - Johan C A Steyl
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
| | - Richard Burroughs
- Department of Production Animal Studies, University of Pretoria, Onderstepoort, South Africa
- Centre for Veterinary Wildlife Studies, University of Pretoria, Onderstepoort, South Africa
- Mammal Research Institute, University of Pretoria, Onderstepoort, South Africa
| | - Tertius A Kohn
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
- Corresponding author: Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Boundary Road, Cape Town 7725, South Africa. Tel.: +27 21 406 6235;
| |
Collapse
|
183
|
Oliveira DCX, Frisselli A, Deminice R. Football training session rises creatine kinase but does not impair performance. MOTRIZ: REVISTA DE EDUCACAO FISICA 2019. [DOI: 10.1590/s1980-6574201900030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
184
|
Abstract
BACKGROUND Cocoa flavanols (CFs) have antioxidant and anti-inflammatory capacities and can improve vascular function. It has recently been suggested that CF intake may improve exercise performance and recovery. This systematic review aimed to evaluate the literature on the effects of CF intake on exercise performance and recovery and exercise-induced changes in vascular function, cognitive function, oxidative stress, inflammation, and metabolic parameters. METHODS Two electronic databases (Pubmed and Web of Science) were searched for studies examining the combination of CF intake and exercise in humans (up to 28 March 2017). Articles were included if the exact amount of CFs was mentioned. The methodological quality and level of bias of the 13 included studies was assessed according to the checklist for randomized controlled trials from the Dutch Cochrane center. RESULTS Acute, sub-chronic (2 weeks) and chronic (3 months) CF intake reduced exercise-induced oxidative stress. Evidence on the effect of CF on exercise-induced inflammation and platelet activation was scarce. Acute CF intake reduced and tempered the exercise-induced increase in blood pressure in obese participants. Acute and sub-chronic CF intake altered fat and carbohydrate metabolism during exercise. Acute and sub-chronic CF intake did not have ergogenic effects in athletes, while chronic CF intake improved mitochondrial efficiency in untrained participants. While combining sub-chronic CF intake and exercise training improved cardiovascular risk factors and vascular function, evidence on the synergistic effects of CF and exercise training on oxidative stress, inflammation, and fat and glucose metabolism was lacking. CONCLUSION CF intake may improve vascular function, reduce exercise-induced oxidative stress, and alter fat and carbohydrate utilization during exercise, but without affecting exercise performance. There is a strong need for future studies examining the synergetic effect of chronic CF intake and exercise training.
Collapse
|
185
|
Antioxidants: Positive or Negative Actors? Biomolecules 2018; 8:biom8040124. [PMID: 30366441 PMCID: PMC6316255 DOI: 10.3390/biom8040124] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Abstract
The term “antioxidant” is one of the most confusing definitions in biological/medical sciences. In chemistry, “antioxidant” is simply conceived “a compound that removes reactive species, mainly those oxygen-derived”, while in a cell context, the conceptual definition of an antioxidant is poorly understood. Indeed, non-clinically recommended antioxidants are often consumed in large amounts by the global population, based on the belief that cancer, inflammation and degenerative diseases are triggered by high oxygen levels (or reactive oxygen species) and that through blocking reactive species production, organic unbalances/disorders can be prevented and/or even treated. The popularity of these chemicals arises in part from the widespread public mistrust of allopathic medicine. In fact, reactive oxygen species play a dual role in dealing with different disorders, since they may contribute to disease onset and/or progression but may also play a key role in disease prevention. Further, the ability of the most commonly used supplements, such as vitamins C, E, selenium, and herbal supplements to decrease pathologic reactive oxygen species is not clearly established. Hence, the present review aims to provide a nuanced understanding of where current knowledge is and where it should go.
Collapse
|
186
|
Marmett B, Nunes RB, de Souza KS, Lago PD, Rhoden CR. Aerobic training reduces oxidative stress in skeletal muscle of rats exposed to air pollution and supplemented with chromium picolinate. Redox Rep 2018; 23:146-152. [PMID: 29776315 PMCID: PMC6748694 DOI: 10.1080/13510002.2018.1475993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: The purpose of this study was to investigate the effects
of chromium picolinate (CrPic) supplementation associated with aerobic exercise
using measures of oxidative stress in rats exposed to air pollution. Methods: Sixty-one male Wistar rats were divided into eight groups:
residual oil fly ash (ROFA) exposure and sedentary (ROFA-SED); ROFA exposure,
sedentary and supplemented (ROFA-SED-CrPic); ROFA exposure and trained
(ROFA-AT); ROFA exposure, supplemented and trained (ROFA-AT-CrPic); sedentary
(Sal-SED); sedentary and supplemented (Sal-SED-CrPic); trained (Sal-AT); and
supplemented and trained (Sal-AT-CrPic). Rats exposed to ROFA (air pollution)
received 50 µg of ROFA daily via intranasal instillation.
