151
|
Wenden B, Kozma-Bognár L, Edwards KD, Hall AJW, Locke JCW, Millar AJ. Light inputs shape the Arabidopsis circadian system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:480-91. [PMID: 21255161 DOI: 10.1111/j.1365-313x.2011.04505.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The circadian clock is a fundamental feature of eukaryotic gene regulation that is emerging as an exemplar genetic sub-network for systems biology. The circadian system in Arabidopsis plants is complex, in part due to its phototransduction pathways, which are themselves under circadian control. We therefore analysed two simpler experimental systems. Etiolated seedlings entrained by temperature cycles showed circadian rhythms in the expression of genes that are important for the clock mechanism, but only a restricted set of downstream target genes were rhythmic in microarray assays. Clock control of phototransduction pathways remained robust across a range of light inputs, despite the arrhythmic transcription of light-signalling genes. Circadian interactions with light signalling were then analysed using a single active photoreceptor. Phytochrome A (phyA) is expected to be the only active photoreceptor that can mediate far-red (FR) light input to the circadian clock. Surprisingly, rhythmic gene expression was profoundly altered under constant FR light, in a phyA-dependent manner, resulting in high expression of evening genes and low expression of morning genes. Dark intervals were required to allow high-amplitude rhythms across the transcriptome. Clock genes involved in this response were identified by mutant analysis, showing that the EARLY FLOWERING 4 gene is a likely target and mediator of the FR effects. Both experimental systems illustrate how profoundly the light input pathways affect the plant circadian clock, and provide strong experimental manipulations to understand critical steps in the plant clock mechanism.
Collapse
Affiliation(s)
- Bénédicte Wenden
- School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH93JH, UK
| | | | | | | | | | | |
Collapse
|
152
|
Haydon MJ, Bell LJ, Webb AAR. Interactions between plant circadian clocks and solute transport. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2333-48. [PMID: 21378117 DOI: 10.1093/jxb/err040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Earth's rotation and its orbit around the Sun leads to continual changes in the environment. Many organisms, including plants and animals, have evolved circadian clocks that anticipate these changes in light, temperature, and seasons in order to optimize growth and physiology. Circadian timing is thought to derive from a molecular oscillator that is present in every plant cell. A central aspect of the circadian oscillator is the presence of transcription translation loops (TTLs) that provide negative feedback to generate circadian rhythms. This review examines the evidence that the 24 h circadian clocks of plants regulate the fluxes of solutes and how changes in solute concentrations can also provide feedback to modulate the behaviour of the molecular oscillator. It highlights recent advances that demonstrate interactions between components of TTLs and regulation of solute concentration and transport. How rhythmic control of water fluxes, ions such as K(+), metabolic solutes such as sucrose, micronutrients, and signalling molecules, including Ca(2+), might contribute to optimizing the physiology of the plant is discussed.
Collapse
Affiliation(s)
- Michael J Haydon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
153
|
McWatters HG, Devlin PF. Timing in plants - A rhythmic arrangement. FEBS Lett 2011; 585:1474-84. [DOI: 10.1016/j.febslet.2011.03.051] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/14/2011] [Accepted: 03/23/2011] [Indexed: 12/16/2022]
|
154
|
The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci U S A 2011; 108:5104-9. [PMID: 21383174 DOI: 10.1073/pnas.1015452108] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks are 24-h timing devices that phase cellular responses; coordinate growth, physiology, and metabolism; and anticipate the day-night cycle. Here we report sensitivity of the Arabidopsis thaliana circadian oscillator to sucrose, providing evidence that plant metabolism can regulate circadian function. We found that the Arabidopsis circadian system is particularly sensitive to sucrose in the dark. These data suggest that there is a feedback between the molecular components that comprise the circadian oscillator and plant metabolism, with the circadian clock both regulating and being regulated by metabolism. We used also simulations within a three-loop mathematical model of the Arabidopsis circadian oscillator to identify components of the circadian clock sensitive to sucrose. The mathematical studies identified GIGANTEA (GI) as being associated with sucrose sensing. Experimental validation of this prediction demonstrated that GI is required for the full response of the circadian clock to sucrose. We demonstrate that GI acts as part of the sucrose-signaling network and propose this role permits metabolic input into circadian timing in Arabidopsis.
