151
|
Dębniak T, Gromowski T, Scott RJ, Gronwald J, Huzarski T, Byrski T, Kurzawski G, Dymerska D, Górski B, Paszkowska-Szczur K, Cybulski C, Serrano-Fernandez P, Lubiński J. Management of ovarian and endometrial cancers in women belonging to HNPCC carrier families: review of the literature and results of cancer risk assessment in Polish HNPCC families. Hered Cancer Clin Pract 2015; 13:3. [PMID: 25606063 PMCID: PMC4300044 DOI: 10.1186/s13053-015-0025-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Over half the cancer deaths in HNPCC families are due to extra-colonic malignancies that include endometrial and ovarian cancers. The benefits of surveillance for gynecological cancers are not yet proven and there is no consensus on the optimal surveillance recommendations for women with MMR mutations. METHODS We performed a systematic review of the literature and evaluated gynecological cancer risk in a series of 631 Polish HNPCC families classified into either Lynch Syndrome (LS, MMR mutations detected) or HNPCC (fulfillment of the Amsterdam or modified Amsterdam criteria). RESULTS Published data clearly indicates no benefit for ovarian cancer screening in contrast to risk reducing surgery. We confirmed a significantly increased risk of OC in Polish LS families (OR = 4,6, p < 0.001) and an especially high risk of OC was found for women under 50 years of age: OR = 32,6, p < 0.0001 (95% CI 12,96-81,87). The cumulative OC risk to 50 year of life was calculated to be 10%. Six out of 19 (32%) early-onset patients from LS families died from OC within 2 years of diagnosis. We confirmed a significantly increased risk of EC (OR = 26, 95% CI 11,36-58,8; p < 0,001). The cumulative risk for EC in Polish LS families was calculated to be 67%. CONCLUSIONS Due to the increased risk of OC and absence of any benefit from gynecological screening reported in the literature it is recommended that prophylactic oophorectomy for female carriers of MMR mutations after 35 year of age should be considered as a risk reducing option. Annual transvaginal ultrasound supported by CA125 or HE4 marker testing should be performed after prophylactic surgery in these women. Due to the high risk of EC it is reasonable to offer, after the age of 35 years, annual clinical gynecologic examinations with transvaginal ultrasound supported by routine aspiration sampling of the endometrium for women from either LS or HNPCC families. An alternative option, which could be taken into consideration for women preferring surgical prevention, is risk reducing total hysterectomy (with bilateral salpingo-oophorectomy) for carriers after childbearing is complete.
Collapse
Affiliation(s)
- Tadeusz Dębniak
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Gromowski
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rodney J Scott
- Discipline of Medical Genetics, Faculty of Health, University of Newcastle and Hunter Medical Research Institute, Newcastle, NSW Australia
| | - Jacek Gronwald
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Huzarski
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Byrski
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Grzegorz Kurzawski
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Dagmara Dymerska
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Bohdan Górski
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Paszkowska-Szczur
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Cezary Cybulski
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Pablo Serrano-Fernandez
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- Department o f Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
152
|
Malhotra J. Molecular and Genetic Epidemiology of Cancer in Low- and Medium-Income
Countries. Ann Glob Health 2014; 80:418-25. [DOI: 10.1016/j.aogh.2014.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
153
|
Ponti G, Castellsagué E, Ruini C, Percesepe A, Tomasi A. Mismatch repair genes founder mutations and cancer susceptibility in Lynch syndrome. Clin Genet 2014; 87:507-16. [PMID: 25345868 DOI: 10.1111/cge.12529] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Founder mutations in specific populations are common in several Mendelian disorders. They are shared by apparently unrelated families that inherited them from a common ancestor that existed hundreds to thousands of years ago. They have been proven to impact in molecular diagnostics strategies in specific populations, where they can be assessed as the first screening step and, if positive, avoid further expensive gene scanning. In Lynch syndrome (LS), a dominantly inherited colorectal cancer disease, more than 50 founder pathogenic mutations have been described so far in the mismatch repair (MMR) genes (MLH1, MSH2, MSH6 and PMS2). We here provide a comprehensive summary of the founder mutations found in the MMR genes and an overview of their main characteristics. At a time when high-throughput strategies are being introduced in the molecular diagnostics of cancer, genetic testing for founder mutations can complement next generation sequencing (NGS) technologies to most efficiently identify MMR gene mutations in any given population. Additionally, special attention is paid to MMR founder mutations with interesting anthropological significance.
Collapse
Affiliation(s)
- G Ponti
- Department of Diagnostic and Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | |
Collapse
|
154
|
Abstract
Genomic instability is a hallmark of cancer that leads to an increase in genetic alterations, thus enabling the acquisition of additional capabilities required for tumorigenesis and progression. Substantial heterogeneity in the amount and type of instability (nucleotide, microsatellite, or chromosomal) exists both within and between cancer types, with epithelial tumors typically displaying a greater degree of instability than hematological cancers. While high-throughput sequencing studies offer a comprehensive record of the genetic alterations within a tumor, detecting the rate of instability or cell-to-cell viability using this and most other available methods remains a challenge. Here, we discuss the different levels of genomic instability occurring in human cancers and touch on the current methods and limitations of detecting instability. We have applied one such approach to the surveying of public tumor data to provide a cursory view of genome instability across numerous tumor types.
Collapse
Affiliation(s)
- Larissa Pikor
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, Canada, V5Z 1L3,
| | | | | | | |
Collapse
|
155
|
Solé A, Villalobos X, Ciudad CJ, Noé V. Repair of single-point mutations by polypurine reverse Hoogsteen hairpins. Hum Gene Ther Methods 2014; 25:288-302. [PMID: 25222154 DOI: 10.1089/hgtb.2014.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polypurine reverse Hoogsteen hairpins (PPRHs) are formed by two intramolecularly bound antiparallel homopurine domains linked by a five-thymidine loop. One of the homopurine strands binds with antiparallel orientation by Watson-Crick bonds to the polypyrimidine target sequence, forming a triplex. We had previously reported the ability of PPRHs to effectively bind dsDNA displacing the fourth strand away from the newly formed triplex. The main goal of this work was to explore the possibility of repairing a point mutation in mammalian cells using PPRHs as tools. These repair-PPRHs contain different combinations of extended sequences of DNA with the corrected nucleotide to repair the point mutation. As a model we used the dihydrofolate reductase gene. On the one hand, we demonstrate in vitro that PPRHs bind specifically to their polypyrimidine target sequence, opening the two strands of the dsDNA, and allowing the binding of a given repair oligonucleotide to the displaced strand of the DNA. Subsequently, we show at a cellular level (Chinese ovary hamster cells) that repair-PPRHs are able to correct a single-point mutation in a dihydrofolate reductase minigene bearing a nonsense mutation, both in an extrachromosomal location and when the mutated plasmid was stably transfected into the cells. Finally, this methodology was successfully applied to repair a single-point mutation at the endogenous locus, using the DA5 cell line with a deleted nucleotide in exon six of the dhfr gene.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , E08028 Barcelona, Spain
| | | | | | | |
Collapse
|
156
|
Oka S, Leon J, Tsuchimoto D, Sakumi K, Nakabeppu Y. MUTYH, an adenine DNA glycosylase, mediates p53 tumor suppression via PARP-dependent cell death. Oncogenesis 2014; 3:e121. [PMID: 25310643 PMCID: PMC4216901 DOI: 10.1038/oncsis.2014.35] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/15/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022] Open
Abstract
p53-regulated caspase-independent cell death has been implicated in suppression of tumorigenesis, however, the regulating mechanisms are poorly understood. We previously reported that 8-oxoguanine (8-oxoG) accumulation in nuclear DNA (nDNA) and mitochondrial DNA triggers two distinct caspase-independent cell death through buildup of single-strand DNA breaks by MutY homolog (MUTYH), an adenine DNA glycosylase. One pathway depends on poly-ADP-ribose polymerase (PARP) and the other depends on calpains. Deficiency of MUTYH causes MUTYH-associated familial adenomatous polyposis. MUTYH thereby suppresses tumorigenesis not only by avoiding mutagenesis, but also by inducing cell death. Here, we identified the functional p53-binding site in the human MUTYH gene and demonstrated that MUTYH is transcriptionally regulated by p53, especially in the p53/DNA mismatch repair enzyme, MLH1-proficient colorectal cancer-derived HCT116+Chr3 cells. MUTYH-small interfering RNA, an inhibitor for p53 or PARP suppressed cell death without an additive effect, thus revealing that MUTYH is a potential mediator of p53 tumor suppression, which is known to be upregulated by MLH1. Moreover, we found that the p53-proficient, mismatch repair protein, MLH1-proficient colorectal cancer cell line express substantial levels of MUTYH in nuclei but not in mitochondria, suggesting that 8-oxoG accumulation in nDNA triggers MLH1/PARP-dependent cell death. These results provide new insights on the molecular mechanism of tumorigenesis and potential new strategies for cancer therapies.
