151
|
Fu Y, Xie D, Zhu Y, Zhang X, Yue H, Zhu K, Pi Z, Dai Y. Anti-colorectal cancer effects of seaweed-derived bioactive compounds. Front Med (Lausanne) 2022; 9:988507. [PMID: 36059851 PMCID: PMC9437318 DOI: 10.3389/fmed.2022.988507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Seaweeds are classified as Chlorophyta, Rhodophyta, and Phaeophyta. They constitute a number of the most significant repositories of new therapeutic compounds for human use. Seaweed has been proven to possess diverse bioactive properties, which include anticancer properties. The present review focuses on colorectal cancer, which is a primary cause of cancer-related mortality in humans. In addition, it discusses various compounds derived from a series of seaweeds that have been shown to eradicate or slow the progression of cancer. Therapeutic compounds extracted from seaweed have shown activity against colorectal cancer. Furthermore, the mechanisms through which these compounds can induce apoptosis in vitro and in vivo were reviewed. This review emphasizes the potential utility of seaweeds as anticancer agents through the consideration of the capability of compounds present in seaweeds to fight against colorectal cancer.
Collapse
Affiliation(s)
- Yunhua Fu
- Changchun University of Chinese Medicine, Changchun, China
| | - Dong Xie
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinghao Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Xinyue Zhang
- Jilin Academy of Agricultural Machinery, Changchun, China
| | - Hao Yue
- Changchun University of Chinese Medicine, Changchun, China
| | - Kai Zhu
- Changchun University of Chinese Medicine, Changchun, China
| | - Zifeng Pi
- Changchun University of Chinese Medicine, Changchun, China
- Zifeng Pi
| | - Yulin Dai
- Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Yulin Dai
| |
Collapse
|
152
|
Cyran AM, Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System. Chem Res Toxicol 2022; 35:1690-1700. [PMID: 35948068 PMCID: PMC9580020 DOI: 10.1021/acs.chemrestox.2c00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cellular homeostasis is continuously challenged by damage
from
reactive oxygen species (ROS) and numerous reactive electrophiles.
Human cells contain various protective systems that are upregulated
in response to protein damage by electrophilic or oxidative stress.
In addition to the NRF2-mediated antioxidant response, ROS and reactive
electrophiles also activate HSF1 and HIF1 that control heat shock
response and hypoxia response, respectively. Here, we review chemical
and biological mechanisms of activation of these three transcription
factors by ROS/reactive toxicants and the roles of their gene expression
programs in antioxidant protection. We also discuss how NRF2, HSF1,
and HIF1 responses establish multilayered cellular defenses consisting
of largely nonoverlapping programs, which mitigates limitations of
each response. Some innate immunity links in these stress responses
help eliminate damaged cells, whereas others suppress deleterious
inflammation in normal tissues but inhibit immunosurveillance of cancer
cells in tumors.
Collapse
Affiliation(s)
- Anna M Cyran
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
153
|
Investigating Causal Associations of Diet-Derived Circulating Antioxidants with the Risk of Digestive System Cancers: A Mendelian Randomization Study. Nutrients 2022; 14:nu14153237. [PMID: 35956413 PMCID: PMC9370260 DOI: 10.3390/nu14153237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Molecular mechanisms and observational studies have found that diet-derived antioxidants are associated with digestive system cancers, whereas there is a lack of causal evidence from randomized clinical trials. In this study, we aimed to assess the causality of these associations through a Mendelian randomization (MR) study. Single nucleotide polymorphisms of diet-derived circulating antioxidants (i.e., α- and γ-tocopherol, ascorbate, retinol, β-carotene, lycopene, and urate), accessed by absolute levels and relative metabolite concentrations, were used as genetic instruments. Summary statistics for digestive system cancers were obtained from the UK Biobank and FinnGen studies. Two-sample MR analyses were performed in each of the two outcome databases, followed by a meta-analysis. The inverse-variance weighted MR was adopted as the primary analysis. Five additional MR methods (likelihood-based MR, MR-Egger, weighted median, penalized weighted median, and MR-PRESSO) and replicate MR analyses for outcomes from different sources were used as sensitivity analyses. Genetically determined antioxidants were not significantly associated with five digestive system cancers, after correcting for multiple tests. However, we found suggestive evidence that absolute ascorbate levels were negatively associated with colon cancer in UK Biobank-the odds ratio (OR) per unit increase in ascorbate was 0.774 (95% confidence interval [CI] 0.608-0.985, p = 0.037), which was consistent with the results in FinnGen, and the combined OR was 0.764 (95% CI 0.623-0.936, p = 0.010). Likewise, higher absolute retinol levels suggestively reduced the pancreatic cancer risk in FinnGen-the OR per 10% unit increase in ln-transformed retinol was 0.705 (95% CI 0.529-0.940, p = 0.017), which was consistent with the results in UK Biobank and the combined OR was 0.747 (95% CI, 0.584-0.955, p = 0.020). Sensitivity analyses verified the above suggestive evidence. Our findings suggest that higher levels of antioxidants are unlikely to be a causal protective factor for most digestive system cancers, except for the suggestive protective effects of ascorbate on colon cancer and of retinol on pancreatic cancer.
