151
|
Dixit D, Okuniewska M, Schwab SR. Secrets and lyase: Control of sphingosine 1-phosphate distribution. Immunol Rev 2020; 289:173-185. [PMID: 30977198 DOI: 10.1111/imr.12760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 12/26/2022]
Abstract
The signaling lipid sphingosine 1-phosphate (S1P) plays key roles in many physiological processes. In the immune system, S1P's best-described function is to draw cells out of tissues into circulation. Here, we will review models of S1P distribution in the thymus, lymph nodes, spleen, and nonlymphoid tissues. These models have been challenging to construct, because of the lack of tools to map lipid gradients. Nonetheless, evidence to date suggests that S1P distribution is exquisitely tightly controlled, and that concentrations of signaling-available S1P cannot be predicted by standard rules of thumb. The fine regulation of S1P gradients may explain how S1P can simultaneously direct multiple cell movements both between tissues and circulation and within tissues. It may also make it feasible to develop drugs that enable spatially specific modulation of S1P signaling.
Collapse
Affiliation(s)
- Dhaval Dixit
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York City, New York
| | - Martyna Okuniewska
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York City, New York
| | - Susan R Schwab
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York City, New York
| |
Collapse
|
152
|
Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:1-13. [PMID: 32705590 DOI: 10.1007/978-981-15-6082-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PLTP plays an important role in lipoprotein metabolism and cardiovascular disease development in humans; however, the mechanisms are still not completely understood. In mouse models, PLTP deficiency reduces cardiovascular disease, while its overexpression induces it. Therefore, we used mouse models to investigate the involved mechanisms. In this chapter, the recent main progresses in the field of PLTP research are summarized, and our focus is on the relationship between PLTP and lipoprotein metabolism, as well as PLTP and cardiovascular diseases.
Collapse
|
153
|
Wang Z, Kawabori M, Houkin K. FTY720 (Fingolimod) Ameliorates Brain Injury through Multiple Mechanisms and is a Strong Candidate for Stroke Treatment. Curr Med Chem 2020; 27:2979-2993. [PMID: 31785606 PMCID: PMC7403647 DOI: 10.2174/0929867326666190308133732] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
FTY720 (Fingolimod) is a known sphingosine-1-phosphate (S1P) receptor agonist that exerts strong anti-inflammatory effects and was approved as the first oral drug for the treatment of multiple sclerosis by the US Food and Drug Administration (FDA) in 2010. FTY720 is mainly associated with unique functional "antagonist" and "agonist" mechanisms. The functional antagonistic mechanism is mediated by the transient down-regulation and degradation of S1P receptors on lymphocytes, which prevents lymphocytes from entering the blood stream from the lymph node. This subsequently results in the development of lymphopenia and reduces lymphocytic inflammation. Functional agonistic mechanisms are executed through S1P receptors expressed on the surface of various cells including neurons, astrocytes, microglia, and blood vessel endothelial cells. These functions might play important roles in regulating anti-apoptotic systems, modulating brain immune and phagocytic activities, preserving the Blood-Brain-Barrier (BBB), and the proliferation of neural precursor cells. Recently, FTY720 have shown receptor-independent effects, including intracellular target bindings and epigenetic modulations. Many researchers have recognized the positive effects of FTY720 and launched basic and clinical experiments to test the use of this agent against stroke. Although the mechanism of FTY720 has not been fully elucidated, its efficacy against cerebral stroke is becoming clear, not only in animal models, but also in ischemic stroke patients through clinical trials. In this article, we review the data obtained from laboratory findings and preliminary clinical trials using FTY720 for stroke treatment.
Collapse
Affiliation(s)
- Zifeng Wang
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
154
|
Biram A, Davidzohn N, Shulman Z. T cell interactions with B cells during germinal center formation, a three-step model. Immunol Rev 2019; 288:37-48. [PMID: 30874355 DOI: 10.1111/imr.12737] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Abstract
Establishment of effective immunity against invading microbes depends on continuous generation of antibodies that facilitate pathogen clearance. Long-lived plasma cells with the capacity to produce high affinity antibodies evolve in germinal centers (GCs), where B cells undergo somatic hypermutation and are subjected to affinity-based selection. Here, we focus on the cellular interactions that take place early in the antibody immune response during GC colonization. Clones bearing B-cell receptors with different affinities and specificities compete for entry to the GC, at the boundary between the B-cell and T-cell zones in lymphoid organs. During this process, B cells compete for interactions with T follicular helper cells, which provide selection signals required for differentiation into GC cells and antibody secreting cells. These cellular engagements are long-lasting and depend on activation of adhesion molecules that support persistent interactions and promote transmission of signals between the cells. Here, we discuss how interactions between cognate T and B cells are primarily maintained by three types of molecular interactions: homophilic signaling lymphocytic activation molecule (SLAM) interactions, T-cell receptor: peptide-loaded major histocompatibility class II (pMHCII), and LFA-1:ICAMs. These essential components support a three-step process that controls clonal selection for entry into the antibody affinity maturation response in the GC, and establishment of long-lasting antibody-mediated immunity.
Collapse
Affiliation(s)
- Adi Biram
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
155
|
Panta CR, Ruisanchez É, Móré D, Dancs PT, Balogh A, Fülöp Á, Kerék M, Proia RL, Offermanns S, Tigyi GJ, Benyó Z. Sphingosine-1-Phosphate Enhances α 1-Adrenergic Vasoconstriction via S1P2-G 12/13-ROCK Mediated Signaling. Int J Mol Sci 2019; 20:ijms20246361. [PMID: 31861195 PMCID: PMC6941080 DOI: 10.3390/ijms20246361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/21/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) has been implicated recently in the physiology and pathology of the cardiovascular system including regulation of vascular tone. Pilot experiments showed that the vasoconstrictor effect of S1P was enhanced markedly in the presence of phenylephrine (PE). Based on this observation, we hypothesized that S1P might modulate α1-adrenergic vasoactivity. In murine aortas, a 20-minute exposure to S1P but not to its vehicle increased the Emax and decreased the EC50 of PE-induced contractions indicating a hyperreactivity to α1-adrenergic stimulation. The potentiating effect of S1P disappeared in S1P2 but not in S1P3 receptor-deficient vessels. In addition, smooth muscle specific conditional deletion of G12/13 proteins or pharmacological inhibition of the Rho-associated protein kinase (ROCK) by Y-27632 or fasudil abolished the effect of S1P on α1-adrenergic vasoconstriction. Unexpectedly, PE-induced contractions remained enhanced markedly as late as three hours after S1P-exposure in wild-type (WT) and S1P3 KO but not in S1P2 KO vessels. In conclusion, the S1P–S1P2–G12/13–ROCK signaling pathway appears to have a major influence on α1-adrenergic vasoactivity. This cooperativity might lead to sustained vasoconstriction when increased sympathetic tone is accompanied by increased S1P production as it occurs during acute coronary syndrome and stroke.
Collapse
Affiliation(s)
- Cecília R. Panta
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Correspondence: (C.R.P.); (Z.B.)
| | - Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Dorottya Móré
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Péter T. Dancs
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD 20892, USA;
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Gábor J. Tigyi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary (D.M.); (P.T.D.); (A.B.); (M.K.); (G.J.T.)
- Correspondence: (C.R.P.); (Z.B.)
| |
Collapse
|
156
|
Metabolic Control of Astrocyte Pathogenic Activity via cPLA2-MAVS. Cell 2019; 179:1483-1498.e22. [PMID: 31813625 DOI: 10.1016/j.cell.2019.11.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Abstract
Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.
Collapse
|
157
|
Targeting sphingosine kinase 1 for the treatment of pulmonary arterial hypertension. Future Med Chem 2019; 11:2939-2953. [DOI: 10.4155/fmc-2019-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), characterized by high morbidity and mortality, is a serious hazard to human life. Until now, the long-term survival of the PAH patients is still suboptimal. Recently, sphingosine kinase 1 (SPHK1) has drawn more and more attention due to its essential role in the pulmonary vasoconstriction, remodeling of pulmonary blood vessels and right cardiac lesions in PAH patients, and this enzyme is regarded as a new target for the treatment of PAH. Here, we discussed the multifarious functions of SPHK1 in PAH physiology and pathogenesis. Moreover, the structural features of SPHK1 and binding modes with different inhibitors were summarized. Finally, recent advances in the medicinal chemistry research of SPHK1 inhibitors are presented.
Collapse
|
158
|
Vorbach S, Gründer A, Zhou F, Koellerer C, Jutzi JS, Simoni M, Riccetti L, Valk PJ, Sanders MA, Müller-Tidow C, Nofer JR, Pahl HL, Potì F. Enhanced expression of the sphingosine-1-phosphate-receptor-3 causes acute myelogenous leukemia in mice. Leukemia 2019; 34:721-734. [PMID: 31636343 DOI: 10.1038/s41375-019-0577-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) carries a 10-100 fold lower mutational burden than other neoplastic entities. Mechanistic explanations for why a low number of mutations suffice to induce leukemogenesis are therefore required. Here we demonstrate that transgenic overexpression of the wild type sphingosine-1-phosphate receptor 3 (S1P3) in murine hematopoietic stem cells is sufficient to induce a transplantable myeloid leukemia. In contrast, S1P3 expression in more mature compartments does not cause malignant transformation. Treatment with the sphingosine phosphate receptor modulator Fingolimod, which prevents receptor signaling, normalized peripheral blood cell counts and reduced spleen sizes in S1P3 expressing mice. Gene expression analyses in AML patients revealed elevated S1P3 expression specifically in two molecular subclasses. Our data suggest a previously unrecognized contribution of wild type S1P3 signaling to leukemogenesis that warrants the exploration of S1P3 antagonists in preclinical AML models.