Collapse
Affiliation(s)
- S Oka
- 1] Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| | - J Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - D Tsuchimoto
- 1] Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| | - K Sakumi
- 1] Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| | - Y Nakabeppu
- 1] Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan [2] Research Center for Nucleotide Pool, Kyushu University, Fukuoka, Japan
| |
Collapse
|
157
|
Oddone E, Modonesi C, Gatta G. Occupational exposures and colorectal cancers: A quantitative overview of epidemiological evidence. World J Gastroenterol 2014; 20:12431-12444. [PMID: 25253943 PMCID: PMC4168076 DOI: 10.3748/wjg.v20.i35.12431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/21/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
A traditional belief widespread across the biomedical community was that dietary habits and genetic predisposition were the basic factors causing colorectal cancer. In more recent times, however, a growing evidence has shown that other determinants can be very important in increasing (or reducing) incidence of this malignancy. The hypothesis that environmental and occupational risk factors are associated with colorectal cancer is gaining ground, and high risks of colorectal cancer have been reported among workers in some industrial branches. The aim of this study was to investigate the epidemiologic relationship between colorectal cancer and occupational exposures to several industrial activities, by means of a scientific literature review and meta-analysis. This work pointed out increased risks of colorectal cancer for labourers occupied in industries with a wide use of chemical compounds, such as leather (RR = 1.70, 95%CI: 1.24-2.34), basic metals (RR = 1.32, 95%CI: 1.07-1.65), plastic and rubber manufacturing (RR = 1.30, 95%CI: 0.98-1.71 and RR = 1.27, 95%CI: 0.92-1.76, respectively), besides workers in the sector of repair and installation of machinery exposed to asbestos (RR = 1.40, 95%CI: 1.07-1.84). Based on our results, the estimated crude excess risk fraction attributable to occupational exposure ranged from about 11% to about 15%. However, homogeneous pattern of association between colorectal cancer and industrial branches did not emerge from this review.
Collapse
|
158
|
Lancaster JM, Powell CB, Chen LM, Richardson DL. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol 2014; 136:3-7. [PMID: 25238946 DOI: 10.1016/j.ygyno.2014.09.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/13/2023]
Abstract
Women with germline mutations in the cancer susceptibility genes, BRCA1 or BRCA2, associated with Hereditary Breast & Ovarian Cancer syndrome, have up to an 85% lifetime risk of breast cancer and up to a 46% lifetime risk of ovarian, tubal, and peritoneal cancers. Similarly, women with mutations in the DNA mismatch repair genes, MLH1, MSH2, MSH6, or PMS2, associated with the Lynch/Hereditary Non-Polyposis Colorectal Cancer (HNPCC) syndrome, have up to a 40-60% lifetime risk of both endometrial and colorectal cancers as well as a 9-12% lifetime risk of ovarian cancer. Mutations in other genes including TP53, PTEN, and STK11 are responsible for hereditary syndromes associated with gynecologic, breast, and other cancers. Evaluation of the likelihood of a patient having one of these gynecologic cancer predisposition syndromes enables physicians to provide individualized assessments of cancer risk, as well as the opportunity to provide tailored screening and prevention strategies such as surveillance, chemoprevention, and prophylactic surgery that may reduce the morbidity and mortality associated with these syndromes. Evaluation for the presence of a hereditary cancer syndrome is a process that includes assessment of clinical and tumor characteristics, education and counseling conducted by a provider with expertise in cancer genetics, and may include genetic testing after appropriate consent is obtained. This commentary provides guidance on identification of patients who may benefit from assessment for the presence of a hereditary breast and/or gynecologic cancer syndrome.
Collapse
Affiliation(s)
| | - C Bethan Powell
- Permanente Medical Group San Francisco, CA, USA; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Lee-May Chen
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | | | | |
Collapse
|
159
|
Woerner SM, Tosti E, Yuan YP, Kloor M, Bork P, Edelmann W, Gebert J. Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors. Mol Carcinog 2014; 54:1376-86. [PMID: 25213383 DOI: 10.1002/mc.22213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
Abstract
Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis.
Collapse
Affiliation(s)
- Stefan M Woerner
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Elena Tosti
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY
| | - Yan P Yuan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ Heidelberg, Germany
| |
Collapse
|
160
|
Baxter E, Windloch K, Gannon F, Lee JS. Epigenetic regulation in cancer progression. Cell Biosci 2014; 4:45. [PMID: 25949794 PMCID: PMC4422217 DOI: 10.1186/2045-3701-4-45] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/26/2014] [Indexed: 01/01/2023] Open
Abstract
Cancer is a disease arising from both genetic and epigenetic modifications of DNA that contribute to changes in gene expression in the cell. Genetic modifications include loss or amplification of DNA, loss of heterozygosity (LOH) as well as gene mutations. Epigenetic changes in cancer are generally thought to be brought about by alterations in DNA and histone modifications that lead to the silencing of tumour suppressor genes and the activation of oncogenic genes. Other consequences that result from epigenetic changes, such as inappropriate expression or repression of some genes in the wrong cellular context, can also result in the alteration of control and physiological systems such that a normal cell becomes tumorigenic. Excessive levels of the enzymes that act as epigenetic modifiers have been reported as markers of aggressive breast cancer and are associated with metastatic progression. It is likely that this is a common contributor to the recurrence and spread of the disease. The emphasis on genetic changes, for example in genome-wide association studies and increasingly in whole genome sequencing analyses of tumours, has resulted in the importance of epigenetic changes having less attention until recently. Epigenetic alterations at both the DNA and histone level are increasingly being recognised as playing a role in tumourigenesis. Recent studies have found that distinct subgroups of poor-prognosis tumours lack genetic alterations but are epigenetically deregulated, pointing to the important role that epigenetic modifications and/or their modifiers may play in cancer. In this review, we highlight the multitude of epigenetic changes that can occur and will discuss how deregulation of epigenetic modifiers contributes to cancer progression. We also discuss the off-target effects that epigenetic modifiers may have, notably the effects that histone modifiers have on non-histone proteins that can modulate protein expression and activity, as well as the role of hypoxia in epigenetic regulation.
Collapse
Affiliation(s)
- Eva Baxter
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Karolina Windloch
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Frank Gannon
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| | - Jason S Lee
- QIMR Berghofer Medical Research Institute, Control of Gene Expression Laboratory, Herston Rd, 4006 Herston, QLD, Australia
| |
Collapse
|
161
|
Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, Church JM, Dominitz JA, Johnson DA, Kaltenbach T, Levin TR, Lieberman DA, Robertson DJ, Syngal S, Rex DK. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology 2014; 147:502-26. [PMID: 25043945 DOI: 10.1053/j.gastro.2014.04.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Multi-Society Task Force, in collaboration with invited experts, developed guidelines to assist health care providers with the appropriate provision of genetic testing and management of patients at risk for and affected with Lynch syndrome as follows: Figure 1 provides a colorectal cancer risk assessment tool to screen individuals in the office or endoscopy setting; Figure 2 illustrates a strategy for universal screening for Lynch syndrome by tumor testing of patients diagnosed with colorectal cancer; Figures 3-6 provide algorithms for genetic evaluation of affected and at-risk family members of pedigrees with Lynch syndrome; Table 10 provides guidelines for screening at-risk and affected persons with Lynch syndrome; and Table 12 lists the guidelines for the management of patients with Lynch syndrome. A detailed explanation of Lynch syndrome and the methodology utilized to derive these guidelines, as well as an explanation of, and supporting literature for, these guidelines are provided.
Collapse
Affiliation(s)
| | - John I Allen
- Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | - Jason A Dominitz
- VA Puget Sound Health Care System, Seattle, Washington; University of Washington, Seattle, Washington
| | | | | | | | | | - Douglas J Robertson
- White River Junction VA Medical Center, White River Junction, Vermont; Geisel School of Medicine at Dartmouth, White River Junction, Vermont
| | - Sapna Syngal
- Brigham and Women's Hospital, Boston, Massachusetts; Dana Farber Cancer Institute, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Douglas K Rex
- Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|
162
|
Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, Church JM, Dominitz JA, Johnson DA, Kaltenbach T, Levin TR, Lieberman DA, Robertson DJ, Syngal S, Rex DK. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the U.S. Multi-Society Task Force on Colorectal Cancer. Gastrointest Endosc 2014; 80:197-220. [PMID: 25034835 DOI: 10.1016/j.gie.2014.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
163
|
Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, Church JM, Dominitz JA, Johnson DA, Kaltenbach T, Levin TR, Lieberman DA, Robertson DJ, Syngal S, Rex DK. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer. Am J Gastroenterol 2014; 109:1159-79. [PMID: 25070057 DOI: 10.1038/ajg.2014.186] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Multi-Society Task Force, in collaboration with invited experts, developed guidelines to assist health care providers with the appropriate provision of genetic testing and management of patients at risk for and affected with Lynch syndrome as follows: Figure 1 provides a colorectal cancer risk assessment tool to screen individuals in the office or endoscopy setting; Figure 2 illustrates a strategy for universal screening for Lynch syndrome by tumor testing of patients diagnosed with colorectal cancer; Figures 3,4,5,6 provide algorithms for genetic evaluation of affected and at-risk family members of pedigrees with Lynch syndrome; Table 10 provides guidelines for screening at-risk and affected persons with Lynch syndrome; and Table 12 lists the guidelines for the management of patients with Lynch syndrome. A detailed explanation of Lynch syndrome and the methodology utilized to derive these guidelines, as well as an explanation of, and supporting literature for, these guidelines are provided.
