151
|
Gabbett MT, Jeavons CJ, Gray PH. Severe hypertension-An infantile feature of Jansen metaphyseal chondrodysplasia? Am J Med Genet A 2020; 182:768-772. [PMID: 31977144 DOI: 10.1002/ajmg.a.61494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 11/10/2022]
Abstract
Jansen metaphyseal chondrodysplasia (JMC) is a rare autosomal dominant skeletal dysplasia caused by gain-of-function mutations in the parathyroid hormone receptor 1 gene, PTH1R. We report on a patient presenting in the neonatal period with clinical signs of JMC in addition to severe hypertension. A pathogenic mutation in PTH1R was demonstrated, but investigations for hypertension yielded normal results. Hypertension has not been previously associated with JMC. Given aberration of the parathyroid hormone (PTH)/parathyroid-related protein pathway is the underlying pathogenic mechanism attributed to JMC, and also given evidence that hyperparathyroidism plays an important role in blood pressure homeostasis, we propose that hypertension is a hitherto unrecognized feature of JMC.
Collapse
Affiliation(s)
- Michael T Gabbett
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Genetic Health Queensland, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
| | - Cassandra J Jeavons
- Genetic Health Queensland, Metro North Hospital and Health Service, Brisbane, Queensland, Australia.,Department of Medical Imaging, Children's Health Queensland, Brisbane, Queensland, Australia
| | - Peter H Gray
- Newborn Services, Mater Health Services, Brisbane, Queensland, Australia.,Mater Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
152
|
Regulation of the Extracellular Matrix by Ciliary Machinery. Cells 2020; 9:cells9020278. [PMID: 31979260 PMCID: PMC7072529 DOI: 10.3390/cells9020278] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
The primary cilium is an organelle involved in cellular signalling. Mutations affecting proteins involved in cilia assembly or function result in diseases known as ciliopathies, which cause a wide variety of phenotypes across multiple tissues. These mutations disrupt various cellular processes, including regulation of the extracellular matrix. The matrix is important for maintaining tissue homeostasis through influencing cell behaviour and providing structural support; therefore, the matrix changes observed in ciliopathies have been implicated in the pathogenesis of these diseases. Whilst many studies have associated the cilium with processes that regulate the matrix, exactly how these matrix changes arise is not well characterised. This review aims to bring together the direct and indirect evidence for ciliary regulation of matrix, in order to summarise the possible mechanisms by which the ciliary machinery could regulate the composition, secretion, remodelling and organisation of the matrix.
Collapse
|
153
|
Secreted tyrosine kinase Vlk negatively regulates Hedgehog signaling by inducing lysosomal degradation of Smoothened. Biochem J 2020; 477:121-136. [PMID: 31845979 DOI: 10.1042/bcj20190784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022]
Abstract
Vlk is a secreted tyrosine kinase that plays crucial roles during vertebrate embryonic development including skeletal formation. Genetic studies suggest that Vlk can modulate the Hedgehog signaling pathway during skeletal development. Despite its potential roles as an extracellular regulator of signaling pathways, little is known regarding the molecular functions of Vlk. Here we show that Vlk can negatively regulate the Hedgehog signaling pathway. We found that Vlk can induce lysosomal degradation of Smoothened, a crucial transmembrane signal transducer of the Hedgehog pathway, through the interaction with the extracellular domain of Smoothened (Smo-ECD). In addition, we observed that Vlk can attenuate Hedgehog signaling-induced ciliary localization of Smoothened. Furthermore, Vlk-mediated suppression of Hedgehog signaling can be diminished by tyrosine-to-phenylalanine substitutions in Smo-ECD. Taken together, these results suggest that Vlk may function as a signaling regulator in extracellular space to modulate the Hedgehog pathway.
Collapse
|
154
|
Gao Y, Gui F, Li D, Zhang R, Sun Q, Guo X. Fluoride regulates the expression of extracellular matrix HSPG and related signaling pathways FGFR3 and Ihh/PTHrP feedback loop during endochondral ossification. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103275. [PMID: 31731208 DOI: 10.1016/j.etap.2019.103275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Skeletal fluorosis causes growth plate impairment and growth retardation during bone development. Longitudinal bone development is accomplished by endochondral ossification in growth plate. However, the mechanism of fluoride impairs growth plate is unclear. To explore the effect of fluoride on various glycosaminoglycans (GAGs) and related signaling pathways in growth plate during endochondral ossification, SD rats and ATDC5 cells were treated with fluoride and carried out a series of experiments. We found that the expression of heparan sulfate (HS), a kind of GAGs in extracellular matrix, was significantly increased in the growth plate of fluoride-treated rats compared with control rats. Furthermore, the expression of HS synthetic enzyme exostosin 1 (EXT1) and glypican 6 (GPC6), a core protein of HS proteoglycan (HSPG), were significantly increased in fluoride-treated ATDC5 cells compared with control cells (P < 0.05). The expression of related molecules including fibroblast growth factor receptor-3 (FGFR3), signal transducer and activator of transcription 1 (STAT1) and parathyroid hormone-related protein (PTHrP) were significantly increased in the fluoride-treated groups compared with control groups (P < 0.05), and there was significantly decreased in the expression of Indian hedgehog (Ihh) in fluoride-treated groups compared with control groups (P < 0.05). Our data suggested that fluoride increased the content of HSPG in extracellular matrix by promoting the expression of EXT1 and GPC6. Fluoride also activated FGFR3 signaling pathway, inhibited Ihh/PTHrP feedback loop and inhibited endochondral ossification. Nevertheless, the regulation of fluoride on HSPG and related pathways FGFR3 and Ihh/PTHrP feedback loop during endochondral ossification needs to be further studied.
Collapse
Affiliation(s)
- Ying Gao
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Fangzhong Gui
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Demin Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Ruixue Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Qinyuan Sun
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Xiaoying Guo
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
155
|
Abstract
Parathyroid hormone (PTH), PTH-related peptide (PTHrP), PTHR, and their cognate G protein-coupled receptor play defining roles in the regulation of extracellular calcium and phosphate metabolism and in controlling skeletal growth and repair. Acting through complex signaling mechanisms that in many instances proceed in a tissue-specific manner, precise control of these processes is achieved. A variety of direct and indirect disease processes, along with genetic anomalies, can cause these schemes to become dysfunctional. Here, we review the basic components of this regulatory network and present both the well-established elements and emerging findings and concepts with the overall objective to provide a framework for understanding the elementary aspects of how PTH and PTHrP behave and as a call to encourage further investigation that will yield more comprehensive understanding of the physiological and pathological steps at play, with a goal toward novel therapeutic interventions.
Collapse
|
156
|
Wuelling M, Schneider S, Schröther VA, Waterkamp C, Hoffmann D, Vortkamp A. Wnt5a is a transcriptional target of Gli3 and Trps1 at the onset of chondrocyte hypertrophy. Dev Biol 2020; 457:104-118. [DOI: 10.1016/j.ydbio.2019.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 11/29/2022]
|
157
|
Zheng L, Rui C, Zhang H, Chen J, Jia X, Xiao Y. Sonic hedgehog signaling in epithelial tissue development. Regen Med Res 2019; 7:3. [PMID: 31898580 PMCID: PMC6941452 DOI: 10.1051/rmr/190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
The Sonic hedgehog (SHH) signaling pathway is essential for embryonic development and tissue regeneration. The dysfunction of SHH pathway is involved in a variety of diseases, including cancer, birth defects, and other diseases. Here we reviewed recent studies on main molecules involved in the SHH signaling pathway, specifically focused on their function in epithelial tissue and appendages development, including epidermis, touch dome, hair, sebaceous gland, mammary gland, tooth, nail, gastric epithelium, and intestinal epithelium. The advance in understanding the SHH signaling pathway will give us more clues to the mechanisms of tissue repair and regeneration, as well as the development of new treatment for diseases related to dysregulation of SHH signaling pathway.
Collapse
Affiliation(s)
- Lu Zheng
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Chen Rui
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Hao Zhang
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Jing Chen
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Xiuzhi Jia
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| | - Ying Xiao
-
Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University Hangzhou PR China
| |
Collapse
|
158
|
Chen D, Kim DJ, Shen J, Zou Z, O'Keefe RJ. Runx2 plays a central role in Osteoarthritis development. J Orthop Translat 2019; 23:132-139. [PMID: 32913706 PMCID: PMC7452174 DOI: 10.1016/j.jot.2019.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, is the leading cause of impaired mobility in the elderly, and accounts for more than a third of chronic moderate to severe pain. As a degenerative joint disorder, OA affects the whole joint and results in synovial hyperplasia, degradation of articular cartilage, subchondral sclerosis, osteophyte formation, and chronic pain. Currently, there is no effective drug to decelerate OA progression and molecular targets for drug development have been insufficiently investigated. Anti-OA drug development can benefit from more and precise knowledge of molecular targets for drug development. Runt-related transcription factor 2 (Runx2) is a key transcription factor controlling osteoblast and chondrocyte differentiation and is among the most promising potential therapeutic targets. Notably, Runx2 expression is upregulated in several murine OA models, suggesting a role in disease pathogenesis. In this review article, we summarized recent findings on Runx2 related to OA development and evaluated its potential as a therapeutic target. The translational potential of this article A better understanding of the role of Runx2 in osteoarthritis pathogenesis will contribute to the development of novel intervention of osteoarthritis disease.
Collapse
Affiliation(s)
- Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongyeon J Kim
- Department of Orthopedic Surgery, Washington University at St. Louis, MO, USA
| | - Jie Shen
- Department of Orthopedic Surgery, Washington University at St. Louis, MO, USA
| | - Zhen Zou
- Department of Orthopedic Surgery, Washington University at St. Louis, MO, USA
| | - Regis J O'Keefe
- Department of Orthopedic Surgery, Washington University at St. Louis, MO, USA
| |
Collapse
|
159
|
The Roles of Indian Hedgehog Signaling in TMJ Formation. Int J Mol Sci 2019; 20:ijms20246300. [PMID: 31847127 PMCID: PMC6941023 DOI: 10.3390/ijms20246300] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 01/15/2023] Open
Abstract
The temporomandibular joint (TMJ) is an intricate structure composed of the mandibular condyle, articular disc, and glenoid fossa in the temporal bone. Apical condylar cartilage is classified as a secondary cartilage, is fibrocartilaginous in nature, and is structurally distinct from growth plate and articular cartilage in long bones. Condylar cartilage is organized in distinct cellular layers that include a superficial layer that produces lubricants, a polymorphic/progenitor layer that contains stem/progenitor cells, and underlying layers of flattened and hypertrophic chondrocytes. Uniquely, progenitor cells reside near the articular surface, proliferate, undergo chondrogenesis, and mature into hypertrophic chondrocytes. During the past decades, there has been a growing interest in the molecular mechanisms by which the TMJ develops and acquires its unique structural and functional features. Indian hedgehog (Ihh), which regulates skeletal development including synovial joint formation, also plays pivotal roles in TMJ development and postnatal maintenance. This review provides a description of the many important recent advances in Hedgehog (Hh) signaling in TMJ biology. These include studies that used conventional approaches and those that analyzed the phenotype of tissue-specific mouse mutants lacking Ihh or associated molecules. The recent advances in understanding the molecular mechanism regulating TMJ development are impressive and these findings will have major implications for future translational medicine tools to repair and regenerate TMJ congenital anomalies and acquired diseases, such as degenerative damage in TMJ osteoarthritic conditions.