Collapse
|
154
|
Metabolic targeting of malignant tumors: a need for systemic approach. J Cancer Res Clin Oncol 2022; 149:2115-2138. [PMID: 35925428 DOI: 10.1007/s00432-022-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/14/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Dysregulated metabolism is now recognized as a fundamental hallmark of carcinogenesis inducing aggressive features and additional hallmarks. In this review, well-established metabolic changes displayed by tumors are highlighted in a comprehensive manner and corresponding therapeutical targets are discussed to set up a framework for integrating basic research findings with clinical translation in oncology setting. METHODS Recent manuscripts of high research impact and relevant to the field from PubMed (2000-2021) have been reviewed for this article. RESULTS Metabolic pathway disruption during tumor evolution is a dynamic process potentiating cell survival, dormancy, proliferation and invasion even under dismal conditions. Apart from cancer cells, though, tumor microenvironment has an acting role as extracellular metabolites, pH alterations and stromal cells reciprocally interact with malignant cells, ultimately dictating tumor-promoting responses, disabling anti-tumor immunity and promoting resistance to treatments. CONCLUSION In the field of cancer metabolism, there are several emerging prognostic and therapeutic targets either in the form of gene expression, enzyme activity or metabolites which could be exploited for clinical purposes; both standard-of-care and novel treatments may be evaluated in the context of metabolism rewiring and indeed, synergistic effects between metabolism-targeting and other therapies would be an attractive perspective for further research.
Collapse
|
155
|
Zhang H, Liu K, Gong Y, Zhu W, Zhu J, Pan F, Chao Y, Xiao Z, Liu Y, Wang X, Liu Z, Yang Y, Chen Q. Vitamin C supramolecular hydrogel for enhanced cancer immunotherapy. Biomaterials 2022; 287:121673. [PMID: 35839587 DOI: 10.1016/j.biomaterials.2022.121673] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022]
Abstract
Vitamin C (VitC) has shown great promise to promote cancer immunotherapy, however, its high hydrophilicity makes it quickly excreted, leading to limited therapeutic efficiency even with frequent high-dose administration. Herein, we provide a pioneering report about the employment of VitC amphiphile self-assembled nanofiber hydrogels for enhanced cancer immunotherapy. Specifically, driven by hydrogen bonding and hydrophobic interactions, the synthesized VitC amphiphile, consisting of a hydrophilic VitC headgroup and a hydrophobic alkyl chain, could self-assemble into an injectable nanofiber hydrogel with self-healing properties. The formed VitC hydrogel not only serves as a reservoir for VitC but also acts as an effective delivery platform for stimulator of interferon genes (STING) agonist-4 (SA). Interestingly, the VitC hydrogel itself exhibits antitumor effects by upregulating genes related to interferon (IFN) signaling, apoptotic signaling and viral recognition and defense. Moreover, the SA-encapsulated VitC hydrogel (SA@VitC hydrogel) synergistically activated the immune system to inhibit the progression of both local and abscopal tumors.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Kai Liu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Yimou Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Wenjun Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhishen Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yanbin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
156
|
Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Front Cell Dev Biol 2022; 10:930205. [PMID: 35938170 PMCID: PMC9352950 DOI: 10.3389/fcell.2022.930205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Data derived from high-throughput sequencing technologies have allowed a deeper understanding of the molecular landscape of Acute Myeloid Leukemia (AML), paving the way for the development of novel therapeutic options, with a higher efficacy and a lower toxicity than conventional chemotherapy. In the antileukemia drug development scenario, ascorbic acid, a natural compound also known as Vitamin C, has emerged for its potential anti-proliferative and pro-apoptotic activities on leukemic cells. However, the role of ascorbic acid (vitamin C) in the treatment of AML has been debated for decades. Mechanistic insight into its role in many biological processes and, especially, in epigenetic regulation has provided the rationale for the use of this agent as a novel anti-leukemia therapy in AML. Acting as a co-factor for 2-oxoglutarate-dependent dioxygenases (2-OGDDs), ascorbic acid is involved in the epigenetic regulations through the control of TET (ten-eleven translocation) enzymes, epigenetic master regulators with a critical role in aberrant hematopoiesis and leukemogenesis. In line with this discovery, great interest has been emerging for the clinical testing of this drug targeting leukemia epigenome. Besides its role in epigenetics, ascorbic acid is also a pivotal regulator of many physiological processes in human, particularly in the antioxidant cellular response, being able to scavenge reactive oxygen species (ROS) to prevent DNA damage and other effects involved in cancer transformation. Thus, for this wide spectrum of biological activities, ascorbic acid possesses some pharmacologic properties attractive for anti-leukemia therapy. The present review outlines the evidence and mechanism of ascorbic acid in leukemogenesis and its therapeutic potential in AML. With the growing evidence derived from the literature on situations in which the use of ascorbate may be beneficial in vitro and in vivo, we will finally discuss how these insights could be included into the rational design of future clinical trials.
