151
|
Detection theory in identification of RNA-DNA sequence differences using RNA-sequencing. PLoS One 2014; 9:e112040. [PMID: 25396741 PMCID: PMC4232354 DOI: 10.1371/journal.pone.0112040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 10/12/2014] [Indexed: 01/24/2023] Open
Abstract
Advances in sequencing technology have allowed for detailed analyses of the transcriptome at single-nucleotide resolution, facilitating the study of RNA editing or sequence differences between RNA and DNA genome-wide. In humans, two types of post-transcriptional RNA editing processes are known to occur: A-to-I deamination by ADAR and C-to-U deamination by APOBEC1. In addition to these sequence differences, researchers have reported the existence of all 12 types of RNA-DNA sequence differences (RDDs); however, the validity of these claims is debated, as many studies claim that technical artifacts account for the majority of these non-canonical sequence differences. In this study, we used a detection theory approach to evaluate the performance of RNA-Sequencing (RNA-Seq) and associated aligners in accurately identifying RNA-DNA sequence differences. By generating simulated RNA-Seq datasets containing RDDs, we assessed the effect of alignment artifacts and sequencing error on the sensitivity and false discovery rate of RDD detection. Overall, we found that even in the presence of sequencing errors, false negative and false discovery rates of RDD detection can be contained below 10% with relatively lenient thresholds. We also assessed the ability of various filters to target false positive RDDs and found them to be effective in discriminating between true and false positives. Lastly, we used the optimal thresholds we identified from our simulated analyses to identify RDDs in a human lymphoblastoid cell line. We found approximately 6,000 RDDs, the majority of which are A-to-G edits and likely to be mediated by ADAR. Moreover, we found the majority of non A-to-G RDDs to be associated with poorer alignments and conclude from these results that the evidence for widespread non-canonical RDDs in humans is weak. Overall, we found RNA-Seq to be a powerful technique for surveying RDDs genome-wide when coupled with the appropriate thresholds and filters.
Collapse
|
152
|
Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci 2014; 17:1491-9. [PMID: 25349915 DOI: 10.1038/nn.3829] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
The immense intercellular and intracellular heterogeneity of the CNS presents major challenges for high-throughput omic analyses. Transcriptional, translational and post-translational regulatory events are localized to specific neuronal cell types or subcellular compartments, resulting in discrete patterns of protein expression and activity. A spatial and quantitative knowledge of the neuroproteome is therefore critical to understanding both normal and pathological aspects of the functional genomics and anatomy of the CNS. Improvements in mass spectrometry allow the profiling of proteins at a sufficient depth to complement results from high-throughput genomic and transcriptomic assays. However, there are challenges in integrating proteomic data with other data modalities and even greater challenges in obtaining comprehensive neuroproteomic data with cell-type specificity. Here we discuss how proteomics should be exploited to enhance high-throughput functional genomic analysis by tighter integration of data analyses. We also discuss experimental strategies to achieve finer cellular and subcellular resolution in transcriptomic and proteomic studies of neural tissues.
Collapse
|
153
|
León-Novelo LG, McIntyre LM, Fear JM, Graze RM. A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. BMC Genomics 2014; 15:920. [PMID: 25339465 PMCID: PMC4230747 DOI: 10.1186/1471-2164-15-920] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/09/2014] [Indexed: 01/01/2023] Open
Abstract
Background One method of identifying cis regulatory differences is to analyze allele-specific expression (ASE) and identify cases of allelic imbalance (AI). RNA-seq is the most common way to measure ASE and a binomial test is often applied to determine statistical significance of AI. This implicitly assumes that there is no bias in estimation of AI. However, bias has been found to result from multiple factors including: genome ambiguity, reference quality, the mapping algorithm, and biases in the sequencing process. Two alternative approaches have been developed to handle bias: adjusting for bias using a statistical model and filtering regions of the genome suspected of harboring bias. Existing statistical models which account for bias rely on information from DNA controls, which can be cost prohibitive for large intraspecific studies. In contrast, data filtering is inexpensive and straightforward, but necessarily involves sacrificing a portion of the data. Results Here we propose a flexible Bayesian model for analysis of AI, which accounts for bias and can be implemented without DNA controls. In lieu of DNA controls, this Poisson-Gamma (PG) model uses an estimate of bias from simulations. The proposed model always has a lower type I error rate compared to the binomial test. Consistent with prior studies, bias dramatically affects the type I error rate. All of the tested models are sensitive to misspecification of bias. The closer the estimate of bias is to the true underlying bias, the lower the type I error rate. Correct estimates of bias result in a level alpha test. Conclusions To improve the assessment of AI, some forms of systematic error (e.g., map bias) can be identified using simulation. The resulting estimates of bias can be used to correct for bias in the PG model, without data filtering. Other sources of bias (e.g., unidentified variant calls) can be easily captured by DNA controls, but are missed by common filtering approaches. Consequently, as variant identification improves, the need for DNA controls will be reduced. Filtering does not significantly improve performance and is not recommended, as information is sacrificed without a measurable gain. The PG model developed here performs well when bias is known, or slightly misspecified. The model is flexible and can accommodate differences in experimental design and bias estimation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-920) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Rita M Graze
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, 36849 Auburn, AL, USA.
| |
Collapse
|
154
|
Han L, Vickers KC, Samuels DC, Guo Y. Alternative applications for distinct RNA sequencing strategies. Brief Bioinform 2014; 16:629-39. [PMID: 25246237 DOI: 10.1093/bib/bbu032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022] Open
Abstract
Recent advances in RNA library preparation methods, platform accessibility and cost efficiency have allowed high-throughput RNA sequencing (RNAseq) to replace conventional hybridization microarray platforms as the method of choice for mRNA profiling and transcriptome analyses. RNAseq is a powerful technique to profile both long and short RNA expression, and the depth of information gained from distinct RNAseq methods is striking and facilitates discovery. In addition to expression analysis, distinct RNAseq approaches also allow investigators the ability to assess transcriptional elongation, DNA variance and exogenous RNA content. Here we review the current state of the art in transcriptome sequencing and address epigenetic regulation, quantification of transcription activation, RNAseq output and a diverse set of applications for RNAseq data. We detail how RNAseq can be used to identify allele-specific expression, single-nucleotide polymorphisms and somatic mutations and discuss the benefits and limitations of using RNAseq to monitor DNA characteristics. Moreover, we highlight the power of combining RNA- and DNAseq methods for genomic analysis. In summary, RNAseq provides the opportunity to gain greater insight into transcriptional regulation and output than simply miRNA and mRNA profiling.
Collapse
|
155
|
Santiago M, Antunes C, Guedes M, Sousa N, Marques CJ. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they? Genomics 2014; 104:334-40. [PMID: 25200796 DOI: 10.1016/j.ygeno.2014.08.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
Epigenetic modifications of the genome play important roles in controlling gene transcription thus regulating several molecular and cellular processes. A novel epigenetic modification - 5-hydroxymethylcytosine (5hmC) - has been recently described and attracted a lot of attention due to its possible involvement in the active DNA demethylation mechanism. TET enzymes are dioxygenases capable of oxidizing the methyl group of 5-methylcytosines (5mC) and thus converting 5mC into 5hmC. Although most of the work on TET enzymes and 5hmC has been carried out in embryonic stem (ES) cells, the highest levels of 5hmC occur in the brain and in neurons, pointing to a role for this epigenetic modification in the control of neuronal differentiation, neural plasticity and brain functions. Here we review the most recent advances on the role of TET enzymes and DNA hydroxymethylation in neuronal differentiation and function.
Collapse
Affiliation(s)
- Mafalda Santiago
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Claudia Antunes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marta Guedes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - C Joana Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
156
|
Gregg C. Known unknowns for allele-specific expression and genomic imprinting effects. F1000PRIME REPORTS 2014; 6:75. [PMID: 25343032 PMCID: PMC4166941 DOI: 10.12703/p6-75] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have provided evidence for non-canonical imprinting effects that are associated with allele-specific expression biases at the tissue level in mice. These imprinting effects have features that are distinct from canonical imprinting effects that involve allele silencing. Here, I discuss some of the evidence for non-canonical imprinting effects in the context of random X-inactivation and epigenetic allele-specific expression effects on the autosomes. I propose several mechanisms that may underlie non-canonical imprinting effects and outline future directions and approaches to study these effects at the cellular level in vivo. The growing evidence for complex allele-specific expression effects that are cell- and developmental stage-specific has opened a new frontier for study. Currently, the function of these effects and the underlying regulatory mechanisms are largely unknown.
Collapse
Affiliation(s)
- Christopher Gregg
- Department of Neurobiology & Anatomy and Human Genetics, University of Utah School of Medicine, 323 Wintrobe Bldg 530, University of Utah, School of Medicine20 North 1900 East, Salt Lake City, UT 84132-3401USA
- The New York Stem Cell Foundation178 Columbus Avenue #237064, New York, NY 10023USA
| |
Collapse
|
157
|
Lorenc A, Linnenbrink M, Montero I, Schilhabel MB, Tautz D. Genetic differentiation of hypothalamus parentally biased transcripts in populations of the house mouse implicate the Prader-Willi syndrome imprinted region as a possible source of behavioral divergence. Mol Biol Evol 2014; 31:3240-9. [PMID: 25172960 PMCID: PMC4245819 DOI: 10.1093/molbev/msu257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse (Mus musculus domesticus). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a–Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the paternally expressed Peg13 transcript within the Trappc9 gene region on chromosome 15 to be highly differentiated. Interestingly, both regions have been implicated in Prader–Willi nervous system disorder phenotypes in humans. We suggest that these genomically imprinted regions are candidates for influencing the population-specific mate-choice in mice.