Collapse
|
160
|
Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy 2019; 21:1179-1197. [DOI: 10.1016/j.jcyt.2019.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023]
|
161
|
Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond. Int J Mol Sci 2019; 20:ijms20236009. [PMID: 31795305 PMCID: PMC6929081 DOI: 10.3390/ijms20236009] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/01/2023] Open
Abstract
Growth plate chondrocytes play central roles in the proper development and growth of endochondral bones. Particularly, a population of chondrocytes in the resting zone expressing parathyroid hormone-related protein (PTHrP) is now recognized as skeletal stem cells, defined by their ability to undergo self-renewal and clonally give rise to columnar chondrocytes in the postnatal growth plate. These chondrocytes also possess the ability to differentiate into a multitude of cell types including osteoblasts and bone marrow stromal cells during skeletal development. Using single-cell transcriptomic approaches and in vivo lineage tracing technology, it is now possible to further elucidate their molecular properties and cellular fate changes. By discovering the fundamental molecular characteristics of these cells, it may be possible to harness their functional characteristics for skeletal growth and regeneration. Here, we discuss our current understanding of the molecular signatures defining growth plate chondrocytes.
Collapse
|
162
|
Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate. Int J Mol Sci 2019; 20:ijms20235840. [PMID: 31757091 PMCID: PMC6928971 DOI: 10.3390/ijms20235840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the “growth plate”, is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances.
Collapse
|
163
|
Diederichs S, Klampfleuthner FAM, Moradi B, Richter W. Chondral Differentiation of Induced Pluripotent Stem Cells Without Progression Into the Endochondral Pathway. Front Cell Dev Biol 2019; 7:270. [PMID: 31737632 PMCID: PMC6838640 DOI: 10.3389/fcell.2019.00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
A major problem with chondrocytes derived in vitro from stem cells is undesired hypertrophic degeneration, to which articular chondrocytes (ACs) are resistant. As progenitors of all adult tissues, induced pluripotent stem cells (iPSCs) are in theory able to form stable articular cartilage. In vitro differentiation of iPSCs into chondrocytes with an AC-phenotype and resistance to hypertrophy has not been demonstrated so far. Here, we present a novel protocol that succeeded in deriving chondrocytes from human iPSCs without using pro-hypertrophic bone-morphogenetic-proteins. IPSC-chondrocytes had a high cartilage formation capacity and deposited two-fold more proteoglycans per cell than adult ACs. Importantly, cartilage engineered from iPSC-chondrocytes had similar marginal expression of hypertrophic markers (COL10A1, PTH1R, IBSP, ALPL mRNAs) like cartilage from ACs. Collagen X was barely detectable in iPSC-cartilage and 30-fold lower than in hypertrophic cartilage derived from mesenchymal stromal cells (MSCs). Moreover, alkaline phosphatase (ALP) activity remained at basal AC-like levels throughout iPSC chondrogenesis, in contrast to a well-known significant upregulation in hypertrophic MSCs. In line, iPSC-cartilage subjected to mineralizing conditions in vitro showed barely any mineralization, while MSC-derived hypertrophic cartilage mineralized strongly. Low expression of Indian hedgehog (IHH) like in ACs but rising BMP7 expression like in MSCs suggested that phenotype stability was linked to the hedgehog rather than the bone morphogenetic protein (BMP) pathway. Taken together, unlimited amounts of AC-like chondrocytes with a high proteoglycan production reminiscent of juvenile chondrocytes and resistance to hypertrophy and mineralization can now be produced from human iPSCs in vitro. This opens new strategies for cartilage regeneration, disease modeling and pharmacological studies.
Collapse
Affiliation(s)
- Solvig Diederichs
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felicia A M Klampfleuthner
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Babak Moradi
- Clinic for Orthopaedics and Trauma Surgery, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Center for Orthopaedics, Trauma Surgery and Paraplegiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
164
|
Marín-Llera JC, Garciadiego-Cázares D, Chimal-Monroy J. Understanding the Cellular and Molecular Mechanisms That Control Early Cell Fate Decisions During Appendicular Skeletogenesis. Front Genet 2019; 10:977. [PMID: 31681419 PMCID: PMC6797607 DOI: 10.3389/fgene.2019.00977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/13/2019] [Indexed: 12/02/2022] Open
Abstract
The formation of the vertebrate skeleton is orchestrated in time and space by a number of gene regulatory networks that specify and position all skeletal tissues. During embryonic development, bones have two distinct origins: bone tissue differentiates directly from mesenchymal progenitors, whereas most long bones arise from cartilaginous templates through a process known as endochondral ossification. Before endochondral bone development takes place, chondrocytes form a cartilage analgen that will be sequentially segmented to form joints; thus, in the cartilage template, either the cartilage maturation programme or the joint formation programme is activated. Once the cartilage differentiation programme starts, the growth plate begins to form. In contrast, when the joint formation programme is activated, a capsule begins to form that contains special articular cartilage and synovium to generate a functional joint. In this review, we will discuss the mechanisms controlling the earliest molecular events that regulate cell fate during skeletogenesis in long bones. We will explore the initial processes that lead to the recruitment of mesenchymal stem/progenitor cells, the commitment of chondrocyte lineages, and the formation of skeletal elements during morphogenesis. Thereafter, we will review the process of joint specification and joint morphogenesis. We will discuss the links between transcription factor activity, cell–cell interactions, cell–extracellular matrix interactions, growth factor signalling, and other molecular interactions that control mesenchymal stem/progenitor cell fate during embryonic skeletogenesis.
Collapse
Affiliation(s)
- Jessica Cristina Marín-Llera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | | | - Jesús Chimal-Monroy
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
165
|
Kurakazu I, Akasaki Y, Hayashida M, Tsushima H, Goto N, Sueishi T, Toya M, Kuwahara M, Okazaki K, Duffy T, Lotz MK, Nakashima Y. FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor β1 signaling. J Biol Chem 2019; 294:17555-17569. [PMID: 31601652 DOI: 10.1074/jbc.ra119.009409] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/06/2019] [Indexed: 11/06/2022] Open
Abstract
The forkhead box O (FOXO) proteins are transcription factors involved in the differentiation of many cell types. Type II collagen (Col2) Cre-Foxo1-knockout and Col2-Cre-Foxo1,3,4 triple-knockout mice exhibit growth plate malformation. Moreover, recent studies have reported that in some cells, the expressions and activities of FOXOs are promoted by transforming growth factor β1 (TGFβ1), a growth factor playing a key role in chondrogenic differentiation. Here, using a murine chondrogenic cell line (ATDC5), mouse embryos, and human mesenchymal stem cells, we report the mechanisms by which FOXOs affect chondrogenic differentiation. FOXO1 expression increased along with chondrogenic differentiation, and FOXO1 inhibition suppressed chondrogenic differentiation. TGFβ1/SMAD signaling promoted expression and activity of FOXO1. In ATDC5, FOXO1 knockdown suppressed expression of sex-determining region Y box 9 (Sox9), a master regulator of chondrogenic differentiation, resulting in decreased collagen type II α1 (Col2a1) and aggrecan (Acan) expression after TGFβ1 treatment. On the other hand, chemical FOXO1 inhibition suppressed Col2a1 and Acan expression without suppressing Sox9 To investigate the effects of FOXO1 on chondrogenic differentiation independently of SOX9, we examined FOXO1's effects on the cell cycle. FOXO1 inhibition suppressed expression of p21 and cell-cycle arrest in G0/G1 phase. Conversely, FOXO1 overexpression promoted expression of p21 and cell-cycle arrest. FOXO1 inhibition suppressed expression of nascent p21 RNA by TGFβ1, and FOXO1 bound the p21 promoter. p21 inhibition suppressed expression of Col2a1 and Acan during chondrogenic differentiation. These results suggest that FOXO1 is necessary for not only SOX9 expression, but also cell-cycle arrest during chondrogenic differentiation via TGFβ1 signaling.
Collapse
Affiliation(s)
- Ichiro Kurakazu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Yukio Akasaki
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Mitsumasa Hayashida
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Hidetoshi Tsushima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Norio Goto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Takuya Sueishi
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Masanari Kuwahara
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Tomas Duffy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Martin K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| |
Collapse
|
166
|
Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Abaloparatide exhibits greater osteoanabolic response and higher cAMP stimulation and β-arrestin recruitment than teriparatide. Physiol Rep 2019; 7:e14225. [PMID: 31565870 PMCID: PMC6766518 DOI: 10.14814/phy2.14225] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/26/2022] Open
Abstract
Teriparatide and abaloparatide are parathyroid hormone receptor 1 (PTHR1) analogs with unexplained differential efficacy for the treatment of osteoporosis. Therefore, we compared the effects of abaloparatide and teriparatide on bone structure, turnover, and levels of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG). Wild-type (WT) female mice were injected daily with vehicle or 20-80 µg/kg/day of teriparatide or abaloparatide for 30 days. Femurs and spines were examined by microcomputed tomography scanning and serum levels of bone turnover markers, RANKL, and OPG, were measured by ELISA. Both analogs similarly increased the distal femoral fractional trabecular bone volume, connectivity, and number, and reduced the structure model index (SMI) at 20-80 µg/kg/day doses. However, only abaloparatide exhibited a significant increase (13%) in trabecular thickness at 20 µg/kg/day dose. Femoral cortical evaluation showed that abaloparatide caused a greater dose-dependent increase in cortical thickness than teriparatide. Both teriparatide and abaloparatide increased lumbar 5 vertebral trabecular connectivity but had no or modest effect on other indices. Biochemical analysis demonstrated that abaloparatide promoted greater elevation of procollagen type 1 intact N-terminal propeptide, a bone formation marker, and tartrate-resistant acid phosphatase 5b levels, a bone resorption marker, and lowered the RANKL/OPG ratio. Furthermore, PTHR1 signaling was compared in cells treated with 0-100 nmol/L analog. Interestingly, abaloparatide had a markedly lower EC50 for cAMP formation (2.3-fold) and β-arrestin recruitment (1.6-fold) than teriparatide. Therefore, abaloparatide-improved efficacy can be attributed to enhanced bone formation and cortical structure, reduced RANKL/OPG ratio, and amplified Gs-cAMP and β-arrestin signaling.