Collapse
Affiliation(s)
| | - John I Allen
- Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | - Jason A Dominitz
- 1] VA Puget Sound Health Care System, Seattle, Washington, USA [2] University of Washington, Seattle, Washington, USA
| | | | | | | | | | - Douglas J Robertson
- 1] White River Junction VA Medical Center, White River Junction, Vermont, USA [2] Geisel School of Medicine at Dartmouth, White River Junction, Vermont, USA
| | - Sapna Syngal
- 1] Brigham and Women's Hospital, Boston, Massachusetts, USA [2] Dana Farber Cancer Institute, Boston, Massachusetts, USA [3] Harvard Medical School, Boston, Massachusetts, USA
| | - Douglas K Rex
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
164
|
Cybulski C, Nazarali S, Narod SA. Multiple primary cancers as a guide to heritability. Int J Cancer 2014; 135:1756-63. [PMID: 24945890 DOI: 10.1002/ijc.28988] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022]
Abstract
There are approximately 100 genes which when mutated are known to predispose to one or more forms of cancer. Currently, genetic testing is offered for many of these, either as single genes or as multi-gene panels. Features of hereditary cancer include a positive family history of cancer, early age of onset and the appearance of multiple primary cancers in one individual. In some cases multiple cancers may be of the same site (e.g., bilateral breast cancer) and in other cases they may be at different sites. Various combinations of cancer sites may be indicative of specific cancer syndromes such as the breast ovarian cancer syndrome. Genetic testing should be offered to individuals who have experienced multiple primary cancers in some circumstances, the genetic counselor should review the ages of sites of cancer, their pathologic features and the family history of cancer as part of the pre-test evaluation.
Collapse
Affiliation(s)
- Cezary Cybulski
- Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | | |
Collapse
|
165
|
Kastrinos F, Stoffel EM. History, genetics, and strategies for cancer prevention in Lynch syndrome. Clin Gastroenterol Hepatol 2014; 12:715-27; quiz e41-3. [PMID: 23891921 PMCID: PMC3995833 DOI: 10.1016/j.cgh.2013.06.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy and the third cause of cancer death in men and women in the United States. The majority of CRC cases diagnosed annually are due to sporadic events, but up to 6% are attributed to known monogenic disorders that confer a markedly increased risk for the development of CRC and multiple extracolonic malignancies. Lynch syndrome is the most common inherited CRC syndrome and is associated with mutations in DNA mismatch repair genes, mainly MLH1 and MSH2 but also MSH6, PMS2, and EPCAM. Although the risk of CRC and endometrial cancer may approach near 75% and 50%, respectively, in gene mutation carriers, the identification of these individuals and at-risk family members through predictive genetic testing provides opportunities for cancer prevention including specialized cancer screening, intensified surveillance, and/or prophylactic surgeries. This article will provide a review of the major advances in risk assessment, molecular genetics, DNA mutational analyses, and cancer prevention and management made since Lynch syndrome was first described 100 years ago.
Collapse
Affiliation(s)
- Fay Kastrinos
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York; Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, New York.
| | | |
Collapse
|
166
|
Involvement of DNA damage response pathways in hepatocellular carcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:153867. [PMID: 24877058 PMCID: PMC4022277 DOI: 10.1155/2014/153867] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/23/2014] [Accepted: 03/25/2014] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.
Collapse
|
167
|
Nagel ZD, Chaim IA, Samson LD. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair (Amst) 2014; 19:199-213. [PMID: 24780560 DOI: 10.1016/j.dnarep.2014.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Why does a constant barrage of DNA damage lead to disease in some individuals, while others remain healthy? This article surveys current work addressing the implications of inter-individual variation in DNA repair capacity for human health, and discusses the status of DNA repair assays as potential clinical tools for personalized prevention or treatment of disease. In particular, we highlight research showing that there are significant inter-individual variations in DNA repair capacity (DRC), and that measuring these differences provides important biological insight regarding disease susceptibility and cancer treatment efficacy. We emphasize work showing that it is important to measure repair capacity in multiple pathways, and that functional assays are required to fill a gap left by genome wide association studies, global gene expression and proteomics. Finally, we discuss research that will be needed to overcome barriers that currently limit the use of DNA repair assays in the clinic.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
168
|
Kan Y, Ruis B, Lin S, Hendrickson EA. The mechanism of gene targeting in human somatic cells. PLoS Genet 2014; 10:e1004251. [PMID: 24699519 PMCID: PMC3974634 DOI: 10.1371/journal.pgen.1004251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells. Gene targeting is important for basic research and clinical applications. In the laboratory, gene targeting is used to knockout genes so that loss-of-function phenotypes can be assessed. In the clinic, gene targeting is the gold standard to which most gene therapy approaches aspire. One of the most promising tools for gene targeting in humans is recombinant adeno-associated virus (rAAV). The mechanism by which rAAV performs gene targeting has, however, remained obscure. Here, we surprisingly demonstrate that the normally single-stranded rAAV performs gene targeting via double-stranded intermediates, which are mechanistically indistinguishable from standard plasmid-mediated gene targeting. Moreover, we establish the double-strand break (DSB) repair model as the paradigm to describe human gene targeting, and delineate the dynamics of crossovers in this model. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted such that the chromosome becomes the “attacker” instead of the “attackee”. Finally, we confirm that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations advance our understanding of the mechanism of human gene targeting and should readily lend themselves to developing improvements to existing methodologies.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Sherry Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
169
|
Kim SB, Zhang L, Barron S, Shay JW. Inhibition of microRNA-31-5p protects human colonic epithelial cells against ionizing radiation. LIFE SCIENCES IN SPACE RESEARCH 2014; 1:67-73. [PMID: 26432591 DOI: 10.1016/j.lssr.2014.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs), endogenous non-coding small RNAs, are sensitive to environmental changes, and their differential expression is important for adaptation to the environment. However, application of miRNAs as a clinical prognostic or diagnostic tool remains unproven. In this study we demonstrate a chronic/persistent change of miRNAs from the plasma of a colorectal cancer susceptible mouse model (CPC;Apc) about 250 days after exposure to a simulated solar particle event (SPE). Differentially expressed miRNAs were identified compared to unirradiated control mice, including miR-31-5p, which we investigated further. To address the cellular function of miR-31-5p, we transfected a miR-31-5p mimic (sense) or inhibitor (antisense) into immortalized human colonic epithelial cells followed by gamma-irradiation. A miR-31-5p mimic sensitized but a miR-31-5p inhibitor protected colonic epithelial cells against radiation induced killing. We found that the miR-31-5p mimic inhibited the induction of hMLH1 expression after irradiation, whereas the miR-31-5p inhibitor increased the basal level of hMLH1 expression. The miR-31-5p inhibitor failed to modulate radiosensitivity in an hMLH1-deficient HCT116 colon cancer cell line but protected HCT116 3-6 and DLD-1 (both hMLH1-positive) colon cancer cell lines. Our findings demonstrate that miR-31-5p has an important role in radiation responses through regulation of hMLH1 expression. Targeting this pathway could be a promising therapeutic strategy for future personalized anti-cancer radiotherapy.
Collapse
Affiliation(s)
- Sang Bum Kim
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Lu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Summer Barron
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, United States.
| |
Collapse
|
170
|
Whiffin N, Houlston RS. Architecture of inherited susceptibility to colorectal cancer: a voyage of discovery. Genes (Basel) 2014; 5:270-84. [PMID: 24705330 PMCID: PMC4094933 DOI: 10.3390/genes5020270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 01/29/2023] Open
Abstract
This review looks back at five decades of research into genetic susceptibility to colorectal cancer (CRC) and the insights these studies have provided. Initial evidence of a genetic basis of CRC stems from epidemiological studies in the 1950s and is further provided by the existence of multiple dominant predisposition syndromes. Genetic linkage and positional cloning studies identified the first high-penetrance genes for CRC in the 1980s and 1990s. More recent genome-wide association studies have identified common low-penetrance susceptibility loci and provide support for a polygenic model of disease susceptibility. These observations suggest a high proportion of CRC may arise in a group of susceptible individuals as a consequence of the combined effects of common low-penetrance risk alleles and rare variants conferring moderate CRC risks. Despite these advances, however, currently identified loci explain only a small fraction of the estimated heritability to CRC. It is hoped that a new generation of sequencing projects will help explain this missing heritability.