Supplemented rats received CrPic (1 mg/kg/day) daily by oral gavage.
Exercise training was performed on a rat treadmill (5×/week). Oxidative
parameters were evaluated at the end of protocols. Results: Trained groups demonstrated lower gain of body mass
(P < .001) and increased exercise
tolerance (P < .0001). In the gastrocnemius,
trained groups demonstrated increased SOD activity
(P < .0001) and decrease levels of TBARS
(P = .0014), although CAT activity did
not differ among groups (P = .4487). Conclusion: Air pollution exposure did not lead to alterations in
oxidative markers in lungs and heart, and exercise training was responsible for
decreasing oxidative stress of the gastrocnemius.
Collapse
Affiliation(s)
- Bruna Marmett
- a Laboratory of Atmospheric Pollution, Graduate Program in Health Science , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Ramiro Barcos Nunes
- b Research Department , Sul-Rio-Grandense Federal Institute of Education, Science and Technology , Gravataí , Brazil.,c Laboratory of Experimental Physiology , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Kellen Sábio de Souza
- a Laboratory of Atmospheric Pollution, Graduate Program in Health Science , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Pedro Dal Lago
- c Laboratory of Experimental Physiology , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Cláudia Ramos Rhoden
- a Laboratory of Atmospheric Pollution, Graduate Program in Health Science , Federal University of Health Sciences of Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| |
Collapse
|
187
|
Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants (Basel) 2018; 7:antiox7090119. [PMID: 30189660 PMCID: PMC6162669 DOI: 10.3390/antiox7090119] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 11/24/2022] Open
Abstract
It is well established that the increase in reactive oxygen species (ROS) and free radicals production during exercise has both positive and negative physiological effects. Among them, the present review focuses on oxidative stress caused by acute exercise, mainly on evidence in healthy individuals. This review also summarizes findings on the determinants of exercise-induced oxidative stress and sources of free radical production. Moreover, we outline the effects of antioxidant supplementation on exercise-induced oxidative stress, which have been studied extensively. Finally, the following review briefly summarizes future tasks in the field of redox biology of exercise. In principle, this review covers findings for the whole body, and describes human trials and animal experiments separately.
Collapse
|
188
|
Gabrielli L, Sitges M, Chiong M, Jalil J, Ocaranza M, Llevaneras S, Herrera S, Fernandez R, Saavedra R, Yañez F, Vergara L, Diaz A, Lavandero S, Castro P. Potential adverse cardiac remodelling in highly trained athletes: still unknown clinical significance. Eur J Sport Sci 2018; 18:1288-1297. [DOI: 10.1080/17461391.2018.1484174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Luigi Gabrielli
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marta Sitges
- Cardiology Department, IDIBAPS, Hospital Clínic, Barcelona, Spain
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Facultad Ciencias Químicas y Farmacéuticas y Facultad Medicina, Universidad Católica de Chile, Santiago, Chile
| | - Jorge Jalil
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Llevaneras
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Herrera
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Fernandez
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Saavedra
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Yañez
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Vergara
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Diaz
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Facultad Ciencias Químicas y Farmacéuticas y Facultad Medicina, Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Facultad Ciencias Químicas y Farmacéuticas y Facultad Medicina, Universidad Católica de Chile, Santiago, Chile
- Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pablo Castro
- Advanced Center for Chronic Diseases (ACCDiS) & División Enfermedades Cardiovasculares. Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
189
|