Collapse
Affiliation(s)
- Karim Sahbani
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
| | - Christopher P. Cardozo
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Rehabilitation MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
- Department of Pharmacologic ScienceThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - William A. Bauman
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| | - Hesham A. Tawfeek
- National Center for the Medical Consequences of Spinal Cord InjuryJames J. Peters Veterans Affairs Medical CenterBronxNew York
- Department of MedicineThe Icahn School of Medicine at Mount SinaiNew YorkNew York
| |
Collapse
|
167
|
Diederichs S, Tonnier V, März M, Dreher SI, Geisbüsch A, Richter W. Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy. Cell Mol Life Sci 2019; 76:3875-3889. [PMID: 30980110 PMCID: PMC11105731 DOI: 10.1007/s00018-019-03099-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Re-directing mesenchymal stromal cell (MSC) chondrogenesis towards a non-hypertrophic articular chondrocyte-(AC)-like phenotype is important for improving articular cartilage neogenesis to enhance clinical cartilage repair strategies. This study is the first to demonstrate that high levels of non-canonical WNT5A followed by WNT11 and LEF1 discriminated MSC chondrogenesis from AC re-differentiation. Moreover, β-catenin seemed incompletely silenced in differentiating MSCs, which altogether suggested a role for WNT signaling in hypertrophic MSC differentiation. WNT inhibition with the small molecule IWP-2 supported MSC chondrogenesis according to elevated proteoglycan deposition and reduced the characteristic upregulation of BMP4, BMP7 and their target ID1, as well as IHH and its target GLI1 observed during endochondral differentiation. Along with the pro-hypertrophic transcription factor MEF2C, multiple hypertrophic downstream targets including IBSP and alkaline phosphatase activity were reduced by IWP-2, demonstrating that WNT activity drives BMP and hedgehog upregulation, and MSC hypertrophy. WNT inhibition almost matched the strong anti-hypertrophic capacity of pulsed parathyroid hormone-related protein application, and both outperformed suppression of BMP signaling with dorsomorphin, which also reduced cartilage matrix deposition. Yet, hypertrophic marker expression under IWP-2 remained above AC level, and in vivo mineralization and ectopic bone formation were reduced but not eliminated. Overall, the strong anti-hypertrophic effects of IWP-2 involved inhibition but not silencing of pro-hypertrophic BMP and IHH pathways, and more advanced silencing of WNT activity as well as combined application of IHH or BMP antagonists should next be considered to install articular cartilage neogenesis from human MSCs.
Collapse
Affiliation(s)
- Solvig Diederichs
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Veronika Tonnier
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie März
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon I Dreher
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Geisbüsch
- Clinic for Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
168
|
Huang MJ, Zhao JY, Xu JJ, Li J, Zhuang YF, Zhang XL. lncRNA ADAMTS9-AS2 Controls Human Mesenchymal Stem Cell Chondrogenic Differentiation and Functions as a ceRNA. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:533-545. [PMID: 31671346 PMCID: PMC6838486 DOI: 10.1016/j.omtn.2019.08.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators of cell differentiation and development. However, potential roles for lncRNAs in chondrogenic differentiation have remained poorly understood. Here we identify lncRNA ADAMTS9 antisense RNA 2, ADAMTS9-AS2, which controls the chondrogenic differentiation by acting as a competing endogenous RNA (ceRNA) in human mesenchymal stem cells (hMSCs). We screen out ADAMTS9-AS2 of undifferentiated and differentiated cells during chondrogenic differentiation by microarrays. Suppression or overexpression of lncRNA ADAMTS9-AS2 correlates with inhibition and promotion of hMSC chondrogenic differentiation, respectively. We find that ADAMTS9-AS2 can sponge miR-942-5p to regulate the expression of Scrg1, a transcription factor promoting chondrogenic gene expression. Finally, we confirm the function of ADAMTS9-AS2 to cartilage repair in the absence of transforming growth factor β (TGF-β) in vivo. In conclusion, ADAMTS9-AS2 plays an important role in chondrogenic differentiation as a ceRNA, so that it can be regarded as a therapy target for cartilage repair.
Collapse
Affiliation(s)
- Ming-Jian Huang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jing-Yu Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jia-Jia Xu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Jing Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Yi-Fu Zhuang
- Department of Orthopedic Surgery, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 201999, China
| | - Xiao-Ling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
169
|
Berent TE, Dorschner JM, Craig TA, Drake MT, Westendorf JJ, Kumar R. Lung tumor cells inhibit bone mineralization and osteoblast activity. Biochem Biophys Res Commun 2019; 519:566-571. [PMID: 31537378 DOI: 10.1016/j.bbrc.2019.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
Abstract
Patients with non-small cell lung cancer (NSLC) often develop skeletal complications and fractures. To understand mechanisms of bone loss, we developed a murine model of non-metastatic NSLC. Decreased bone mineral density, trabecular thickness and mineralization, without an increase in bone resorption, were observed in vivo in mice injected with Lewis lung adenocarcinoma (LLC1) cells in the absence of tumor cell metastases. A decrease in trabecular bone mineral density was observed in mice injected with cell-free LLC1 CM. Plasma osteoblast biomarkers and PTH-related peptide (PTHrP) were reduced, and parathyroid hormone (PTH), 1,25-dihydroxyvitamin D, calcium and phosphate concentrations were normal in tumor-bearing mice. LLC1 cell conditioned medium (CM) inhibited alkaline phosphatase activity, osteoblast mineralization, and expression of Alpl and Ocn/Bglap mRNA in MC3T3 osteoblast cultures, whereas non-CM or CM from NIH/3T3 fibroblasts did not induce similar changes. LLC1 CM reduced Wnt3a-stimulated Tcf/Lef reporter plasmid activity and Wnt5A, Tcf1 and Lef1 mRNA expression in MC3T3 cells. Although concentrations of the Wnt inhibitor, DKK2, were increased in LLC1 CM compared to non-CM, depletion of DKK2 from LLC1 CM did not completely restore Wnt3a activity in MC3T3 cultures, and recombinant DKK2 failed to inhibit osteoblast mineralization. The data indicate that in a model of lung adenocarcinoma without bone metastases, tumor cells elaborate a secreted factor(s) that reduces bone mass, bone formation and osteoblast Wnt signaling without increases in bone resorption or calcium-regulating hormone concentrations. The factor(s) mediating this inhibition of osteoblast mineralization require further characterization.
Collapse
Affiliation(s)
- Taylor E Berent
- Department of Medicine, Divisions of Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jessica M Dorschner
- Department of Medicine, Divisions of Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Theodore A Craig
- Department of Medicine, Divisions of Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew T Drake
- Department of Medicine, Divisions of Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Rajiv Kumar
- Department of Medicine, Divisions of Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Nephrology and Hypertension and Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Endocrinology, Diabetes, Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA; Department of Biochemistry and Molecular Biology, Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
170
|
Catheline SE, Hoak D, Chang M, Ketz JP, Hilton MJ, Zuscik MJ, Jonason JH. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-traumatic Osteoarthritis Progression in Adult Mice. J Bone Miner Res 2019; 34:1676-1689. [PMID: 31189030 PMCID: PMC7047611 DOI: 10.1002/jbmr.3737] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
RUNX2 is a transcription factor critical for chondrocyte maturation and normal endochondral bone formation. It promotes the expression of factors catabolic to the cartilage extracellular matrix and is upregulated in human osteoarthritic cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of RUNX2 overexpression in cartilage have been limited to forced expression in osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-specific RUNX2 overexpression in postnatal articular cartilage. Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific RUNX2 overexpression (OE) during embryonic development or in the articular cartilage of adult mice, respectively. RUNX2 OE was induced at embryonic day 13.5 (E13.5) for all developmental studies. Histology and in situ hybridization analyses suggest an early onset of chondrocyte hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos compared to control embryos. For all postnatal studies, RUNX2 OE was induced at 2 months of age. Surprisingly, no histopathological signs of cartilage degeneration were observed even 6 months following induction of RUNX2 OE. Using the meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and meniscal injury, however, we found that RUNX2 OE accelerates the progression of cartilage degeneration following joint trauma. One month following MLI, the numbers of MMP13-positive and TUNEL-positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 OE joints compared to control joints and 2 months following MLI, histomorphometry and Osteoarthritis Research Society International (OARSI) scoring revealed decreased cartilage area in the RUNX2 OE joints. Collectively, these results suggest that although RUNX2 overexpression alone may not be sufficient to initiate the OA degenerative process, it may predetermine the rate of OA onset and/or progression following traumatic joint injury. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Donna Hoak
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Martin Chang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John P Ketz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Michael J Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Orthopedic Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
171
|
Schroeder N, Wuelling M, Hoffmann D, Brand-Saberi B, Vortkamp A. Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. PLoS One 2019; 14:e0218230. [PMID: 31449527 PMCID: PMC6709907 DOI: 10.1371/journal.pone.0218230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Atonal homolog 8 (Atoh8) is a transcription factor of the basic helix-loop-helix (bHLH) protein family, which is expressed in the cartilaginous elements of endochondral bones. To analyze its function during chondrogenesis we deleted Atoh8 in mice using a chondrocyte- (Atoh8flox/flox;Col2a1-Cre) and a germline- (Atoh8flox/flox;Prx1-Crefemale) specific Cre allele. In both strains, Atoh8 deletion leads to a reduced skeletal size of the axial and appendicular bones, but the stages of phenotypic manifestations differ. While we observed obviously shortened bones in Atoh8flox/flox;Col2a1-Cre mice only postnatally, the bones of Atoh8flox/flox;Prx1-Crefemale mice are characterized by a reduced bone length already at prenatal stages. Detailed histological and molecular investigations revealed reduced zones of proliferating and hypertrophic chondrocytes. In addition, Atoh8 deletion identified Atoh8 as a positive regulator of chondrocyte proliferation. As increased Atoh8 expression is found in the region of prehypertrophic chondrocytes where the expression of Ihh, a main regulator of chondrocyte proliferation and differentiation, is induced, we investigated a potential interaction of Atoh8 function and Ihh signaling. By activating Ihh signaling with Purmorphamine we demonstrate that Atoh8 regulates chondrocyte proliferation in parallel or downstream of Ihh signaling while it acts on the onset of hypertrophy upstream of Ihh likely by modulating Ihh expression levels.