Collapse
Affiliation(s)
- Nicola Whiffin
- Molecular and Population Genetics Team, Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK.
| | - Richard S Houlston
- Molecular and Population Genetics Team, Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK.
| |
Collapse
|
171
|
Martín-López JV, Fishel R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Fam Cancer 2014; 12:159-68. [PMID: 23572416 DOI: 10.1007/s10689-013-9635-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The majority of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer (HNPCC), has been linked to heterozygous defects in DNA mismatch repair (MMR). MMR is a highly conserved pathway that recognizes and repairs polymerase misincorporation errors and nucleotide damage as well as functioning as a damage sensor that signals apoptosis. Loss-of-heterozygosity (LOH) that retains the mutant MMR allele and epigenetic silencing of MMR genes are associated with an increased mutation rate that drives carcinogenesis as well as microsatellite instability that is a hallmark of LS/HNPCC. Understanding the biophysical functions of the MMR components is crucial to elucidating the role of MMR in human tumorigenesis and determining the pathogenetic consequences of patients that present in the clinic with an uncharacterized variant of the MMR genes. We summarize the historical association between LS/HNPCC and MMR, discuss the mechanism of the MMR and finally examine the functional analysis of MMR defects found in LS/HNPCC patients and their relationship with the severity of the disease.
Collapse
Affiliation(s)
- Juana V Martín-López
- Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | | |
Collapse
|
172
|
|
173
|
Lee JH, Cragun D, Thompson Z, Coppola D, Nicosia SV, Akbari M, Zhang S, McLaughlin J, Narod S, Schildkraut J, Sellers TA, Pal T. Association between IHC and MSI testing to identify mismatch repair-deficient patients with ovarian cancer. Genet Test Mol Biomarkers 2014; 18:229-35. [PMID: 24592941 DOI: 10.1089/gtmb.2013.0393] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE In epithelial ovarian cancer, concordance between results of microsatellite instability (MSI) and immunohistochemical (IHC) testing has not been demonstrated. This study evaluated the association of MSI-high (MSI-H) status with loss of expression (LoE) of mismatch repair (MMR) proteins on IHC and assessed for potential factors affecting the strength of the association. METHODS Tumor specimens from three population-based studies of epithelial ovarian cancer were stained for MMR proteins through manual or automated methods, and results were interpreted by one of two pathologists. Tumor and germline DNA was extracted and MSI testing performed. Multivariable logistic regression models were fitted to predict loss of IHC expression based on MSI status after adjusting for staining method and reading pathologist. RESULTS Of 834 cases, 564 (67.6%) were concordant; 41 were classified as MSI-H with LoE and 523 as microsatellite stable (MSS) with no LoE. Of the 270 discordant cases, 83 were MSI-H with no LoE and 187 were MSS with LoE. Both IHC staining method and reading pathologist were strongly associated with discordant results. CONCLUSIONS Lack of concordance in the current study may be related to inconsistencies in IHC testing methods and interpretation. Results support the need for validation studies before routine screening of ovarian tumors is implemented in clinical practice for the purpose of identifying Lynch syndrome.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- 1 Department of Biostatistics, H. Lee Moffitt Cancer Center , Tampa, Florida
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Rasool S, Rasool V, Naqvi T, Ganai BA, Shah BA. Genetic unraveling of colorectal cancer. Tumour Biol 2014; 35:5067-82. [PMID: 24573608 DOI: 10.1007/s13277-014-1713-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/29/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common disease in both men and women (being the third most common cancer in men and the second most common among women) and thus represents an important and serious public health issue, especially in the western world. Although it is a well-established fact that cancers of the large intestine produce symptoms relatively earlier at a stage that can be easily cured by resection, a large number of people lose their lives to this deadly disease each year. Recent times have seen an important change in the incidence of colorectal cancer in different parts of the world. The etiology of colorectal cancer is multifactorial and is likely to involve the actions of genes at multiple levels along the multistage carcinogenesis process. Exhaustive efforts have been made out in the direction of unraveling the role of various environmental factors, gene mutations, and polymorphisms worldwide (as well as in Kashmir-"a valley of gastrointestinal cancers") that have got a role to play in the development of this disease so that antitumor drugs could be developed against this cancer, first, and, finally, the responsiveness or resistance to these agents could be understood for combating this global issue.
Collapse
Affiliation(s)
- Sabha Rasool
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | | | | | | | | |
Collapse
|
175
|
Pan Y, Yang H, Claret FX. Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer. Cancer Biol Ther 2014; 15:256-62. [PMID: 24495954 DOI: 10.4161/cbt.27823] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Jab1/CSN5 is a multifunctional protein that plays an important role in integrin signaling, cell proliferation, apoptosis, and the regulation of genomic instability and DNA repair. Dysregulation of Jab1/CSN5 activity has been shown to contribute to oncogenesis by functionally inactivating several key negative regulatory proteins and tumor suppressors. In this review, we discuss our current understanding of the relationship between Jab1/CSN5 and DNA damage and summarize recent findings regarding opportunities for and challenges to therapeutic intervention.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou, Guangdong, PR China; Breast Tumor Center; Sun Yat-Sen Memorial Hospital; Sun Yat-Sen University; Guangzhou, Guangdong, PR China
| | - Huiling Yang
- Department of Pathophysiology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou, Guangdong, PR China
| | - Francois X Claret
- Department of Systems Biology; The University of Texas MD Anderson Cancer Center; Houston, TX USA; Experimental Therapeutic Academic Program and Cancer Biology Program; The University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX USA
| |
Collapse
|
176
|
De Vivo I, Prescott J, Setiawan VW, Olson SH, Wentzensen N, Attia J, Black A, Brinton L, Chen C, Chen C, Cook LS, Crous-Bou M, Doherty J, Dunning AM, Easton DF, Friedenreich CM, Garcia-Closas M, Gaudet MM, Haiman C, Hankinson SE, Hartge P, Henderson BE, Holliday E, Horn-Ross PL, Hunter DJ, Le Marchand L, Liang X, Lissowska J, Long J, Lu L, Magliocco AM, McEvoy M, O'Mara TA, Orlow I, Painter JN, Pooler L, Rastogi R, Rebbeck TR, Risch H, Sacerdote C, Schumacher F, Scott RJ, Sheng X, Shu XO, Spurdle AB, Thompson D, Vanden Berg D, Weiss NS, Xia L, Xiang YB, Yang HP, Yu H, Zheng W, Chanock S, Kraft P. Genome-wide association study of endometrial cancer in E2C2. Hum Genet 2014; 133:211-24. [PMID: 24096698 PMCID: PMC3898362 DOI: 10.1007/s00439-013-1369-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/22/2013] [Indexed: 11/10/2022]
Abstract
Endometrial cancer (EC), a neoplasm of the uterine epithelial lining, is the most common gynecological malignancy in developed countries and the fourth most common cancer among US women. Women with a family history of EC have an increased risk for the disease, suggesting that inherited genetic factors play a role. We conducted a two-stage genome-wide association study of Type I EC. Stage 1 included 5,472 women (2,695 cases and 2,777 controls) of European ancestry from seven studies. We selected independent single-nucleotide polymorphisms (SNPs) that displayed the most significant associations with EC in Stage 1 for replication among 17,948 women (4,382 cases and 13,566 controls) in a multiethnic population (African America, Asian, Latina, Hawaiian and European ancestry), from nine studies. Although no novel variants reached genome-wide significance, we replicated previously identified associations with genetic markers near the HNF1B locus. Our findings suggest that larger studies with specific tumor classification are necessary to identify novel genetic polymorphisms associated with EC susceptibility.
Collapse
Affiliation(s)
- Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Ryan S, Jenkins MA, Win AK. Risk of prostate cancer in Lynch syndrome: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2014; 23:437-49. [PMID: 24425144 DOI: 10.1158/1055-9965.epi-13-1165] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It has been controversial that men carrying a DNA mismatch repair (MMR) gene mutation (Lynch syndrome) are at heightened risk of prostate cancer given that an increased risk is likely to be modest and the prevalence of prostate cancer is high. We used PubMed to search for "molecular studies" that reported MMR-deficiency status of prostate cancer tumors in men with an MMR gene mutation, and "risk studies" that reported prostate cancer risk for men known or suspected to have an MMR gene mutation relative to that for noncarriers or the general population. Of the six molecular studies, 32 of 44 [73%, 95% confidence intervals (CI), 57%-85%] prostate cancer tumors in carriers were MMR deficient, which equates to carriers having a 3.67-fold increased risk of prostate cancer (95% CI, 2.32-6.67). Of the 12 risk studies, we estimated a 2.13-fold increased risk of prostate cancer (95% CI, 1.45-2.80) for male carriers in clinic-based retrospective cohorts, 2.11 (95% CI, 1.27-2.95) for male carriers with a prior diagnosis of colorectal cancer, and 2.28 (95% CI, 1.37-3.19) for all men from mutation-carrying families. The combination of evidence from molecular and risk studies in the current literature supports consideration of prostate cancer as part of Lynch syndrome.