Collapse
Affiliation(s)
- Anna Lorenc
- Max-Planck Institute for Evolutionary Biology, Department Evolutionary Genetics, Plön, Germany
| | - Miriam Linnenbrink
- Max-Planck Institute for Evolutionary Biology, Department Evolutionary Genetics, Plön, Germany
| | - Inka Montero
- Max-Planck Institute for Evolutionary Biology, Department Evolutionary Genetics, Plön, Germany
| | - Markus B Schilhabel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Department Evolutionary Genetics, Plön, Germany
| |
Collapse
|
158
|
Abstract
The precise, temporal order of gene expression during development is critical to ensure proper lineage commitment, cell fate determination, and ultimately, organogenesis. Epigenetic regulation of chromatin structure is fundamental to the activation or repression of genes during embryonic development. In recent years, there has been an explosion of research relating to various modes of epigenetic regulation, such as DNA methylation, post-translational histone tail modifications, noncoding RNA control of chromatin structure, and nucleosome remodeling. Technological advances in genome-wide epigenetic profiling and pluripotent stem cell differentiation have been primary drivers for elucidating the epigenetic control of cellular identity during development and nuclear reprogramming. Not only do epigenetic mechanisms regulate transcriptional states in a cell-type-specific manner but also they establish higher order genomic topology and nuclear architecture. Here, we review the epigenetic control of pluripotency and changes associated with pluripotent stem cell differentiation. We focus on DNA methylation, DNA demethylation, and common histone tail modifications. Finally, we briefly discuss epigenetic heterogeneity among pluripotent stem cell lines and the influence of epigenetic patterns on genome topology.
Collapse
Affiliation(s)
- Michael J Boland
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Kristopher L Nazor
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Jeanne F Loring
- From the Department of Chemical Physiology, Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037.
| |
Collapse
|
159
|
Raznahan A, Lue Y, Probst F, Greenstein D, Giedd J, Wang C, Lerch J, Swerdloff R. Triangulating the sexually dimorphic brain through high-resolution neuroimaging of murine sex chromosome aneuploidies. Brain Struct Funct 2014; 220:3581-93. [PMID: 25146308 DOI: 10.1007/s00429-014-0875-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/09/2014] [Indexed: 12/11/2022]
Abstract
Murine sex chromosome aneuploidies (SCAs) provide powerful models for charting sex chromosome influences on mammalian brain development. Here, building on prior work in X-monosomic (XO) mice, we use spatially non-biased high-resolution imaging to compare and contrast neuroanatomical alterations in XXY and XO mice relative to their wild-type XX and XY littermates. First, we show that carriage of a supernumerary X chromosome in XXY males (1) does not prevent normative volumetric masculinization of the bed nucleus of the stria terminalis (BNST) and medial amygdala, but (2) causes distributed anatomical alterations relative to XY males, which show a statistically unexpected tendency to be co-localized with and reciprocal to XO-XX differences in anatomy. These overlaps identify the lateral septum, BNST, ventral group thalamic nuclei and periaqueductal gray matter as regions with replicable sensitivity to X chromosome dose across two SCAs. We then harness anatomical variation across all four karyotype groups in our study--XO, XX, XY and XXY--to create an agnostic data-driven segmentation of the mouse brain into five distributed clusters which (1) recover fundamental properties of brain organization with high spatial precision, (2) define two previously uncharacterized systems of relative volume excess in females vs. males ("forebrain cholinergic" and "cerebelo-pontine-thalamo-cortical"), and (3) adopt stereotyped spatial motifs which delineate ordered gradients of sex chromosome and gonadal influences on volumetric brain development. Taken together, these data provide a new framework for the study of sexually dimorphic influences on brain development in health and disrupted brain development in SCA.
Collapse
Affiliation(s)
- Armin Raznahan
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Rm 4C108, Building 20, 10 Center Drive, Bethesda, MD, 20815, USA.
| | - YanHe Lue
- Division of Endocrinology, Department of Medicine, Los Angele Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Frank Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Deanna Greenstein
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Rm 4C108, Building 20, 10 Center Drive, Bethesda, MD, 20815, USA
| | - Jay Giedd
- Child Psychiatry Branch, National Institute of Mental Health, National Institutes of Health, Rm 4C108, Building 20, 10 Center Drive, Bethesda, MD, 20815, USA
| | - Christina Wang
- Division of Endocrinology, Department of Medicine, Los Angele Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jason Lerch
- Mouse Imaging Centre and Program in Neuroscience and Mental, The Hospital for Sick Children Hospital, Toronto, ON, Canada
| | - Ronald Swerdloff
- Division of Endocrinology, Department of Medicine, Los Angele Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
160
|
Zhang F, Lin S. Nonparametric method for detecting imprinting effect using all members of general pedigrees with missing data. J Hum Genet 2014; 59:541-8. [PMID: 25119724 DOI: 10.1038/jhg.2014.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 11/09/2022]
Abstract
Imprinting effects can lead to parent-of-origin patterns in complex human diseases. For a diallelic marker locus, Pedigree Parental-Asymmetry Test (PPAT) and its extension MCPPAT using pedigrees allowing for missing genotypes are simple and powerful for detecting imprinting effects. However, these approaches only take affected offspring into consideration, thus not making full use of the data available. In this paper, we propose Monte Carlo Pedigree Parental-Asymmetry Test using both affected and unaffected (MCPPATu) offsprings, which allows for missing genotypes through Monte Carlo sampling. Simulation studies demonstrate that MCPPATu controls the empirical type I error rate well under the null hypotheses of no parent-of-origin effects. It is also demonstrated that the use of additional information from unaffected offspring and partially observed genotypes in the analysis can greatly improve the statistical power. Indeed, for common diseases, MCPPATu is much more powerful than MCPPAT when all genotypes are observed and the power improvement is even greater when there is missing data. For rarer diseases, there are still substantial power gains with the inclusion of unaffected offspring, although the gains are less impressive compared with those for more common diseases.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Department of Statistics, The Ohio State University, Columbus, OH, USA
| | - Shili Lin
- Department of Statistics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
161
|
Maekawa F, Tsukahara S, Kawashima T, Nohara K, Ohki-Hamazaki H. The mechanisms underlying sexual differentiation of behavior and physiology in mammals and birds: relative contributions of sex steroids and sex chromosomes. Front Neurosci 2014; 8:242. [PMID: 25177264 PMCID: PMC4132582 DOI: 10.3389/fnins.2014.00242] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022] Open
Abstract
From a classical viewpoint, sex-specific behavior and physiological functions as well as the brain structures of mammals such as rats and mice, have been thought to be influenced by perinatal sex steroids secreted by the gonads. Sex steroids have also been thought to affect the differentiation of the sex-typical behavior of a few members of the avian order Galliformes, including the Japanese quail and chickens, during their development in ovo. However, recent mammalian studies that focused on the artificial shuffling or knockout of the sex-determining gene, Sry, have revealed that sex chromosomal effects may be associated with particular types of sex-linked differences such as aggression levels, social interaction, and autoimmune diseases, independently of sex steroid-mediated effects. In addition, studies on naturally occurring, rare phenomena such as gynandromorphic birds and experimentally constructed chimeras in which the composition of sex chromosomes in the brain differs from that in the other parts of the body, indicated that sex chromosomes play certain direct roles in the sex-specific differentiation of the gonads and the brain. In this article, we review the relative contributions of sex steroids and sex chromosomes in the determination of brain functions related to sexual behavior and reproductive physiology in mammals and birds.
Collapse
Affiliation(s)
- Fumihiko Maekawa
- Molecular Toxicology Section, Center for Environmental Health Sciences, National Institute for Environmental Studies Tsukuba, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Takaharu Kawashima
- Ecological Genetics Research Section, Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies Tsukuba, Japan
| | - Keiko Nohara
- Molecular Toxicology Section, Center for Environmental Health Sciences, National Institute for Environmental Studies Tsukuba, Japan
| | | |
Collapse
|
162
|
Tunc-Ozcan E, Sittig LJ, Harper KM, Graf EN, Redei EE. Hypothesis: genetic and epigenetic risk factors interact to modulate vulnerability and resilience to FASD. Front Genet 2014; 5:261. [PMID: 25140173 PMCID: PMC4122175 DOI: 10.3389/fgene.2014.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/15/2014] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) presents a collection of symptoms representing physiological and behavioral phenotypes caused by maternal alcohol consumption. Symptom severity is modified by genetic differences in fetal susceptibility and resistance as well as maternal genetic factors such as maternal alcohol sensitivity. Animal models demonstrate that both maternal and paternal genetics contribute to the variation in the fetus' vulnerability to alcohol exposure. Maternal and paternal genetics define the variations in these phenotypes even without the effect of alcohol in utero, as most of these traits are polygenic, non-Mendelian, in their inheritance. In addition, the epigenetic alterations that instigate the alcohol induced neurodevelopmental deficits can interact with the polygenic inheritance of respective traits. Here, based on specific examples, we present the hypothesis that the principles of non-Mendelian inheritance, or "exceptions" to Mendelian genetics, can be the driving force behind the severity of the prenatal alcohol-exposed individual's symptomology. One such exception is when maternal alleles lead to an altered intrauterine hormonal environment and, therefore, produce variations in the long-term consequences on the development of the alcohol-exposed fetus. Another exception is when epigenetic regulation of allele-specific gene expression generates disequilibrium between the maternal vs. paternal genetic contributions, and thereby, modifies the effect of prenatal alcohol exposure on the fetus. We propose that these situations in which one parent has an exaggerated influence over the offspring's vulnerability to prenatal alcohol are major contributing mechanisms responsible for the variations in the symptomology of FASD in the exposed generation and beyond.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Laura J Sittig
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Kathryn M Harper
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Evan N Graf
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Northwestern University Chicago, IL, USA
| |
Collapse
|
163
|
Wang X, Clark AG. Using next-generation RNA sequencing to identify imprinted genes. Heredity (Edinb) 2014; 113:156-66. [PMID: 24619182 PMCID: PMC4105452 DOI: 10.1038/hdy.2014.18] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022] Open
Abstract
Genomic imprinting is manifested as differential allelic expression (DAE) depending on the parent-of-origin. The most direct way to identify imprinted genes is to directly score the DAE in a context where one can identify which parent transmitted each allele. Because many genes display DAE, simply scoring DAE in an individual is not sufficient to identify imprinted genes. In this paper, we outline many technical aspects of a scheme for identification of imprinted genes that makes use of RNA sequencing (RNA-seq) from tissues isolated from F1 offspring derived from the pair of reciprocal crosses. Ideally, the parental lines are from two inbred strains that are not closely related to each other. Aspects of tissue purity, RNA extraction, library preparation and bioinformatic inference of imprinting are all covered. These methods have already been applied in a number of organisms, and one of the most striking results is the evolutionary fluidity with which novel imprinted genes are gained and lost within genomes. The general methodology is also applicable to a wide range of other biological problems that require quantification of allele-specific expression using RNA-seq, such as cis-regulation of gene expression, X chromosome inactivation and random monoallelic expression.