Collapse
Affiliation(s)
- Nadine Schroeder
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| | - Manuela Wuelling
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Andrea Vortkamp
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
172
|
Yang H, Zhang M, Liu Q, Zhang H, Zhang J, Lu L, Xie M, Chen D, Wang M. Inhibition of Ihh Reverses Temporomandibular Joint Osteoarthritis via a PTH1R Signaling Dependent Mechanism. Int J Mol Sci 2019; 20:ijms20153797. [PMID: 31382618 PMCID: PMC6695690 DOI: 10.3390/ijms20153797] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
The temporomandibular joint (TMJ), which is biomechanically related to dental occlusion, is often insulted by osteoarthritis (OA). This study was conducted to clarify the relationship between Indian hedgehog (Ihh) and parathyroid hormone receptor 1 (PTH1R) signaling in modulating the enhanced chondrocyte terminal differentiation in dental stimulated TMJ osteoarthritic cartilage. A gain- and loss-of-function strategy was used in an in vitro model in which fluid flow shear stress (FFSS) was applied, and in an in vivo model in which the unilateral anterior cross-bite (UAC) stimulation was adopted. Ihh and PTH1R signaling was modulated through treating the isolated chondrocytes with inhibitor/activator and via deleting Smoothened (Smo) and/or Pth1r genes in mice with the promoter gene of type 2 collagen (Col2-CreER) in the tamoxifen-inducible pattern. We found that both FFSS and UAC stimulation promoted the deep zone chondrocytes to undergo terminal differentiation, while cells in the superficial zone were robust. We demonstrated that the terminal differentiation process in deep zone chondrocytes promoted by FFSS and UAC was mediated by the enhanced Ihh signaling and declined PTH1R expression. The FFSS-promoted terminal differentiation was suppressed by administration of the Ihh inhibitor or PTH1R activator. The UAC-promoted chondrocytes terminal differentiation and OA-like lesions were rescued in Smo knockout, but were enhanced in Pth1r knockout mice. Importantly, the relieving effect of Smo knockout mice was attenuated when Pth1r knockout was also applied. Our data suggest a chondrocyte protective effect of suppressing Ihh signaling in TMJ OA cartilage which is dependent on PTH1R signaling.
Collapse
Affiliation(s)
- Hongxu Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Hongyun Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Lei Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Mianjiao Xie
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Meiqing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
173
|
Disrupted type II collagenolysis impairs angiogenesis, delays endochondral ossification and initiates aberrant ossification in mouse limbs. Matrix Biol 2019; 83:77-96. [PMID: 31381970 DOI: 10.1016/j.matbio.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Cartilage remodelling and chondrocyte differentiation are tightly linked to angiogenesis during bone development and endochondral ossification. To investigate whether collagenase-mediated cleavage of the major cartilage collagen (collagen II) plays a role in this process, we generated a knockin mouse in which the mandatory collagenase cleavage site at PQG775↓776LAG, was mutated to PPG775↓776MPG (Col2a1Bailey). This approach blocked collagen II cleavage, and the production of putative collagen II matrikines derived from this site, without modifying matrix metalloproteinase expression or activity. We report here that this mouse (Bailey) is viable. It has a significantly expanded growth plate and exhibits delayed and abnormal angiogenic invasion into the growth plate. Deeper electron microscopy analyses revealed that, at around five weeks of age, a small number of blood vessel(s) penetrate into the growth plate, leading to its abrupt shrinking and the formation of a bony bridge. Our results from in vitro and ex vivo studies suggest that collagen II matrikines stimulate the normal branching of endothelial cells and promote blood vessel invasion at the chondro-osseous junction. The results further suggest that failed collagenolysis in Bailey leads to expansion of the hypertrophic zone and formation of a unique post-hypertrophic zone populated with chondrocytes that re-enter the cell cycle and proliferate. The biological rescue of this in vivo phenotype features the loss of a substantial portion of the growth plate through aberrant ossification, and narrowing of the remaining portion that leads to limb deformation. Together, these data suggest that collagen II matrikines stimulate angiogenesis in skeletal growth and development, revealing novel strategies for stimulating angiogenesis in other contexts such as fracture healing and surgical applications.
Collapse
|
174
|
Wada S, Lebaschi AH, Nakagawa Y, Carballo CB, Uppstrom TJ, Cong GT, Album ZM, Hall AJ, Ying L, Deng XH, Rodeo SA. Postoperative Tendon Loading With Treadmill Running Delays Tendon-to-Bone Healing: Immunohistochemical Evaluation in a Murine Rotator Cuff Repair Model. J Orthop Res 2019; 37:1628-1637. [PMID: 30977544 DOI: 10.1002/jor.24300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Mechanical stress has an important effect on tendon-to-bone healing. The purpose of the present study was to compare tendon-to-bone healing in animals exposed to either tendon unloading (botulinum toxin injection) or excessive loading (treadmill running) in a murine rotator cuff repair model. Forty-eight C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair. Mice in the unloaded group were injected with botulinum toxin to the supraspinatus muscle. The contralateral shoulder of the unloaded group was used as a control. Mice were euthanized at 1, 2, and 4 weeks after surgery and evaluated with hematoxylin-eosin and immunohistochemical (IHC) staining for Ihh, Gli1, Wnt3a, and β-catenin. The positive staining area on IHC and the Modified Tendon Maturing Score were measured. The score of the unloaded group was significantly higher (better healing) than that of the treadmill group at 4 weeks. Ihh and the glioma-associated oncogene homolog 1 (Gli1) positive area in the unloaded group were significantly higher than those of the control group at 1 week. The peak time-points of the Ihh and Gli1 positive area was 1 week for the unloaded group and 2 weeks for the treadmill group. The Wnt3a positive area in the unloaded group was significantly higher than that of the control group at 2 weeks. The β-catenin positive area in the unloaded group was significantly higher than that of the treadmill group and the control group at 1 week. Our data indicated that the unloaded group has superior tendon maturation compared to the treadmill running group. Excessive tendon loading may delay the tendon healing process by affecting the activity of Ihh and Wnt/β-Catenin pathways. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1628-1637, 2019.
Collapse
Affiliation(s)
- Susumu Wada
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Amir H Lebaschi
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Yusuke Nakagawa
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Camila B Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Tyler J Uppstrom
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Guang-Ting Cong
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Zoe M Album
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Arielle J Hall
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Liang Ying
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Xiang-Hua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| | - Scott A Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, The Hospital for Special Surgery, New York, New York
| |
Collapse
|
175
|
Ye F, Xu H, Yin H, Zhao X, Li D, Zhu Q, Wang Y. The role of BMP6 in the proliferation and differentiation of chicken cartilage cells. PLoS One 2019; 14:e0204384. [PMID: 31260450 PMCID: PMC6602178 DOI: 10.1371/journal.pone.0204384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 05/28/2019] [Indexed: 11/18/2022] Open
Abstract
Previous studies have indicated that bone morphogenetic protein (BMP) 6 may play an important role in skeletal system development and progression. However, the mechanism underlying the effects of BMP6 in cartilage cell proliferation and differentiation remains unknown. In this study, cartilage cells were isolated from shanks of chicken embryos and treated with different concentrations of Growth Hormone. Cell proliferation potential was assessed using real-time polymerase chain reaction (RT-PCR), western blotting and CCK-8 assays in vitro. The results showed that at 48 h, the Collagen II and BMP6 expression levels in 50 ng/μl GH-treated cartilage cells were significantly higher than in groups treated with 100 ng/μl or 200 ng/μl GH. We further observed that knockdown of BMP6 in cartilage cells led to significantly decreased expression mRNAs and proteins of Collagen II and Collagen X. Moreover, the suppression of BMP6 expression by a specific siRNA led to significantly decreased expression mRNA levels of IGF1R, JAK2, PKC, PTH, IHH and PTHrP and decreased protein levels of PKC, IHH and PTHrP. Taken together, our data suggest that BMP6 may play a critical role in chicken cartilage cell proliferation and differentiation through the regulation of IGF1, JAK2, PKC, PTH, and IHH-PTHrP signaling pathways.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
176
|
Cao X, Duan Z, Yan Z, Li Y, Li L, Sun J, Han P, Li P, Wei L, Wei X. miR-195 contributes to human osteoarthritis via targeting PTHrP. J Bone Miner Metab 2019; 37:711-721. [PMID: 30465089 DOI: 10.1007/s00774-018-0973-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 01/30/2023]
Abstract
The dysregulated expression of the osteoarthritis (OA)-related genes in cartilage, such as matrix metalloproteinase 13 (MMP-13) and type X collagen (Col X), facilitates the onset and progression of OA. Reduced parathyroid hormone-related protein (PTHrP) may also accelerate this progression. Furthermore, miRNAs, endogenous regulators of mRNAs, are thought to play key roles in the pathogenesis of OA. In this study, we found that miR-195 levels were significantly upregulated in OA tissue, while PTHrP mRNA/protein expression was substantially downregulated, and there was a negative correlation between miR-195 and PTHrP. Upregulated miR-195 strongly inhibited Aggrecan, type II collagen (Col II) mRNA/protein expression, while it enhanced the expression of MMP-13 and Col X at mRNA/protein level; conversely, downregulated miR-195 significantly increased Col II mRNA/protein expression, while it decreased the expression of MMP-13 and Col X mRNA/protein. Moreover, our study demonstrated that PTHrP is a novel target of miR-195 using dual luciferase reporter assay. Finally, miR-195-mediated changes of Col II and OA-related genes were substantially attenuated by siRNAPTHrP treatment. These results suggested that miR-195 is involved in the pathogenesis of OA via PTHrP.
Collapse
Affiliation(s)
- Xiaoming Cao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Zhiqing Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanxi Medical University, 56 South Xinjian Road, Taiyuan, 030001, Shanxi, China
| | - Zheyi Yan
- Department of Ophthalmology, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yongping Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Lu Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Jian Sun
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Pengfei Han
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Pengcui Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
| | - Lei Wei
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China
- Department of Orthopedics, Warren Alpert Medical School of Brown University/RIH, CORO West, Suite 402H, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Xiaochun Wei
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, 382 Wuyi Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
177
|
Abstract
Nerve growth factor (NGF) is a key regulator of chronic osteoarthritic pain, but the exact targets of NGF action on human articular cartilage is unknown. This study aimed to test the hypothesis that the NGF-tropomyosin receptor kinase A (TrkA) (high-affinity NGF receptor) pathway plays a role in the calcification process of human articular chondrocytes (hACs). A 14-aa small peptide of NGF (Nsp) previously shown to activate NGF signaling in rat PC12 cells was used as an NGF signaling agonist, and recombinant NGF and the pan-Trk inhibitor GNF-5837 were employed as signaling modulating agents. The functional consequences of NGF-TrkA signaling were examined in human healthy articular chondrocytes maintained under conditions supportive of osteogenesis in vitro. The NGF-mimetic bioactivity of Nsp was first confirmed on the basis of maintenance of neurite outgrowth in PC12 cells. Primary human chondrocytes responded to Nsp in vitro. Perturbation of NGF signaling with NGF, Nsp, and GNF-5837 resulted in a strong induction of chondrocyte calcification, and gene expression data suggested that the Indian Hedgehog-parathyroid hormone-related protein signaling axis was involved. These findings suggest functional involvement of NGF signaling in calcification of hACs and the importance of NGF signaling in articular cartilage homeostasis.-Jiang, Y., Tuan, R. S. Role of NGF-TrkA signaling in calcification of articular chondrocytes.