Collapse
Affiliation(s)
- Shae Ryan
- Authors' Affiliation: Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
178
|
Slováková P, Majerová L, Matáková T, Skereňová M, Kavcová E, Halašová E. Mismatch repair gene polymorphisms and association with lung cancer development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 833:15-22. [PMID: 25252909 DOI: 10.1007/5584_2014_83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
hMLH1 and hMSH2 are two of the main members of the mismatch repair (MMR) genes family. Polymorphism of MMR genes is associated with a risk of developing sporadic and hereditary tumors. In the present case-control study, we investigated the promoter polymorphisms of selected mismatch repair genes: hMLH1 (rs1800734) and hMSH2 (rs2303425), and the risk they present regarding the development of lung cancer in the Slovak population. The study included 422 lung cancer cases, 511 controls for hMLH1 gene and 486 controls for hMSH2 gene. Polymorphism was investigated by a PCR-RFLP method. The risk of cancer development was evaluated in both dominant and recessive genetic models. The evaluation of rs1800734 polymorphism in patients in the dominant model showed a significantly decreased risk of lung cancer in the presence of at least one variant allele A (genotype GA and AA) (OR=1.40; 95% CI=1.08-1.82; p=0.01). These findings were equally strong expressed in women (OR=2.00; 95% CI=1.23-3.25; p=0.006). The results for rs2303425 polymorphism revealed an increased risk of lung cancer for variant genotype CC (OR=2.28; 95% CI=1.12-4.63; p=0.024) in the recessive model. A combination of rs1800734 and rs2303425 polymorphisms was shown to be risky for genotype GGCC; OR=3.08; 95% CI=1.09-8.72; p=0.03. The risk appeared even greater in female gender; (OR=11.56; 95% CI=1.33-100.36, 1.26-94.66; p=0.005. We conclude that the genotype of mismatch repair genes underscores the risk of lung cancer development in the Slovak population.
Collapse
Affiliation(s)
- P Slováková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01, Martin, Slovak Republic,
| | | | | | | | | | | |
Collapse
|
179
|
Abstract
The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.
Collapse
Affiliation(s)
- Abel Rodriguez
- University of California, Santa Cruz and Duke University
| | | |
Collapse
|
180
|
Piao J, Nakatsu Y, Ohno M, Taguchi KI, Tsuzuki T. Mismatch repair deficient mice show susceptibility to oxidative stress-induced intestinal carcinogenesis. Int J Biol Sci 2013; 10:73-9. [PMID: 24391453 PMCID: PMC3879593 DOI: 10.7150/ijbs.5750] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/24/2013] [Indexed: 11/25/2022] Open
Abstract
We have previously established an experimental system for oxidative DNA damage-induced tumorigenesis in the small intestine of mice. To elucidate the roles of mismatch repair genes in the tumor suppression, we performed oxidative DNA damage-induced tumorigenesis experiments using Msh2-deficient mice. Oral administration of 0.2% Potassium Bromate, KBrO3, effectively induced epithelial tumors in the small intestines of Msh2-deficient mice. We observed a 22.5-fold increase in tumor formation in the small intestines of Msh2-deficient mice compared with the wild type mice. These results indicate that mismatch repair is involved in the suppression of oxidative stress-induced intestinal tumorigenesis in mice. A mutation analysis of the Ctnnb1 gene of the tumors revealed predominant occurrences of G:C to A:T transitions. The TUNEL analysis showed a decreased number of TUNEL-positive cells in the crypts of small intestines from the Msh2-deficient mice compared with the wild type mice after treatment of KBrO3. These results suggest that the mismatch repair system may simultaneously function in both avoiding mutagenesis and inducing cell death to suppress the tumorigenesis induced by oxidative stress in the small intestine of mice.
Collapse
Affiliation(s)
- Jingshu Piao
- 1. Department of Medical Biophysics and Radiation Biology, Graduate School of Medical Sciences, Kyushu University
| | - Yoshimichi Nakatsu
- 1. Department of Medical Biophysics and Radiation Biology, Graduate School of Medical Sciences, Kyushu University
| | - Mizuki Ohno
- 1. Department of Medical Biophysics and Radiation Biology, Graduate School of Medical Sciences, Kyushu University
| | - Ken-ichi Taguchi
- 2. Department of Cancer Pathology, Institute for Clinical Research, National Kyushu Cancer Center, Fukuoka, Japan
| | - Teruhisa Tsuzuki
- 1. Department of Medical Biophysics and Radiation Biology, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
181
|
McPherson LA, Shen Y, Ford JM. Poly (ADP-ribose) polymerase inhibitor LT-626: Sensitivity correlates with MRE11 mutations and synergizes with platinums and irinotecan in colorectal cancer cells. Cancer Lett 2013; 343:217-23. [PMID: 24215868 DOI: 10.1016/j.canlet.2013.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/30/2013] [Accepted: 10/10/2013] [Indexed: 02/07/2023]
Abstract
Some colorectal cancers (CRC) display microsatellite instability (MSI) leading to mutations in genes such as MRE11. The aim of this study was to determine whether MSI or MRE11 mutational status correlates with sensitivity to the PARP inhibitor LT-626 and whether LT-626 synergizes with DNA-damaging chemotherapeutic agents. CRC cells harboring biallelic MRE11 mutations were more sensitive to LT-626 and stable overexpression or knock-down of MRE11 in cell lines correlated with sensitivity. Synergism was evident between LT-626 and cisplatin, oxaliplatin and SN-38 suggesting that PARP inhibitors in combination with DNA damaging agents may be a successful strategy for treatment of CRC.
Collapse
Affiliation(s)
- Lisa A McPherson
- Division of Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Yuqiao Shen
- BioMarin Pharmaceutical Inc., Novato, CA, United States
| | - James M Ford
- Division of Oncology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
182
|
Luo T, Wu S, Shen X, Li L. Network cluster analysis of protein-protein interaction network identified biomarker for early onset colorectal cancer. Mol Biol Rep 2013; 40:6561-8. [PMID: 24197691 DOI: 10.1007/s11033-013-2694-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 09/14/2013] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is a major cause of morbidity and mortality throughout the world. However, the genetic alterations and molecular mechanism of the early onset CRCs are not fully investigated. The present study aimed to characterize early onset CRC by analyzing its gene expression compared with normal controls and to identify network-based biomarkers of early onset CRC. The gene expression profiles of early onset CRC were downloaded from Gene Expression Omnibus and the differentially expressed genes (DEGs) in CRC patients were identified. Then, a protein-protein interaction (PPI) network was constructed and the clusters in PPI were analyzed by ClusterONE. Furthermore, the gene ontology functional analysis and pathway enrichment analysis were conducted to the modules in PPI network. A systems biology approach integrating microarray data and PPI was further applied to construct a PPI network in CRC. Total 631 DEGs were identified from the early onset CRC compared to healthy controls. These genes were found to be involved in several biological processes, including cell communication, cell proliferation, cell shape and apoptosis. Five functional modules which may play important roles in the initiation of early onset CRC were identified from the PPI network. Functional annotation revealed that these five modules were involved in the pathways of signal transduction, carcinogenesis and metastasis. The hub nodes of these five modules, CDC42, TEX11, QKI, CAV1 and FN1, may serve as the biomarkers of early onset CRC and have the potential to be targets for therapeutic intervention. However, further investigations are still needed to confirm our findings.
Collapse
Affiliation(s)
- Tiancheng Luo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | | | | | | |
Collapse
|
183
|
Bellizzi AM. Contributions of molecular analysis to the diagnosis and treatment of gastrointestinal neoplasms. Semin Diagn Pathol 2013; 30:329-61. [DOI: 10.1053/j.semdp.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
184
|
Romanova NV, Crouse GF. Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast. PLoS Genet 2013; 9:e1003920. [PMID: 24204320 PMCID: PMC3814323 DOI: 10.1371/journal.pgen.1003920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
DNA mismatch repair greatly increases genome fidelity by recognizing and removing replication errors. In order to understand how this fidelity is maintained, it is important to uncover the relative specificities of the different components of mismatch repair. There are two major mispair recognition complexes in eukaryotes that are homologues of bacterial MutS proteins, MutSα and MutSβ, with MutSα recognizing base-base mismatches and small loop mispairs and MutSβ recognizing larger loop mispairs. Upon recognition of a mispair, the MutS complexes then interact with homologues of the bacterial MutL protein. Loops formed on the primer strand during replication lead to insertion mutations, whereas loops on the template strand lead to deletions. We show here in yeast, using oligonucleotide transformation, that MutSα has a strong bias toward repair of insertion loops, while MutSβ has an even stronger bias toward repair of deletion loops. Our results suggest that this bias in repair is due to the different interactions of the MutS complexes with the MutL complexes. Two mutants of MutLα, pms1-G882E and pms1-H888R, repair deletion mispairs but not insertion mispairs. Moreover, we find that a different MutL complex, MutLγ, is extremely important, but not sufficient, for deletion repair in the presence of either MutLα mutation. MutSβ is present in many eukaryotic organisms, but not in prokaryotes. We suggest that the biased repair of deletion mispairs may reflect a critical eukaryotic function of MutSβ in mismatch repair.