Collapse
Affiliation(s)
- Samuel Vorbach
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Albert Gründer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Fengbiao Zhou
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Christoph Koellerer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jonas S Jutzi
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Manuela Simoni
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy
| | - Laura Riccetti
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy
| | - Peter J Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carsten Müller-Tidow
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| | - Francesco Potì
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Giardini 1355, Modena, Italy.,Department of Medicine and Surgery-Unit of Neurosciences, University of Parma, Via Volturno 39/F, 43125, Parma, Italy
| |
Collapse
|
159
|
Simmons S, Sasaki N, Umemoto E, Uchida Y, Fukuhara S, Kitazawa Y, Okudaira M, Inoue A, Tohya K, Aoi K, Aoki J, Mochizuki N, Matsuno K, Takeda K, Miyasaka M, Ishii M. High-endothelial cell-derived S1P regulates dendritic cell localization and vascular integrity in the lymph node. eLife 2019; 8:41239. [PMID: 31570118 PMCID: PMC6773441 DOI: 10.7554/elife.41239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
While the sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor-1 (S1PR1) axis is critically important for lymphocyte egress from lymphoid organs, S1PR1-activation also occurs in vascular endothelial cells (ECs), including those of the high-endothelial venules (HEVs) that mediate lymphocyte immigration into lymph nodes (LNs). To understand the functional significance of the S1P/S1PR1-Gi axis in HEVs, we generated Lyve1;Spns2Δ/Δ conditional knockout mice for the S1P-transporter Spinster-homologue-2 (SPNS2), as HEVs express LYVE1 during development. In these mice HEVs appeared apoptotic and were severely impaired in function, morphology and size; leading to markedly hypotrophic peripheral LNs. Dendritic cells (DCs) were unable to interact with HEVs, which was also observed in Cdh5CRE-ERT2;S1pr1Δ/Δ mice and wildtype mice treated with S1PR1-antagonists. Wildtype HEVs treated with S1PR1-antagonists in vitro and Lyve1-deficient HEVs show severely reduced release of the DC-chemoattractant CCL21 in vivo. Together, our results reveal that EC-derived S1P warrants HEV-integrity through autocrine control of S1PR1-Gi signaling, and facilitates concomitant HEV-DC interactions.
Collapse
Affiliation(s)
- Szandor Simmons
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Naoko Sasaki
- Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiji Umemoto
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Yusuke Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Michiyo Okudaira
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Kazuo Tohya
- Department of Anatomy, Kansai University of Health Sciences, Osaka, Japan
| | - Keita Aoi
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Laboratory of Immune Regulation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masayuki Miyasaka
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,MediCity Research Laboratory, University of Turku, Turku, Finland.,Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,JST CREST, Tokyo, Japan
| |
Collapse
|
160
|
Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2019; 82:507-529. [PMID: 31553686 DOI: 10.1146/annurev-physiol-021119-034425] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone remodeling is essential for the repair and replacement of damaged and old bone. The major principle underlying this process is that osteoclast-mediated resorption of a quantum of bone is followed by osteoblast precursor recruitment; these cells differentiate to matrix-producing osteoblasts, which form new bone to replace what was resorbed. Evidence from osteopetrotic syndromes indicate that osteoclasts not only resorb bone, but also provide signals to promote bone formation. Osteoclasts act upon osteoblast lineage cells throughout their differentiation by facilitating growth factor release from resorbed matrix, producing secreted proteins and microvesicles, and expressing membrane-bound factors. These multiple mechanisms mediate the coupling of bone formation to resorption in remodeling. Additional interactions of osteoclasts with osteoblast lineage cells, including interactions with canopy and reversal cells, are required to achieve coordination between bone formation and resorption during bone remodeling.
Collapse
Affiliation(s)
- Natalie A Sims
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, Victoria 3065, Australia; , .,Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
161
|
Poppe A, Moritz E, Geffken M, Schreiber J, Greiwe G, Amschler K, Wruck M, Schwedhelm E, Daum G, Kluge S, Peine S, Winkler MS. Analyses of sphingosine‐1‐phosphate in the context of transfusion: how much is in stored blood products and in patient blood? Transfusion 2019; 59:3071-3076. [DOI: 10.1111/trf.15494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Annika Poppe
- Clinic and Policlinic for Anesthesiology and Intensive Care MedicineUniversity Medicine Rostock Rostock Germany
| | - Eileen Moritz
- Institute of Pharmacology, Department of General PharmacologyUniversity Medicine Greifswald Greifswald Germany
| | - Maria Geffken
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Joerg Schreiber
- Center for Anesthesiology, Intensive Care Medicine, Pain Therapy and Palliative MedicineBenedictus Krankenhaus Tutzing Tutzing Germany
| | - Gillis Greiwe
- Center for Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Katharina Amschler
- Department of Allergology and VenerologyUniversity Medicine Göttingen Göttingen Germany
| | - Marie‐Louise Wruck
- Center for Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and ToxicologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Günter Daum
- Clinic and Policlinic for Vascular MedicineUniversity Heart Center, University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Stefan Kluge
- Center for Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Sven Peine
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Martin Sebastian Winkler
- Center for Anesthesiology and Intensive Care MedicineUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Anesthesiology and Intensive Care MedicineUniversity Medicine Göttingen Göttingen Germany
| |
Collapse
|
162
|
Hsu SC, Huang WC, Liu CT, Hsu YP, Chang JH, Huang SK, Hsu CW. Sphingosine-1-phosphate as an indicator for deciding the use of adjuvant corticosteroids therapy in community-acquired pneumonia (sphingosine-1-phosphate and pneumonia trial): Study protocol for a randomized, placebo-controlled trial. Medicine (Baltimore) 2019; 98:e17278. [PMID: 31568009 PMCID: PMC6756703 DOI: 10.1097/md.0000000000017278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Pneumonia is one of the leading causes of death worldwide, represents a potentially life-threatening condition. In recent studies, adjuvant corticosteroids therapy has been shown to improve outcome in severe community-acquired pneumonia (CAP); however, the treatment response to corticosteroids vary. It is important to select patients likely to benefit from the treatment. Currently, the optimal patient selection of corticosteroids treatment is not yet clearly defined. METHODS Sphingosine-1-phosphate and pneumonia (SOPN) trial is a double-blinded, randomized, placebo-controlled trial that will investigate if sphingosine-1-phosphate (S1P) can be an indicator for initiating adjuvant corticosteroids therapy in patients with severe CAP. Participants will be recruited from the emergency department and randomized to receive 20 mg of methylprednisolone twice daily or placebo for 5 days. The primary outcome will be "in-hospital mortality." Secondary outcomes will include intensive care unit (ICU) admission, length of ICU stay, length of hospital stay, and clinical outcomes at Day 7 and Day 14. CONCLUSION SOPN trial is the first randomized placebo-controlled trial to investigate whether S1P can be a predictive biomarker for adjuvant corticosteroids therapy in patients with severe CAP. The trial will add additional data for the appropriate use of adjuvant corticosteroids therapy in patients with severe CAP. Results from this clinical trial will provide foundational information supporting that if the S1P is appropriate for guiding the patient selection for corticosteroids adjuvant therapy.
Collapse
Affiliation(s)
- Shih-Chang Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital
- Department of Emergency Medicine, School of Medicine
| | - Wen-Cheng Huang
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital
- Department of Emergency Medicine, School of Medicine
| | - Chung-Te Liu
- Graduate Institute of Clinical Medicine, College of Medicine
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital
- Department of Internal Medicine
| | - Yuan-Pin Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital
- Department of Emergency Medicine, School of Medicine
- Graduate Institute of Clinical Medicine, College of Medicine
| | - Jer-Hwa Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei
| | - Shau-Ku Huang
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore
| | - Chin-Wang Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital
- Department of Emergency Medicine, School of Medicine
| |
Collapse
|
163
|
Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, Nagumo R, Satoh K, Izumi T, Hla T. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. J Lipid Res 2019; 60:1912-1921. [PMID: 31462513 DOI: 10.1194/jlr.ra119000277] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Indexed: 11/20/2022] Open
Abstract
HDL-bound ApoM and albumin are protein chaperones for the circulating bioactive lipid, sphingosine 1-phosphate (S1P); in this role, they support essential extracellular S1P signaling functions in the vascular and immune systems. We previously showed that ApoM- and albumin-bound S1P exhibit differences in receptor activation and biological functions. Whether the physiological functions of S1P require chaperones is not clear. We examined ApoM-deficient, albumin-deficient, and double-KO (DKO) mice for circulatory S1P and its biological functions. In albumin-deficient mice, ApoM was upregulated, thus enabling S1P functions in embryonic development and postnatal adult life. The Apom:Alb DKO mice reproduced, were viable, and exhibited largely normal vascular and immune functions, which suggested sufficient extracellular S1P signaling. However, Apom:Alb DKO mice had reduced levels (∼25%) of plasma S1P, suggesting that novel S1P chaperones exist to mediate S1P functions. In this study, we report the identification of ApoA4 as a novel S1P binding protein. Recombinant ApoA4 bound to S1P, activated multiple S1P receptors, and promoted vascular endothelial barrier function, all reflective of its function as a S1P chaperone in the absence of ApoM and albumin. We suggest that multiple S1P chaperones evolved to support complex and essential extracellular signaling functions of this lysolipid mediator in a redundant manner.