Collapse
|
155
|
Edwards KD, Akman OE, Knox K, Lumsden PJ, Thomson AW, Brown PE, Pokhilko A, Kozma-Bognar L, Nagy F, Rand DA, Millar AJ. Quantitative analysis of regulatory flexibility under changing environmental conditions. Mol Syst Biol 2011; 6:424. [PMID: 21045818 PMCID: PMC3010117 DOI: 10.1038/msb.2010.81] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 09/13/2010] [Indexed: 12/11/2022] Open
Abstract
The circadian clock controls 24-h rhythms in many biological processes, allowing appropriate timing of biological rhythms relative to dawn and dusk. Known clock circuits include multiple, interlocked feedback loops. Theory suggested that multiple loops contribute the flexibility for molecular rhythms to track multiple phases of the external cycle. Clear dawn- and dusk-tracking rhythms illustrate the flexibility of timing in Ipomoea nil. Molecular clock components in Arabidopsis thaliana showed complex, photoperiod-dependent regulation, which was analysed by comparison with three contrasting models. A simple, quantitative measure, Dusk Sensitivity, was introduced to compare the behaviour of clock models with varying loop complexity. Evening-expressed clock genes showed photoperiod-dependent dusk sensitivity, as predicted by the three-loop model, whereas the one- and two-loop models tracked dawn and dusk, respectively. Output genes for starch degradation achieved dusk-tracking expression through light regulation, rather than a dusk-tracking rhythm. Model analysis predicted which biochemical processes could be manipulated to extend dusk tracking. Our results reveal how an operating principle of biological regulators applies specifically to the plant circadian clock.
Collapse
Affiliation(s)
- Kieron D Edwards
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Network news: prime time for systems biology of the plant circadian clock. Curr Opin Genet Dev 2011; 20:588-98. [PMID: 20889330 DOI: 10.1016/j.gde.2010.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/12/2010] [Accepted: 08/31/2010] [Indexed: 11/24/2022]
Abstract
Whole-transcriptome analyses have established that the plant circadian clock regulates virtually every plant biological process and most prominently hormonal and stress response pathways. Systems biology efforts have successfully modeled the plant central clock machinery and an iterative process of model refinement and experimental validation has contributed significantly to the current view of the central clock machinery. The challenge now is to connect this central clock to the output pathways for understanding how the plant circadian clock contributes to plant growth and fitness in a changing environment. Undoubtedly, systems approaches will be needed to integrate and model the vastly increased volume of experimental data in order to extract meaningful biological information. Thus, we have entered an era of systems modeling, experimental testing, and refinement. This approach, coupled with advances from the genetic and biochemical analyses of clock function, is accelerating our progress towards a comprehensive understanding of the plant circadian clock network.
Collapse
|
157
|
Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, Minami H, Kamatsuki K, Kusaba M, Hirochika H, Nagamura Y. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. BMC PLANT BIOLOGY 2011; 11:10. [PMID: 21226959 PMCID: PMC3031230 DOI: 10.1186/1471-2229-11-10] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/12/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant growth depends on synergistic interactions between internal and external signals, and yield potential of crops is a manifestation of how these complex factors interact, particularly at critical stages of development. As an initial step towards developing a systems-level understanding of the biological processes underlying the expression of overall agronomic potential in cereal crops, a high-resolution transcriptome analysis of rice was conducted throughout life cycle of rice grown under natural field conditions. RESULTS A wide range of gene expression profiles based on 48 organs and tissues at various developmental stages identified 731 organ/tissue specific genes as well as 215 growth stage-specific expressed genes universally in leaf blade, leaf sheath, and root. Continuous transcriptome profiling of leaf from transplanting until harvesting further elucidated the growth-stage specificity of gene expression and uncovered two major drastic changes in the leaf transcriptional program. The first major change occurred before the panicle differentiation, accompanied by the expression of RFT1, a putative florigen gene in long day conditions, and the downregulation of the precursors of two microRNAs. This transcriptome change was also associated with physiological alterations including phosphate-homeostasis state as evident from the behavior of several key regulators such as miR399. The second major transcriptome change occurred just after flowering, and based on analysis of sterile mutant lines, we further revealed that the formation of strong sink, i.e., a developing grain, is not the major cause but is rather a promoter of this change. CONCLUSIONS Our study provides not only the genetic basis for functional genomics in rice but also new insight into understanding the critical physiological processes involved in flowering and seed development, that could lead to novel strategies for optimizing crop productivity.