Collapse
Affiliation(s)
- Nina V. Romanova
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Gray F. Crouse
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
185
|
Win AK, Macinnis RJ, Dowty JG, Jenkins MA. Criteria and prediction models for mismatch repair gene mutations: a review. J Med Genet 2013; 50:785-93. [PMID: 23956446 DOI: 10.1136/jmedgenet-2013-101803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the strongest predictors of colorectal cancer risk is carrying a germline mutation in a DNA mismatch repair (MMR) gene. Once identified, mutation carriers can be recommended for intensive screening that will substantially reduce their high colorectal cancer risk. Conversely, the relatives of carriers identified as non-carriers can be relieved of the burden of intensive screening. Criteria and prediction models that identify likely mutation carriers are needed for cost-effective, targeted, germline testing for MMR gene mutation. We reviewed 12 criteria/guidelines and 8 prediction models (Leiden, Amsterdam-plus, Amsterdam-alternative, MMRpro, PREMM1,2,6, MMRpredict, Associazione Italiana per lo studio della Familiarità ed Ereditarietà dei tumori Gastrointestinali (AIFEG) and the Myriad Genetics Prevalence table) for identifying mutation carriers. While criteria are only used to identify individuals with colorectal cancer (yes/no for screening followed by germline testing), all prediction models except MMRpredict and Myriad tables can predict the probability of carrying mutations for individuals with or without colorectal cancer. We conducted a meta-analysis of the discrimination performance of 17 studies that validated the prediction models. The pooled estimate for the area under curve was 0.80 (95% CI 0.72 to 0.88) for MMRpro, 0.81 (95% CI 0.73 to 0.88) for MMRpredict, 0.84 (95% CI 0.81 to 0.88) for PREMM, and 0.85 (95% CI 0.78 to 0.91) for Leiden model. Given the high degree of overlap in the CIs, we cannot state that one model has a higher discrimination than any of the others. Overall, the existing statistical models have been shown to be sensitive and specific (at a 5% cut-off) in predicting MMR gene mutation carriers. Future models may need to: provide prediction of PMS2 mutations, take into account a wider range of Lynch syndrome-associated cancers when assessing family history, and be applicable to all people irrespective of any cancer diagnosis.
Collapse
Affiliation(s)
- Aung Ko Win
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
186
|
Hiljadnikova-Bajro M, Josifovski T, Panovski M, Dimovski AJ. A novel germline MLH1 mutation causing Lynch Syndrome in patients from the Republic of Macedonia. Croat Med J 2013; 53:496-501. [PMID: 23100212 PMCID: PMC3490460 DOI: 10.3325/cmj.2012.53.496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim To implement molecular analysis in the clinical diagnosis and management of Lynch syndrome (LS). Methods We analyzed the mutations in MLH1 and MSH2 in the selected LS families from the Republic of Macedonia. Results We performed the very first genetic identification of LS families and characterized a novel mutation. The novel nonsense germline point mutation c.392C>G in the codon 131 of MLH1(S131X) was identified as the underlying genetic cause of LS in three families. The haplotype analysis suggested a founder effect of this mutation in our population. Conclusion We expect to detect the mutation in other LS patients from the region, and recommend cost-effective screening for this mutation by restriction fragment length polymorphism-polymerase chain reaction or DNA sequencing of MLH1 Exon5 prior to full genetic testing in all LS suspects of Macedonian ancestry.
Collapse
Affiliation(s)
- Marija Hiljadnikova-Bajro
- Faculty of Pharmacy, Ss. Cyril and Methodius University, Vodnjanska 17, Skopje, Republic of Macedonia
| | | | | | | |
Collapse
|
187
|
Gabano E, Gama S, Mendes F, Gariboldi MB, Monti E, Bombard S, Bianco S, Ravera M. Study of the synthesis, antiproliferative properties, and interaction with DNA and polynucleotides of cisplatin-like Pt(II) complexes containing carcinogenic polyaromatic amines. J Biol Inorg Chem 2013; 18:791-801. [PMID: 23873259 DOI: 10.1007/s00775-013-1022-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/30/2013] [Indexed: 01/03/2023]
Abstract
The chemical and biological features of two newly synthesized [PtCl2(L)(2-aminonaphthalene)] complexes (L is NH3 or 2-aminonaphthalene) were compared with those of two already reported enantiomeric complexes of formula [PtCl2(DABN)] [DABN is (R)-1,1'-binaphthyl-2,2'-diamine or (S)-1,1'-binaphthyl-2,2'-diamine]. Solution behavior, lipophilicity, cytotoxicity with regard to one colorectal (HCT116) and two ovarian (A2780 and A2780Cp8) human carcinoma cell lines, and in vitro DNA- and G-quadruplex-binding properties were evaluated. In particular, the cytotoxicity of [PtCl2(NH3)(2-aminonaphthalene)] was better than that of cisplatin for all cell lines, and rather resembled that of oxaliplatin. The solution behavior of the whole series of complexes and the absence of an evident relationship between lipophilicity and cytotoxicity seem to suggest that all these experimental parameters are probably smoothed out during the 3-day cytotoxicity experiments and do not strongly affect the half-maximal inhibitory concentrations. The results of electrophoretic studies indicate that different kinds of interaction with DNA can be involved in the mode of action of these complexes, with intercalation in double-stranded DNA and stacking on G-quadruplex DNA being strongly implicated in particular for [PtCl2(NH3)(2-aminonaphthalene)].
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), Università del Piemonte Orientale "Amedeo Avogadro", Viale Michel 11, 15121, Alessandria, Italy
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
Normal cell function requires strict control over the repair of DNA damage, which prevents excessive mutagenesis. An enhanced accumulation of mutations results in the multistep process generally known as carcinogenesis. Defects in repair pathways fuel such mutagenesis by allowing reiterative cycles of mutation, selection, and clonal expansion that drive cancer progression. The repair of mismatches is an important mechanism in the prevention of such genetic instability. In addition, proteins of this pathway have the unique ability to function in DNA damage response by inducing apoptosis when irreparable damage is encountered. Though originally identified primarily in association with a predisposition to hereditary colon cancer, mismatch repair defects have been identified in many other cancer types, including prostate cancer. From the first discovery of microsatellite instability in prostate cancer cell lines and tumor samples, variations in protein levels and a possible association with recurrence and aggression of disease have been described. Current results suggest that the involvement of mismatch repair proteins in prostate cancer may differ from that found in colorectal cancer, in the type of proteins and protein defects involved and the type of causative mutations. Additional work is clearly needed to investigate this involvement and the possibility that such defects may affect treatment response and androgen independence.
Collapse
Affiliation(s)
- John Jarzen
- Department of Biology, College of Science and Technology, Georgia Southern University, Statesboro, Georgia, USA
| | | | | |
Collapse
|
189
|
Belcheva A, Green B, Weiss A, Streutker C, Martin A. Elevated incidence of polyp formation in APC(Min/⁺)Msh2⁻/⁻ mice is independent of nitric oxide-induced DNA mutations. PLoS One 2013; 8:e65204. [PMID: 23741483 PMCID: PMC3669241 DOI: 10.1371/journal.pone.0065204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/21/2013] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota has been linked to a number of human diseases including colon cancer. However, the mechanism through which gut bacteria influence colon cancer development and progression remains unclear. Perturbation of the homeostasis between the host immune system and microbiota leads to inflammation and activation of macrophages which produce large amounts of nitric oxide that acts as a genotoxic effector molecule to suppress bacterial growth. However, nitric oxide also has genotoxic effects to host cells by producing mutations that can predispose to colon cancer development. The major DNA lesions caused by nitric oxide are 8oxoG and deamination of deoxycytosine bases. Cellular glycosylases that belong to the base excision repair pathway have been demonstrated to repair these mutations. Recent evidence suggests that the mismatch repair pathway (MMR) might also repair nitric oxide-induced DNA damage. Since deficiency in MMR predisposes to colon cancer, we hypothesized that MMR-deficient colon epithelial cells are incapable of repairing nitric-oxide induced genetic lesions that can promote colon cancer. Indeed, we found that the MMR pathway repairs nitric oxide-induced DNA mutations in cell lines. To test whether nitric oxide promotes colon cancer, we genetically ablated the inducible nitric oxide synthase (iNOS) or inhibited iNOS activity in the APC(Min/+)Msh2(-/-) mouse model of colon cancer. However, despite the fact that nitric oxide production was strongly reduced in the colon using both approaches, colon cancer incidence was not affected. These data show that nitric oxide and iNOS do not promote colon cancer in APC(Min/+)Msh2(-/-) mice.