Collapse
Affiliation(s)
- Yangzi Jiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute for Tissue Engineering and Regenerative Medicine, and School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
178
|
Frieling JS, Lynch CC. Proteolytic Regulation of Parathyroid Hormone-Related Protein: Functional Implications for Skeletal Malignancy. Int J Mol Sci 2019; 20:ijms20112814. [PMID: 31181800 PMCID: PMC6600663 DOI: 10.3390/ijms20112814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 01/17/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP), with isoforms ranging from 139 to 173 amino acids, has long been implicated in the development and regulation of multiple tissues, including that of the skeleton, via paracrine and autocrine signaling. PTHrP is also known as a potent mediator of cancer-induced bone disease, contributing to a vicious cycle between tumor cells and the bone microenvironment that drives the formation and progression of metastatic lesions. The abundance of roles ascribed to PTHrP have largely been attributed to the N-terminal 1-36 amino acid region, however, activities for mid-region and C-terminal products as well as additional shorter N-terminal species have also been described. Studies of the protein sequence have indicated that PTHrP is susceptible to post-translational proteolytic cleavage by multiple classes of proteases with emerging evidence pointing to novel functional roles for these PTHrP products in regulating cell behavior in homeostatic and pathological contexts. As a consequence, PTHrP products are also being explored as potential biomarkers of disease. Taken together, our enhanced understanding of the post-translational regulation of PTHrP bioactivity could assist in developing new therapeutic approaches that can effectively treat skeletal malignancies.
Collapse
Affiliation(s)
- Jeremy S Frieling
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
179
|
Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, Kokkaliaris KD, Mercier F, Tabaka M, Hofree M, Dionne D, Papazian A, Lee D, Ashenberg O, Subramanian A, Vaishnav ED, Rozenblatt-Rosen O, Regev A, Scadden DT. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell 2019; 177:1915-1932.e16. [PMID: 31130381 DOI: 10.1016/j.cell.2019.04.040] [Citation(s) in RCA: 608] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/05/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023]
Abstract
Stroma is a poorly defined non-parenchymal component of virtually every organ with key roles in organ development, homeostasis, and repair. Studies of the bone marrow stroma have defined individual populations in the stem cell niche regulating hematopoietic regeneration and capable of initiating leukemia. Here, we use single-cell RNA sequencing (scRNA-seq) to define a cellular taxonomy of the mouse bone marrow stroma and its perturbation by malignancy. We identified seventeen stromal subsets expressing distinct hematopoietic regulatory genes spanning new fibroblastic and osteoblastic subpopulations including distinct osteoblast differentiation trajectories. Emerging acute myeloid leukemia impaired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary for normal hematopoiesis. These data suggest that tissue stroma responds to malignant cells by disadvantaging normal parenchymal cells. Our taxonomy of the stromal compartment provides a comprehensive bone marrow cell census and experimental support for cancer cell crosstalk with specific stromal elements to impair normal tissue function and thereby enable emergent cancer.
Collapse
Affiliation(s)
- Ninib Baryawno
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Childhood Cancer Research Unit, Dep. of Children's and Women's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dariusz Przybylski
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Monika S Kowalczyk
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Konstantinos D Kokkaliaris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Francois Mercier
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ani Papazian
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dongjun Lee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
180
|
Moghaddam T, Neshati Z. Role of microRNAs in osteogenesis of stem cells. J Cell Biochem 2019; 120:14136-14155. [PMID: 31069839 DOI: 10.1002/jcb.28689] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022]
Abstract
Osteogenic differentiation is a controlled developmental process in which external and internal factors including cytokines, growth factors, transcription factors (TFs), signaling pathways and microRNAs (miRNAs) play important roles. Various stimulatory and inhibitory TFs contribute to osteogenic differentiation and are responsible for bone development. In addition, cross-talk between several complex signaling pathways regulates the osteogenic differentiation of some stem cells. Although much is known about regulatory genes and signaling pathways in osteogenesis, the role of miRNAs in osteogenic differentiation still needs to be explored. miRNAs are small, approximately 22 nucleotides, single-stranded nonprotein coding RNAs which are abundant in many mammalian cell types. They paly significant regulated roles in various biological processes and serve as promising biomarkers for disease states. Recently, emerging evidence have shown that miRNAs are the key regulators of osteogenesis of stem cells. They may endogenously regulate osteogenic differentiation of stem cells through direct targeting of positive or negative directors of osteogenesis and depending on the target result in the promotion or inhibition of osteogenic differentiation. This review aims to provide a general overview of miRNAs participating in osteogenic differentiation of stem cells and explain their regulatory effect based on the genes targeted with these miRNAs.
Collapse
Affiliation(s)
- Tayebe Moghaddam
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Neshati
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
181
|
Guo L, Wei X, Zhang Z, Wang X, Wang C, Li P, Wang C, Wei L. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res Ther 2019; 21:109. [PMID: 31046827 PMCID: PMC6498579 DOI: 10.1186/s13075-019-1895-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To determine if ipriflavone, a novel and safe inhibitor of Indian hedgehog (Ihh) signaling, can attenuate cartilage degeneration by blocking the Ihh pathway. METHODS Human chondrocytes were used to evaluate Ihh signaling, cell proliferation, apoptosis, gene, and protein expression of chondrocytes by cell proliferation and apoptosis assays, real-time qPCR, and Western blotting at 48 h after ipriflavone treatment. Human cartilage explants were further used to validate the cell culture results. The effects of ipriflavone on cartilage degeneration in vivo were assessed using the rat ACLT OA model. Two-month-old male SD rats were randomized into 3 groups (n = 75): (1) sham, (2) ACLT alone, and (3) ACLT+ ipriflavone. Ipriflavone was administered intragastrically at 24 h after ACLT for 6 weeks. The extent of OA progression was evaluated by the OARSI score and immunohistochemistry at 12 weeks after surgery. The Ihh signaling pathway and OA-related genes were quantified by real-time PCR. RESULTS Cell proliferation in the cells treated with ipriflavone was increased to 36.40% ± 1.32% (5 μM) and 28.54% ± 0.74% (10 μM) from 11.99% ± 0.35% (DMSO) (P < 0.001), and apoptosis was decreased to 12.64% ± 3.7% (5 μM) and 15.18% ± 3.13% (10 μM) from 25.76% ± 5.1% (DMSO) (P < 0.05). Ipriflavone blocked Runx-2 mainly through the Smo-Gli2 pathway. A similar result was found in the cartilage explant culture. Ihh signaling in vivo was inhibited in animals treated with ipriflavone. Safranin-O staining revealed a less cartilage damage with lower OARSI scores (P < 0.05) in the ipriflavone-treated animals compared with untreated animals. The gene expression of Smo and Gli2 was inhibited significantly by ipriflavone (P < 0.05). The OA-related gene and protein type X, MMP-13, and type II collagen-C fragment were reduced, while type II collagen and Agg were increased in the ipriflavone-treated animals (P < 0.05). CONCLUSIONS Catabolic genes were disrupted by blocking the Ihh pathway. This finding suggests that disruption of Ihh signaling with ipriflavone provides chondral protection in rat posttraumatic OA.
Collapse
Affiliation(s)
- Li Guo
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Xiaochun Wei
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Zhiwei Zhang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Xiaojian Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Chunli Wang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Pengcui Li
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China
| | - Chunfang Wang
- Shanxi Key Laboratory of Laboratory Animal and Animal Model of Human Diseases, Department of Experimental Animal Center, Shanxi Medical University, No. 56, Xinjian Southern Road, Taiyuan, 030001, China
| | - Lei Wei
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China No. 382, Wuyi Road, Taiyuan, 030001, China. .,Department of Orthopedics, Warren Alpert Medical School of Brown University, Suite 402A, 1 Hoppin Street, Providence, RI, 02903, USA.
| |
Collapse
|
182
|
Abramyan J. Hedgehog Signaling and Embryonic Craniofacial Disorders. J Dev Biol 2019; 7:E9. [PMID: 31022843 PMCID: PMC6631594 DOI: 10.3390/jdb7020009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Since its initial discovery in a Drosophila mutagenesis screen, the Hedgehog pathway has been revealed to be instrumental in the proper development of the vertebrate face. Vertebrates possess three hedgehog paralogs: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Of the three, Shh has the broadest range of functions both in the face and elsewhere in the embryo, while Ihh and Dhh play more limited roles. The Hedgehog pathway is instrumental from the period of prechordal plate formation early in the embryo, until the fusion of the lip and secondary palate, which complete the major patterning events of the face. Disruption of Hedgehog signaling results in an array of developmental disorders in the face, ranging from minor alterations in the distance between the eyes to more serious conditions such as severe clefting of the lip and palate. Despite its critical role, Hedgehog signaling seems to be disrupted through a number of mechanisms that may either be direct, as in mutation of a downstream target of the Hedgehog ligand, or indirect, such as mutation in a ciliary protein that is otherwise seemingly unrelated to the Hedgehog pathway. A number of teratogens such as alcohol, statins and steroidal alkaloids also disrupt key aspects of Hedgehog signal transduction, leading to developmental defects that are similar, if not identical, to those of Hedgehog pathway mutations. The aim of this review is to highlight the variety of roles that Hedgehog signaling plays in developmental disorders of the vertebrate face.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| |
Collapse
|
183
|
Diederichs S, Tonnier V, März M, Dreher SI, Geisbüsch A, Richter W. Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy. CELLULAR AND MOLECULAR LIFE SCIENCES : CMLS 2019. [PMID: 30980110 DOI: 10.1007/s00018‐019‐03099‐0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Re-directing mesenchymal stromal cell (MSC) chondrogenesis towards a non-hypertrophic articular chondrocyte-(AC)-like phenotype is important for improving articular cartilage neogenesis to enhance clinical cartilage repair strategies. This study is the first to demonstrate that high levels of non-canonical WNT5A followed by WNT11 and LEF1 discriminated MSC chondrogenesis from AC re-differentiation. Moreover, β-catenin seemed incompletely silenced in differentiating MSCs, which altogether suggested a role for WNT signaling in hypertrophic MSC differentiation. WNT inhibition with the small molecule IWP-2 supported MSC chondrogenesis according to elevated proteoglycan deposition and reduced the characteristic upregulation of BMP4, BMP7 and their target ID1, as well as IHH and its target GLI1 observed during endochondral differentiation. Along with the pro-hypertrophic transcription factor MEF2C, multiple hypertrophic downstream targets including IBSP and alkaline phosphatase activity were reduced by IWP-2, demonstrating that WNT activity drives BMP and hedgehog upregulation, and MSC hypertrophy. WNT inhibition almost matched the strong anti-hypertrophic capacity of pulsed parathyroid hormone-related protein application, and both outperformed suppression of BMP signaling with dorsomorphin, which also reduced cartilage matrix deposition. Yet, hypertrophic marker expression under IWP-2 remained above AC level, and in vivo mineralization and ectopic bone formation were reduced but not eliminated. Overall, the strong anti-hypertrophic effects of IWP-2 involved inhibition but not silencing of pro-hypertrophic BMP and IHH pathways, and more advanced silencing of WNT activity as well as combined application of IHH or BMP antagonists should next be considered to install articular cartilage neogenesis from human MSCs.