Collapse
Affiliation(s)
- Yutaka Sato
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Baltazar Antonio
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Nobukazu Namiki
- Mitsubishi Space Software Co. Ltd., Takezono 1-6-1, Tsukuba, Ibaraki 305-0032, Japan
| | - Ritsuko Motoyama
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuhiko Sugimoto
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Hinako Takehisa
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroshi Minami
- Mitsubishi Space Software Co. Ltd., Takezono 1-6-1, Tsukuba, Ibaraki 305-0032, Japan
| | - Kaori Kamatsuki
- Mitsubishi Space Software Co. Ltd., Takezono 1-6-1, Tsukuba, Ibaraki 305-0032, Japan
| | - Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoshiaki Nagamura
- National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
158
|
Abstract
An internal time-keeping mechanism has been observed in almost every organism studied from archaea to humans. This circadian clock provides a competitive advantage in fitness and survival ( 18, 30, 95, 129, 137 ). Researchers have uncovered the molecular composition of this internal clock by combining enzymology, molecular biology, genetics, and modeling approaches. However, understanding the mechanistic link between the clock and output responses has been elusive. In three model organisms, Arabidopsis thaliana, Drosophila melanogaster, and Mus musculus, whole-genome expression arrays have enabled researchers to investigate how maintaining a time-keeping mechanism connects to an adaptive advantage. Here, we review the impacts transcriptomics have had on our understanding of the clock and how this molecular clock connects with system-level circadian responses. We explore the discoveries made possible by high-throughput RNA assays, the network approaches used to investigate these large transcript datasets, and potential future directions.
Collapse
Affiliation(s)
- Colleen J Doherty
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
159
|
Streitner C, Hennig L, Korneli C, Staiger D. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC PLANT BIOLOGY 2010; 10:221. [PMID: 20946635 PMCID: PMC3017831 DOI: 10.1186/1471-2229-10-221] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/14/2010] [Indexed: 05/23/2023]
Abstract
BACKGROUND The clock-controlled RNA-binding protein AtGRP7 influences circadian oscillations of its own transcript at the post-transcriptional level. To identify additional targets that are regulated by AtGRP7, transcript profiles of transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox) and wild type plants were compared. RESULTS Approximately 1.4% of the transcripts represented on the Affymetrix ATH1 microarray showed changes in steady-state abundance upon AtGRP7 overexpression. One third of the differentially expressed genes are controlled by the circadian clock, and they show a distinct bias of their phase: The up-regulated genes preferentially peak around dawn, roughly opposite to the AtGRP7 peak abundance whereas the down-regulated genes preferentially peak at the end of the day. Further, transcripts responsive to abiotic and biotic stimuli were enriched among AtGRP7 targets. Transcripts encoding the pathogenesis-related PR1 and PR2 proteins were elevated in AtGRP7-ox plants but not in plants overexpressing AtGRP7 with a point mutation in the RNA-binding domain, indicating that the regulation involves RNA binding activity of AtGRP7. Gene set enrichment analysis uncovered components involved in ribosome function and RNA metabolism among groups of genes upregulated in AtGRP7-ox plants, consistent with its role in post-transcriptional regulation. CONCLUSION Apart from regulating a suite of circadian transcripts in a time-of-day dependent manner AtGRP7, both directly and indirectly, affects other transcripts including transcripts responsive to abiotic and biotic stimuli. This suggests a regulatory role of AtGRP7 in the output of the endogenous clock and a complex network of transcripts responsive to external stimuli downstream of the AtGRP7 autoregulatory circuit.