Collapse
Affiliation(s)
- Hideru Obinata
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Andrew Kuo
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Yukata Wada
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Steven Swendeman
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Catherine H Liu
- Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Victoria A Blaho
- Weill Cornell Medical College, Cornell University, New York, NY 10065
| | - Rieko Nagumo
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | - Takashi Izumi
- Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
164
|
The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell 2019; 178:1088-1101.e15. [PMID: 31442402 PMCID: PMC6818271 DOI: 10.1016/j.cell.2019.07.049] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/28/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Abstract
Mammals evolved in the face of fluctuating food availability. How the immune system adapts to transient nutritional stress remains poorly understood. Here, we show that memory T cells collapsed in secondary lymphoid organs in the context of dietary restriction (DR) but dramatically accumulated within the bone marrow (BM), where they adopted a state associated with energy conservation. This response was coordinated by glucocorticoids and associated with a profound remodeling of the BM compartment, which included an increase in T cell homing factors, erythropoiesis, and adipogenesis. Adipocytes, as well as CXCR4-CXCL12 and S1P-S1P1R interactions, contributed to enhanced T cell accumulation in BM during DR. Memory T cell homing to BM during DR was associated with enhanced protection against infections and tumors. Together, this work uncovers a fundamental host strategy to sustain and optimize immunological memory during nutritional challenges that involved a temporal and spatial reorganization of the memory pool within "safe haven" compartments.
Collapse
|
165
|
Alessenko AV, Zateyshchikov DA, Lebedev AТ, Kurochkin IN. Participation of Sphingolipids in the Pathogenesis of Atherosclerosis. ACTA ACUST UNITED AC 2019; 59:77-87. [DOI: 10.18087/cardio.2019.8.10270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/18/2022]
Affiliation(s)
| | - D. A. Zateyshchikov
- City Clinical Hospital № 51; Central State Medical Academy of Department of Presidential Affairs
| | | | | |
Collapse
|
166
|
Intapad S. Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Renal Physiol 2019; 317:F638-F640. [PMID: 31390266 DOI: 10.1152/ajprenal.00572.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids were originally believed to play a role only as a backbone of mammalian cell membranes. However, sphingolipid metabolites, especially sphingosine-1-phosphate (S1P), are now recognized as new bioactive signaling molecules that are critically involved in numerous cellular functions of multiple systems including the immune system, central nervous system, and cardiovascular system. S1P research has accelerated in the last decade as new therapeutic drugs have emerged that target the S1P signaling axis to treat diseases of the immune and central nervous systems. There is limited knowledge of the specific effects on cardiovascular disease. This review discusses the current state of knowledge regarding the role of S1P on the regulation of blood pressure, vascular tone, and renal functions.
Collapse
Affiliation(s)
- Suttira Intapad
- Department of Pharmacology Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
167
|
Montrose DC, Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:1-26. [PMID: 31451211 DOI: 10.1016/bs.ircmb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As compared to their normal counterparts, neoplastic cells exhibit a variety of metabolic changes that reflect not only genetic and epigenetic defects underlying malignant transformation, but also the nutritional and immunobiological conditions of the tumor microenvironment. Such alterations, including the so-called Warburg effect (an increase in glucose uptake largely feeding anabolic and antioxidant metabolism), have attracted considerable attention as potential targets for the development of novel anticancer therapeutics. However, very few drugs specifically conceived to target bioenergetic cancer metabolism are currently approved by regulatory agencies for use in humans. This reflects the elevated degree of heterogeneity and redundancy in the metabolic circuitries exploited by neoplastic cells from different tumors (even of the same type), as well as the resemblance of such metabolic pathways to those employed by highly proliferating normal cells. Here, we summarize the major metabolic alterations that accompany oncogenesis, the potential of targeting bioenergetic metabolism for cancer therapy, and the obstacles that still prevent the clinical translation of such a promising therapeutic paradigm.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
168
|
Nakazawa M, Maeda S, Yokoyama N, Nakagawa T, Yonezawa T, Ohno K, Matsuki N. Sphingosine-1-phosphate (S1P) signaling regulates the production of intestinal IgA and its potential role in the pathogenesis of canine inflammatory bowel disease. J Vet Med Sci 2019; 81:1249-1258. [PMID: 31341112 PMCID: PMC6785611 DOI: 10.1292/jvms.19-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a common gastrointestinal disease in dogs. Decreased production of intestinal immunoglobulin A (IgA) has been suggested as a possible pathogenesis in a
subset of canine IBD; however, the underlying cause remains unclear. Sphingosine-1-phosphate (S1P) is a lipid mediator that regulates intestinal IgA production by controlling lymphocyte
trafficking in mice. The objectives of this study were to clarify the role of S1P in IgA production in dogs and to evaluate the expression of S1P-related molecules in dogs with IBD. First,
an S1P receptor antagonist was administrated to five healthy dogs. The S1P receptor antagonist significantly decreased the IgA concentration in sera and feces but did not affect the IgG
concentration. Moreover, the immunoreactivity of intestinal IgA was significantly decreased by S1P signal blockade. These results indicate that S1P signaling specifically regulates the
intestinal IgA production in dogs. Subsequently, the intestinal S1P concentration and the expression of S1P-related molecules were measured in dogs with IBD and healthy dogs. The intestinal
concentration of S1P was significantly lower in dogs with IBD than in healthy dogs. In addition, the gene expression levels of S1P receptor (S1P1) and S1P synthase
(SK1) were significantly lower in dogs with IBD than in healthy dogs. Taken together, these observations suggest that decreased S1P production, likely caused by a lower
expression of S1P synthetase, leads to attenuation of S1P/S1P1 signaling pathway and the production of intestinal IgA in dogs with IBD.
Collapse
Affiliation(s)
- Maho Nakazawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nozomu Yokoyama
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taisuke Nakagawa
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoaki Matsuki
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
169
|
Aoki M, Aoki H, Mukhopadhyay P, Tsuge T, Yamamoto H, Matsumoto NM, Toyohara E, Okubo Y, Ogawa R, Takabe K. Sphingosine-1-Phosphate Facilitates Skin Wound Healing by Increasing Angiogenesis and Inflammatory Cell Recruitment with Less Scar Formation. Int J Mol Sci 2019; 20:ijms20143381. [PMID: 31295813 PMCID: PMC6678961 DOI: 10.3390/ijms20143381] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022] Open
Abstract
Wound healing starts with the recruitment of inflammatory cells that secrete wound-related factors. This step is followed by fibroblast activation and tissue construction. Sphingosine-1-phosphate (S1P) is a lipid mediator that promotes angiogenesis, cell proliferation, and attracts immune cells. We investigated the roles of S1P in skin wound healing by altering the expression of its biogenic enzyme, sphingosine kinase-1 (SphK1). The murine excisional wound splinting model was used. Sphingosine kinase-1 (SphK1) was highly expressed in murine wounds and that SphK1−/− mice exhibit delayed wound closure along with less angiogenesis and inflammatory cell recruitment. Nanoparticle-mediated topical SphK1 overexpression accelerated wound closure, which associated with increased angiogenesis, inflammatory cell recruitment, and various wound-related factors. The SphK1 overexpression also led to less scarring, and the interaction between transforming growth factor (TGF)-β1 and S1P receptor-2 (S1PR2) signaling is likely to play a key role. In summary, SphK1 play important roles to strengthen immunity, and contributes early wound healing with suppressed scarring. S1P can be a novel therapeutic molecule with anti-scarring effect in surgical, trauma, and chronic wound management.
Collapse
Affiliation(s)
- Masayo Aoki
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298-0011, USA
| | - Hiroaki Aoki
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298-0011, USA
- Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Partha Mukhopadhyay
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298-0011, USA
| | - Takuya Tsuge
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Osaka University, Suita 565-0871, Japan
| | - Noriko M Matsumoto
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Eri Toyohara
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yuri Okubo
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and Massey Cancer Center, Richmond, VA 23298-0011, USA.
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
- Department of Surgery, University at Buffalo Jacob School of Medicine and Biomedical Sciences, the State University of New York, Buffalo, NY 14203, USA.
| |
Collapse
|
170
|
Laidlaw BJ, Gray EE, Zhang Y, Ramírez-Valle F, Cyster JG. Sphingosine-1-phosphate receptor 2 restrains egress of γδ T cells from the skin. J Exp Med 2019; 216:1487-1496. [PMID: 31160320 PMCID: PMC6605748 DOI: 10.1084/jem.20190114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/13/2019] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Maintenance of a population of IL-17-committed γδ T cells in the dermis is important in promoting tissue immunity. However, the signals facilitating γδ T cell retention within the dermis remain poorly understood. Here, we find that sphingosine-1-phosphate receptor 2 (S1PR2) acts in a cell-intrinsic manner to oppose γδ T cell migration from the dermis to the skin draining lymph node (dLN). Migration of dermal γδ T cells to the dLN under steady-state conditions occurs in an S1PR1-dependent manner. S1PR1 and CD69 are reciprocally expressed on dermal γδ T cells, with loss of CD69 associated with increased S1PR1 expression and enhanced migration to the dLN. γδ T cells lacking both S1PR2 and CD69 are impaired in their maintenance within the dermis. These findings provide a mechanism for how IL-17+ γδ T cells establish residence within the dermis and identify a role for S1PR2 in restraining the egress of tissue-resident lymphocytes.