Collapse
Affiliation(s)
- Solvig Diederichs
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Veronika Tonnier
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie März
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon I Dreher
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Geisbüsch
- Clinic for Orthopaedics and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
184
|
Abstract
PURPOSE OF REVIEW Proper cartilage development is critical to bone formation during endochondral ossification. This review highlights the current understanding of various aspects of glucose metabolism in chondrocytes during cartilage development. RECENT FINDINGS Recent studies indicate that chondrocytes transdifferentiate into osteoblasts and bone marrow stromal cells during endochondral ossification. In cartilage development, signaling molecules, including IGF2 and BMP2, tightly control glucose uptake and utilization in a stage-specific manner. Perturbation of glucose metabolism alters the course of chondrocyte maturation, suggesting a key role for glucose metabolism during endochondral ossification. During prenatal and postnatal growth, chondrocytes experience bursts of nutrient availability and energy expenditure, which demand sophisticated control of the glucose-dependent processes of cartilage matrix production, cell proliferation, and hypertrophy. Investigating the regulation of glucose metabolism may therefore lead to a unifying mechanism for signaling events in cartilage development and provide insight into causes of skeletal growth abnormalities.
Collapse
Affiliation(s)
- Judith M Hollander
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Li Zeng
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Program of Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Program of Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA.
- Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA.
- Department of Orthopaedics, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
185
|
Nakatomi C, Nakatomi M, Matsubara T, Komori T, Doi-Inoue T, Ishimaru N, Weih F, Iwamoto T, Matsuda M, Kokabu S, Jimi E. Constitutive activation of the alternative NF-κB pathway disturbs endochondral ossification. Bone 2019; 121:29-41. [PMID: 30611922 DOI: 10.1016/j.bone.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 01/29/2023]
Abstract
Endochondral ossification is important for skeletal development. Recent findings indicate that the p65 (RelA) subunit, a main subunit of the classical nuclear factor-κB (NF-κB) pathway, plays essential roles in chondrocyte differentiation. Although several groups have reported that the alternative NF-κB pathway also regulates bone homeostasis, the role of the alternative NF-κB pathway in chondrocyte development is still unclear. Here, we analyzed the in vivo function of the alternative pathway on endochondral ossification using p100-deficient (p100-/-) mice, which carry a homozygous deletion of the COOH-terminal ankyrin repeats of p100 but still express functional p52 protein. The alternative pathway was activated during the periarticular stage in wild-type mice. p100-/- mice exhibited dwarfism, and histological analysis of the growth plate revealed abnormal arrangement of chondrocyte columns and a narrowed hypertrophic zone. Consistent with these observations, the expression of hypertrophic chondrocyte markers, type X collagen (ColX) or matrix metalloproteinase 13, but not early chondrogenic markers, such as Col II or aggrecan, was suppressed in p100-/- mice. An in vivo BrdU tracing assay clearly demonstrated less proliferative activity in chondrocytes in p100-/- mice. These defects were partly rescued when the RelB gene was deleted in p100-/- mice. Taken together, the alternative NF-κB pathway may regulate chondrocyte proliferation and differentiation to maintain endochondral ossification.
Collapse
Affiliation(s)
- Chihiro Nakatomi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Unit of Basic Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Falk Weih
- Research Group Immunology, Leibniz-Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, Jena 07745, Germany
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan
| | - Eijiro Jimi
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-kux, Kitakyushu 803-8580, Japan; Laboratory of Molecular and Cellular Biochemistry, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
186
|
Jaswal AP, Bandyopadhyay A. Re-examining osteoarthritis therapy from a developmental biologist's perspective. Biochem Pharmacol 2019; 165:17-23. [PMID: 30922620 DOI: 10.1016/j.bcp.2019.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/13/2019] [Indexed: 01/25/2023]
Abstract
Osteoarthritis is the most prevalent musculoskeletal disorder and one for which there is no disease modifying therapy available at present. Our current understanding of the disease mechanism of osteoarthritis is limited owing to a lacuna of knowledge about the development and maintenance of articular cartilage that is affected during osteoarthritis. All current therapeutic strategies aim at countering inflammation which though mitigates pain but does not arrest the progressive degeneration of articular cartilage. During osteoarthritis, articular cartilage expresses markers for transient cartilage differentiation. Moreover, blocking transient cartilage differentiation is sufficient for halting the progression of experimental osteoarthritis. A developmental biology inspired approach that combines restoration of tissue microenvironment, supplementation with engineered cartilage and built in mechanism to prevent transient cartilage differentiation could be an avenue for developing a disease modifying therapy for osteoarthritis.
Collapse
Affiliation(s)
- Akrit Pran Jaswal
- Lab 10, Department of Biological Sciences and Bio-engineering, IIT, Kanpur, India.
| | | |
Collapse
|
187
|
Hildebrand L, Schmidt-von Kegler M, Walther M, Seemann P, Stange K. Limb specific Acvr1-knockout during embryogenesis in mice exhibits great toe malformation as seen in Fibrodysplasia Ossificans Progressiva (FOP). Dev Dyn 2019; 248:396-403. [PMID: 30854720 PMCID: PMC6593811 DOI: 10.1002/dvdy.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose This study analyzes Prx1‐specific conditional knockout of Acvr1 aiming to elucidate the endogenous role of Acvr1 during limb formation in early embryonic development. ACVR1 can exhibit activating and inhibiting function in BMP signaling. ACVR1 gain‐of‐function mutations can cause the rare disease fibrodysplasia ossificans progressiva (FOP), where patients develop ectopic bone replacing soft tissue, tendons and ligaments. Methods Whole‐mount in situ hybridization and skeletal preparations revealed that following limb‐specific conditional knockout of Acvr1, metacarpals and proximal phalanges were shortened and additional cartilage and bone elements were formed. Results The analysis of a set of marker genes including ligands and receptors of BMP signaling as well as genes involved in patterning and tendon and cartilage formation, revealed temporal disturbances with distinct spatial patterns. The most striking result was that in the absence of Acvr1 in mesoderm precursor cells, first digits were drastically malformed. Conclusion In FOP, malformation of big toes can serve as a first soft marker in diagnostics. The surprising similarities in phenotype between the described conditional knockout of Acvr1 and the FOP mouse model, indicates a natural inhibitory function of ACVR1. This represents a further step towards better understanding the role of Acvr1 and developing treatment options for FOP. Limb specific conditional KO of Acvr1 leads to shortened extremities and to heterotopic cartilage and bone formation. Acvr1 is particularly involved in the development of the first digit. Phenotypic similarities between the limb specific cKO of Acvr1 and the FOP mouse model, carrying the gain of function mutation p.R206H in Acvr1, indicates a natural inhibitory function of Acvr1.
Collapse
Affiliation(s)
- Laura Hildebrand
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) / Charité Virchow Campus, Berlin, Germany.,Charité- Universitätsmedizin Berlin, Berlin, Germany.,Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Mareen Schmidt-von Kegler
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) / Charité Virchow Campus, Berlin, Germany.,Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Walther
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) / Charité Virchow Campus, Berlin, Germany.,Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Seemann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) / Charité Virchow Campus, Berlin, Germany.,Charité- Universitätsmedizin Berlin, Berlin, Germany.,Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Katja Stange
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) / Charité Virchow Campus, Berlin, Germany.,Charité- Universitätsmedizin Berlin, Berlin, Germany.,Berlin Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| |
Collapse
|
188
|
Kunova Bosakova M, Nita A, Gregor T, Varecha M, Gudernova I, Fafilek B, Barta T, Basheer N, Abraham SP, Balek L, Tomanova M, Fialova Kucerova J, Bosak J, Potesil D, Zieba J, Song J, Konik P, Park S, Duran I, Zdrahal Z, Smajs D, Jansen G, Fu Z, Ko HW, Hampl A, Trantirek L, Krakow D, Krejci P. Fibroblast growth factor receptor influences primary cilium length through an interaction with intestinal cell kinase. Proc Natl Acad Sci U S A 2019; 116:4316-4325. [PMID: 30782830 PMCID: PMC6410813 DOI: 10.1073/pnas.1800338116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cilia/metabolism
- Fibroblast Growth Factors/metabolism
- HEK293 Cells
- Hedgehog Proteins/metabolism
- Humans
- Mice
- Mice, Knockout
- Models, Animal
- Molecular Docking Simulation
- NIH 3T3 Cells
- Phosphorylation
- Protein Interaction Domains and Motifs
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proteomics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptor, Fibroblast Growth Factor, Type 4/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Neha Basheer
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marketa Tomanova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jana Fialova Kucerova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Juraj Bosak
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095
| | - Jieun Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03722 Seoul, Korea
| | - Peter Konik
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Sohyun Park
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, 03722 Seoul, Korea
| | - Ales Hampl
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine University of California, Los Angeles, CA 90095;
- Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
189
|
Yue S, Whalen P, Jee YH. Genetic regulation of linear growth. Ann Pediatr Endocrinol Metab 2019; 24:2-14. [PMID: 30943674 PMCID: PMC6449614 DOI: 10.6065/apem.2019.24.1.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Linear growth occurs at the growth plate. Therefore, genetic defects that interfere with the normal function of the growth plate can cause linear growth disorders. Many genetic causes of growth disorders have already been identified in humans. However, recent genome-wide approaches have broadened our knowledge of the mechanisms of linear growth, not only providing novel monogenic causes of growth disorders but also revealing single nucleotide polymorphisms in genes that affect height in the general population. The genes identified as causative of linear growth disorders are heterogeneous, playing a role in various growth-regulating mechanisms including those involving the extracellular matrix, intracellular signaling, paracrine signaling, endocrine signaling, and epigenetic regulation. Understanding the underlying genetic defects in linear growth is important for clinicians and researchers in order to provide proper diagnoses, management, and genetic counseling, as well as to develop better treatment approaches for children with growth disorders.