Collapse
Affiliation(s)
- X Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| | - A G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
164
|
Davies W. Sex differences in attention Deficit Hyperactivity Disorder: candidate genetic and endocrine mechanisms. Front Neuroendocrinol 2014; 35:331-46. [PMID: 24680800 DOI: 10.1016/j.yfrne.2014.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a developmental condition characterised by severe inattention, pathological impulsivity and hyperactivity; it is relatively common affecting up to 6% of children, and is associated with a risk of long-term adverse educational and social consequences. Males are considerably more likely to be diagnosed with ADHD than females; the course of the disorder and its associated co-morbidities also appear to be sensitive to sex. Here, I discuss fundamental biological (genetic and endocrine) mechanisms that have been shown to, or could theoretically, contribute towards these sexually dimorphic phenomena. Greater understanding of how and why the sexes differ with respect to ADHD vulnerability should allow us to identify and characterise novel protective and risk factors for the disorder, and should ultimately facilitate improved diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- William Davies
- Behavioural Genetics Group, Neuroscience and Mental Health Research Institute, Schools of Psychology and Medicine, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK.
| |
Collapse
|
165
|
Advances in European sea bass genomics and future perspectives. Mar Genomics 2014; 18 Pt A:71-5. [PMID: 25011579 DOI: 10.1016/j.margen.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022]
Abstract
Only recently available sequenced and annotated teleost fish genomes were restricted to a few model species, none of which were for aquaculture. The application of marker assisted selection for improved production traits had been largely restricted to the salmon industry and genetic and Quantitative Trait Loci (QTL) maps were available for only a few species. With the advent of next generation sequencing the landscape is rapidly changing and today the genomes of several aquaculture species have been sequenced. The European sea bass, Dicentrarchus labrax, is a good example of a commercially important aquaculture species in Europe for which in the last decade a wealth of genomic resources, including a chromosomal scale genome assembly, physical and linkage maps as well as relevant QTL have been generated. The current challenge is to stimulate the uptake of the resources by the industry so that the full potential of this scientific endeavor can be exploited and produce benefits for producers and the public alike.
Collapse
|
166
|
Sex, epilepsy, and epigenetics. Neurobiol Dis 2014; 72 Pt B:210-6. [PMID: 24998474 DOI: 10.1016/j.nbd.2014.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 02/05/2023] Open
Abstract
Epilepsy refers to a heterogeneous group of disorders that are associated with a wide range of pathogenic mechanisms, seizure manifestations, comorbidity profiles, and therapeutic responses. These characteristics are all influenced quite significantly by sex. As with other conditions exhibiting such patterns, sex differences in epilepsy are thought to arise-at the most fundamental level-from the "organizational" and "activational" effects of sex hormones as well as from the direct actions of the sex chromosomes. However, our understanding of the specific molecular, cellular, and network level processes responsible for mediating sex differences in epilepsy remains limited. Because increasing evidence suggests that epigenetic mechanisms are involved both in epilepsy and in brain sexual dimorphism, we make the case here that analyzing epigenetic regulation will provide novel insights into the basis for sex differences in epilepsy.
Collapse
|
167
|
Magee DA, Spillane C, Berkowicz EW, Sikora KM, MacHugh DE. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits. Anim Genet 2014; 45 Suppl 1:25-39. [PMID: 24990393 DOI: 10.1111/age.12168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/30/2022]
Abstract
The phenomenon of genomic imprinting, whereby a subset of mammalian genes display parent-of-origin-specific monoallelic expression, is one of the most active areas of epigenetics research. Over the past two decades, more than 100 imprinted mammalian genes have been identified, while considerable advances have been made in elucidating the molecular mechanisms governing imprinting. These studies have helped to unravel the epigenome--a separate layer of regulatory information contained in eukaryotic chromosomes that influences gene expression and phenotypes without involving changes to the underlying DNA sequence. Although most studies of genomic imprinting in mammals have focussed on mouse models or human biomedical disorders, there is burgeoning interest in the phenotypic effects of imprinted genes in domestic livestock species. In particular, research has focused on imprinted genes influencing foetal growth and development, which are associated with economically important production traits in cattle, sheep and pigs. These findings, when coupled with the data emerging from the various different livestock genome projects, have major implications for the future of animal breeding, health and management. Here, we review current scientific knowledge regarding genomic imprinting in livestock species and evaluate how this information can be used in modern livestock improvement programmes.
Collapse
Affiliation(s)
- D A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | | | | | | | | |
Collapse
|
168
|
Harper KM, Tunc-Ozcan E, Graf EN, Herzing LBK, Redei EE. Intergenerational and parent of origin effects of maternal calorie restriction on Igf2 expression in the adult rat hippocampus. Psychoneuroendocrinology 2014; 45:187-91. [PMID: 24845189 PMCID: PMC4076822 DOI: 10.1016/j.psyneuen.2014.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor 2 (Igf2) regulates development, memory and adult neurogenesis in the hippocampus. Calorie restriction (CR) is known to modulate non-neuronal Igf2 expression intergenerationally, but its effect has not been evaluated on brain Igf2. Here, Sprague-Dawley (S) dams underwent moderate CR between gestational days 8-21. To identify parent of origin expression pattern of the imprinted Igf2 gene, their offspring (SS F1) were mated with naïve male or female Brown Norway (B) rats to obtain the second generation (BS and SB F2) progeny. CR did not affect adult hippocampal Igf2 transcript levels in SS F1 males or their BS F2 progeny, but increased it in SS F1 females and their SB F2 offspring. The preferentially maternal Igf2 expression in the SB F2 control male hippocampus relaxed to biallelic with CR, with no effect of grandmaternal diet in any other groups. Thus, allele-specific and total expression of hippocampal Igf2 is affected by maternal, grandmaternal CR in a strain and sex-specific manner.
Collapse
Affiliation(s)
- Kathryn M Harper
- The Asher Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Elif Tunc-Ozcan
- The Asher Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Evan N Graf
- The Asher Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Laura B K Herzing
- Lurie's Children Research Center, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Eva E Redei
- The Asher Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| |
Collapse
|
169
|
Huang S, Holt J, Kao CY, McMillan L, Wang W. A novel multi-alignment pipeline for high-throughput sequencing data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau057. [PMID: 24948510 PMCID: PMC4062837 DOI: 10.1093/database/bau057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Mapping reads to a reference sequence is a common step when analyzing allele effects in high-throughput sequencing data. The choice of reference is critical because its effect on quantitative sequence analysis is non-negligible. Recent studies suggest aligning to a single standard reference sequence, as is common practice, can lead to an underlying bias depending on the genetic distances of the target sequences from the reference. To avoid this bias, researchers have resorted to using modified reference sequences. Even with this improvement, various limitations and problems remain unsolved, which include reduced mapping ratios, shifts in read mappings and the selection of which variants to include to remove biases. To address these issues, we propose a novel and generic multi-alignment pipeline. Our pipeline integrates the genomic variations from known or suspected founders into separate reference sequences and performs alignments to each one. By mapping reads to multiple reference sequences and merging them afterward, we are able to rescue more reads and diminish the bias caused by using a single common reference. Moreover, the genomic origin of each read is determined and annotated during the merging process, providing a better source of information to assess differential expression than simple allele queries at known variant positions. Using RNA-seq of a diallel cross, we compare our pipeline with the single-reference pipeline and demonstrate our advantages of more aligned reads and a higher percentage of reads with assigned origins. Database URL: http://csbio.unc.edu/CCstatus/index.py?run=Pseudo.