Moralez G, Jouett NP, Tian J, Zimmerman MC, Bhella P, Raven PB. Effect of centrally acting angiotensin converting enzyme inhibitor on the exercise-induced increases in muscle sympathetic nerve activity. J Physiol 2018; 596:2315-2332. [PMID: 29635787 PMCID: PMC6002210 DOI: 10.1113/jp274697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS The arterial baroreflex's operating point pressure is reset upwards and rightwards from rest in direct relation to the increases in dynamic exercise intensity. The intraneural pathways and signalling mechanisms that lead to upwards and rightwards resetting of the operating point pressure, and hence the increases in central sympathetic outflow during exercise, remain to be identified. We tested the hypothesis that the central production of angiotensin II during dynamic exercise mediates the increases in sympathetic outflow and, therefore, the arterial baroreflex operating point pressure resetting during acute and prolonged dynamic exercise. The results identify that perindopril, a centrally acting angiotensin converting enzyme inhibitor, markedly attenuates the central sympathetic outflow during acute and prolonged dynamic exercise. ABSTRACT We tested the hypothesis that the signalling mechanisms associated with the dynamic exercise intensity related increases in muscle sympathetic nerve activity (MSNA) and arterial baroreflex resetting during exercise are located within the central nervous system. Participants performed three randomly ordered trials of 70° upright back-supported dynamic leg cycling after ingestion of placebo and two different lipid soluble angiotensin converting enzyme inhibitors (ACEi): perindopril (high lipid solubility), captopril (low lipid solubility). Repeated measurements of whole venous blood (n = 8), MSNA (n = 7) and arterial blood pressures (n = 14) were obtained at rest and during an acute (SS1) and prolonged (SS2) bout of steady state dynamic exercise. Arterial baroreflex function curves were modelled at rest and during exercise. Peripheral venous superoxide concentrations measured by electron spin resonance spectroscopy were elevated during exercise and were not altered by ACEi at rest (P ≥ 0.4) or during exercise (P ≥ 0.3). Baseline MSNA and mean arterial pressure were unchanged at rest (P ≥ 0.1; P ≥ 0.8, respectively). However, during both SS1 and SS2, the centrally acting ACEi perindopril attenuated MSNA compared to captopril and the placebo (P < 0.05). Arterial pressures at the operating point and threshold pressures were decreased with perindopril from baseline to SS1 with no further changes in the operating point pressure during SS2 under all three conditions. These data suggest that centrally acting ACEi is significantly more effective at attenuating the increase in the acute and prolonged exercise-induced increases in MSNA.
Collapse
Affiliation(s)
- Gilbert Moralez
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital Dallas and The University of Texas Southwestern Medical CenterDallasTXUSA
| | - Noah P. Jouett
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
| | - Jun Tian
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Paul Bhella
- Department of Cardiac Imaging at the John Peter Smith Health NetworkFort WorthTXUSA
- Department of Internal MedicineTCU and UNTHSC School of MedicineFort WorthTXUSA
| | - Peter B. Raven
- Institute for Cardiovascular and Metabolic DiseaseUniversity of North Texas Health Science CenterFort WorthTXUSA
| |
Collapse
|
190
|
Martin A, Faes C, Debevec T, Rytz C, Millet G, Pialoux V. Preterm birth and oxidative stress: Effects of acute physical exercise and hypoxia physiological responses. Redox Biol 2018; 17:315-322. [PMID: 29775962 PMCID: PMC6006904 DOI: 10.1016/j.redox.2018.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Preterm birth is a global health issue that can induce lifelong medical sequela. Presently, at least one in ten newborns are born prematurely. At birth, preterm newborns exhibit higher levels of oxidative stress (OS) due to the inability to face the oxygen rich environment in which they are born into. Moreover, their immature respiratory, digestive, immune and antioxidant defense systems, as well as the potential numerous medical interventions following a preterm birth, such as oxygen resuscitation, nutrition, phototherapy and blood transfusion further contribute to high levels of OS. Although the acute effects seem well established, little is known regarding the long-term effects of preterm birth on OS. This matter is especially important given that chronically elevated OS levels may persist into adulthood and consequently contribute to the development of numerous non-communicable diseases observed in people born preterm such as diabetes, hypertension or lung disorders. The purpose of this review is to summarize the current knowledge regarding the consequences of preterm birth on OS levels from newborn to adulthood. In addition, the effects of physical activity and hypoxia, both known to disrupt redox balance, on OS modulation in preterm individuals are also explored.