Collapse
Affiliation(s)
| | - Lars Hennig
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christin Korneli
- Molecular Cell Physiology, Bielefeld University, Bielefeld, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
160
|
Kim J, Somers DE. Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. PLANT PHYSIOLOGY 2010; 154:611-21. [PMID: 20709829 PMCID: PMC2949038 DOI: 10.1104/pp.110.162271] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 08/09/2010] [Indexed: 05/19/2023]
Abstract
Rapid assessment of the effect of reduced levels of gene products is often a bottleneck in determining how to proceed with an interesting gene candidate. Additionally, gene families with closely related members can confound determination of the role of even a single one of the group. We describe here an in vivo method to rapidly determine gene function using transient expression of artificial microRNAs (amiRNAs) in Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. We use a luciferase-based reporter of circadian clock activity to optimize and validate this system. Protoplasts transiently cotransfected with promoter-luciferase and gene-specific amiRNA plasmids sustain free-running rhythms of bioluminescence for more than 6 d. Using both amiRNA plasmids available through the Arabidopsis Biological Resource Center, as well as custom design of constructs using the Weigel amiRNA design algorithm, we show that transient knockdown of known clock genes recapitulates the same circadian phenotypes reported in the literature for loss-of-function mutant plants. We additionally show that amiRNA designed to knock down expression of the casein kinase II β-subunit gene family lengthens period, consistent with previous reports of a short period in casein kinase II β-subunit overexpressors. Our results demonstrate that this system can facilitate a much more rapid analysis of gene function by obviating the need to initially establish stably transformed transgenics to assess the phenotype of gene knockdowns. This approach will be useful in a wide range of plant disciplines when an endogenous cell-based phenotype is observable or can be devised, as done here using a luciferase reporter.
Collapse
|
161
|
Harmer S. Plant biology in the fourth dimension. PLANT PHYSIOLOGY 2010; 154:467-70. [PMID: 20921165 PMCID: PMC2949050 DOI: 10.1104/pp.110.161448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/02/2010] [Indexed: 05/22/2023]
Affiliation(s)
- Stacey Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
162
|
Hayes KR, Beatty M, Meng X, Simmons CR, Habben JE, Danilevskaya ON. Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One 2010; 5:e12887. [PMID: 20886102 PMCID: PMC2944807 DOI: 10.1371/journal.pone.0012887] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022] Open
Abstract
Background Plant diurnal rhythms are vital environmental adaptations to coordinate internal physiological responses to alternating day-night cycles. A comprehensive view of diurnal biology has been lacking for maize (Zea mays), a major world crop. Methodology A photosynthetic tissue, the leaf, and a non-photosynthetic tissue, the developing ear, were sampled under natural field conditions. Genome-wide transcript profiling was conducted on a high-density 105 K Agilent microarray to investigate diurnal rhythms. Conclusions In both leaves and ears, the core oscillators were intact and diurnally cycling. Maize core oscillator genes are found to be largely conserved with their Arabidopsis counterparts. Diurnal gene regulation occurs in leaves, with some 23% of expressed transcripts exhibiting a diurnal cycling pattern. These transcripts can be assigned to over 1700 gene ontology functional terms, underscoring the pervasive impact of diurnal rhythms on plant biology. Considering the peak expression time for each diurnally regulated gene, and its corresponding functional assignment, most gene functions display temporal enrichment in the day, often with distinct patterns, such as dawn or midday preferred, indicating that there is a staged procession of biological events undulating with the diurnal cycle. Notably, many gene functions display a bimodal enrichment flanking the midday photosynthetic maximum, with an initial peak in mid-morning followed by another peak during the afternoon/evening. In contrast to leaves, in developing ears as few as 47 gene transcripts are diurnally regulated, and this set of transcripts includes primarily the core oscillators. In developing ears, which are largely shielded from light, the core oscillator therefore is intact with little outward effect on transcription.
Collapse
Affiliation(s)
- Kevin R. Hayes
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Mary Beatty
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Xin Meng
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Carl R. Simmons
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Jeffrey E. Habben
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
| | - Olga N. Danilevskaya
- Pioneer Hi-Bred International, a DuPont Company, Johnston, Iowa, United States of America
- * E-mail:
| |
Collapse
|
163
|
Hermans C, Vuylsteke M, Coppens F, Cristescu SM, Harren FJM, Inzé D, Verbruggen N. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2010; 187:132-144. [PMID: 20412444 DOI: 10.1111/j.1469-8137.2010.03257.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
*Unravelling mechanisms that control plant growth as a function of nutrient availability presents a major challenge in plant biology. This study reports the first transcriptome response to long-term (1 wk) magnesium (Mg) depletion and restoration in Arabidopsis thaliana. *Before the outbreak of visual symptoms, genes responding to Mg starvation and restoration were monitored in the roots and young mature leaves and compared with the Mg fully supplied as control. *After 1 wk Mg starvation in roots and leaves, 114 and 2991 genes were identified to be differentially regulated, respectively, which confirmed the later observation that the shoot development was more affected than the root in Arabidopsis. After 24 h of Mg resupply, restoration was effective for the expression of half of the genes altered. We emphasized differences in the expression amplitude of genes associated with the circadian clock predominantly in leaves, a higher expression of genes in the ethylene biosynthetic pathway, in the reactive oxygen species detoxification and in the photoprotection of the photosynthetic apparatus. Some of these observations at the molecular level were verified by metabolite analysis. *The results obtained here will help us to better understand how changes in Mg availability are translated into adaptive responses in the plant.