Collapse
Affiliation(s)
- Shunping Huang
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - James Holt
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Chia-Yu Kao
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| | - Wei Wang
- Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599, Department of Computer Science, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
170
|
Hasin-Brumshtein Y, Hormozdiari F, Martin L, van Nas A, Eskin E, Lusis AJ, Drake TA. Allele-specific expression and eQTL analysis in mouse adipose tissue. BMC Genomics 2014; 15:471. [PMID: 24927774 PMCID: PMC4089026 DOI: 10.1186/1471-2164-15-471] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/07/2014] [Indexed: 11/17/2022] Open
Abstract
Background The simplest definition of cis-eQTLs versus trans, refers to genetic variants that affect expression in an allele specific manner, with implications on underlying mechanism. Yet, due to technical limitations of expression microarrays, the vast majority of eQTL studies performed in the last decade used a genomic distance based definition as a surrogate for cis, therefore exploring local rather than cis-eQTLs. Results In this study we use RNAseq to explore allele specific expression (ASE) in adipose tissue of male and female F1 mice, produced from reciprocal crosses of C57BL/6J and DBA/2J strains. Comparison of the identified cis-eQTLs, to local-eQTLs, that were obtained from adipose tissue expression in two previous population based studies in our laboratory, yields poor overlap between the two mapping approaches, while both local-eQTL studies show highly concordant results. Specifically, local-eQTL studies show ~60% overlap between themselves, while only 15-20% of local-eQTLs are identified as cis by ASE, and less than 50% of ASE genes are recovered in local-eQTL studies. Utilizing recently published ENCODE data, we also find that ASE genes show significant bias for SNPs prevalence in DNase I hypersensitive sites that is ASE direction specific. Conclusions We suggest a new approach to analysis of allele specific expression that is more sensitive and accurate than the commonly used fisher or chi-square statistics. Our analysis indicates that technical differences between the cis and local-eQTL approaches, such as differences in genomic background or sex specificity, account for relatively small fraction of the discrepancy. Therefore, we suggest that the differences between two eQTL mapping approaches may facilitate sorting of SNP-eQTL interactions into true cis and trans, and that a considerable portion of local-eQTL may actually represent trans interactions. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-471) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yehudit Hasin-Brumshtein
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
171
|
Takahashi A, Shiroishi T, Koide T. Genetic mapping of escalated aggression in wild-derived mouse strain MSM/Ms: association with serotonin-related genes. Front Neurosci 2014; 8:156. [PMID: 24966813 PMCID: PMC4052355 DOI: 10.3389/fnins.2014.00156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The Japanese wild-derived mouse strain MSM/Ms (MSM) retains a wide range of traits related to behavioral wildness, including high levels of emotionality and avoidance of humans. In this study, we observed that MSM showed a markedly higher level of aggression than the standard laboratory strain C57BL/6J. Whereas almost all MSM males showed high frequencies of attack bites and pursuit in the resident-intruder test, only a few C57BL/6J males showed aggressive behaviors, with these behaviors observed at only a low frequency. Sexually mature MSM males in their home cages killed their littermates, or sometimes female pair-mates. To study the genetic and neurobiological mechanisms that underlie the escalated aggression observed in MSM mice, we analyzed reciprocal F1 crosses and five consomic strains of MSM (Chr 4, 13, 15, X and Y) against the background of C57BL/6J. We identified two chromosomes, Chr 4 and Chr 15, which were involved in the heightened aggression observed in MSM. These chromosomes had different effects on aggression: whereas MSM Chr 15 increased agitation and initiation of aggressive events, MSM Chr 4 induced a maladaptive level of aggressive behavior. Expression analysis of mRNAs of serotonin receptors, serotonin transporter and Tph2, an enzyme involved in serotonin synthesis in seven brain areas, indicated several differences among MSM, C57BL/6J, and their consomic strains. We found that Tph2 expression in the midbrain was increased in the Chr 4 consomic strain, as well as in MSM, and that there was a strong positive genetic correlation between aggressive behavior and Tph2 expression at the mRNA level. Therefore, it is possible that increased expression of the Tph2 gene is related to escalated aggression observed in MSM.
Collapse
Affiliation(s)
- Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG) Mishima, Japan ; Department of Genetics, SOKENDAI Mishima, Japan
| | - Toshihiko Shiroishi
- Department of Genetics, SOKENDAI Mishima, Japan ; Mammalian Genetics Laboratory, National Institute of Genetics (NIG) Mishima, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics (NIG) Mishima, Japan ; Department of Genetics, SOKENDAI Mishima, Japan
| |
Collapse
|
172
|
Abstract
Sexually dimorphic behaviors, qualitative or quantitative differences in behaviors between the sexes, result from the activity of a sexually differentiated nervous system. Sensory cues and sex hormones control the entire repertoire of sexually dimorphic behaviors, including those commonly thought to be charged with emotion such as courtship and aggression. Such overarching control mechanisms regulate distinct genes and neurons that in turn specify the display of these behaviors in a modular manner. How such modular control is transformed into cohesive internal states that correspond to sexually dimorphic behavior is poorly understood. We summarize current understanding of the neural circuit control of sexually dimorphic behaviors from several perspectives, including how neural circuits in general, and sexually dimorphic neurons in particular, can generate sexually dimorphic behaviors, and how molecular mechanisms and evolutionary constraints shape these behaviors. We propose that emergent themes such as the modular genetic and neural control of dimorphic behavior are broadly applicable to the neural control of other behaviors.
Collapse
Affiliation(s)
- Cindy F Yang
- Program in Neuroscience, University of California San Francisco, MC2722, San Francisco, CA 94158, USA; Department of Anatomy, University of California San Francisco, MC2722, San Francisco, CA 94158, USA
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, MC2722, San Francisco, CA 94158, USA.
| |
Collapse
|
173
|
Huang HS, Yoon BJ, Brooks S, Bakal R, Berrios J, Larsen RS, Wallace ML, Han JE, Chung EH, Zylka MJ, Philpot BD. Snx14 regulates neuronal excitability, promotes synaptic transmission, and is imprinted in the brain of mice. PLoS One 2014; 9:e98383. [PMID: 24859318 PMCID: PMC4032282 DOI: 10.1371/journal.pone.0098383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting describes an epigenetic process through which genes can be expressed in a parent-of-origin-specific manner. The monoallelic expression of imprinted genes renders them particularly susceptible to disease causing mutations. A large proportion of imprinted genes are expressed in the brain, but little is known about their functions. Indeed, it has proven difficult to identify cell type-specific imprinted genes due to the heterogeneity of cell types within the brain. Here we used laser capture microdissection of visual cortical neurons and found evidence that sorting nexin 14 (Snx14) is a neuronally imprinted gene in mice. SNX14 protein levels are high in the brain and progressively increase during neuronal development and maturation. Snx14 knockdown reduces intrinsic excitability and severely impairs both excitatory and inhibitory synaptic transmission. These data reveal a role for monoallelic Snx14 expression in maintaining normal neuronal excitability and synaptic transmission.
Collapse
Affiliation(s)
- Hsien-Sung Huang
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bong-June Yoon
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Sherian Brooks
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert Bakal
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Janet Berrios
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Rylan S. Larsen
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael L. Wallace
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, Unites States of America
| | - Ji Eun Han
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eui Hwan Chung
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark J. Zylka
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Benjamin D. Philpot
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, Unites States of America
- Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
174
|
Muzzey D, Sherlock G, Weissman JS. Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res 2014; 24:963-73. [PMID: 24732588 PMCID: PMC4032860 DOI: 10.1101/gr.166322.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Though sequence differences between alleles are often limited to a few polymorphisms, these differences can cause large and widespread allelic variation at the expression level. Such allele-specific expression (ASE) has been extensively explored at the level of transcription but not translation. Here we measured ASE in the diploid yeast Candida albicans at both the transcriptional and translational levels using RNA-seq and ribosome profiling, respectively. Since C. albicans is an obligate diploid, our analysis isolates ASE arising from cis elements in a natural, nonhybrid organism, where allelic effects reflect evolutionary forces. Importantly, we find that ASE arising from translation is of a similar magnitude as transcriptional ASE, both in terms of the number of genes affected and the magnitude of the bias. We further observe coordination between ASE at the levels of transcription and translation for single genes. Specifically, reinforcing relationships—where transcription and translation favor the same allele—are more frequent than expected by chance, consistent with selective pressure tuning ASE at multiple regulatory steps. Finally, we parameterize alleles based on a range of properties and find that SNP location and predicted mRNA-structure stability are associated with translational ASE in cis. Since this analysis probes more than 4000 allelic pairs spanning a broad range of variations, our data provide a genome-wide view into the relative impact of cis elements that regulate translation.
Collapse
Affiliation(s)
- Dale Muzzey
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, Center for RNA Systems Biology, and Howard Hughes Medical Institute, University of California, San Francisco, California 94117, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research, Center for RNA Systems Biology, and Howard Hughes Medical Institute, University of California, San Francisco, California 94117, USA
| |
Collapse
|
175
|
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder affecting children and adults. Genetic and environmental factors are associated with the etiology of ADHD. Among the environmental factors, exposure of the developing brain to nicotine is considered a major risk factor. Recent evidence suggests that environmental influences on the brain and behavior may be transmitted from one generation to the next. We used a prenatal nicotine exposure (PNE) mouse model of ADHD to test the hypothesis that PNE-induced hyperactivity, a proxy for human ADHD phenotype, is transmitted from one generation to the next. Our data reveal transgenerational transmission of PNE-induced hyperactivity in mice via the maternal but not the paternal line of descent. We suggest that transgenerational transmission is a plausible mechanism for propagation of environmentally induced ADHD phenotypes in the population.