Collapse
Affiliation(s)
- Antoaneta Belcheva
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Blerta Green
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ashley Weiss
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
190
|
Abstract
Technological advances have greatly increased the availability of human genomic sequencing. However, the capacity to analyze genomic data in a clinically meaningful way lags behind the ability to generate such data. To help address this obstacle, we reviewed all conditions with genetic causes and constructed the Clinical Genomic Database (CGD) (http://research.nhgri.nih.gov/CGD/), a searchable, freely Web-accessible database of conditions based on the clinical utility of genetic diagnosis and the availability of specific medical interventions. The CGD currently includes a total of 2,616 genes organized clinically by affected organ systems and interventions (including preventive measures, disease surveillance, and medical or surgical interventions) that could be reasonably warranted by the identification of pathogenic mutations. To aid independent analysis and optimize new data incorporation, the CGD also includes all genetic conditions for which genetic knowledge may affect the selection of supportive care, informed medical decision-making, prognostic considerations, reproductive decisions, and allow avoidance of unnecessary testing, but for which specific interventions are not otherwise currently available. For each entry, the CGD includes the gene symbol, conditions, allelic conditions, clinical categorization (for both manifestations and interventions), mode of inheritance, affected age group, description of interventions/rationale, links to other complementary databases, including databases of variants and presumed pathogenic mutations, and links to PubMed references (>20,000). The CGD will be regularly maintained and updated to keep pace with scientific discovery. Further content-based expert opinions are actively solicited. Eventually, the CGD may assist the rapid curation of individual genomes as part of active medical care.
Collapse
|
191
|
Tentori L, Leonetti C, Muzi A, Dorio AS, Porru M, Dolci S, Campolo F, Vernole P, Lacal PM, Praz F, Graziani G. Influence of MLH1 on colon cancer sensitivity to poly(ADP-ribose) polymerase inhibitor combined with irinotecan. Int J Oncol 2013; 43:210-8. [PMID: 23653048 DOI: 10.3892/ijo.2013.1932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/01/2013] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are currently evaluated in clinical trials in combination with topoisomerase I (Top1) inhibitors against a variety of cancers, including colon carcinoma. Since the mismatch repair component MLH1 is defective in 10-15% of colorectal cancers we have investigated whether MLH1 affects response to the Top1 inhibitor irinotecan, alone or in combination with PARPi. To this end, the colon cancer cell lines HCT116, carrying MLH1 mutations on chromosome 3 and HCT116 in which the wild-type MLH1 gene was replaced via chromosomal transfer (HCT116+3) or by transfection of the corresponding MLH1 cDNA (HCT116 1-2) were used. HCT116 cells or HCT116+3 cells stably silenced for PARP-1 expression were also analysed. The results of in vitro and in vivo experiments indicated that MLH1, together with low levels of Top1, contributed to colon cancer resistance to irinotecan. In the MLH1-proficient cells SN-38, the active metabolite of irinotecan, induced lower levels of DNA damage than in MLH1-deficient cells, as shown by the weaker induction of γ-H2AX and p53 phosphorylation. The presence of MLH1 contributed to induce of prompt Chk1 phosphorylation, restoring G2/M cell cycle checkpoint and repair of DNA damage. On the contrary, in the absence of MLH1, HCT116 cells showed minor Chk1 phosphorylation and underwent apoptosis. Remarkably, inhibition of PARP function by PARPi or by PARP-1 gene silencing always increased the antitumor activity of irinotecan, even in the presence of low PARP-1 expression.
Collapse
Affiliation(s)
- Lucio Tentori
- Department of System Medicine, University of Rome 'Tor Vergata', I-00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Tentori L, Muzi A, Dorio AS, Dolci S, Campolo F, Vernole P, Lacal PM, Praz F, Graziani G. MSH3 expression does not influence the sensitivity of colon cancer HCT116 cell line to oxaliplatin and poly(ADP-ribose) polymerase (PARP) inhibitor as monotherapy or in combination. Cancer Chemother Pharmacol 2013; 72:117-25. [PMID: 23636450 DOI: 10.1007/s00280-013-2175-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/19/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE Defective expression of the mismatch repair protein MSH3 is frequently detected in colon cancer, and down-regulation of its expression was found to decrease sensitivity to platinum compounds or poly(ADP-ribose) polymerase inhibitors (PARPi) monotherapy. We have investigated whether MSH3 transfection in MSH3-deficient colon cancer cells confers resistance to oxaliplatin or PARPi and whether their combination restores chemosensitivity. METHODS MSH3-deficient/MLH1-proficient colon cancer HCT116(MLH1) cells were transfected with the MSH3 cDNA cloned into the pcDNA3.1(-) vector. MSH3/MLH1-deficient HCT116, carrying MLH1 and MSH3 mutations on chromosome 3 and 5, respectively, and HCT116 in which wild-type MLH1 (HCT116+3), MSH3 (HCT116+5) or both genes (HCT116+3+5) were introduced by chromosome transfer were also tested. Sensitivity to oxaliplatin and to PARPi was evaluated by analysis of clonogenic survival, cell proliferation, apoptosis and cell cycle. RESULTS MSH3 transfection in HCT116 cells did not confer resistance to oxaliplatin or PARPi monotherapy. MSH3-proficient HCT116+5 or HCT116+3+5 cells, which were more resistant to oxaliplatin and PARPi in comparison with their MSH3-deficient counterparts, expressed higher levels of the nucleotide excision repair ERCC1 and XPF proteins, involved in the resistance to platinum compounds, and lower PARP-1 levels. In all cases, PARPi increased sensitivity to oxaliplatin. CONCLUSIONS Restoring of MSH3 expression by cDNA transfection, rather than by chromosome transfer, did not affect colon cancer sensitivity to oxaliplatin or PARPi monotherapy; PARP-1 levels seemed to be more crucial for the outcome of PARPi monotherapy.
Collapse
Affiliation(s)
- Lucio Tentori
- Department of System Medicine, University of Rome, Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Wang J, Yu L, Cai J, Jia J, Gao Y, Liang M, Wang Z. The role of EZH2 and DNA methylation in hMLH1 silencing in epithelial ovarian cancer. Biochem Biophys Res Commun 2013; 433:470-6. [PMID: 23523787 DOI: 10.1016/j.bbrc.2013.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/02/2013] [Indexed: 11/29/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2) is overexpressed in various malignancies and associated with poor prognosis and drug-resistance. A recent study suggested that there is a link between EZH2 expression and the mediation of gene silencing in association with aberrant DNA methylation. In the present study, we showed an inverse correlation between EZH2 and human mutL homolog 1 gene (hMLH1) expression in 30 epithelial ovarian cancer (EOC) tissues. Moreover, we found that EZH2 downregulation could induce the re-expression of the unmethylated, basally expressed hMLH1 gene without affecting DNA methylation in the hMLH1 promoter. These results suggest that EZH2 can modulate the transcription of basally expressed hMLH1 via a non-DNA-methylation-dependent pathway, but it has no effect on hMLH1 silencing that is mediated by DNA hypermethylation.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
194
|
Li D, Hu F, Wang F, Cui B, Dong X, Zhang W, Lin C, Li X, Wang D, Zhao Y. Prevalence of pathological germline mutations of hMLH1 and hMSH2 genes in colorectal cancer. PLoS One 2013; 8:e51240. [PMID: 23526924 PMCID: PMC3602519 DOI: 10.1371/journal.pone.0051240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/05/2012] [Indexed: 02/07/2023] Open
Abstract
The prevalence of pathological germline mutations in colorectal cancer has been widely studied, as germline mutations in the DNA mismatch repair genes hMLH1 and hMSH2 confer a high risk of colorectal cancer. However, because the sample size and population of previous studies are very different from each other, the conclusions still remain controversial. In this paper, Databases such as PubMed were applied to search for related papers. The data were imported into Comprehensive Meta-Analysis V2, which was used to estimate the weighted prevalence of hMLH1 and hMSH2 pathological mutations and compare the differences of prevalence among different family histories, ethnicities and related factors. This study collected and utilized data from 102 papers. In the Amsterdam-criteria positive group, the prevalence of pathological germline mutations of the hMLH1 and hMSH2 genes was 28.55% (95%CI 26.04%–31.19%) and 19.41% (95%CI 15.88%–23.51%), respectively, and the prevalence of germline mutations in hMLH1/hMSH2 was 15.44%/10.02%, 20.43%/13.26% and 15.43%/11.70% in Asian, American multiethnic and European/Australian populations, respectively. Substitution mutations accounted for the largest proportion of germline mutations (hMLH1: 52.34%, hMSH2: 43.25%). The total prevalence of mutations of hMLH1 and hMSH2 in Amsterdam-criteria positive, Amsterdam-criteria negative and sporadic colorectal cancers was around 45%, 25% and 15%, respectively, and there were no obvious differences in the prevalence of germline mutations among different ethnicities.