Collapse
Affiliation(s)
- Christian Hermans
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Bd du Triomphe, B-1050 Brussels, Belgium
| | - Marnik Vuylsteke
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Frederik Coppens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Frans J M Harren
- Department of Molecular and Laser Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Bd du Triomphe, B-1050 Brussels, Belgium
| |
Collapse
|
164
|
Holm K, Källman T, Gyllenstrand N, Hedman H, Lagercrantz U. Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC PLANT BIOLOGY 2010; 10:109. [PMID: 20550695 PMCID: PMC3017809 DOI: 10.1186/1471-2229-10-109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 06/15/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND The endogenous circadian clock allows the organism to synchronize processes both to daily and seasonal changes. In plants, many metabolic processes such as photosynthesis, as well as photoperiodic responses, are under the control of a circadian clock. Comparative studies with the moss Physcomitrella patens provide the opportunity to study many aspects of land plant evolution. Here we present a comparative overview of clock-associated components and the circadian network in the moss P. patens. RESULTS The moss P. patens has a set of conserved circadian core components that share genetic relationship and gene expression patterns with clock genes of vascular plants. These genes include Myb-like transcription factors PpCCA1a and PpCCA1b, pseudo-response regulators PpPRR1-4, and regulatory elements PpELF3, PpLUX and possibly PpELF4. However, the moss lacks homologs of AtTOC1, AtGI and the AtZTL-family of genes, which can be found in all vascular plants studied here. These three genes constitute essential components of two of the three integrated feed-back loops in the current model of the Arabidopsis circadian clock mechanism. Consequently, our results suggest instead a single loop circadian clock in the moss. Possibly as a result of this, temperature compensation of core clock gene expression appears to be decreased in P. patens. CONCLUSIONS This study is the first comparative overview of the circadian clock mechanism in a basal land plant, the moss P. patens. Our results indicate that the moss clock mechanism may represent an ancestral state in contrast to the more complex and partly duplicated structure of subsequent land plants. These findings may provide insights into the understanding of the evolution of circadian network topology.
Collapse
Affiliation(s)
- Karl Holm
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Thomas Källman
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Niclas Gyllenstrand
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Harald Hedman
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Ulf Lagercrantz
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
165
|
Poiré R, Wiese-Klinkenberg A, Parent B, Mielewczik M, Schurr U, Tardieu F, Walter A. Diel time-courses of leaf growth in monocot and dicot species: endogenous rhythms and temperature effects. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1751-9. [PMID: 20299442 PMCID: PMC2852670 DOI: 10.1093/jxb/erq049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/07/2010] [Accepted: 02/08/2010] [Indexed: 05/18/2023]
Abstract
Diel (24 h) leaf growth patterns were differently affected by temperature variations and the circadian clock in several plant species. In the monocotyledon Zea mays, leaf elongation rate closely followed changes in temperature. In the dicotyledons Nicotiana tabacum, Ricinus communis, and Flaveria bidentis, the effect of temperature regimes was less obvious and leaf growth exhibited a clear circadian oscillation. These differences were related neither to primary metabolism nor to altered carbohydrate availability for growth. The effect of endogenous rhythms on leaf growth was analysed under continuous light in Arabidopsis thaliana, Ricinus communis, Zea mays, and Oryza sativa. No rhythmic growth was observed under continuous light in the two monocotyledons, while growth rhythmicity persisted in the two dicotyledons. Based on model simulations it is concluded that diel leaf growth patterns in mono- and dicotyledons result from the additive effects of both circadian-clock-controlled processes and responses to environmental changes such as temperature and evaporative demand. Apparently very distinct diel leaf growth behaviour of monocotyledons and dicotyledons can thus be explained by the different degrees to which diel temperature variations affect leaf growth in the two groups of species which, in turn, depends on the extent of the leaf growth control by internal clocks.