Collapse
Affiliation(s)
- Agnès Martin
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Villeurbanne, France; Master BioSciences, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Univ Lyon, France
| | - Camille Faes
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Villeurbanne, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Chantal Rytz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Grégoire Millet
- ISSUL, Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vincent Pialoux
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA 7424, Villeurbanne, France; Institut Universitaire de France, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
191
|
Rosado-Pérez J, Mendoza-Núñez VM. Relationship Between Aerobic Capacity With Oxidative Stress and Inflammation Biomarkers in the Blood of Older Mexican Urban-Dwelling Population. Dose Response 2018; 16:1559325818773000. [PMID: 29760603 PMCID: PMC5944145 DOI: 10.1177/1559325818773000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 01/05/2023] Open
Abstract
The maximal oxygen uptake (VO2max) constitutes an indicator of an organism’s capacity to integrate oxygen into the metabolism to obtaining energy. The aim of this study was to determine the relationship between VO2max and oxidative stress (OxS) and chronic inflammation in the elderly individuals. A cross-sectional and exploratory study was conducted in a sample of 52 older persons. We measured plasma lipid peroxides (LPO), red blood cell glutathione peroxidase, red blood cell superoxide dismutase, and total antioxidant status. The interleukin 10 and tumor necrosis factor-α (TNF-α) were measured in serum by ELISA. The VO2max was determined by the Rockport aerobic test, and the energy expenditure (caloric expenditure and metabolic equivalence unit (MET) per day) was measured by a 3-day activity record. We observed a positive correlation between VO2 max with IL-10, MET/day•day-1 and kcal•day-1 (r = 0.31, P < .05, r = 0.44, P < .01, and r = 0.29, P < .05, respectively), and a negative correlation with the body mass index, TNF-α, and LPO (r = −0.27, P < .05, r = −0.29, P < .05, and r = −0.40, P < .01 respectively). Our findings suggest that there is an inverse relationship between the aerobic capacity and the OxS and chronic inflammation biomarkers in the blood in older Mexican adults.
Collapse
Affiliation(s)
- Juana Rosado-Pérez
- Unidad de Investigación en Gerontología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Víctor Manuel Mendoza-Núñez
- Unidad de Investigación en Gerontología, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
192
|
|
193
|
Luo B, Xiang D, Wu D, Liu C, Fang Y, Chen P, Hu YP. Hepatic PHD2/HIF-1α axis is involved in postexercise systemic energy homeostasis. FASEB J 2018; 32:4670-4680. [PMID: 29601782 DOI: 10.1096/fj.201701139r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exercise plays an important role in the prevention and treatment of chronic liver disease and associated metabolic disorders. A single bout of exercise induces tissue blood flow redistribution, which decreases splanchnic circulation and leads to physiologic hypoxia in the gastrointestinal system and liver. The transcription factor, hypoxia inducible factor-1α (HIF-1α), and its regulator, prolylhydroxylase 2 (PHD2), play pivotal roles in the response to oxygen flux by regulating downstream gene expression levels in the liver. We hypothesized that exercise increases the HIF-1α levels in the liver, and that the hepatic PHD2/HIF-1α axis is involved in postexercise restoration of systemic energy homeostasis. Through constant O2 consumption, CO2 production, food and water intake, and physical activity detection with metabolic chambers, we observed that one 30-min session of swimming exercise enhances systemic energy metabolism in mice. By using the noninvasive bioluminescence imaging ROSA26 oxygen-dependent domain Luc mouse model, we reveal that exercise increases in vivo HIFα levels in the liver. Intraperitoneal injections of the PHD inhibitor, dimethyloxalylglycine, mimicked exercise-induced HIFα increase, whereas the HIF-1α inhibitor, PX-478, blocked this effect. We next constructed liver-specific knockout (LKO) mouse models with albumin- Cre-mediated, hepatocyte-specific Hif1a and Phd2 deletion. Compared with their controls, Hif1a-LKO and Phd2-LKO mice exhibited distinct patterns of hepatic metabolism-related gene expression profiles. Moreover, Hif1a-LKO mice failed to restore systemic energy homeostasis after exercise. In conclusion, the current study demonstrates that a single bout of exercise disrupts systemic energy homeostasis, increasing the HIF-1α levels in the liver. These findings also provide evidence that the hepatic PHD2/HIF-1α axis is involved in postexercise systemic metabolic homeostasis.-Luo, B., Xiang, D., Wu, D., Liu, C., Fang, Y., Chen, P., Hu, Y.-P. Hepatic PHD2/HIF-1α axis is involved in postexercise systemic energy homeostasis.