Collapse
Affiliation(s)
- Brian J Laidlaw
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Elizabeth E Gray
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Yang Zhang
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Francisco Ramírez-Valle
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| | - Jason G Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
171
|
Xiao L, Zhou Y, Friis T, Beagley K, Xiao Y. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology. Front Immunol 2019; 10:1409. [PMID: 31293578 PMCID: PMC6603153 DOI: 10.3389/fimmu.2019.01409] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling via modulating the immune system. Therefore, it could be likely that S1P-S1PR1 signaling might take part in the maintenance of continuous bone turnover under physiological conditions, while lead to the pathogenesis of bone deformities during inflammation. In this review, we summarized the immunological regulation of S1P-S1PR1 signal axis during bone remodeling with an emphasis on how osteo-immune regulators are affected by inflammation, an issue with relevance to chronical bone disorders such as rheumatoid arthritis, spondyloarthritis and periodontitis.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
172
|
Nicosia M, Miyairi S, Beavers A, Farr GW, McGuirk PR, Pelletier MF, Valujskikh A. Aquaporin 4 inhibition alters chemokine receptor expression and T cell trafficking. Sci Rep 2019; 9:7417. [PMID: 31092872 PMCID: PMC6520372 DOI: 10.1038/s41598-019-43884-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are water channels that mediate a variety of biological processes. However, their role in the immune system is poorly understood. We recently reported that AQP4 is expressed by naïve and memory T cells and that AQP4 blockade with a small molecule inhibitor prolongs murine heart allograft survival at least partially through diminishing T cell activation, proliferation and trafficking. The goal of this study was to determine how AQP4 function impacts T cells in the absence of antigen stimulation. AQP4 inhibition transiently reduced the number of circulating CD4+ and CD8+ T cells in naïve non-transplanted mice in the absence of systemic T cell depletion. Adoptive transfer studies demonstrated T cell intrinsic effect of AQP4 inhibition. AQP4 blockade altered T cell gene and protein expression of chemokine receptors S1PR1 and CCR7, and their master regulator KLF-2, and reduced chemotaxis toward S1P and CCL21. Consistent with the in vitro data, in vivo AQP4 inhibition reduced T lymphocyte numbers in the lymph nodes with simultaneous accumulation in the liver. Our findings indicate that blocking AQP4 reversibly alters T lymphocyte trafficking pattern. This information can be explored for the treatment of undesirable immune responses in transplant recipients or in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Michael Nicosia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Satoshi Miyairi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Ashley Beavers
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | | | | | | | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA.
| |
Collapse
|
173
|
Hsu SC, Chang JH, Hsu YP, Bai KJ, Huang SK, Hsu CW. Circulating sphingosine-1-phosphate as a prognostic biomarker for community-acquired pneumonia. PLoS One 2019; 14:e0216963. [PMID: 31091284 PMCID: PMC6519827 DOI: 10.1371/journal.pone.0216963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022] Open
Abstract
Early determination of the severity of Community-Acquired Pneumonia (CAP) is essential for better disease prognosis. Current predictors are suboptimal, and their clinical utility remains to be defined, highlighting the need for developing biomarkers with efficacious prognostic value. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with a documented regulatory role in immune defense and maintenance of endothelial barrier integrity. For early diagnose of CAP and recognition of severe CAP patients, we conduct this pilot study to access the potential utility of the circulating S1P in an Emergency department setting. In the prospective study, plasma S1P levels were quantified in healthy controls and patients with CAP. Also, their discriminating power was assessed by receiver operating characteristic analysis. The association between S1P levels and disease severity indices was assessed by Spearman correlation and logistic regression tests. Patients with CAP had significantly higher plasma S1P levels than healthy individuals (CAP: 27.54 ng/ml, IQR = 14.37-49.99 ng/ml; Controls: 10.58 ng/ml, IQR = 4.781-18.91 ng/ml; p < 0.0001). S1P levels were inversely correlated with disease severity in patients with CAP. Based on multivariate logistic regression analysis, the plasma S1P concentrations showed significant predicting power for mortality (OR: 0.909; CI: 0.801-0.985; p < 0.05), intensive care unit admission (OR: 0.89; CI: 0.812-0.953; p < 0.005) and long hospital stay (OR: 0.978; CI: 0.961-0.992; p < 0.005). Interestingly, significantly elevated levels of S1P were noted in patients who received methylprednisolone treatment during hospitalization. These results suggest that S1P may be associated with the pathogenesis of CAP and may have prognostic utility in CAP and its therapy, especially in the Emergency Department setting.
Collapse
Affiliation(s)
- Shih-Chang Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jer-Hwa Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Pin Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Jen Bai
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Chin-Wang Hsu
- Emergency Department, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
174
|
Yang C, Hashimoto M, Lin QXX, Tan DQ, Suda T. Sphingosine-1-phosphate signaling modulates terminal erythroid differentiation through the regulation of mitophagy. Exp Hematol 2019; 72:47-59.e1. [DOI: 10.1016/j.exphem.2019.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/17/2023]
|
175
|
Tay MHD, Lim SYJ, Leong YFI, Thiam CH, Tan KW, Torta FT, Narayanaswamy P, Wenk M, Angeli V. Halted Lymphocyte Egress via Efferent Lymph Contributes to Lymph Node Hypertrophy During Hypercholesterolemia. Front Immunol 2019; 10:575. [PMID: 30972070 PMCID: PMC6446103 DOI: 10.3389/fimmu.2019.00575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/04/2019] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia is a central component of atherosclerosis and metabolic syndrome linked to chronic inflammation and immune dysfunction. Previously, we showed that hypercholesterolemic apolipoprotein E knock out (apoE−/−) mice exhibit systemic effects including skin inflammation and hypertrophic lymph nodes (LNs). However, the mechanisms accounting for LN hypertrophy in these mice remain unknown. Here, we show that hypercholesterolemia led to the accumulation of lymphocytes in LNs. We excluded that the increased number of lymphocytes in expanded LNs resulted from increased lymphocyte proliferation or entry into those LNs. Instead, we demonstrated that the egress of lymphocytes from the enlarged LN of apoE−/− mice was markedly decreased. Impairment in efferent lymphatic emigration of lymphocytes from LNs resulted from an aberrant expansion of cortical and medullary sinuses that became hyperplastic. Moreover, CCL21 was more abundant on these enlarged sinuses whereas lymph levels of sphingosine 1 phosphate (S1P) were decreased in apoE−/− mice. Normal LN size, lymphatic density and S1P levels were restored by reversing hypercholesterolemia. Thus, systemic changes in cholesterol can sequester lymphocytes in tissue draining LNs through the extensive remodeling of lymphatic sinuses and alteration of the balance between retention/egress signals leading to LN hypertrophy which subsequently may contribute to poor immunity. This study further illustrates the role of lymphatic vessels in immunity through the regulation of immune cell trafficking.
Collapse
Affiliation(s)
- Meng Hwee Daniel Tay
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Swee Yeng Jason Lim
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yew Fai Ivan Leong
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kar Wai Tan
- Immunology Programme, Department of Microbiology and Immunology, Life Science Institute, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Federico Tesio Torta
- Department of Biochemistry, Life Science Institute, SLING-Singapore Lipidomics Incubator, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pradeep Narayanaswamy
- Department of Biochemistry, Life Science Institute, SLING-Singapore Lipidomics Incubator, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Markus Wenk
- Department of Biochemistry, Life Science Institute, SLING-Singapore Lipidomics Incubator, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Véronique Angeli
- Department of Biochemistry, Life Science Institute, SLING-Singapore Lipidomics Incubator, Yoon Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
176
|
Hopkin SJ, Lewis JW, Krautter F, Chimen M, McGettrick HM. Triggering the Resolution of Immune Mediated Inflammatory Diseases: Can Targeting Leukocyte Migration Be the Answer? Front Pharmacol 2019; 10:184. [PMID: 30881306 DOI: 10.3389/fphar.2019.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment is a pivotal process in the regulation and resolution of an inflammatory episode. It is vital for the protective responses to microbial infection and tissue damage, but is the unwanted reaction contributing to pathology in many immune mediated inflammatory diseases (IMIDs). Indeed, it is now recognized that patients with IMIDs have defects in at least one, if not multiple, check-points regulating the entry and exit of leukocytes from the inflamed site. In this review, we will explore our understanding of the imbalance in recruitment that permits the accumulation and persistence of leukocytes in IMIDs. We will highlight old and novel pharmacological tools targeting these processes in an attempt to trigger resolution of the inflammatory response. In this context, we will focus on cytokines, chemokines, known pro-resolving lipid mediators and potential novel lipids (e.g., sphingosine-1-phosphate), along with the actions of glucocorticoids mediated by 11-beta hydroxysteroid dehydrogenase 1 and 2.