Collapse
Affiliation(s)
- Shanna Yue
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Philip Whalen
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Youn Hee Jee
- Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,Address for correspondence: Youn Hee Jee, MD Pediatric Endocrine, Metabolism and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive MSC 1103, Bethesda, MD 20892-1103, USA Tel: +1-301-435-5834 Fax: +1-301-402-0574 E-mail:
| |
Collapse
|
190
|
Abstract
Accumulating evidence supports the idea that stem and progenitor cells play important roles in skeletal development. Over the last decade, the definition of skeletal stem and progenitor cells has evolved from cells simply defined by their in vitro behaviors to cells fully defined by a combination of sophisticated approaches, including serial transplantation assays and in vivo lineage-tracing experiments. These approaches have led to better identification of the characteristics of skeletal stem cells residing in multiple sites, including the perichondrium of the fetal bone, the resting zone of the postnatal growth plate, the bone marrow space and the periosteum in adulthood. These diverse groups of skeletal stem cells appear to closely collaborate and achieve a number of important biological functions of bones, including not only bone development and growth, but also bone maintenance and repair. Although these are important findings, we are only beginning to understand the diversity and the nature of skeletal stem and progenitor cells, and how they actually behave in vivo.
Collapse
Affiliation(s)
- Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, United States.
| | - Deepak H Balani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
191
|
Salazar VS, Capelo LP, Cantù C, Zimmerli D, Gosalia N, Pregizer S, Cox K, Ohte S, Feigenson M, Gamer L, Nyman JS, Carey DJ, Economides A, Basler K, Rosen V. Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. eLife 2019; 8:42386. [PMID: 30735122 PMCID: PMC6386520 DOI: 10.7554/elife.42386] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Two decades after signals controlling bone length were discovered, the endogenous ligands determining bone width remain unknown. We show that postnatal establishment of normal bone width in mice, as mediated by bone-forming activity of the periosteum, requires BMP signaling at the innermost layer of the periosteal niche. This developmental signaling center becomes quiescent during adult life. Its reactivation however, is necessary for periosteal growth, enhanced bone strength, and accelerated fracture repair in response to bone-anabolic therapies used in clinical orthopedic settings. Although many BMPs are expressed in bone, periosteal BMP signaling and bone formation require only Bmp2 in the Prx1-Cre lineage. Mechanistically, BMP2 functions downstream of Lrp5/6 pathway to activate a conserved regulatory element upstream of Sp7 via recruitment of Smad1 and Grhl3. Consistent with our findings, human variants of BMP2 and GRHL3 are associated with increased risk of fractures.
Collapse
Affiliation(s)
- Valerie S Salazar
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Luciane P Capelo
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio Cantù
- Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland.,Wallenberg Centre for Molecular Medicine, Department of Clinical and Experimental Medicine (IKE), Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Dario Zimmerli
- Institute for Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | | | - Steven Pregizer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Karen Cox
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Satoshi Ohte
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States.,Department of Microbial Chemistry, Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| | - Marina Feigenson
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Laura Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| | - Jeffry S Nyman
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, United States
| | | | | | | | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, United States
| |
Collapse
|
192
|
Baird DA, Evans DS, Kamanu FK, Gregory JS, Saunders FR, Giuraniuc CV, Barr RJ, Aspden RM, Jenkins D, Kiel DP, Orwoll ES, Cummings SR, Lane NE, Mullin BH, Williams FMK, Richards JB, Wilson SG, Spector TD, Faber BG, Lawlor DA, Grundberg E, Ohlsson C, Pettersson‐Kymmer U, Capellini TD, Richard D, Beck TJ, Evans DM, Paternoster L, Karasik D, Tobias JH. Identification of Novel Loci Associated With Hip Shape: A Meta-Analysis of Genomewide Association Studies. J Bone Miner Res 2019; 34:241-251. [PMID: 30320955 PMCID: PMC6375741 DOI: 10.1002/jbmr.3605] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/05/2023]
Abstract
We aimed to report the first genomewide association study (GWAS) meta-analysis of dual-energy X-ray absorptiometry (DXA)-derived hip shape, which is thought to be related to the risk of both hip osteoarthritis and hip fracture. Ten hip shape modes (HSMs) were derived by statistical shape modeling using SHAPE software, from hip DXA scans in the Avon Longitudinal Study of Parents and Children (ALSPAC; adult females), TwinsUK (mixed sex), Framingham Osteoporosis Study (FOS; mixed), Osteoporotic Fractures in Men study (MrOS), and Study of Osteoporotic Fractures (SOF; females) (total N = 15,934). Associations were adjusted for age, sex, and ancestry. Five genomewide significant (p < 5 × 10-9 , adjusted for 10 independent outcomes) single-nucleotide polymorphisms (SNPs) were associated with HSM1, and three SNPs with HSM2. One SNP, in high linkage disequilibrium with rs2158915 associated with HSM1, was associated with HSM5 at genomewide significance. In a look-up of previous GWASs, three of the identified SNPs were associated with hip osteoarthritis, one with hip fracture, and five with height. Seven SNPs were within 200 kb of genes involved in endochondral bone formation, namely SOX9, PTHrP, RUNX1, NKX3-2, FGFR4, DICER1, and HHIP. The SNP adjacent to DICER1 also showed osteoblast cis-regulatory activity of GSC, in which mutations have previously been reported to cause hip dysplasia. For three of the lead SNPs, SNPs in high LD (r2 > 0.5) were identified, which intersected with open chromatin sites as detected by ATAC-seq performed on embryonic mouse proximal femora. In conclusion, we identified eight SNPs independently associated with hip shape, most of which were associated with height and/or mapped close to endochondral bone formation genes, consistent with a contribution of processes involved in limb growth to hip shape and pathological sequelae. These findings raise the possibility that genetic studies of hip shape might help in understanding potential pathways involved in hip osteoarthritis and hip fracture. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Denis A Baird
- Musculoskeletal Research UnitUniversity of BristolBristolUK
| | - Daniel S Evans
- California Pacific Medical Center Research InstituteSan FranciscoCAUSA
| | - Frederick K Kamanu
- Institute for Aging ResearchHebrew SeniorLifeDepartment of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
| | | | - Fiona R Saunders
- Arthritis and Musculoskeletal MedicineUniversity of AberdeenAberdeenUK
| | | | - Rebecca J Barr
- Arthritis and Musculoskeletal MedicineUniversity of AberdeenAberdeenUK
- MEMO ResearchUniversity of DundeeDundeeUK
| | - Richard M Aspden
- Arthritis and Musculoskeletal MedicineUniversity of AberdeenAberdeenUK
| | | | - Douglas P Kiel
- Institute for Aging ResearchHebrew SeniorLifeDepartment of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardBostonMAUSA
| | - Eric S Orwoll
- School of MedicineOregon Health and Science UniversityPortlandORUSA
| | - Steven R Cummings
- California Pacific Medical Center Research InstituteSan FranciscoCAUSA
| | - Nancy E Lane
- University of California at DavisSacramentoCAUSA
| | - Benjamin H Mullin
- Department of Endocrinology and DiabetesSir Charles Gairdner HospitalNedlandsAustralia
- School of Biomedical SciencesUniversity of Western AustraliaPerthAustralia
| | - Frances MK Williams
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | - J Brent Richards
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
- Departments of Medicine, Human Genetics, Epidemiology, and BiostatisticsJewish General HospitalMcGill UniversityMontrealCanada
| | - Scott G Wilson
- Department of Endocrinology and DiabetesSir Charles Gairdner HospitalNedlandsAustralia
- School of Biomedical SciencesUniversity of Western AustraliaPerthAustralia
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | - Tim D Spector
- Department of Twin Research and Genetic EpidemiologyKing's College LondonLondonUK
| | | | | | - Elin Grundberg
- Department of Human GeneticsMcGill UniversityMontrealCanada
| | - Claes Ohlsson
- Centre for Bone and Arthritis ResearchInstitute of MedicineUniversity of GothenburgGothenburgSweden
| | | | - Terence D Capellini
- Broad Institute of MIT and HarvardBostonMAUSA
- Human Evolutionary BiologyHarvard UniversityBostonMAUSA
| | | | | | - David M Evans
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
- University of Queensland Diamantina InstituteTranslational Research InstituteBrisbaneAustralia
| | | | - David Karasik
- Institute for Aging ResearchHebrew SeniorLifeDepartment of MedicineBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Azrieli Faculty of MedicineBar Ilan UniversitySafedIsrael
| | - Jonathan H Tobias
- Musculoskeletal Research UnitUniversity of BristolBristolUK
- MRC Integrative Epidemiology UnitUniversity of BristolBristolUK
| |
Collapse
|
193
|
Chiu LLY, Weber JF, Waldman SD. Engineering of scaffold-free tri-layered auricular tissues for external ear reconstruction. Laryngoscope 2019; 129:E272-E283. [DOI: 10.1002/lary.27823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/15/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Loraine L. Y. Chiu
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| | - Joanna F. Weber
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering; Ryerson University; Toronto Ontario Canada
- Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Ontario Canada
| |
Collapse
|
194
|
Bai M, Yin H, Zhao J, Li Y, Wu Y. miR-182-5p overexpression inhibits chondrogenesis by down-regulating PTHLH. Cell Biol Int 2019; 43:222-232. [PMID: 30095215 DOI: 10.1002/cbin.11047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/05/2018] [Indexed: 12/21/2022]
Abstract
Human bone marrow mesenchymal stem cells (hBM-MSC) have the ability of differentiating into chondrocytes and osteoblasts. miR-182-5p promotes osteoclastogenesis and bone metastasis by up-regulating the expression of parathyroid hormone-like hormone (PTHLH). However, the function of miR-182-5p in chondrogenesis is still unknown. Mimic or inhibitor of miR-182-5p was used to upregulate or knock-down miR-182-5p expression, respectively. We analyzed chondrogenesis by Safranin O staining and Blyscan™ Sulfated Glycosaminoglycan Assay. Immunohistochemistry, real-time PCR, and Western bolts were used to detect related makers. miR-182-5p overexpression inhibited chondrogenesis. Dual-luciferase reporter assay indicated that PTHLH was one of the target genes of miR-182-5p. Further studies showed that miR-182-5p overexpression down-regulated the expression of SOX-9 and COL2A1, but up-regulated COL1A1 and COL10A1. Consistently, miR-182-5p knock-down had the opposite effects. This effect of miR-182-5p in BM-MSCs can be rescued by PTHLH overexpression. miR-182-5p may play a negative role in chondrogenesis by down-regulating PTHLH.