Collapse
Affiliation(s)
- Beibei Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Cell Biology, Second Military Medical University, Shanghai, China
| | - Dao Xiang
- Department of Diving Medicine, Naval Medical Research Institute, Second Military Medical University, Shanghai, China
| | - Die Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Changcheng Liu
- Department of Cell Biology, Second Military Medical University, Shanghai, China
| | - Yiqun Fang
- Department of Diving Medicine, Naval Medical Research Institute, Second Military Medical University, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yi-Ping Hu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Cell Biology, Second Military Medical University, Shanghai, China
| |
Collapse
|
194
|
León-López J, Calderón-Soto C, Pérez-Sánchez M, Feriche B, Iglesias X, Chaverri D, Rodríguez FA. Oxidative stress in elite athletes training at moderate altitude and at sea level. Eur J Sport Sci 2018; 18:832-841. [PMID: 29575975 DOI: 10.1080/17461391.2018.1453550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using a controlled parallel group longitudinal trial design, we investigated the effects of different training interventions on the prooxidant/antioxidant status of elite athletes: living and training at moderate altitude for 3 (Hi-Hi3) and 4 weeks (Hi-Hi), and for 4 weeks too, living high and training high and low (Hi-HiLo) and living and training at sea level (Lo-Lo). From 61 swimmers, 54 completed the study. Nitrites, carbonyls, and lipid peroxidation (LPO) levels were assessed in plasma. Enzymatic antioxidants glutathione peroxidase (GPx) and glutathione reductase (GRd), and non-enzymatic antioxidants total glutathione (GST), reduced glutathione (GSH) and oxidized glutathione (GSSG) were analysed in the erythrocyte fraction. At the end of the intervention, nitrites levels were similar in all altitude groups but higher than in the Lo-Lo controls (P = .02). Hi-HiLo had greater GPx activity than Hi-Hi and Hi-Hi3 during most of the intervention (P ≤ .001). GRd activity was higher in Lo-Lo than in Hi-Hi at the end of the training camp (P ≤ .001). All groups showed increased levels of LPO, except Lo-Lo, and carbonyls at the end of the study (P ≤ .001). Training at altitude for 3 or 4 weeks drives oxidative stress leading to cellular damage mainly by worsening the antioxidant capacities. The GSSG/GSH ratio appears to be related to perceived exertion and fatigue. The stronger antioxidant defence showed by the Hi-HiLo group suggests an inverse relationship between redox alterations and performance. Further studies are required to investigate the role of oxidative stress in acclimatization, performance, and health.
Collapse
Affiliation(s)
- Josefa León-López
- a San Cecilio University Hospital , University of Granada , Granada , Spain
| | | | - Matías Pérez-Sánchez
- c Virgen de las Nieves University Hospital , University of Granada , Granada , Spain
| | - Belén Feriche
- d Faculty of Sports Sciences , University of Granada , Granada , Spain
| | - Xavier Iglesias
- e INEFC-Barcelona Sport Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC) , University of Barcelona , Barcelona , Spain
| | - Diego Chaverri
- e INEFC-Barcelona Sport Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC) , University of Barcelona , Barcelona , Spain
| | - Ferran A Rodríguez
- e INEFC-Barcelona Sport Sciences Research Group, National Institute of Physical Education of Catalonia (INEFC) , University of Barcelona , Barcelona , Spain
| |
Collapse
|
195
|
Decroix L, Tonoli C, Lespagnol E, Balestra C, Descat A, Drittij-Reijnders MJ, Blackwell JR, Stahl W, Jones AM, Weseler AR, Bast A, Meeusen R, Heyman E. One-week cocoa flavanol intake increases prefrontal cortex oxygenation at rest and during moderate-intensity exercise in normoxia and hypoxia. J Appl Physiol (1985) 2018. [PMID: 29543135 DOI: 10.1152/japplphysiol.00055.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During exercise in hypoxia, O2 delivery to brain and muscle is compromised, and oxidative stress is elicited. Cocoa flavanols (CF) have antioxidant capacities and can increase blood flow by stimulating endothelial function. We aimed to examine the effects of 7-day CF intake on oxidative stress, nitric oxide production, and tissue oxygenation in response to exercise in normobaric hypoxia (14.3% O2). In a randomized, double-blind, cross-over study, 14 well-trained male cyclists completed four trials: exercise in normoxia or hypoxia, after 7-day CF or placebo intake. Flow-mediated dilation (FMD) was measured before intake of the last dose CF or placebo. One hundred minutes later, 20-min steady-state (SS; 45% V̇o2max) and 20-min time trial (TT) (cycling) were performed. Blood samples were taken. Prefrontal and muscular oxygenation was assessed by near-infrared spectroscopy. At