Collapse
Affiliation(s)
- Sophie J Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan W Lewis
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M McGettrick
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
177
|
Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism 2019; 92:71-81. [PMID: 30447223 DOI: 10.1016/j.metabol.2018.11.005] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
Obesity, a pandemic of the modern world, is intimately associated with dyslipidemia, which is mainly driven by the effects of insulin resistance and pro-inflammatory adipokines. However, recent evidence suggests that obesity-induced dyslipidemia is not a unique pathophysiological entity, but rather has distinct characteristics depending on many individual factors. In line with that, in a subgroup of metabolically healthy obese (MHO) individuals, dyslipidemia is less prominent or even absent. In this review, we will address the main characteristics of dyslipidemia and mechanisms that induce its development in obesity. The fields, which should be further investigated to expand our knowledge on obesity-related dyslipidemia and potentially yield new strategies for prevention and management of cardiometabolic risk, will be highlighted. Also, we will discuss recent findings on novel lipid biomarkers in obesity, in particular proprotein convertase subtilisin/kexin type 9 (PCSK9), as the key molecule that regulates metabolism of low-density lipoproteins (LDL), and sphingosine-1-phosphate (S1P), as one of the most important mediators of high-density lipoprotein (HDL) particles function. Special attention will be given to microRNAs and their potential use as biomarkers of obesity-associated dyslipidemia.
Collapse
Affiliation(s)
- Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stefanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zorana Jelic-Ivanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
178
|
Brunkhorst R, Pfeilschifter W, Rajkovic N, Pfeffer M, Fischer C, Korf HW, Christoffersen C, Trautmann S, Thomas D, Pfeilschifter J, Koch A. Diurnal regulation of sphingolipids in blood. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:304-311. [DOI: 10.1016/j.bbalip.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/12/2018] [Accepted: 12/09/2018] [Indexed: 01/30/2023]
|
179
|
Gilmore JL, Xiao HY, Dhar TGM, Yang MG, Xiao Z, Xie J, Lehman-McKeeman LD, Gong L, Sun H, Lecureux L, Chen C, Wu DR, Dabros M, Yang X, Taylor TL, Zhou XD, Heimrich EM, Thomas R, McIntyre KW, Borowski V, Warrack BM, Li Y, Shi H, Levesque PC, Yang Z, Marino AM, Cornelius G, D’Arienzo CJ, Mathur A, Rampulla R, Gupta A, Pragalathan B, Shen DR, Cvijic ME, Salter-Cid LM, Carter PH, Dyckman AJ. Identification and Preclinical Pharmacology of ((1R,3S)-1-Amino-3-((S)-6-(2-methoxyphenethyl)-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopentyl)methanol (BMS-986166): A Differentiated Sphingosine-1-phosphate Receptor 1 (S1P1) Modulator Advanced into Clinical Trials. J Med Chem 2019; 62:2265-2285. [DOI: 10.1021/acs.jmedchem.8b01695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- John L. Gilmore
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hai-Yun Xiao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - T. G. Murali Dhar
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Michael G. Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zili Xiao
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jenny Xie
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lois D. Lehman-McKeeman
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lei Gong
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Huadong Sun
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lloyd Lecureux
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Cliff Chen
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Marta Dabros
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Xiaoxia Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Tracy L. Taylor
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Xia D. Zhou
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Elizabeth M. Heimrich
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Rochelle Thomas
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Kim W. McIntyre
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Virna Borowski
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bethanne M. Warrack
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Yuwen Li
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Hong Shi
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Paul C. Levesque
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zheng Yang
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anthony M. Marino
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Georgia Cornelius
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Celia J. D’Arienzo
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Richard Rampulla
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anuradha Gupta
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Bala Pragalathan
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Ding Ren Shen
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mary Ellen Cvijic
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Luisa M. Salter-Cid
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Percy H. Carter
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Alaric J. Dyckman
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
180
|
Wang J, Kano K, Saigusa D, Aoki J. Measurement of the Spatial Distribution of S1P in Small Quantities of Tissues: Development and Application of a Highly Sensitive LC-MS/MS Method Combined with Laser Microdissection. ACTA ACUST UNITED AC 2019; 8:A0072. [PMID: 30805275 PMCID: PMC6372364 DOI: 10.5702/massspectrometry.a0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/03/2018] [Indexed: 11/23/2022]
Abstract
Sphingosine-1-phosphate (S1P) acts as an extracellular signaling molecule with diverse biological functions. Tissues appear to have an S1P gradient, which is functionally relevant in the biological significance of S1P, although its existence has not been measured directly. Here, we report a highly sensitive method to determine the distribution of S1P, using a column-switching LC-MS/MS system combined with laser microdissection (LMD). Column switching using narrow core Capcell Pak C18 analytical and trap columns with 0.3 mm inner diameter improved the performance of the LC-MS/MS system. The calibration curve of S1P showed good linearity (r>0.999) over the range of 0.05–10 nM (1–200 fmol/injection). The accuracy of the method was confirmed by measuring S1P-spiked laser microdissected mice tissue sections. To evaluate our S1P analytical method, we quantified S1P extracted from micro-dissected mouse brain and spleen. These results show that this method can measure low S1P concentrations and determine S1P distribution in tissue microenvironments.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University.,AMED·LEAP
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University.,Medical Biochemistry, Tohoku University School of Medicine.,AMED·LEAP
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University.,AMED·LEAP
| |
Collapse
|
181
|
Eken A, Yetkin MF, Vural A, Okus FZ, Erdem S, Azizoglu ZB, Haliloglu Y, Cakir M, Turkoglu EM, Kilic O, Kara I, Dönmez Altuntaş H, Oukka M, Kutuk MS, Mirza M, Canatan H. Fingolimod Alters Tissue Distribution and Cytokine Production of Human and Murine Innate Lymphoid Cells. Front Immunol 2019; 10:217. [PMID: 30828332 PMCID: PMC6385997 DOI: 10.3389/fimmu.2019.00217] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1 phosphate receptor 1 (S1PR1) is expressed by lymphocytes and regulates their egress from secondary lymphoid organs. Innate lymphoid cell (ILC) family has been expanded with the discovery of group 1, 2 and 3 ILCs, namely ILC1, ILC2 and ILC3. ILC3 and ILC1 have remarkable similarity to CD4+ helper T cell lineage members Th17 and Th1, respectively, which are important in the pathology of multiple sclerosis (MS). Whether human ILC subsets express S1PR1 or respond to its ligands have not been studied. In this study, we used peripheral blood/cord blood and tonsil lymphocytes as a source of human ILCs. We show that human ILCs express S1PR1 mRNA and protein and migrate toward S1P receptor ligands. Comparison of peripheral blood ILC numbers between fingolimod-receiving and treatment-free MS patients revealed that, in vivo, ILCs respond to fingolimod, an S1PR1 agonist, resulting in ILC-penia in circulation. Similarly, murine ILCs responded to fingolimod by exiting blood and accumulating in the secondary lymph nodes. Importantly, ex vivo exposure of ILC3 and ILC1 to fingolimod or SEW2871, another S1PR1 antagonist, reduced production of ILC3- and ILC1- associated cytokines GM-CSF, IL-22, IL-17, and IFN-γ, respectively. Surprisingly, despite reduced number of lamina propria-resident ILC3s in the long-term fingolimod-treated mice, ILC3-associated IL-22, IL-17A, GM-CSF and antimicrobial peptides were high in the gut compared to controls, suggesting that its long term use may not compromise mucosal barrier function. To our knowledge, this is the first study to investigate the impact of fingolimod on human ILC subsets in vivo and ex vivo, and provides insight into the impact of long term fingolimod use on ILC populations.