Collapse
Affiliation(s)
- Dandan Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Fulan Hu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Fan Wang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Binbin Cui
- Department of Abdominal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xinshu Dong
- Department of Abdominal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Wencui Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Chunqing Lin
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Xia Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Da Wang
- Department of Science and Technology Administration, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
- * E-mail:
| |
Collapse
|
195
|
Bettington M, Walker N, Clouston A, Brown I, Leggett B, Whitehall V. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology 2013; 62:367-86. [DOI: 10.1111/his.12055] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
196
|
Correlation of chromosome damage and promoter methylation status of the DNA repair genes MGMT and hMLH1 in Chinese vinyl chloride monomer (VCM)-exposed workers. Int J Occup Med Environ Health 2013; 26:173-82. [DOI: 10.2478/s13382-013-0079-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/11/2012] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
197
|
Expression Sensitivity Analysis of Human Disease Related Genes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:637424. [PMID: 24350280 PMCID: PMC3857905 DOI: 10.1155/2013/637424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022]
Abstract
Background. Genome-wide association studies (GWAS) have shown its revolutionary power in seeking the influenced loci on complex diseases genetically. Thousands of replicated loci for common traits are helpful in diseases risk assessment. However it is still difficult to elucidate the variations in these loci that directly cause susceptibility to diseases by disrupting the expression or function of a protein currently. Results. We evaluate the expression features of disease related genes and find that different diseases related genes show different expression perturbation sensitivities in various conditions. It is worth noting that the expression of some robust disease-genes doesn't show significant change in their corresponding diseases, these genes might be easily ignored in the expression profile analysis. Conclusion. Gene ontology enrichment analysis indicates that robust disease-genes execute essential function in comparison with sensitive disease-genes. The diseases associated with robust genes seem to be relatively lethal like cancer and aging. On the other hand, the diseases associated with sensitive genes are apparently nonlethal like psych and chemical dependency diseases.
Collapse
|
198
|
Forrester HB, Li J, Hovan D, Ivashkevich AN, Sprung CN. DNA repair genes: alternative transcription and gene expression at the exon level in response to the DNA damaging agent, ionizing radiation. PLoS One 2012; 7:e53358. [PMID: 23285288 PMCID: PMC3532210 DOI: 10.1371/journal.pone.0053358] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/27/2012] [Indexed: 11/18/2022] Open
Abstract
DNA repair is an essential cellular process required to maintain genomic stability. Every cell is subjected to thousands of DNA lesions daily under normal physiological conditions. Ionizing radiation (IR) is a major DNA damaging agent that can be produced by both natural and man-made sources. A common source of radiation exposure is through its use in medical diagnostics or treatments such as for cancer radiotherapy where relatively high doses are received by patients. To understand the detailed DNA repair gene transcription response to high dose IR, gene expression exon array studies have been performed and the response to radiation in two divergent cell types, lymphoblastoid cell lines and primary fibroblasts, has been examined. These exon arrays detect expression levels across the entire gene, and have the advantage of high sensitivity and the ability to identify alternative transcripts. We found a selection of DNA repair genes, including some not previously reported, that are modulated in response to radiation. Detailed dose and time course kinetics of DNA repair transcription was conducted and results have been validated utilizing PCR methods. Alternative transcription products in response to IR were identified in several DNA repair genes including RRM2B and XPC where alternative initiation sites were found. These investigations have advanced the knowledge about the transcriptional response of DNA repair.
Collapse
Affiliation(s)
- Helen B. Forrester
- Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
| | - Jason Li
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel Hovan
- Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
| | - Alesia N. Ivashkevich
- Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
| | - Carl N. Sprung
- Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
199
|
Caporali S, Levati L, Graziani G, Muzi A, Atzori MG, Bonmassar E, Palmieri G, Ascierto PA, D'Atri S. NF-κB is activated in response to temozolomide in an AKT-dependent manner and confers protection against the growth suppressive effect of the drug. J Transl Med 2012; 10:252. [PMID: 23259744 PMCID: PMC3551789 DOI: 10.1186/1479-5876-10-252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/14/2012] [Indexed: 01/23/2023] Open
Abstract
Background Most DNA-damaging chemotherapeutic agents activate the transcription factor nuclear factor κB (NF-κB). However, NF-κB activation can either protect from or contribute to the growth suppressive effects of the agent. We previously showed that the DNA-methylating drug temozolomide (TMZ) activates AKT, a positive modulator of NF-κB, in a mismatch repair (MMR) system-dependent manner. Here we investigated whether NF-κB is activated by TMZ and whether AKT is involved in this molecular event. We also evaluated the functional consequence of inhibiting NF-κB on tumor cell response to TMZ. Methods AKT phosphorylation, NF-κB transcriptional activity, IκB-α degradation, NF-κB2/p52 generation, and RelA and NF-κB2/p52 nuclear translocation were investigated in TMZ-treated MMR-deficient (HCT116, 293TLα-) and/or MMR-proficient (HCT116/3-6, 293TLα+, M10) cells. AKT involvement in TMZ-induced activation of NF-κB was addressed in HCT116/3-6 and M10 cells transiently transfected with AKT1-targeting siRNA or using the isogenic MMR-proficient cell lines pUSE2 and KD12, expressing wild type or kinase-dead mutant AKT1. The effects of inhibiting NF-κB on sensitivity to TMZ were investigated in HCT116/3-6 and M10 cells using the NF-κB inhibitor NEMO-binding domain (NBD) peptide or an anti-RelA siRNA. Results TMZ enhanced NF-κB transcriptional activity, activated AKT, induced IκB-α degradation and RelA nuclear translocation in HCT116/3-6 and M10 but not in HCT116 cells. In M10 cells, TMZ promoted NF-κB2/p52 generation and nuclear translocation and enhanced the secretion of IL-8 and MCP-1. TMZ induced RelA nuclear translocation also in 293TLα+ but not in 293TLα- cells. AKT1 silencing inhibited TMZ-induced IκB-α degradation and NF-κB2/p52 generation. Up-regulation of NF-κB transcriptional activity and nuclear translocation of RelA and NF-κB2/p52 in response to TMZ were impaired in KD12 cells. RelA silencing in HCT116/3-6 and M10 cells increased TMZ-induced growth suppression. In M10 cells NBD peptide reduced basal NF-κB activity, abrogated TMZ-induced up-regulation of NF-κB activity and increased sensitivity to TMZ. In HCT116/3-6 cells, the combined treatment with NBD peptide and TMZ produced additive growth inhibitory effects. Conclusion NF-κB is activated in response to TMZ in a MMR- and AKT-dependent manner and confers protection against drug-induced cell growth inhibition. Our findings suggest that a clinical benefit could be obtained by combining TMZ with NF-κB inhibitors.
Collapse
Affiliation(s)
- Simona Caporali
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T, Hermeking H. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and β-catenin predicts distant metastasis of colon cancer. Clin Cancer Res 2012; 19:710-20. [PMID: 23243217 DOI: 10.1158/1078-0432.ccr-12-1703] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Here, we determined whether epigenetic inactivation of miR-34a and miR-34b/c genes may serve as a prognostic marker for distant metastases in colon cancer. EXPERIMENTAL DESIGN Using a case-control study design of 94 primary colon cancer samples with and without liver metastases, we determined CpG methylation frequencies of miR-34a and miR-34b/c promoters, expression of miR-34a, and its targets c-Met, Snail, and β-catenin and their prognostic value. RESULTS miR-34a methylation was detected in 45.1% (n = 42 of 93) of the samples and strongly associated with metastases to the liver (P = 0.003) and lymph nodes (P = 0.006). miR-34b/c methylation was detected in 91.9% of the samples (n = 79/86). A significant inverse correlation between miR-34a methylation and expression of mature miR-34a (P = 0.018) was detected. Decreased miR-34a expression was associated with upregulation of c-Met, Snail, and β-catenin protein levels (P = 0.031, 0.132, and 0.004), which were associated with distant metastases (P = 0.001, 0.017, and 0.005). In a confounder-adjusted multivariate regression model miR-34a methylation, high c-Met and β-catenin levels provided the most significant prognostic information about metastases to the liver (P = 0.014, 0.031, and 0.058) and matched pairs showed a higher prevalence of these risk factors in the samples with distant spread (P = 0.029). Finally, we obtained statistical evidence indicating that the simultaneous detection of these three markers has the highest prognostic value. CONCLUSIONS Silencing of miR-34a and upregulation of c-Met, Snail, and β-catenin expression is associated with liver metastases of colon cancer. Detection of miR-34a silencing in resected primary colon cancer may be of prognostic value, especially in combination with detection of c-Met and β-catenin expression.
Collapse
Affiliation(s)
- Helge Siemens
- Experimental and Molecular Pathology, Institute of Pathology, Institute of Pathology, and Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|