baseline, FMD was increased by CF. Hypoxia increased exercise-induced elevations in lipid peroxidation and antioxidant capacity. CF suppressed exercise-induced lipid peroxidation but did not influence antioxidant capacity. At rest and during SS, prefrontal and muscular oxygenation was decreased by hypoxia. CF elevated prefrontal oxygenation but did not impact muscular oxygenation. During TT, hypoxia accelerated the exercise-induced decrease in prefrontal oxygenation, but not in muscular oxygenation. During TT, CF did not alter prefrontal and muscular oxygenation. CF did not change plasma nitrite, nitrate, and arginine:citrulline. During high-intensity exercise, CF improved neither tissue oxygenation nor performance in well-trained athletes. At rest and during moderate-intensity exercise, CF reduced exercise-induced lipid peroxidation and partially restored the hypoxia-induced decline in prefrontal oxygenation. NEW & NOTEWORTHY For the first time, we showed that CF had beneficial effects on endothelial function at rest, as well as on prefrontal oxygenation at rest and during moderate-intensity exercise, both in normoxia and hypoxia. Moreover, we showed that CF intake inhibited oxidative stress during exhaustive exercise in hypoxia.
Collapse
Affiliation(s)
- Lieselot Decroix
- Human Physiology research group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussels, Belgium.,Université de Lille, Université Artois, Université Littoral Côte d'Opale, EA 7369 , Unité de Recherche Pluridisciplinaire Sport Santé Société , Lille, France
| | - Cajsa Tonoli
- Department Rehabilitation Sciences and Kinesitherapy, Faculty of Physical Education and Physical Therapy, Universiteit Gent, Ghent , Belgium
| | - Elodie Lespagnol
- Université de Lille, Université Artois, Université Littoral Côte d'Opale, EA 7369 , Unité de Recherche Pluridisciplinaire Sport Santé Société , Lille, France
| | - Constantino Balestra
- Department of Environmental, Occupational and Aging Physiology, Haute Ecole Bruxelles-Brabant Paul Henri Spaak, Brussels , Belgium
| | - Amandine Descat
- Center of Measurements and Analysis, Faculty of Pharmaceutical Sciences, Université de Lille , France
| | | | - Jamie R Blackwell
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter , United Kingdom
| | - Wilhelm Stahl
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter , United Kingdom.,Institute of Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine Universität Düsseldorf , Düsseldorf , Germany
| | - Andrew M Jones
- Sports and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter , United Kingdom
| | - Antje R Weseler
- Department of Pharmacology and Toxicology, Maastricht University , Maastricht , The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University , Maastricht , The Netherlands
| | - Romain Meeusen
- Human Physiology research group, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussels, Belgium
| | - Elsa Heyman
- Université de Lille, Université Artois, Université Littoral Côte d'Opale, EA 7369 , Unité de Recherche Pluridisciplinaire Sport Santé Société , Lille, France
| |
Collapse
|
196
|
Padrão AI, Nogueira-Ferreira R, Vitorino R, Carvalho D, Correia C, Neuparth MJ, Pires MJ, Faustino-Rocha AI, Santos LL, Oliveira PA, Duarte JA, Moreira-Gonçalves D, Ferreira R. Exercise training protects against cancer-induced cardiac remodeling in an animal model of urothelial carcinoma. Arch Biochem Biophys 2018; 645:12-18. [PMID: 29548774 DOI: 10.1016/j.abb.2018.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/24/2022]
Abstract
Limiting cancer-induced cardiac damage has become an increasingly important issue to improve survival rates and quality of life. Exercise training has been shown to reduce cardiovascular complications in several diseases; however, its therapeutic role against cardiovascular consequences of cancer is in its infancy. In order to add new insights on the potential therapeutic effect of exercise training on cancer-related cardiac dysfunction, we used an animal model of urothelial carcinoma submitted to 13 weeks of treadmill exercise after 20 weeks of exposure to the carcinogenic N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN). Data showed that 13 weeks of treadmill exercise reverted cancer-induced cardiomyocytes atrophy and fibrosis, improved cardiac oxidative capacity given by citrate synthase activity and MnSOD content, and increased the levels of the mitochondrial biogenesis markers PGC-1α and mtTFA. Moreover, exercise training reverted cancer-induced decrease of cardiac c-kit levels suggesting enhanced regenerative ability of heart. These cardiac adaptations to exercise were related to a lower incidence of malignant urothelial lesions and less signs of inflammation. Taken together, data from the present study support the beneficial effect of exercise training when started after cancer diagnosis, envisioning the improvement of the cardiovascular function.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal
| | - Rita Nogueira-Ferreira
- iBiMED, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal; Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, Agra do Crasto, 3810-193, Aveiro, Portugal; Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Dulce Carvalho
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina Correia
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria João Neuparth
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal
| | - Maria João Pires
- CITAB, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911 Vila Real, Portugal
| | - Ana Isabel Faustino-Rocha
- CITAB, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911 Vila Real, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of Instituto Português de Oncologia, R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Paula Alexandra Oliveira
- CITAB, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-911 Vila Real, Portugal
| | - José Alberto Duarte
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sports, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal; Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
197
|
Viana Gomes D, Santos Vigário P, Lima Piazera BK, Pereira Costa F, Vaisman M, Salerno Pinto V. Oxidative stress biomarkers after a single maximal test in blind and non-blind soccer players. J Sports Med Phys Fitness 2018; 59:267-273. [PMID: 29498248 DOI: 10.23736/s0022-4707.18.08030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to compare oxidative stress biomarkers, antioxidant capacity, muscle damage and hormone response between vision impaired and non-vision impaired athletes after a single maximal exercise test. METHODS Eight vision impaired and fifteen non-vision impaired athletes performed a maximal aerobic test with blood collected before and after. RESULTS Non-vision impaired athletes displayed greater aerobic capacity than blind individuals (P<0.05). Lactate increased by four-fold, while creatine kinase and gamma-glutamyltransferase as well as the oxidative stress biomarkers and antioxidants were unchanged. Cortisol increased, but testosterone and their ratio were not altered. Differences were observed for alanine transaminase and aspartate transaminase, which were increased only in non-blind athletes. CONCLUSIONS Our data suggest that blind soccer players, in comparison to those with vision, experienced less cellular damage.
Collapse
Affiliation(s)
- Diego Viana Gomes
- Department of Biosciences of Physical Activity, Federal University of Rio de Janeiro (EEFD), Rio de Janeiro, Brazil.,Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Santos Vigário
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna K Lima Piazera
- Department of Biosciences of Physical Activity, Federal University of Rio de Janeiro (EEFD), Rio de Janeiro, Brazil.,Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Filipe Pereira Costa
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Vaisman
- Department of Clinical Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Veronica Salerno Pinto
- Department of Biosciences of Physical Activity, Federal University of Rio de Janeiro (EEFD), Rio de Janeiro, Brazil -
| |
Collapse
|
198
|
Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Kyparos A, Nikolaidis MG. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability. Acta Physiol (Oxf) 2018; 222. [PMID: 28544643 DOI: 10.1111/apha.12898] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
AIM The aim of this study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents (e.g. a pro-oxidant or antioxidant). METHODS We invented a novel methodological set-up that exploited the large redox interindividual variability in exercise responses. More specifically, we used exercise-induced oxidative stress as the 'classifier' measure (i.e. low, moderate and high) and investigated the physiological and redox adaptations after a 6-week endurance training protocol. RESULTS We demonstrated that the group with the low exercise-induced oxidative stress exhibited the lowest improvements in a battery of classic adaptations to endurance training (VO2 max, time trial and Wingate test) as well as in a set of redox biomarkers (oxidative stress biomarkers and antioxidants), compared to the high and moderate oxidative stress groups. CONCLUSION The findings of this study substantiate, for the first time in a human in vivo physiological context, and in the absence of any exogenous redox manipulation, the vital role of RONS produced during exercise in adaptations. The stratification approach, based on a redox phenotype, implemented in this study could be a useful experimental strategy to reveal the role of RONS and antioxidants in other biological manifestations as well.