Collapse
Affiliation(s)
- Ahmet Eken
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Mehmet Fatih Yetkin
- Department of Neurology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Alperen Vural
- Department of Ear Nose and Throat, Erciyes University School of Medicine, Kayseri, Turkey
| | - Fatma Zehra Okus
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Serife Erdem
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zehra Busra Azizoglu
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Mustafa Cakir
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | | | - Omer Kilic
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Irfan Kara
- Department of Ear Nose and Throat, Erciyes University School of Medicine, Kayseri, Turkey
| | | | - Mohamed Oukka
- Department of Immunology, University of Washington, Seattle, WA, United States
| | - Mehmet Serdar Kutuk
- Department of Obstetrics and Gynecology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Meral Mirza
- Department of Neurology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Halit Canatan
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey.,Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| |
Collapse
|
182
|
Kurano M, Tsuneyama K, Morimoto Y, Nishikawa M, Yatomi Y. Apolipoprotein M suppresses the phenotypes of IgA nephropathy in hyper-IgA mice. FASEB J 2019; 33:5181-5195. [PMID: 30629456 DOI: 10.1096/fj.201801748r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because the association between sphingosine 1-phosphate (S1P)/apolipoprotein M (ApoM) and chronic kidney diseases has not been established, we investigated the involvement of S1P/ApoM in the phenotypes of IgA nephropathy in hyper-IgA (HIGA) mice. The overexpression of ApoM in adenoviral gene transfer ameliorated the phenotypes of IgA nephropathy in HIGA mice, whereas the knockdown of ApoM with siRNA caused deterioration. When ApoM-overexpressing HIGA mice were treated with VPC23019, an antagonist against S1P receptor 1 (S1P1) and 3 (S1P3), we observed that the protective effects of ApoM were reversed, whereas JTE013, an antagonist against S1P2, did not inhibit the effects. We also found that S1P bound to albumin accelerated the proliferation of MES13 cells and the fibrotic changes of HK2 cells, which were inhibited by JTE013, whereas S1P bound to ApoM suppressed these changes, which were inhibited by VPC23019. These results suggest that S1P bound to ApoM possesses properties protective against the phenotypes of IgA nephropathy through S1P1 and S1P3, whereas S1P bound to albumin exerts deteriorating effects through S1P2. ApoM may be useful as a therapeutic target to treat or retard the progression of IgA nephropathy.-Kurano, M., Tsuneyama, K., Morimoto, Y., Nishikawa, M., Yatomi, Y. Apolipoprotein M suppresses the phenotypes of IgA nephropathy in hyper-IgA mice.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuki Morimoto
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; and
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; and
| |
Collapse
|
183
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
184
|
Kihara Y. Systematic Understanding of Bioactive Lipids in Neuro-Immune Interactions: Lessons from an Animal Model of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:133-148. [PMID: 31562628 DOI: 10.1007/978-3-030-21735-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioactive lipids, or lipid mediators, are utilized for intercellular communications. They are rapidly produced in response to various stimuli and exported to extracellular spaces followed by binding to cell surface G protein-coupled receptors (GPCRs) or nuclear receptors. Many drugs targeting lipid signaling such as non-steroidal anti-inflammatory drugs (NSAIDs), prostaglandins, and antagonists for lipid GPCRs are in use. For example, the sphingolipid analog, fingolimod (also known as FTY720), was the first oral disease-modifying therapy (DMT) for relapsing-remitting multiple sclerosis (MS), whose mechanisms of action (MOA) includes sequestration of pathogenic lymphocytes into secondary lymphoid organs, as well as astrocytic modulation, via down-regulation of the sphingosine 1-phosphate (S1P) receptor, S1P1, by in vivo-phosphorylated fingolimod. Though the cause of MS is still under debate, MS is considered to be an autoimmune demyelinating and neurodegenerative disease. This review summarizes the involvement of bioactive lipids (prostaglandins, leukotrienes, platelet-activating factors, lysophosphatidic acid, and S1P) in MS and the animal model, experimental autoimmune encephalomyelitis (EAE). Genetic ablation, along with pharmacological inhibition, of lipid metabolic enzymes and lipid GPCRs revealed that each bioactive lipid has a unique role in regulating immune and neural functions, including helper T cell (TH1 and TH17) differentiation and proliferation, immune cell migration, astrocyte responses, endothelium function, and microglial phagocytosis. A systematic understanding of bioactive lipids in MS and EAE dredges up information about understudied lipid signaling pathways, which should be clarified in the near future to better understand MS pathology and to develop novel DMTs.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
185
|
|
186
|
Yafasova A, Mandrup CM, Egelund J, Nyberg M, Stallknecht B, Hellsten Y, Nielsen LB, Christoffersen C. Effect of menopause and exercise training on plasma apolipoprotein M and sphingosine-1-phosphate. J Appl Physiol (1985) 2019; 126:214-220. [DOI: 10.1152/japplphysiol.00527.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The axis of apolipoprotein M (apoM) and sphingosine-1-phosphate (S1P) is of importance to plasma lipid levels, endothelial function, and development of atherosclerosis. Menopause is accompanied by dyslipidemia and an increased risk of atherosclerosis, which can be lowered by exercise training. The aim of this study was to explore if effects of menopause and training are paralleled by changes in the apoM/S1P axis. Healthy, late premenopausal [ n = 38, age 49.2 (SD 2)] and recent postmenopausal [ n = 37, age 53.3 (SD 3)] women from the Copenhagen Women Study participated in a 3-mo, aerobic high-intensity exercise intervention. Before training, plasma apoM was higher in postmenopausal [1.08 µmol/l (SD 0.2)] compared with premenopausal [0.82 µmol/l (SD 0.2)] women ( P < 0.0001). Plasma S1P was similar in the two groups [0.44 µmol/l (SD 0.1) and 0.46 µmol/l (SD 0.1), respectively]. Thus, the pretraining S1P/apoM ratio was 26% lower in postmenopausal than premenopausal women ( P < 0.0001). After the training program, plasma apoM increased from 0.82 µmol/l (SD 0.2) to 0.90 µmol/l (SD 0.3) in premenopausal women and from 1.08 µmol/l (SD 0.2) to 1.16 µmol/l (SD 0.3) in postmenopausal women ( P < 0.05). Plasma S1P increased from 0.44 µmol/l (SD 0.1) to 0.47 µmol/l (SD 0.1) in premenopausal women and from 0.46 µmol/l (SD 0.1) to 0.48 µmol/l (SD 0.1) in postmenopausal women ( P < 0.05). The results suggest that menopause is accompanied by higher plasma apoM but not S1P concentrations and that exercise training increases plasma apoM and S1P in healthy middle-aged women irrespective of menopausal status. NEW & NOTEWORTHY The apolipoprotein M/sphingosine-1-phosphate (apoM/S1P) complex is involved in maintaining a healthy endothelial barrier function. Our study is the first, to our knowledge, to show how menopause affects the apoM/S1P axis. The results suggest that menopause is accompanied by higher plasma apoM but not S1P concentrations. Second, to our knowledge the study is also the first to show that exercise training increases both apoM/S1P in women irrespective of menopausal status.
Collapse
Affiliation(s)
- Adelina Yafasova
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Camilla M. Mandrup
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lars B. Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
187
|
Cordeiro AV, Silva VRR, Pauli JR, da Silva ASR, Cintra DE, Moura LP, Ropelle ER. The role of sphingosine-1-phosphate in skeletal muscle: Physiology, mechanisms, and clinical perspectives. J Cell Physiol 2018; 234:10047-10059. [PMID: 30523638 DOI: 10.1002/jcp.27870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Sphingolipids were discovered more than a century ago and were simply considered as a class of cell membrane lipids for a long time. However, after the discovery of several intracellular functions and their role in the control of many physiological and pathophysiological conditions, these molecules have gained much attention. For instance, the sphingosine-1-phosphate (S1P) is a circulating bioactive sphingolipid capable of triggering strong intracellular reactions through the family of S1P receptors (S1PRs) spread in several cell types and tissues. Recently, the role of S1P in the control of skeletal muscle metabolism, atrophy, regeneration, and metabolic disorders has been widely investigated. In this review, we summarized the knowledge of S1P and its effects in skeletal muscle metabolism, highlighting the role of S1P/S1PRs axis in skeletal muscle regeneration, fatigue, ceramide accumulation, and insulin resistance. Finally, we discussed the physical exercise role in S1P/S1PRs signaling in skeletal muscle cells, and how this nonpharmacological strategy may be prospective for future investigations due to its ability to increase S1P levels.
Collapse
Affiliation(s)
- André V Cordeiro
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Vagner R R Silva
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Nutritional Genomics (LabGeN), School of Applied Sciences, University of Campinas, Limeira, São Paulo, Brazil
| | - Leandro P Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,School of Applied Sciences, Center of Research in Sport Sciences (CEPECE), University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.,Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
188
|
Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T. The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci 2018; 109:3671-3678. [PMID: 30238699 PMCID: PMC6272099 DOI: 10.1111/cas.13802] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Many inflammatory mediators are involved in the process of carcinogenesis and cancer progression. In addition to cytokines and chemokines, lipid mediators have recently attracted attention as signaling molecules associated with inflammatory diseases. Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that regulates cell survival and migration, immune cell recruitment, angiogenesis and lymphangiogenesis. S1P also plays a significant role in inflammation and cancer. The gradation of S1P concentration in the blood, lymph and tissue regulates lymphocyte trafficking, an important component of inflammation. Furthermore, cancer cells produce elevated levels of S1P, contributing to the tumor microenvironment and linking cancer and inflammation. Future technological advances may reveal greater detail about the mechanisms of S1P regulation in the tumor microenvironment and the contribution of S1P to cancer progression. Considering the critical role of S1P in linking inflammation and cancer, it is possible that the S1P signaling pathway could be a novel therapeutic target for cancers with chronic inflammation.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
| | - Manabu Abe
- Department of Animal Model DevelopmentBrain Research InstituteNiigata UniversityNiigata CityJapan
| | - Kenji Sakimura
- Department of Animal Model DevelopmentBrain Research InstituteNiigata UniversityNiigata CityJapan
| | - Kazuaki Takabe
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
- Breast SurgeryRoswell Park Cancer InstituteBuffaloNew York
- Department of SurgeryUniversity at BuffaloThe State University of New York Jacobs School of Medicine and Biomedical SciencesBuffaloNew York
| | - Toshifumi Wakai
- Division of Digestive and General SurgeryNiigata University Graduate School of Medical and Dental SciencesNiigata CityJapan
| |
Collapse
|
189
|
Fingolimod can act as a facilitator to establish the primary T-cell response with reduced need of adjuvants. Vaccine 2018; 36:7632-7640. [PMID: 30392766 DOI: 10.1016/j.vaccine.2018.10.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 11/24/2022]
Abstract
The CD8+ T-cell response is an essential part of the adaptive immunity. Adjuvants are routinely required for priming of T cells against antigens encountered in lymph nodes (LNs) to generate antigen-specific immunity but may concomitantly trigger unexpected inflammatory responses. Sphingosine-1-phosphate (S1P) induces transient desensitization of S1P receptors on LN T cells and temporarily blocks their egress, leading to prolonged intranodal retention that allows effective immunosurveillance and increases the chance of priming. In light of the regulatory role of S1P in T-cell migration, we here develop a strategic approach to the T-cell priming with protein vaccine containing low-dose TLR-based adjuvants (LDAV) to induce antigen-specific CD8+ T cell responses as efficiently as using regular dose adjuvants in vaccine (RDAV). We found that when combined with one low dose of the S1P analog fingolimod administered into the same vaccination site posteriorly at a specific time, LDAV can elicit a primary response that reaches the level of that induced by RDAV with respect to the response magnitude and functionality. Time-course studies indicate that LDAV and fingolimod in combination act to mimic the expansion kinetics of RDAV-primed antigen-specific CD8+ T cells. Further, intranodal accumulation of cDC1 is markedly enhanced in mice receiving the combination vaccination despite the decrease in adjuvant use. Of particular note is the marginal cutaneous inflammation at the injection site, indicating an added benefit of using fingolimod. Therefore, fingolimod as a nonadjuvant agent essentially facilitates antigen-specific T-cell priming with reduced need of adjuvants and minimized adverse reactions.