Collapse
|
176
|
The architecture of parent-of-origin effects in mice. Cell 2014; 156:332-42. [PMID: 24439386 PMCID: PMC3898482 DOI: 10.1016/j.cell.2013.11.043] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/02/2013] [Accepted: 11/05/2013] [Indexed: 01/14/2023]
Abstract
The number of imprinted genes in the mammalian genome is predicted to be small, yet we show here, in a survey of 97 traits measured in outbred mice, that most phenotypes display parent-of-origin effects that are partially confounded with family structure. To address this contradiction, using reciprocal F1 crosses, we investigated the effects of knocking out two nonimprinted candidate genes, Man1a2 and H2-ab1, that reside at nonimprinted loci but that show parent-of-origin effects. We show that expression of multiple genes becomes dysregulated in a sex-, tissue-, and parent-of-origin-dependent manner. We provide evidence that nonimprinted genes can generate parent-of-origin effects by interaction with imprinted loci and deduce that the importance of the number of imprinted genes is secondary to their interactions. We propose that this gene network effect may account for some of the missing heritability seen when comparing sibling-based to population-based studies of the phenotypic effects of genetic variants. Heritability of murine complex traits has a significant parent-of-origin effect Many mouse quantitative trait loci show parent-of-origin effects Gene knockouts induce parent-of-origin-like expression changes in reciprocal crosses
Collapse
|
177
|
Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, Arshad H, Wilson DI, Holloway JW, Temple IK, Mackay DJG. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet 2014; 51:229-38. [PMID: 24501229 PMCID: PMC3963529 DOI: 10.1136/jmedgenet-2013-102116] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genomic imprinting is allelic restriction of gene expression potential depending on parent of origin, maintained by epigenetic mechanisms including parent of origin-specific DNA methylation. Among approximately 70 known imprinted genes are some causing disorders affecting growth, metabolism and cancer predisposition. Some imprinting disorder patients have hypomethylation of several imprinted loci (HIL) throughout the genome and may have atypically severe clinical features. Here we used array analysis in HIL patients to define patterns of aberrant methylation throughout the genome. DESIGN We developed a novel informatic pipeline capable of small sample number analysis, and profiled 10 HIL patients with two clinical presentations (Beckwith-Wiedemann syndrome and neonatal diabetes) using the Illumina Infinium Human Methylation450 BeadChip array to identify candidate imprinted regions. We used robust statistical criteria to quantify DNA methylation. RESULTS We detected hypomethylation at known imprinted loci, and 25 further candidate imprinted regions (nine shared between patient groups) including one in the Down syndrome critical region (WRB) and another previously associated with bipolar disorder (PPIEL). Targeted analysis of three candidate regions (NHP2L1, WRB and PPIEL) showed allelic expression, methylation patterns consistent with allelic maternal methylation and frequent hypomethylation among an additional cohort of HIL patients, including six with Silver-Russell syndrome presentations and one with pseudohypoparathyroidism 1B. CONCLUSIONS This study identified novel candidate imprinted genes, revealed remarkable epigenetic convergence among clinically divergent patients, and highlights the potential of epigenomic profiling to expand our understanding of the normal methylome and its disruption in human disease.
Collapse
|
178
|
Court F, Tayama C, Romanelli V, Martin-Trujillo A, Iglesias-Platas I, Okamura K, Sugahara N, Simón C, Moore H, Harness JV, Keirstead H, Sanchez-Mut JV, Kaneki E, Lapunzina P, Soejima H, Wake N, Esteller M, Ogata T, Hata K, Nakabayashi K, Monk D. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 2014; 24:554-69. [PMID: 24402520 PMCID: PMC3975056 DOI: 10.1101/gr.164913.113] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/26/2013] [Indexed: 12/16/2022]
Abstract
Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of whole-genome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.
Collapse
Affiliation(s)
- Franck Court
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Chiharu Tayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Valeria Romanelli
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Isabel Iglesias-Platas
- Servicio de Neonatología, Hospital Sant Joan de Déu, Fundació Sant Joan de Déu, 08950 Barcelona, Spain
| | - Kohji Okamura
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Naoko Sugahara
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Carlos Simón
- Fundación IVI-Instituto Universitario IVI-Universidad de Valencia, INCLIVA, 46980 Paterna, Valencia, Spain
| | - Harry Moore
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Julie V. Harness
- Reeve-Irvine Research Centre, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Hans Keirstead
- Reeve-Irvine Research Centre, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Jose Vicente Sanchez-Mut
- Cancer Epigenetics Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| | - Eisuke Kaneki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular, CIBERER, IDIPAZ-Hospital Universitario La Paz, Universidad Autónoma de Madrid, 28046 Madrid, Spain
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Norio Wake
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, 08908 Barcelona, Spain
| |
Collapse
|
179
|
Court F, Camprubi C, Garcia CV, Guillaumet-Adkins A, Sparago A, Seruggia D, Sandoval J, Esteller M, Martin-Trujillo A, Riccio A, Montoliu L, Monk D. The PEG13-DMR and brain-specific enhancers dictate imprinted expression within the 8q24 intellectual disability risk locus. Epigenetics Chromatin 2014; 7:5. [PMID: 24667089 PMCID: PMC3986935 DOI: 10.1186/1756-8935-7-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
Background Genomic imprinting is the epigenetic marking of genes that results in parent-of-origin monoallelic expression. Most imprinted domains are associated with differentially DNA methylated regions (DMRs) that originate in the gametes, and are maintained in somatic tissues after fertilization. This allelic methylation profile is associated with a plethora of histone tail modifications that orchestrates higher order chromatin interactions. The mouse chromosome 15 imprinted cluster contains multiple brain-specific maternally expressed transcripts including Ago2, Chrac1, Trappc9 and Kcnk9 and a paternally expressed gene, Peg13. The promoter of Peg13 is methylated on the maternal allele and is the sole DMR within the locus. To determine the extent of imprinting within the human orthologous region on chromosome 8q24, a region associated with autosomal recessive intellectual disability, Birk-Barel mental retardation and dysmorphism syndrome, we have undertaken a systematic analysis of allelic expression and DNA methylation of genes mapping within an approximately 2 Mb region around TRAPPC9. Results Utilizing allele-specific RT-PCR, bisulphite sequencing, chromatin immunoprecipitation and chromosome conformation capture (3C) we show the reciprocal expression of the novel, paternally expressed, PEG13 non-coding RNA and maternally expressed KCNK9 genes in brain, and the biallelic expression of flanking transcripts in a range of tissues. We identify a tandem-repeat region overlapping the PEG13 transcript that is methylated on the maternal allele, which binds CTCF-cohesin in chromatin immunoprecipitation experiments and possesses enhancer-blocker activity. Using 3C, we identify mutually exclusive approximately 58 and 500 kb chromatin loops in adult frontal cortex between a novel brain-specific enhancer, marked by H3K4me1 and H3K27ac, with the KCNK9 and PEG13 promoters which we propose regulates brain-specific expression. Conclusions We have characterised the molecular mechanism responsible for reciprocal allelic expression of the PEG13 and KCNK9 transcripts. Therefore, our observations may have important implications for identifying the cause of intellectual disabilities associated with the 8q24 locus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08907, Spain.
| |
Collapse
|
180
|
Ben-David E, Shohat S, Shifman S. Allelic expression analysis in the brain suggests a role for heterogeneous insults affecting epigenetic processes in autism spectrum disorders. Hum Mol Genet 2014; 23:4111-24. [PMID: 24659497 DOI: 10.1093/hmg/ddu128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoallelic expression, including genomic imprinting, X-chromosome inactivation and random monoallelic expression of autosomal genes are epigenetic phenomena. Genes that are expressed in a monoallelic way may be more vulnerable to genetic or epigenetic mutations. Thus, comprehensive exploration of monoallelic expression in human brains may shed light on complex brain disorders. Autism-related disorders are known to be associated with imprinted genes on chromosome 15. However, it is not clear whether other imprinted regions or other types of monoallelic expression are associated with autism spectrum disorder (ASD). Here, we performed a genome-wide survey of allele expression imbalance (AEI) in the human brain using single-nucleotide polymorphisms (SNPs), in 18 individuals with ASD and 15 controls. Individuals with ASD had the most extreme number of monoallelic expressed SNPs in both the autosomes and the X chromosome. In two cases that were studied in detail, the monoallelic expression was confined to specific brain region or cell type. Using these data, we were also able to define the allelic expression status of known imprinted genes in the human brain and to identify abnormal imprinting in an individual with ASD. Lastly, we developed an analysis of individual-level expression, focusing on the difference of each individual from the mean. We found that individuals with ASD had more genes that were up- or down-regulated in an individual-specific manner. We also identified pathways perturbed in specific individuals. These results underline the heterogeneity in gene regulation in ASD, at the level of both allelic and total expression.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Shohat
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
181
|
Investigation of de novo unique differentially expressed genes related to evolution in exercise response during domestication in Thoroughbred race horses. PLoS One 2014; 9:e91418. [PMID: 24658125 PMCID: PMC3962374 DOI: 10.1371/journal.pone.0091418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022] Open
Abstract
Previous studies of horse RNA-seq were performed by mapping sequence reads to the reference genome during transcriptome analysis. However in this study, we focused on two main ideas. First, differentially expressed genes (DEGs) were identified by de novo–based analysis (DBA) in RNA-seq data from six Thoroughbreds before and after exercise, here-after referred to as “de novo unique differentially expressed genes” (DUDEG). Second, by integrating both conventional DEGs and genes identified as being selected for during domestication of Thoroughbred and Jeju pony from whole genome re-sequencing (WGS) data, we give a new concept to the definition of DEG. We identified 1,034 and 567 DUDEGs in skeletal muscle and blood, respectively. DUDEGs in skeletal muscle were significantly related to exercise-induced stress biological process gene ontology (BP-GO) terms: ‘immune system process’; ‘response to stimulus’; and, ‘death’ and a KEGG pathways: ‘JAK-STAT signaling pathway’; ‘MAPK signaling pathway’; ‘regulation of actin cytoskeleton’; and, ‘p53 signaling pathway’. In addition, we found TIMELESS, EIF4A3 and ZNF592 in blood and CHMP4C and FOXO3 in skeletal muscle, to be in common between DUDEGs and selected genes identified by evolutionary statistics such as FST and Cross Population Extended Haplotype Homozygosity (XP-EHH). Moreover, in Thoroughbreds, three out of five genes (CHMP4C, EIF4A3 and FOXO3) related to exercise response showed relatively low nucleotide diversity compared to the Jeju pony. DUDEGs are not only conceptually new DEGs that cannot be attained from reference-based analysis (RBA) but also supports previous RBA results related to exercise in Thoroughbred. In summary, three exercise related genes which were selected for during domestication in the evolutionary history of Thoroughbred were identified as conceptually new DEGs in this study.