Collapse
Affiliation(s)
- N. V. Margaritelis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
- Intensive Care Unit; 424 General Military Hospital of Thessaloniki; Thessaloniki Greece
| | - A. A. Theodorou
- Department of Health Sciences; School of Sciences; European University Cyprus; Nicosia Cyprus
| | - V. Paschalis
- School of Physical Education and Sport Science; National and Kapodistrian University of Athens; Athens Greece
| | - A. S. Veskoukis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - K. Dipla
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - A. Zafeiridis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - G. Panayiotou
- Department of Health Sciences; School of Sciences; European University Cyprus; Nicosia Cyprus
| | - I. S. Vrabas
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - A. Kyparos
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - M. G. Nikolaidis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| |
Collapse
|
199
|
Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle. Int J Mol Sci 2018; 19:ijms19020417. [PMID: 29385043 PMCID: PMC5855639 DOI: 10.3390/ijms19020417] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/14/2018] [Accepted: 01/21/2018] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion (IR), present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS). Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activation of the mitochondrial permeability transition pore. Elevated ROS levels can also decrease myofibrillar Ca2+ sensitivity, thereby compromising muscle contractile function. Low levels of ROS can act as signaling molecules involved in the protective pathways of ischemic preconditioning (IPC). By scavenging ROS, antioxidant therapies aim to prevent IR injuries with positive treatment outcomes. Novel therapies such as postconditioning and pharmacological interventions that target IPC pathways hold great potential in attenuating IR injuries. Factors such as aging and diabetes could have a significant impact on the severity of IR injuries. The current paper aims to provide a comprehensive review on the multifaceted roles of ROS in IR injuries, with a focus on cardiac and skeletal muscle, as well as recent advancement in ROS-related therapies.
Collapse
Affiliation(s)
- Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Evan R Prather
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Davis E Garrison
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
200
|
Katsuta W, Aihara M, Hirose N, Saito F, Hagiwara H. Changes in oxidative stress severity and antioxidant potential during muscle atrophy and reloading in mice. J Phys Ther Sci 2018; 30:42-46. [PMID: 29410563 PMCID: PMC5788772 DOI: 10.1589/jpts.30.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/27/2023] Open
Abstract
[Purpose] Changes in oxidative stress severity and antioxidant potential are routinely
used as oxidative stress markers. While several studies have reported the relationship
between these markers and exercise, little is known about the dynamic nature of these
markers during muscle atrophy and reloading. Therefore, we examined changes in oxidative
stress severity and antioxidant potential during muscle atrophy and reloading. [Subjects
and Methods] Muscle atrophy was induced in mice by casting the limb for 2 weeks. Mice were
then subjected to reloading for 2 weeks. The severity of oxidative stress (hydroperoxide)
and antioxidant potential (degree of reduction) were quantified. [Results] Muscle atrophy
was induced by cast immobilization. The muscle mass of mice recovered to similar levels as
the control group following 2 weeks of reloading. The degree of oxidative stress was
within the normal range throughout the experimental period. The antioxidant potential
decreased to the clinical borderline level 2 weeks after immobilization, further decreased
after 1 day of reloading, and then recovered to within the normal range. [Conclusion]
Performing d-ROMs and BAP tests may contribute to the understanding to atrophic process of
skeletal muscle in clinical practice of physical therapy.
Collapse
Affiliation(s)
- Wakana Katsuta
- Division of Biosciences, Graduate School of Science and Engineering, Teikyo University of Science: 2525 Yatsuzawa, Uenohara, Yamanashi 409-0193, Japan.,Department of Rehabilitation, National Center of Neurology and Psychiatry, Japan
| | - Masahiro Aihara
- Department of Physical Therapy, Faculty of Medical Sciences, Teikyo University of Science, Japan.,Department of Health Science, International University of Health and Welfare Graduate School, Japan
| | - Noboru Hirose
- Department of Physical Therapy, Faculty of Medical Sciences, Teikyo University of Science, Japan.,Department of Neurology, Teikyo University School of Medicine, Japan
| | - Fumiaki Saito
- Department of Neurology, Teikyo University School of Medicine, Japan
| | - Hiroki Hagiwara
- Division of Biosciences, Graduate School of Science and Engineering, Teikyo University of Science: 2525 Yatsuzawa, Uenohara, Yamanashi 409-0193, Japan.,Department of Physical Therapy, Faculty of Medical Sciences, Teikyo University of Science, Japan.,Department of Neurology, Teikyo University School of Medicine, Japan
| |
Collapse
|