Collapse
|
190
|
James KD, Cosway EJ, Lucas B, White AJ, Parnell SM, Carvalho-Gaspar M, Tumanov AV, Anderson G, Jenkinson WE. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med 2018; 215:2984-2993. [PMID: 30425120 PMCID: PMC6279407 DOI: 10.1084/jem.20181345] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/24/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Thymic emigration is essential for establishing T cell immunity. We show the requirement for LTβR segregates from its control of medullary epithelium. Instead, our study demonstrates LTβR expression by the endothelium acts to rate limit thymocyte egress via perivascular routes. The emigration of mature thymocytes from the thymus is critical for establishing peripheral T cell compartments. However, the pathways controlling this process and the timing of egress in relation to postselection developmental stages are poorly defined. Here, we reexamine thymocyte egress and test current and opposing models in relation to the requirement for LTβR, a regulator of thymic microenvironments and thymocyte emigration. Using cell-specific gene targeting, we show that the requirement for LTβR in thymocyte egress is distinct from its control of thymic epithelium and instead maps to expression by endothelial cells. By separating emigration into sequential phases of perivascular space (PVS) entry and transendothelial migration, we reveal a developmentally ordered program of egress where LTβR operates to rate limit access to the PVS. Collectively, we show the process of thymic emigration ensures only the most mature thymocytes leave the thymus and demonstrate a role for LTβR in the initiation of thymus emigration that segregates from its control of medulla organization.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Emilie J Cosway
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Andrea J White
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Sonia M Parnell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Manuela Carvalho-Gaspar
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas School of Medicine, University of Texas Health Science Center, San Antonio, TX
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, UK
| |
Collapse
|
191
|
Biological function of SPNS2: From zebrafish to human. Mol Immunol 2018; 103:55-62. [DOI: 10.1016/j.molimm.2018.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023]
|
192
|
Bian G, Yu C, Liu L, Fang C, Chen K, Ren P, Zhang Q, Liu F, Zhang K, Xue Q, Xiang J, Guo H, Song J, Zhao Y, Wu W, Chung SK, Sun R, Ju G, Wang J. Sphingosine 1-phosphate stimulates eyelid closure in the developing rat by stimulating EGFR signaling. Sci Signal 2018; 11:11/553/eaat1470. [DOI: 10.1126/scisignal.aat1470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In many mammals, the eyelids migrate over the eye and fuse during embryogenesis to protect the cornea from damage during birth and early life. Loss-of-function mutations affecting the epidermal growth factor receptor (EGFR) signaling pathway cause an eyes-open-at-birth (EOB) phenotype in rodents. We identified an insertional mutation in Spinster homolog 2 (Spns2) in a strain of transgenic rats exhibiting the EOB phenotype. Spns2, a sphingosine 1-phosphate (S1P) transporter that releases S1P from cells, was enriched at the tip of developing eyelids in wild-type rat embryos. Spns2 expression or treatment with S1P or any one of several EGFR ligands rescued the EOB Spns2 mutant phenotype in vivo and in tissue explants in vitro and rescued the formation of stress fibers in primary keratinocytes from mutants. S1P signaled through the receptors S1PR1, S1PR2, and S1PR3 to activate extracellular signal–regulated kinase (ERK) and EGFR-dependent mitogen-activated protein kinase kinase kinase 1 (MEKK1)–c-Jun signaling. S1P also induced the nuclear translocation of the transcription factor MAL in a manner dependent on EGFR signaling. MAL and c-Jun stimulated the expression of the microRNAs miR-21 and miR-222, both of which target the metalloprotease inhibitor TIMP3, thus promoting metalloprotease activity. The metalloproteases ADAM10 and ADAM17 stimulated EGFR signaling by cleaving a membrane-anchored form of EGF to release the ligand. Our results outline a network by which S1P transactivates EGFR signaling through a complex mechanism involving feedback between several intra- and extracellular molecules to promote eyelid fusion in the developing rat.
Collapse
|
193
|
Mihanfar A, Nejabati HR, Fattahi A, Latifi Z, Pezeshkian M, Afrasiabi A, Safaie N, Jodati AR, Nouri M. The role of sphingosine 1 phosphate in coronary artery disease and ischemia reperfusion injury. J Cell Physiol 2018; 234:2083-2094. [PMID: 30341893 DOI: 10.1002/jcp.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Coronary artery disease (CAD) is a common cause of morbidity and mortality worldwide. Atherosclerotic plaques, as a hallmark of CAD, cause chronic narrowing of coronary arteries over time and could also result in acute myocardial infarction (AMI). The standard treatments for ameliorating AMI are reperfusion strategies, which paradoxically result in ischemic reperfusion (I/R) injury. Sphingosine 1 phosphate (S1P), as a potent lysophospholipid, plays an important role in various organs, including immune and cardiovascular systems. In addition, high-density lipoprotein, as a negative predictor of atherosclerosis and CAD, is a major carrier of S1P in blood circulation. S1P mediates its effects through binding to specific G protein-coupled receptors, and its signaling contributes to a variety of responses, including cardiac inflammation, dysfunction, and I/R injury protection. In this review, we will focus on the role of S1P in CAD and I/R injury as a potential therapeutic target.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Reza Nejabati
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Afrasiabi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
194
|
Golan K, Kumari A, Kollet O, Khatib-Massalha E, Subramaniam MD, Ferreira ZS, Avemaria F, Rzeszotek S, García-García A, Xie S, Flores-Figueroa E, Gur-Cohen S, Itkin T, Ludin-Tal A, Massalha H, Bernshtein B, Ciechanowicz AK, Brandis A, Mehlman T, Bhattacharya S, Bertagna M, Cheng H, Petrovich-Kopitman E, Janus T, Kaushansky N, Cheng T, Sagi I, Ratajczak MZ, Méndez-Ferrer S, Dick JE, Markus RP, Lapidot T. Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance. Cell Stem Cell 2018; 23:572-585.e7. [PMID: 30174297 DOI: 10.1016/j.stem.2018.08.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 04/10/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) tightly couple maintenance of the bone marrow (BM) reservoir, including undifferentiated long-term repopulating hematopoietic stem cells (LT-HSCs), with intensive daily production of mature leukocytes and blood replenishment. We found two daily peaks of BM HSPC activity that are initiated by onset of light and darkness providing this coupling. Both peaks follow transient elevation of BM norepinephrine and TNF secretion, which temporarily increase HSPC reactive oxygen species (ROS) levels. Light-induced norepinephrine and TNF secretion augments HSPC differentiation and increases vascular permeability to replenish the blood. In contrast, darkness-induced TNF increases melatonin secretion to drive renewal of HSPCs and LT-HSC potential through modulating surface CD150 and c-Kit expression, increasing COX-2/αSMA+ macrophages, diminishing vascular permeability, and reducing HSPC ROS levels. These findings reveal that light- and darkness-induced daily bursts of norepinephrine, TNF, and melatonin within the BM are essential for synchronized mature blood cell production and HSPC pool repopulation.
Collapse
Affiliation(s)
- Karin Golan
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Anju Kumari
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Kollet
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Zulma S Ferreira
- Physiology Department, University of São Paulo, São Paulo, Brazil
| | | | - Sylwia Rzeszotek
- Physiology Department, Pomeranian Medical University, Szczecin, Poland
| | | | - Stephanie Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Eugenia Flores-Figueroa
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Oncology Research Unit, Oncology Hospital, National Medical Center Century XXI, IMSS, Mexico City, Mexico
| | - Shiri Gur-Cohen
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Itkin
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Aya Ludin-Tal
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Hassan Massalha
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Biana Bernshtein
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alexander Brandis
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Mayla Bertagna
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Hui Cheng
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | - Tomasz Janus
- Forensic Medicine Department, Pomeranian Medical University, Szczecin, Poland
| | | | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Irit Sagi
- Biological Regulation Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Regina P Markus
- Physiology Department, University of São Paulo, São Paulo, Brazil
| | - Tsvee Lapidot
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
195
|
Colonoscopic-Guided Pinch Biopsies in Mice as a Useful Model for Evaluating the Roles of Host and Luminal Factors in Colonic Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2811-2825. [PMID: 30273600 DOI: 10.1016/j.ajpath.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
Abstract
Colonic inflammation, a hallmark of inflammatory bowel disease, can be influenced by host intrinsic and extrinsic factors. There continues to be a need for models of colonic inflammation that can both provide insights into disease pathogenesis and be used to investigate potential therapies. Herein, we tested the utility of colonoscopic-guided pinch biopsies in mice for studying colonic inflammation and its treatment. Gene expression profiling of colonic wound beds after injury showed marked changes, including increased expression of genes important for the inflammatory response. Interestingly, many of these gene expression changes mimicked those alterations found in inflammatory bowel disease patients. Biopsy-induced inflammation was associated with increases in neutrophils, macrophages, and natural killer cells. Injury also led to elevated levels of sphingosine-1-phosphate (S1P), a bioactive lipid that is an important mediator of inflammation mainly through its receptor, S1P1. Genetic deletion of S1P1 in the endothelium did not alter the inflammatory response but led to increased colonic bleeding. Bacteria invaded into the wound beds, raising the possibility that microbes contributed to the observed changes in mucosal gene expression. In support of this, reducing bacterial abundance markedly attenuated the inflammatory response to wounding. Taken together, this study demonstrates the utility of the pinch biopsy model of colonic injury to elucidate the molecular underpinnings of colonic inflammation and its treatment.