Collapse
Affiliation(s)
- Ming Bai
- Department of Minimally Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, NO 1, Yingfang Road, Hohhot, Inner Mongolia 010000, P. R. China
| | - Heping Yin
- Department of Minimally Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, NO 1, Yingfang Road, Hohhot, Inner Mongolia 010000, P. R. China
| | - Jian Zhao
- Department of Minimally Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, NO 1, Yingfang Road, Hohhot, Inner Mongolia 010000, P. R. China
| | - Yang Li
- Department of Minimally Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, NO 1, Yingfang Road, Hohhot, Inner Mongolia 010000, P. R. China
| | - Yimin Wu
- Department of Minimally Invasive Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, NO 1, Yingfang Road, Hohhot, Inner Mongolia 010000, P. R. China
| |
Collapse
|
195
|
Zaman F, Zhao Y, Celvin B, Mehta HH, Wan J, Chrysis D, Ohlsson C, Fadeel B, Cohen P, Sävendahl L. Humanin is a novel regulator of Hedgehog signaling and prevents glucocorticoid-induced bone growth impairment. FASEB J 2019; 33:4962-4974. [PMID: 30657335 DOI: 10.1096/fj.201801741r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucocorticoids (GCs) are frequently used to treat chronic disorders in children, including inflammation and cancer. Prolonged treatment with GCs is well known to impair bone growth, an effect linked to increased apoptosis and suppressed proliferation in growth plate chondrocytes. We hypothesized that the endogenous antiapoptotic protein humanin (HN) may prevent these effects. Interestingly, GC-induced bone growth impairment and chondrocyte apoptosis was prevented in HN overexpressing mice, HN-treated wild-type mice, and in HN-treated cultured rat metatarsal bones. GC-induced suppression of chondrocyte proliferation was also prevented by HN. Furthermore, GC treatment reduced Indian Hedgehog expression in growth plates of wild-type mice but not in HN overexpressing mice or HN-treated wild-type animals. A Hedgehog (Hh) antagonist, vismodegib, was found to suppress the growth of cultured rat metatarsal bones, and this effect was also prevented by HN. Importantly, HN did not interfere with the desired anti-inflammatory effects of GCs. We conclude that HN is a novel regulator of Hh signaling preventing GC-induced bone growth impairment without interfering with desired effects of GCs. Our data may open for clinical studies exploring a new possible strategy to prevent GC-induced bone growth impairment by cotreating with HN.-Zaman, F., Zhao, Y., Celvin, B., Mehta, H. H., Wan, J., Chrysis, D., Ohlsson, C., Fadeel, B., Cohen, P., Sävendahl, L. Humanin is a novel regulator of Hedgehog signaling and prevents glucocorticoid-induced bone growth impairment.
Collapse
Affiliation(s)
- Farasat Zaman
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Yunhan Zhao
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Bettina Celvin
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Dionisios Chrysis
- Division of Endocrinology, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research at Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; and
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Lars Sävendahl
- Department of Women's and Children's Health, Karolinska Institutet and Pediatric Endocrinology Unit, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
196
|
DeLaurier A, Alvarez CL, Wiggins KJ. hdac4 mediates perichondral ossification and pharyngeal skeleton development in the zebrafish. PeerJ 2019; 7:e6167. [PMID: 30643696 PMCID: PMC6329341 DOI: 10.7717/peerj.6167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/27/2018] [Indexed: 01/18/2023] Open
Abstract
Background Histone deacetylases (HDACs) are epigenetic factors that function to repress gene transcription by removing acetyl groups from the N-terminal of histone lysines. Histone deacetylase 4 (HDAC4), a class IIa HDAC, has previously been shown to regulate the process of endochondral ossification in mice via repression of Myocyte enhancer factor 2c (MEF2C), a transcriptional activator of Runx2, which in turn promotes chondrocyte maturation and production of bone by osteoblasts. Methods & Materials In this study, we generated two zebrafish lines with mutations in hdac4 using CRISPR/Cas9 and analyzed mutants for skeletal phenotypes and expression of genes known to be affected by Hdac4 expression. Results Lines have insertions causing a frameshift in a proximal exon of hdac4 and a premature stop codon. Mutations are predicted to result in aberrant protein sequence and a truncated protein, eliminating the Mef2c binding domain and Hdac domain. Zygotic mutants from two separate lines show a significant increase in ossification of pharyngeal ceratohyal cartilages at 7 days post fertilization (dpf) (p < 0.01, p < 0.001). At 4 dpf, mutant larvae have a significant increase of expression of runx2a and runx2b in the ceratohyal cartilage (p < 0.05 and p < 0.01, respectively). A subset of maternal-zygotic (mz) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75–90% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish is to repress activation of ossification of cartilage. These findings are consistent with observations of precocious cartilage ossification in Hdac4 mutant mice, demonstrating that the function of Hdac4 in skeletal development is conserved among vertebrates. Expression of hdac4 mRNA in embryos younger than 256–512 cells indicates that there is a maternal contribution of hdac4 to the early embryo. The increase in ossification and profound loss of first pharyngeal arch elements and anterior neurocranium in a subset of maternal-zygotic mutant and heterozygote larvae suggests that maternal hdac4 functions in cartilage ossification and development of cranial neural crest-derived structures.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| | - Cynthia Lizzet Alvarez
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| | - Kali J Wiggins
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| |
Collapse
|
197
|
Zhang W, Robertson WB, Zhao J, Chen W, Xu J. Emerging Trend in the Pharmacotherapy of Osteoarthritis. Front Endocrinol (Lausanne) 2019; 10:431. [PMID: 31312184 PMCID: PMC6614338 DOI: 10.3389/fendo.2019.00431] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disorder and one of the most prevalent diseases among the elderly population. Due to the limited spontaneous healing capacity of articular cartilage, it still remains challenging to find satisfactory treatment for OA. This review covers the emerging trends of pharmacologic therapies for OA such as traditional OA drugs (acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDs), opioids, serotonin-norepinephrine reuptake inhibitors (SNRIs), intra-articular injections of corticosteroids, and dietary supplements), which are effective in pain relief but not in reversing damage, and are frequently associated with adverse events. Alternatively, disease-modifying drugs provide promising alternatives for the management of OA. The development of these emerging OA therapeutic agents requires a comprehensive understanding of the pathophysiology of OA progression. The process of cartilage anabolism/catabolism, subchondral bone remodeling and synovial inflammation are identified as potential targets. These emerging OA drugs such as bone morphogenetic protein-7 (BMP-7), fibroblast growth factor-18 (FGF-18), human serum albumin (HSA), interleukin-1 (IL-1) inhibitor, β-Nerve growth factor (β-NGF) antibody, matrix extracellular phosphoglycoprotein (MEPE) and inverse agonist of retinoic acid-related orphan receptor alpha (RORα) etc. have shown potential to modify progression of OA with minimal adverse effects. However, large-scale randomized controlled trials (RCTs) are needed to investigate the safety and efficacy before translation from bench to bedside.
Collapse
Affiliation(s)
- Wei Zhang
- School of Medicine, Southeast University, Nanjing, China
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - William Brett Robertson
- Australian Institute of Robotic Orthopaedics, Perth, WA, Australia
- School of Surgery, The University of Western Australia, Perth, WA, Australia
- School of Science, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Department of Materials Science and Engineering, College of Engineering, University of North Texas, Denton, TX, United States
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weiwei Chen
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- *Correspondence: Weiwei Chen
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Jiake Xu
| |
Collapse
|
198
|
Yip RK, Chan D, Cheah KS. Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 2019; 133:343-385. [DOI: 10.1016/bs.ctdb.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
199
|
Rubino S, Qian J, Pinheiro-Neto CD, Kenning TJ, Adamo MA. A familial syndrome of hypothalamic hamartomas, polydactyly, and SMO mutations: a clinical report of 2 cases. J Neurosurg Pediatr 2019; 23:98-103. [PMID: 30497210 DOI: 10.3171/2018.7.peds18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/18/2018] [Indexed: 11/06/2022]
Abstract
Hypothalamic hamartomas are benign tumors known to cause gelastic or dacrystic seizures, precocious puberty, developmental delay, and medically refractory epilepsy. These tumors are most often sporadic but rarely can be associated with Pallister-Hall syndrome, an autosomal dominant familial syndrome caused by truncation of glioblastoma transcription factor 3, a downstream effector in the sonic hedgehog pathway. In this clinical report, the authors describe two brothers with a different familial syndrome. To the best of the authors' knowledge, this is the first report in the literature describing a familial syndrome caused by germline mutations in the Smoothened (SMO) gene and the first familial syndrome associated with hypothalamic hamartomas other than Pallister-Hall syndrome. The authors discuss the endoscopic endonasal biopsy and subtotal resection of a large hypothalamic hamartoma in one of the patients as well as the histopathological findings encountered. Integral to this discussion is the understanding of the hedgehog pathway; therefore, the underpinnings of this pathway and its clinical associations to date are also reviewed.
Collapse
|
200
|
Felsenthal N, Rubin S, Stern T, Krief S, Pal D, Pryce BA, Schweitzer R, Zelzer E. Development of migrating tendon-bone attachments involves replacement of progenitor populations. Development 2018; 145:dev.165381. [PMID: 30504126 DOI: 10.1242/dev.165381] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Tendon-bone attachment sites, called entheses, are essential for musculoskeletal function. They are formed embryonically by Sox9+ progenitors and continue to develop postnatally, utilizing Gli1 lineage cells. Despite their importance, we lack information on the transition from embryonic to mature enthesis and on the relation between Sox9+ progenitors and the Gli1 lineage. Here, by performing a series of lineage tracing experiments in mice, we identify the onset of Gli1 lineage contribution to different entheses. We show that Gli1 expression is regulated embryonically by SHH signaling, whereas postnatally it is maintained by IHH signaling. During bone elongation, some entheses migrate along the bone shaft, whereas others remain stationary. Interestingly, in stationary entheses Sox9 + cells differentiate into the Gli1 lineage, but in migrating entheses this lineage is replaced by Gli1 lineage. These Gli1+ progenitors are defined embryonically to occupy the different domains of the mature enthesis. Overall, these findings demonstrate a developmental strategy whereby one progenitor population establishes a simple embryonic tissue, whereas another population contributes to its maturation. Moreover, they suggest that different cell populations may be considered for cell-based therapy of enthesis injuries.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Deepanwita Pal
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|