Collapse
|
182
|
Zhang Q, Li H, Jin H, Tan H, Zhang J, Sheng S. The global landscape of intron retentions in lung adenocarcinoma. BMC Med Genomics 2014; 7:15. [PMID: 24646369 PMCID: PMC3999986 DOI: 10.1186/1755-8794-7-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/14/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The transcriptome complexity in an organism can be achieved by alternative splicing of precursor messenger RNAs. It has been revealed that alternations in mRNA splicing play an important role in a number of diseases including human cancers. METHODS In this study, we exploited whole transcriptome sequencing data from five lung adenocarcinoma tissues and their matched normal tissues to interrogate intron retention, a less studied alternative splicing form which has profound structural and functional consequence by modifying open reading frame or inserting premature stop codons. RESULTS Abundant intron retention events were found in both tumor and normal tissues, and 2,340 and 1,422 genes only contain tumor-specific retentions and normal-specific retentions, respectively. Combined with gene expression analysis, we showed that genes with tumor-specific retentions tend to be over-expressed in tumors, and the abundance of intron retention within genes is negatively related with gene expression, indicating the action of nonsense mediated decay. Further functional analysis demonstrated that genes with tumor-specific retentions include known lung cancer driver genes and are found enriched in pathways important in carcinogenesis. CONCLUSIONS We hypothesize that intron retentions and consequent nonsense mediated decay may collectively counteract the over-expression of genes promoting cancer development. Identification of genes with tumor-specific retentions may also help develop targeted therapies.
Collapse
Affiliation(s)
- Qu Zhang
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hua Li
- HYK High-throughput Biotechnology Institute, 4/F, Building #11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen 518060, China
| | - Hong Jin
- HYK High-throughput Biotechnology Institute, 4/F, Building #11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen 518060, China
| | - Huibiao Tan
- HYK High-throughput Biotechnology Institute, 4/F, Building #11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen 518060, China
| | - Jun Zhang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China
| | - Sitong Sheng
- HYK High-throughput Biotechnology Institute, 4/F, Building #11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen 518060, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
183
|
Maternal bias and escape from X chromosome imprinting in the midgestation mouse placenta. Dev Biol 2014; 390:80-92. [PMID: 24594094 DOI: 10.1016/j.ydbio.2014.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/26/2014] [Accepted: 02/21/2014] [Indexed: 11/22/2022]
Abstract
To investigate the epigenetic landscape at the interface between mother and fetus, we provide a comprehensive analysis of parent-of-origin bias in the mouse placenta. Using F1 interspecies hybrids between mus musculus (C57BL/6J) and mus musculus castaneus, we sequenced RNA from 23 individual midgestation placentas, five late stage placentas, and two yolk sac samples and then used SNPs to determine whether transcripts were preferentially generated from the maternal or paternal allele. In the placenta, we find 103 genes that show significant and reproducible parent-of-origin bias, of which 78 are novel candidates. Most (96%) show a strong maternal bias which we demonstrate, via multiple mathematical models, pyrosequencing, and FISH, is not due to maternal decidual contamination. Analysis of the X chromosome also reveals paternal expression of Xist and several genes that escape inactivation, most significantly Alas2, Fhl1, and Slc38a5. Finally, sequencing individual placentas allowed us to reveal notable expression similarity between littermates. In all, we observe a striking preference for maternal transcription in the midgestation mouse placenta and a dynamic imprinting landscape in extraembryonic tissues, reflecting the complex nature of epigenetic pathways in the placenta.
Collapse
|
184
|
Huang Z, Han Z, Zhang F, He H, Yu S, Wu Q. Spatiotemporal expression of retrogene-host pair Mcts2/H13 in mouse embryo, and Mcts2 has no influence on H13 transcription pattern in NIH/3T3 cells. Acta Histochem 2014; 116:312-8. [PMID: 24063864 DOI: 10.1016/j.acthis.2013.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
Abstract
Mcts2 and H13 comprise an imprinted retrogene-host gene pair. Imprinted genes have been proved to be closely related with embryo development. In order to understand its expression relationship during embryo development and influence of the retrogene on the host gene, we studied expression patterns in mouse embryos and transcriptional interference in a cell culture system. The present study determined the spatio-temporal expression pattern of Mcts2 and H13 from embryonic day 9.5 to 15.5. A similar expression pattern between Mcts2 and H13 was observed in mouse embryogenesis by in situ hybridization and real-time PCR, these two genes were extensively expressed in the neural tissues at mid-embryonic stages. As the embryo development proceeded, H13 and Mcts2 were widely detected throughout the developing organism, especially highly expressed in brain. Moreover, neither over expression nor knockdown of Mcts2 has any significant detectable effect on H13 expression in NIH/3T3 cells. In addition, transcriptional up-regulation of Mcts2 caused by demethylation of DMR in the Mcts2 promoter was not directly associated with the H13 transcription in NIH/3T3 cells treated by 5-Aza-cdR. The regulatory relationship between H13 transcripts and the promoter methylation status of Mcts2 was complex, demonstrating host/retrogene relationship may not be limited to the imprinted locus.
Collapse
Affiliation(s)
- Zhijun Huang
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin, Heilongjiang 150001, China
| | - Zhengbin Han
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin, Heilongjiang 150001, China
| | - Fengwei Zhang
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin, Heilongjiang 150001, China
| | - Hongjuan He
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin, Heilongjiang 150001, China
| | - Shihuan Yu
- Department of Respiratory Medicine, the First Affiliated Hospital of Harbin Medical University, No. 199 East Da-zhi Street, Harbin, Heilongjiang 150001, China
| | - Qiong Wu
- School of Life Science and Biotechnology, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
185
|
A novel statistical approach for jointly analyzing RNA-Seq data from F1 reciprocal crosses and inbred lines. Genetics 2014; 197:389-99. [PMID: 24561482 DOI: 10.1534/genetics.113.160119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA sequencing (RNA-seq) not only measures total gene expression but may also measure allele-specific gene expression in diploid individuals. RNA-seq data collected from F1 reciprocal crosses in mice can powerfully dissect strain and parent-of-origin effects on allelic imbalance of gene expression. In this article, we develop a novel statistical approach to analyze RNA-seq data from F1 and inbred strains. Method development was motivated by a study of F1 reciprocal crosses derived from highly divergent mouse strains, to which we apply the proposed method. Our method jointly models the total number of reads and the number of allele-specific reads of each gene, which significantly boosts power for detecting strain and particularly parent-of-origin effects. The method deals with the overdispersion problem commonly observed in read counts and can flexibly adjust for the effects of covariates such as sex and read depth. The X chromosome in mouse presents particular challenges. As in other mammals, X chromosome inactivation silences one of the two X chromosomes in each female cell, although the choice of which chromosome to be silenced can be highly skewed by alleles at the X-linked X-controlling element (Xce) and stochastic effects. Our model accounts for these chromosome-wide effects on an individual level, allowing proper analysis of chromosome X expression. Furthermore, we propose a genomic control procedure to properly control type I error for RNA-seq studies. A number of these methodological improvements can also be applied to RNA-seq data from other species as well as other types of next-generation sequencing data sets. Finally, we show through simulations that increasing the number of samples is more beneficial than increasing the library size for mapping both the strain and parent-of-origin effects. Unless sample recruiting is too expensive to conduct, we recommend sequencing more samples with lower coverage.
Collapse
|
186
|
Rutledge CE, Thakur A, O'Neill KM, Irwin RE, Sato S, Hata K, Walsh CP. Ontogeny, conservation and functional significance of maternally inherited DNA methylation at two classes of non-imprinted genes. Development 2014; 141:1313-23. [PMID: 24523459 PMCID: PMC3943183 DOI: 10.1242/dev.104646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A functional role for DNA methylation has been well-established at imprinted loci, which inherit methylation uniparentally, most commonly from the mother via the oocyte. Many CpG islands not associated with imprinting also inherit methylation from the oocyte, although the functional significance of this, and the common features of the genes affected, are unclear. We identify two major subclasses of genes associated with these gametic differentially methylated regions (gDMRs), namely those important for brain and for testis function. The gDMRs at these genes retain the methylation acquired in the oocyte through preimplantation development, but become fully methylated postimplantation by de novo methylation of the paternal allele. Each gene class displays unique features, with the gDMR located at the promoter of the testis genes but intragenically for the brain genes. Significantly, demethylation using knockout, knockdown or pharmacological approaches in mouse stem cells and fibroblasts resulted in transcriptional derepression of the testis genes, indicating that they may be affected by environmental exposures, in either mother or offspring, that cause demethylation. Features of the brain gene group suggest that they might represent a pool from which many imprinted genes have evolved. The locations of the gDMRs, as well as methylation levels and repression effects, were also conserved in human cells.