Collapse
|
196
|
Tukijan F, Chandrakanthan M, Nguyen LN. The signalling roles of sphingosine-1-phosphate derived from red blood cells and platelets. Br J Pharmacol 2018; 175:3741-3746. [PMID: 30047983 PMCID: PMC6135780 DOI: 10.1111/bph.14451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is an essential, bioactive lysophospholipid mediator that regulates various physiological functions such as lymphocyte trafficking, inflammation and behavioural characteristics of the vascular system. S1P signalling is mediated via a family of five GPCRs, which are expressed in various cell types and tissues. S1P concentration is maintained in a gradient through the activity of S1P degrading enzymes, and this gradient is critical for lymphocyte egress. To exert its extracellular signalling roles, S1P must be secreted out of the cells by protein transporters. The recent discovery of S1P transporters has shed light on the sources of S1P. However, these transporters still need to be clarified as they are important in defining the S1P gradient for lymphocyte recirculation and the source of S1P for maintenance of blood vessels. Here, we review the current understanding of S1P sources, highlighting the roles of S1P transporters with an emphasis on haematopoietic cells as a major source of circulatory S1P.
Collapse
Affiliation(s)
- Farhana Tukijan
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | | | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
197
|
Budkowska M, Ostrycharz E, Wojtowicz A, Marcinowska Z, Woźniak J, Ratajczak MZ, Dołęgowska B. A Circadian Rhythm in both Complement Cascade (ComC) Activation and Sphingosine-1-Phosphate (S1P) Levels in Human Peripheral Blood Supports a Role for the ComC-S1P Axis in Circadian Changes in the Number of Stem Cells Circulating in Peripheral Blood. Stem Cell Rev Rep 2018; 14:677-685. [PMID: 29911288 PMCID: PMC6132735 DOI: 10.1007/s12015-018-9836-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The number of hematopoietic stem/progenitor cells (HSPCs) circulating in peripheral blood (PB) is regulated by a circadian rhythm, and more HSPCs circulate in PB in the morning hours than at night. Different mechanisms have been proposed that might regulate this process, including changes in tonus of β-adrenergic innervation of bone marrow (BM) tissue. Our group reported that in mice circadian changes in the number of HSPCs circulating in PB correlates with diurnal activation of the complement cascade (ComC) and that the mice deficient in C5 component of ComC (C5-KO mice) do not show circadian changes in the number of circulating HSPCs in PB. We also reported the existence of a gradient between PB and BM of a bioactive phosphosphingolipid, sphingosine-1-phosphate (S1P), which is a major PB chemottractant for BM-residing HSPCs. Based on these observations, we investigated activation of the ComC and the level of S1P in the PB of 66 healthy volunteers. We found that both ComC activation and the S1P level undergo changes in a circadian cycle. While the ComC becomes highly activated during deep sleep at 2 am, S1P becomes activated later, and its highest level is observed at 8 am, which precedes circadian egress of HSPCs from BM into PB. In sum, circadian activation of the ComC-S1P axis releases HSPCs from BM into PB.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Ewa Ostrycharz
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Adrianna Wojtowicz
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Zuzanna Marcinowska
- Centre for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, ul. Narutowicza 17C, 70-240, Szczecin, Poland
| | - Jarosław Woźniak
- Institute of Mathematics, Department of Mathematics and Physics, University of Szczecin, Ul. Wielkopolska 15, 70-451, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, ul. Banacha 1B, 02-097, Warsaw, Poland
| | - Barbara Dołęgowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
198
|
Ng ML, Yarla NS, Menschikowski M, Sukocheva OA. Regulatory role of sphingosine kinase and sphingosine-1-phosphate receptor signaling in progenitor/stem cells. World J Stem Cells 2018; 10:119-133. [PMID: 30310531 PMCID: PMC6177561 DOI: 10.4252/wjsc.v10.i9.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/05/2018] [Indexed: 02/06/2023] Open
Abstract
Balanced sphingolipid signaling is important for the maintenance of homeostasis. Sphingolipids were demonstrated to function as structural components, second messengers, and regulators of cell growth and survival in normal and disease-affected tissues. Particularly, sphingosine kinase 1 (SphK1) and its product sphingosine-1-phosphate (S1P) operate as mediators and facilitators of proliferation-linked signaling. Unlimited proliferation (self-renewal) within the regulated environment is a hallmark of progenitor/stem cells that was recently associated with the S1P signaling network in vasculature, nervous, muscular, and immune systems. S1P was shown to regulate progenitor-related characteristics in normal and cancer stem cells (CSCs) via G-protein coupled receptors S1Pn (n = 1 to 5). The SphK/S1P axis is crucially involved in the regulation of embryonic development of vasculature and the nervous system, hematopoietic stem cell migration, regeneration of skeletal muscle, and development of multiple sclerosis. The ratio of the S1P receptor expression, localization, and specific S1P receptor-activated downstream effectors influenced the rate of self-renewal and should be further explored as regeneration-related targets. Considering malignant transformation, it is essential to control the level of self-renewal capacity. Proliferation of the progenitor cell should be synchronized with differentiation to provide healthy lifelong function of blood, immune systems, and replacement of damaged or dead cells. The differentiation-related role of SphK/S1P remains poorly assessed. A few pioneering investigations explored pharmacological tools that target sphingolipid signaling and can potentially confine and direct self-renewal towards normal differentiation. Further investigation is required to test the role of the SphK/S1P axis in regulation of self-renewal and differentiation.
Collapse
Affiliation(s)
- Mei Li Ng
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney NSW 2050, Australia
| | - Nagendra S Yarla
- Department of Biochemistry and Bioinformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Andhra Pradesh, India
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden D-01307, Germany
| | - Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park SA 5042, Australia
| |
Collapse
|
199
|
Kimura MY, Igi A, Hayashizaki K, Mita Y, Shinzawa M, Kadakia T, Endo Y, Ogawa S, Yagi R, Motohashi S, Singer A, Nakayama T. CD69 prevents PLZF hi innate precursors from prematurely exiting the thymus and aborting NKT2 cell differentiation. Nat Commun 2018; 9:3749. [PMID: 30218105 PMCID: PMC6138739 DOI: 10.1038/s41467-018-06283-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
While CD69 may regulate thymocyte egress by inhibiting S1P1 expression, CD69 expression is not thought to be required for normal thymocyte development. Here we show that CD69 is in fact specifically required for the differentiation of mature NKT2 cells, which do not themselves express CD69. Mechanistically, CD69 expression is required on CD24+ PLZFhi innate precursors for their retention in the thymus and completion of their differentiation into mature NKT2 cells. By contrast, CD69-deficient CD24+ PLZFhi innate precursors express S1P1 and prematurely exit the thymus, while S1P1 inhibitor treatment of CD69-deficient mice retains CD24+ PLZFhi innate precursors in the thymus and restores NKT2 cell differentiation. Thus, CD69 prevents S1P1 expression on CD24+ PLZFhi innate precursor cells from aborting NKT2 differentiation in the thymus. This study reveals the importance of CD69 to prolong the thymic residency time of developing immature precursors for proper differentiation of a T cell subset. CD69 competes with S1P1, a chemokine receptor mediating thymocyte egress, for surface expression on thymocytes, but whether CD69 is required for normal thymic development is unclear. Here the authors show that CD69 and S1P1 synergize to control type 2 natural killer (NKT2) cells differentiation by modulating the thymic egress of NKT2 precursor.
Collapse
Affiliation(s)
- Motoko Y Kimura
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Akemi Igi
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Koji Hayashizaki
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Yukiyoshi Mita
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Miho Shinzawa
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tejas Kadakia
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yukihiro Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Satomi Ogawa
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Ryoji Yagi
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| |
Collapse
|
200
|
Identification and Structure-Activity Relationship (SAR) of potent and selective oxadiazole-based agonists of sphingosine-1-phosphate receptor (S1P 1). Bioorg Chem 2018; 82:41-57. [PMID: 30268973 DOI: 10.1016/j.bioorg.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 12/23/2022]
Abstract
Agonism of S1P1 receptor has been proven to be responsible for peripheral blood lymphopenia and elicts the identification of various S1P1 modulators. In this paper we described a series of oxadiazole-based S1P1 direct-acting agonists disubstituted on terminal benzene ring, with high potency for S1P1 receptor and favorable selectivity against S1P3 receptor. In addition, two representative agents named 16-3b and 16-3g demonstrated impressive efficacy in lymphocyte reduction along with reduced effect on heart rate when orally administered. Furthermore, these compounds have been shown to possess desired pharmacokinetic (PK) and physicochemical profiles. The binding mode between 16-3b and the activated S1P1 model was also studied.
Collapse
|