Collapse
Affiliation(s)
- Richard Poiré
- ICG-3 (Phytosphere), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | - Boris Parent
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, F-34060 Montpellier, France
| | - Michael Mielewczik
- ICG-3 (Phytosphere), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Ulrich Schurr
- ICG-3 (Phytosphere), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - François Tardieu
- INRA, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Place Viala, F-34060 Montpellier, France
| | - Achim Walter
- ICG-3 (Phytosphere), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
166
|
Poiré R, Schneider H, Thorpe MR, Kuhn AJ, Schurr U, Walter A. Root cooling strongly affects diel leaf growth dynamics, water and carbohydrate relations in Ricinus communis. PLANT, CELL & ENVIRONMENT 2010; 33:408-417. [PMID: 19968824 DOI: 10.1111/j.1365-3040.2009.02090.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root-zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant - especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root-zone temperature and its heterogeneity inside pots.
Collapse
Affiliation(s)
- Richard Poiré
- Institut Phytosphere (ICG-3), Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
167
|
Thines B, Harmon FG. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc Natl Acad Sci U S A 2010; 107:3257-62. [PMID: 20133619 PMCID: PMC2840299 DOI: 10.1073/pnas.0911006107] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks synchronize internal processes with environmental cycles to ensure optimal timing of biological events on daily and seasonal time scales. External light and temperature cues set the core molecular oscillator to local conditions. In Arabidopsis, EARLY FLOWERING 3 (ELF3) is thought to act as an evening-specific repressor of light signals to the clock, thus serving a zeitnehmer function. Circadian rhythms were examined in completely dark-grown, or etiolated, null elf3-1 seedlings, with the clock entrained by thermocycles, to evaluate whether the elf3 mutant phenotype was light-dependent. Circadian rhythms were absent from etiolated elf3-1 seedlings after exposure to temperature cycles, and this mutant failed to exhibit classic indicators of entrainment by temperature cues, consistent with global clock dysfunction or strong perturbation of temperature signaling in this background. Warm temperature pulses failed to elicit acute induction of temperature-responsive genes in elf3-1. In fact, warm temperature-responsive genes remained in a constitutively "ON" state because of clock dysfunction and, therefore, were insensitive to temperature signals in the normal time of day-specific manner. These results show ELF3 is broadly required for circadian clock function regardless of light conditions, where ELF3 activity is needed by the core oscillator to allow progression from day to night during either light or temperature entrainment. Furthermore, robust circadian rhythms appear to be a prerequisite for etiolated seedlings to respond correctly to temperature signals.
Collapse
Affiliation(s)
- Bryan Thines
- Plant Gene Expression Center, US Department of Agriculture–Agricultural Research Service, Albany, CA 94710; and Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Frank G. Harmon
- Plant Gene Expression Center, US Department of Agriculture–Agricultural Research Service, Albany, CA 94710; and Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
168
|
Abstract
Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily changes confer a survival advantage and dominate daily behavior, for example, waking us in the morning and helping us to sleep at night. The molecular mechanism of circadian clocks has been sketched out in genetic model systems from prokaryotes to humans, revealing a combination of transcriptional and posttranscriptional pathways, but the clock mechanism is far from solved. Although Saccharomyces cerevisiae is among the most powerful genetic experimental systems and, as such, could greatly contribute to our understanding of cellular timing, it still remains absent from the repertoire of circadian model organisms. Here, we use continuous cultures of yeast, establishing conditions that reveal characteristic clock properties similar to those described in other species. Our results show that metabolism in yeast shows systematic circadian entrainment, responding to cycle length and zeitgeber (stimulus) strength, and a (heavily damped) free running rhythm. Furthermore, the clock is obvious in a standard, haploid, auxotrophic strain, opening the door for rapid progress into cellular clock mechanisms.