Collapse
Affiliation(s)
- Charlotte E Rutledge
- Centre for Molecular Biosciences, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | | | | | | | | | | | | |
Collapse
|
187
|
Celton M, Forest A, Gosse G, Lemieux S, Hebert J, Sauvageau G, Wilhelm BT. Epigenetic regulation of GATA2 and its impact on normal karyotype acute myeloid leukemia. Leukemia 2014; 28:1617-26. [PMID: 24514424 DOI: 10.1038/leu.2014.67] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 12/23/2022]
Abstract
The GATA2 gene encodes a zinc-finger transcription factor that acts as a master regulator of normal hematopoiesis. Mutations in GATA2 have been implicated in the development of myelodysplastic syndrome and acute myeloid leukemia (AML). Using RNA sequencing we now report that GATA2 is either mutated with a functional consequence, or expressed at low levels in the majority of normal karyotype AML (NK-AML). We also show that low-GATA2-expressing specimens (GATA2(low)) exhibit allele-specific expression (ASE) (skewing) in more than half of AML patients examined. We demonstrate that the hypermethylation of the silenced allele can be reversed by exposure to demethylating agents, which also restores biallelic expression of GATA2. We show that GATA2(low) AML lack the prototypical R882 mutation in DNMT3A frequently observed in NK-AML patients and that The Cancer Genome Atlas AML specimens with DNMT3A R882 mutations are characterized by CpG hypomethylation of GATA2. Finally, we validate that several known missense single-nucleotide polymorphisms in GATA2 are actually loss-of-function variants, which, when combined with ASE, represent the equivalent of homozygous GATA2 mutations. From a broader perspective, this work suggests for the first time that determinants of ASE likely have a key role in human leukemia.
Collapse
Affiliation(s)
- M Celton
- 1] Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Québec, Canada [2] Laboratory for high-throughput genomics, Montreal, Québec, Canada [3] INRA, UMR1083, Sciences Pour l'Oenologie, Montpellier, France
| | - A Forest
- 1] Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Québec, Canada [2] Laboratory for high-throughput genomics, Montreal, Québec, Canada
| | - G Gosse
- 1] Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Québec, Canada [2] Laboratory for high-throughput genomics, Montreal, Québec, Canada
| | - S Lemieux
- 1] Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Québec, Canada [2] Laboratory for Functional and Structural Bioinformatics, Montreal, Québec, Canada
| | - J Hebert
- 1] Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Québec, Canada [2] Leukemia Cell Bank of Quebec and Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Québec, Canada
| | - G Sauvageau
- 1] Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Québec, Canada [2] Leukemia Cell Bank of Quebec and Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Québec, Canada [3] Laboratory for Molecular Genetics of Stem Cells, Montreal, Québec, Canada
| | - B T Wilhelm
- 1] Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montreal, Montreal, Québec, Canada [2] Laboratory for high-throughput genomics, Montreal, Québec, Canada
| |
Collapse
|
188
|
XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2014; 111:2806-11. [PMID: 24550311 DOI: 10.1073/pnas.1307091111] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.
Collapse
|
189
|
Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 2014; 343:193-6. [PMID: 24408435 DOI: 10.1126/science.1245316] [Citation(s) in RCA: 841] [Impact Index Per Article: 84.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression from both alleles is generally observed in analyses of diploid cell populations, but studies addressing allelic expression patterns genome-wide in single cells are lacking. Here, we present global analyses of allelic expression across individual cells of mouse preimplantation embryos of mixed background (CAST/EiJ × C57BL/6J). We discovered abundant (12 to 24%) monoallelic expression of autosomal genes and that expression of the two alleles occurs independently. The monoallelic expression appeared random and dynamic because there was considerable variation among closely related embryonic cells. Similar patterns of monoallelic expression were observed in mature cells. Our allelic expression analysis also demonstrates the de novo inactivation of the paternal X chromosome. We conclude that independent and stochastic allelic transcription generates abundant random monoallelic expression in the mammalian cell.
Collapse
Affiliation(s)
- Qiaolin Deng
- Ludwig Institute for Cancer Research, Box 240, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
190
|
Frésard L, Leroux S, Servin B, Gourichon D, Dehais P, Cristobal MS, Marsaud N, Vignoles F, Bed'hom B, Coville JL, Hormozdiari F, Beaumont C, Zerjal T, Vignal A, Morisson M, Lagarrigue S, Pitel F. Transcriptome-wide investigation of genomic imprinting in chicken. Nucleic Acids Res 2014; 42:3768-82. [PMID: 24452801 PMCID: PMC3973300 DOI: 10.1093/nar/gkt1390] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.
Collapse
Affiliation(s)
- Laure Frésard
- INRA, UMR444 Laboratoire de Génétique Cellulaire, Castanet-Tolosan F-31326, France, ENVT, UMR444 Laboratoire de Génétique Cellulaire, Toulouse F-31076, France, INRA, PEAT Pôle d'Expérimentation Avicole de Tours, Nouzilly F- 37380, France, INRA, Sigenae UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan F-31326, France, INRA, GeT-PlaGe Genotoul, Castanet-Tolosan F-31326, France, INRA, UMR1313 Génétique animale et biologie intégrative, Jouy en Josas F-78350, France, AgroParisTech, UMR1313 Génétique animale et biologie intégrative, Jouy en Josas F-78350, France, Department of Computer Sciences, University of California, Los Angeles, CA 90095, USA, INRA, UR83 Recherche Avicoles, Nouzilly F- 37380, France and Agrocampus Ouest, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Animal Genetics Laboratory, Rennes F-35000, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Schneider E, El Hajj N, Richter S, Roche-Santiago J, Nanda I, Schempp W, Riederer P, Navarro B, Bontrop RE, Kondova I, Scholz CJ, Haaf T. Widespread differences in cortex DNA methylation of the "language gene" CNTNAP2 between humans and chimpanzees. Epigenetics 2014; 9:533-45. [PMID: 24434791 PMCID: PMC4121364 DOI: 10.4161/epi.27689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CNTNAP2, one of the largest genes in the human genome, has been linked to human-specific language abilities and neurodevelopmental disorders. Our hypothesis is that epigenetic rather than genetic changes have accelerated the evolution of the human brain. To compare the cortex DNA methylation patterns of human and chimpanzee CNTNAP2 at ultra-high resolution, we combined methylated DNA immunoprecipitation (MeDIP) with NimbleGen tiling arrays for the orthologous gene and flanking sequences. Approximately 1.59 Mb of the 2.51 Mb target region could be aligned and analyzed with a customized algorithm in both species. More than one fifth (0.34 Mb) of the analyzed sequence throughout the entire gene displayed significant methylation differences between six human and five chimpanzee cortices. One of the most striking interspecies differences with 28% methylation in human and 59% in chimpanzee cortex (by bisulfite pyrosequencing) lies in a region 300 bp upstream of human SNP rs7794745 which has been associated with autism and parent-of-origin effects. Quantitative real-time RT PCR revealed that the protein-coding splice variant CNTNAP2-201 is 1.6-fold upregulated in human cortex, compared with the chimpanzee. Transcripts CNTNAP2-001, -002, and -003 did not show skewed allelic expression, which argues against CNTNAP2 imprinting, at least in adult human brain. Collectively, our results suggest widespread cortex DNA methylation changes in CNTNAP2 since the human-chimpanzee split, supporting a role for CNTNAP2 fine-regulation in human-specific language and communication traits.
Collapse
Affiliation(s)
- Eberhard Schneider
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| | - Nady El Hajj
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| | - Steven Richter
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| | | | - Indrajit Nanda
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| | - Werner Schempp
- Institute for Human Genetics; University of Freiburg; Freiburg, Germany
| | - Peter Riederer
- Clinical Neurochemistry Laboratory; Department of Psychiatry; University Hospital; Würzburg, Germany
| | - Bianca Navarro
- Institute of Legal Medicine; University Medical Center; Mainz, Germany
| | | | - Ivanela Kondova
- Biomedical Primate Research Center; Rijswijk, The Netherlands
| | - Claus Jürgen Scholz
- Laboratory for Microarray Applications; IZKF; Julius Maximilians University; Würzburg, Germany
| | - Thomas Haaf
- Institute for Human Genetics; Julius Maximilian University; Würzburg, Germany
| |
Collapse
|
192
|
Genome-wide gene expression effects of sex chromosome imprinting in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:1-10. [PMID: 24318925 PMCID: PMC3887524 DOI: 10.1534/g3.113.008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Imprinting is well-documented in both plant and animal species. In Drosophila, the Y chromosome is differently modified when transmitted through the male and female germlines. Here, we report genome-wide gene expression effects resulting from reversed parent-of-origin of the X and Y chromosomes. We found that hundreds of genes are differentially expressed between adult male Drosophila melanogaster that differ in the maternal and paternal origin of the sex chromosomes. Many of the differentially regulated genes are expressed specifically in testis and midgut cells, suggesting that sex chromosome imprinting might globally impact gene expression in these tissues. In contrast, we observed much fewer Y-linked parent-of-origin effects on genome-wide gene expression in females carrying a Y chromosome, indicating that gene expression in females is less sensitive to sex chromosome parent-of-origin. Genes whose expression differs between females inheriting a maternal or paternal Y chromosome also show sex chromosome parent-of-origin effects in males, but the direction of the effects on gene expression (overexpression or underexpression) differ between the sexes. We suggest that passage of sex chromosome chromatin through male meiosis may be required for wild-type function in F1 progeny, whereas disruption of Y-chromosome function through passage in the female germline likely arises because the chromosome is not adapted to the female germline environment.
Collapse
|
193
|
Abstract
Transcriptome studies have revealed a surprisingly high level of variation among individuals in expression of key genes in the CNS under both normal and experimental conditions. Ten-fold variation is common, yet the specific causes and consequences of this variation are largely unknown. By combining classic gene mapping methods-family linkage studies and genomewide association-with high-throughput genomics, it is now possible to define quantitative trait loci (QTLs), single-gene variants, and even single SNPs and indels that control gene expression in different brain regions and cells. This review considers some of the major technical and conceptual challenges in analyzing variation in expression in the CNS with a focus on mRNAs, rather than noncoding RNAs or proteins. At one level of analysis, this work has been highly successful, and we finally have techniques that can be used to track down small numbers of loci that control expression in the CNS. But at a higher level of analysis, we still do not understand the genetic architecture of gene expression in brain, the consequences of expression QTLs on protein levels or on cell function, or the combined impact of expression differences on behavior and disease risk. These important gaps are likely to be bridged over the next several decades using (1) much larger sample sizes, (2) more powerful RNA sequencing and proteomic methods, and (3) novel statistical and computational models to predict genome-to-phenome relations.