Collapse
|
169
|
Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). PLANT & CELL PHYSIOLOGY 2010; 51:21-37. [PMID: 19923201 DOI: 10.1093/pcp/pcp163] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Waterlogging stress causes yield reduction in cotton (Gossypium hirsutum L.). A major component of waterlogging stress is the lack of oxygen available to submerged tissues. While changes in expressed protein, gene transcription and metabolite levels have been studied in response to low oxygen stress, little research has been done on molecular responses to waterlogging in cotton. We assessed cotton growth responses to waterlogging and assayed global gene transcription responses in root and leaf cotton tissues of partially submerged plants. Waterlogging caused significant reductions in stem elongation, shoot mass, root mass and leaf number, and altered the expression of 1,012 genes (4% of genes assayed) in root tissue as early as 4 h after flooding. Many of these genes were associated with cell wall modification and growth pathways, glycolysis, fermentation, mitochondrial electron transport and nitrogen metabolism. Waterlogging of plant roots also altered global gene expression in leaf tissues, significantly changing the expression of 1,305 genes (5% of genes assayed) after 24 h of flooding. Genes affected were associated with cell wall growth and modification, tetrapyrrole synthesis, hormone response, starch metabolism and nitrogen metabolism The implications of these results for the development of waterlogging-tolerant cotton are discussed.
Collapse
|
170
|
Más P, Yanovsky MJ. Time for circadian rhythms: plants get synchronized. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:574-9. [PMID: 19709921 DOI: 10.1016/j.pbi.2009.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/04/2009] [Accepted: 07/21/2009] [Indexed: 05/22/2023]
Abstract
Most organisms adjust their physiology and metabolism in synchronization with the diurnal and seasonal time by using an endogenous mechanism known as circadian clock. In plants, light and temperature signals interact with the circadian system to regulate the circadian rhythmicity of physiological and developmental processes including flowering time. Recent studies in Arabidopsis thaliana now reveal that the circadian clock orchestrates not only the expression of protein coding genes but also the rhythmic oscillation of introns, intergenic regions, and noncoding RNAs. Furthermore, recent evidence showing the existence of different oscillators at separate parts of the plant has placed the spotlight on the diverse mechanisms and communicating channels that regulate circadian synchronization in plants.
Collapse
Affiliation(s)
- Paloma Más
- Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTA-UAB, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | |
Collapse
|
171
|
Jiménez-Gómez JM, Maloof JN. Plant research accelerates along the (bio)informatics superhighway: symposium on plant sensing, response and adaptation to the environment. EMBO Rep 2009; 10:568-72. [PMID: 19465891 PMCID: PMC2711830 DOI: 10.1038/embor.2009.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/21/2009] [Indexed: 11/09/2022] Open
Affiliation(s)
- José M Jiménez-Gómez
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | - Julin N Maloof
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
172
|
Yakir E, Hilman D, Kron I, Hassidim M, Melamed-Book N, Green RM. Posttranslational regulation of CIRCADIAN CLOCK ASSOCIATED1 in the circadian oscillator of Arabidopsis. PLANT PHYSIOLOGY 2009; 150:844-57. [PMID: 19339503 PMCID: PMC2689986 DOI: 10.1104/pp.109.137414] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As an adaptation to life in a world with predictable daily changes, most eukaryotes and some prokaryotes have endogenous circadian (approximately 24 h) clocks. In plants, the circadian clock regulates a diverse range of cellular and physiological events from gene expression and protein phosphorylation to cellular calcium oscillations, hypocotyl growth, leaf movements, and photoperiod-dependent flowering. In Arabidopsis (Arabidopsis thaliana), as in other model organisms, such as Drosophila (Drosophila melanogaster) and mice, circadian rhythms are generated by molecular oscillators that consist of interlocking feedback loops involving a number of elements. CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYLS (LHY) are closely related single myb transcription factors that have been identified as key elements in the Arabidopsis oscillator. Research in other model organisms has shown that posttranslational regulation of oscillator components plays a critical role in the generation of the approximately 24-h cycles. To examine the role of posttranslational regulation of CCA1 and LHY in the Arabidopsis oscillator, we generated transgenic plants with tagged CCA1 and LHY under the control of their own promoters. We have shown that these tagged proteins are functional and can restore normal circadian rhythms to CCA1- and LHY-null plants. Using the tagged proteins, we demonstrate that CCA1 can form both homodimers and heterodimers with LHY. Furthermore, we also show that CCA1 is localized to the nucleus in vivo and that there is no significant delay between the translation of CCA1 and its translocation to the nucleus. We discuss our findings in the context of the functioning of the Arabidopsis oscillator.
Collapse
Affiliation(s)
- Esther Yakir
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|