Collapse
Affiliation(s)
- Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.
| |
Collapse
|
194
|
Luo A, Shi C, Zhang L, Sun MX. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. FRONTIERS IN PLANT SCIENCE 2014; 5:729. [PMID: 25566300 PMCID: PMC4267172 DOI: 10.3389/fpls.2014.00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/01/2014] [Indexed: 05/03/2023]
Abstract
Uniparental transcripts during embryogenesis may arise due to gamete delivery during fertilization or genomic imprinting. Such transcripts have been found in a number of plant species and appear critical for the early development of embryo or endosperm in seeds. Although the regulatory expression mechanism and function of these genes in embryogenesis require further elucidation, recent studies suggest stage-specific and highly dynamic features that might be essential for critical developmental events such as zygotic division and cell fate determination during embryogenesis. Here, we summarize the current work in this field and discuss future research directions.
Collapse
Affiliation(s)
- An Luo
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- College of Life Sciences, Yangtze UniversityJingzhou, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- *Correspondence: Meng-Xiang Sun, State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China e-mail:
| |
Collapse
|
195
|
Sittig LJ, Redei EE. Fine-tuning notes in the behavioral symphony: parent-of-origin allelic gene expression in the brain. ADVANCES IN GENETICS 2014; 86:93-106. [PMID: 25172347 DOI: 10.1016/b978-0-12-800222-3.00005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gene encoding the thyroid hormone (TH)-metabolizing enzyme, deiodinase type III (Dio3), exhibits a preferential paternal expression in most tissues. Dio3 is part of the Dlk1-Dio3 imprinted locus, so named according to its ancestral genes, Delta-like homolog 1 (Dlk1) and Dio3, which among other important functions control metabolic programming in the developing embryo and fetus. Here, we describe the aspects of the genomic imprinting patterns exhibited by Dio3 across brain regions and development. The corresponding local changes in the dosage of the Dio3 enzyme are inversely related to TH levels that vary from one brain region to another, and affect social and cognitive behaviors. We show that this regional tuning of brain region-specific expression is dependent on parent of origin-specific genetic polymorphisms in the rat, is sexually dimorphic, and is affected by the early environmental challenge of fetal exposure to alcohol, opening the possibility that the potential for variant expression patterns of the Dio3 gene is quite large. The multiple regulatory genomic features within the Dlk1-Dio3 locus, and other imprinted loci, allow mammals to specifically modulate parent-of-origin allelic gene expression brain region. These regulatory structures seem to have evolved as a possible mechanism of adaptation in response to the simultaneous need for highly regulated expression in some tissues during development, but variable expression across specific regions of the brain over the complete life span. Here, we use Dio3 as a single gene example of the epigenetic parent-of-origin allelic expression in specific brain regions and discuss the potential of this general phenomenon to shape evolutionarily relevant social and cognitive behavior in eutherian mammals.
Collapse
Affiliation(s)
- Laura J Sittig
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Eva E Redei
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
196
|
Weaver ICG. Integrating early life experience, gene expression, brain development, and emergent phenotypes: unraveling the thread of nature via nurture. ADVANCES IN GENETICS 2014; 86:277-307. [PMID: 25172353 DOI: 10.1016/b978-0-12-800222-3.00011-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adaptation to environmental changes is based on the perpetual generation of new phenotypes. Modern biology has focused on the role of epigenetic mechanisms in facilitating the adaptation of organisms to changing environments through alterations in gene expression. Inherited and/or acquired epigenetic factors are relatively stable and have regulatory roles in numerous genomic activities that translate into phenotypic outcomes. Evidence that dietary and pharmacological interventions have the potential to reverse environment-induced modification of epigenetic states (e.g., early life experience, nutrition, medication, infection) has provided an additional stimulus for understanding the biological basis of individual differences in cognitive abilities and disorders of the brain. It has been suggested that accurate quantification of the relative contribution of heritable genetic and epigenetic variation is essential for understanding phenotypic divergence and adaptation in changing environments, a process requiring stable modulation of gene expression. The main challenge for epigenetics in psychology and psychiatry is to determine how experiences and environmental cues, including the nature of our nurture, influence the expression of neuronal genes to produce long-term individual differences in behavior, cognition, personality, and mental health. To this end, focusing on DNA and histone modifications and their initiators, mediators and readers may provide new inroads for understanding the molecular basis of phenotypic plasticity and disorders of the brain. In this chapter, we review recent discoveries highlighting epigenetic aspects of normal brain development and mental illness, as well as discuss some future directions in the field of behavioral epigenetics.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
197
|
Hitzemann R, Bottomly D, Iancu O, Buck K, Wilmot B, Mooney M, Searles R, Zheng C, Belknap J, Crabbe J, McWeeney S. The genetics of gene expression in complex mouse crosses as a tool to study the molecular underpinnings of behavior traits. Mamm Genome 2013; 25:12-22. [PMID: 24374554 PMCID: PMC3916704 DOI: 10.1007/s00335-013-9495-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023]
Abstract
Complex Mus musculus crosses provide increased resolution to examine the relationships between gene expression and behavior. While the advantages are clear, there are numerous analytical and technological concerns that arise from the increased genetic complexity that must be considered. Each of these issues is discussed, providing an initial framework for complex cross study design and planning.
Collapse
Affiliation(s)
- Robert Hitzemann
- Portland Alcohol Research Center, Veterans Affairs Medical Center, Portland, 97239, OR, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Dosage-sensitivity of imprinted genes expressed in the brain: 15q11-q13 and neuropsychiatric illness. Biochem Soc Trans 2013; 41:721-6. [PMID: 23697931 DOI: 10.1042/bst20130008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Imprinted genes, those genes subject to parent-of-origin-specific epigenetic marking resulting in monoallelic parent-specific expression, are sensitive to subtle changes in expression dosage. This has been illustrated in a number of experimental models and the fact that both decreased (or complete loss) and increased imprinted gene expression can lead to human diseases. In the present paper, we discuss the consequence of increased dosage of imprinted genes for brain function, focusing on the PWS (Prader-Willi syndrome) locus on human chromosome 15q11-q13 and how predicted increases in dosage of maternally expressed imprinted genes from this interval are associated with a higher risk of developing psychotic illness. The evidence for this comes from individuals with PWS itself and also non-syndromic cases of psychosis in carriers of a maternally derived copy number variant spanning this locus. Of the known imprinted genes in this region, the prime candidate is maternally expressed UBE3A, which encodes E6-AP (E6-associated protein) ubiquitin ligase and has an influence on a number of important neurotransmitter systems. Furthermore, these findings point to the fact that brain function is exquisitely sensitive to both decreases and increases in the expression of imprinted genes.
Collapse
|
199
|
Abstract
Over the past 25 years, the broad field of epigenetics and, over the past decade in particular, the emerging field of neuroepigenetics have begun to have tremendous impact in the areas of learned behavior, neurotoxicology, CNS development, cognition, addiction, and psychopathology. However, epigenetics is such a new field that in most of these areas the impact is more in the category of fascinating implications as opposed to established facts. In this brief commentary, I will attempt to address and delineate some of the open questions and areas of opportunity that discoveries in epigenetics are providing to the discipline of neuroscience.
Collapse
|
200
|
Zhang Z, Huang S, Wang J, Zhang X, Pardo Manuel de Villena F, McMillan L, Wang W. GeneScissors: a comprehensive approach to detecting and correcting spurious transcriptome inference owing to RNA-seq reads misalignment. Bioinformatics 2013; 29:i291-9. [PMID: 23812996 PMCID: PMC3694649 DOI: 10.1093/bioinformatics/btt216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION RNA-seq techniques provide an unparalleled means for exploring a transcriptome with deep coverage and base pair level resolution. Various analysis tools have been developed to align and assemble RNA-seq data, such as the widely used TopHat/Cufflinks pipeline. A common observation is that a sizable fraction of the fragments/reads align to multiple locations of the genome. These multiple alignments pose substantial challenges to existing RNA-seq analysis tools. Inappropriate treatment may result in reporting spurious expressed genes (false positives) and missing the real expressed genes (false negatives). Such errors impact the subsequent analysis, such as differential expression analysis. In our study, we observe that ~3.5% of transcripts reported by TopHat/Cufflinks pipeline correspond to annotated nonfunctional pseudogenes. Moreover, ~10.0% of reported transcripts are not annotated in the Ensembl database. These genes could be either novel expressed genes or false discoveries. RESULTS We examine the underlying genomic features that lead to multiple alignments and investigate how they generate systematic errors in RNA-seq analysis. We develop a general tool, GeneScissors, which exploits machine learning techniques guided by biological knowledge to detect and correct spurious transcriptome inference by existing RNA-seq analysis methods. In our simulated study, GeneScissors can predict spurious transcriptome calls owing to misalignment with an accuracy close to 90%. It provides substantial improvement over the widely used TopHat/Cufflinks or MapSplice/Cufflinks pipelines in both precision and F-measurement. On real data, GeneScissors reports 53.6% less pseudogenes and 0.97% more expressed and annotated transcripts, when compared with the TopHat/Cufflinks pipeline. In addition, among the 10.0% unannotated transcripts reported by TopHat/Cufflinks, GeneScissors finds that >16.3% of them are false positives. AVAILABILITY The software can be downloaded at http://csbio.unc.edu/genescissors/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhaojun Zhang
- Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|