Collapse
Affiliation(s)
- S. Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C. Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States
| | - S. Antonelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G. Silvestrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - N. I. Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - T. Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M. T. Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- *Correspondence: M. T. Voso,
| |
Collapse
|
157
|
Vitamin C Sensitizes Pancreatic Cancer Cells to Erastin-Induced Ferroptosis by Activating the AMPK/Nrf2/HMOX1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5361241. [PMID: 35915609 PMCID: PMC9338737 DOI: 10.1155/2022/5361241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/04/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Ferroptosis is a type of regulated cell death that displays a promising therapeutic pathway for drug-resistant tumor cells. However, some pancreatic cancer (PC) cells are less sensitive to erastin-induced ferroptosis, and normal pancreatic cells are susceptible to this newly discovered cell death. Therefore, there is an urgent need to find drugs to enhance the sensitivity of these PC cells to erastin while limiting side effects. Here, we found that the oxidized form of vitamin C-dehydroascorbic acid (DHA) can be transported into PC cells expressing high levels of GLUT1, resulting in ferroptosis. Moreover, pharmacological vitamin C combined with erastin can synergistically induce ferroptosis of PC cells involving glutathione (GSH) reduction and ferrous iron accumulation while inhibiting the cytotoxicity of normal cells. Mechanistically, as a direct system Xc- inhibitor, erastin can directly suppress the synthesis of GSH, and the recycling of vitamin C and DHA is performed through GSH consumption, which is denoted as the classical mode. Furthermore, oxidative stress induced by erastin and vitamin C could enhance the expression of HMOX1 via the AMP-activated protein kinase (AMPK)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway to increase the labile iron level, which is named the nonclassical mode. In vivo experiments showed that erastin and vitamin C can significantly slow tumor growth in PC xenografts. In summary, the combination of erastin and vitamin C exerts a synergistic effect of classical and nonclassical modes to induce ferroptosis in PC cells, which may provide a promising therapeutic strategy for PC.
Collapse
|
158
|
Wada H, Hamaguchi R, Narui R, Morikawa H. Meaning and Significance of “Alkalization Therapy for Cancer”. Front Oncol 2022; 12:920843. [PMID: 35965526 PMCID: PMC9364696 DOI: 10.3389/fonc.2022.920843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Objectives of the Study Our research aims to answer the following questions. Can cancer progression be stopped by changing the body condition of person with cancer? Can cancer be cured?If cancer progression can be stopped, what is the underlying mechanism? Theoretical Rationale for Alkalization Therapy Almost 70 years ago, Goldblatt H. & Cameron G. reported on the idea of alkalization therapy. Before that, Otto Warburg had been studying the metabolism of cancer and had discovered the essential nature of cancer. He published a review in Science in 1956 under the title “On the origin of cancer cells”. From his phenomena described above, we established the theoretical rationale for alkalization therapy, based on the question of “How does cancer form and what is its nature”? Limitations of Deductive Methods and Inductive Approaches In this paper, we describe a method to reconstruct the limitations and weaknesses of modern cancer medicine as Science-based Medicine using an inductive method, and to present a new vision of cancer therapy. How should we treat cancer? (Case presentation): Using a specific clinical case, we present patients in whom were successfully treated with no or few anticancer drugs. Summary The biggest weakness of current cancer treatments is that they only treat the cancer and not the actual patient. The “alkalization therapy” that we advocate does not compete with any of the current standard treatments, but improves the effectiveness of standard treatments, reduces side effects, and lowers medical costs.
Collapse
|
159
|
Peters C, Klein K, Kabelitz D. Vitamin C and Vitamin D—friends or foes in modulating γδ T-cell differentiation? Cell Mol Immunol 2022; 19:1198-1200. [PMID: 35799058 PMCID: PMC9508071 DOI: 10.1038/s41423-022-00895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
|
160
|
He SY, Li YC, Wang Y, Peng HL, Zhou CL, Zhang CM, Chen SL, Yin JF, Lin M. Fecal gene detection based on next generation sequencing for colorectal cancer diagnosis. World J Gastroenterol 2022; 28:2920-2936. [PMID: 35978873 PMCID: PMC9280739 DOI: 10.3748/wjg.v28.i25.2920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/18/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies worldwide. Given its insidious onset, the condition often already progresses to advanced stage when symptoms occur. Thus, early diagnosis is of great significance for timely clinical intervention, efficacy enhancement, and prognostic improvement. Featuring high throughput, fastness, and rich information, next generation sequencing (NGS) can greatly shorten the detection time, which is a widely used detection technique at present.
AIM To screen specific genes or gene combinations in fecal DNA that are suitable for diagnosis and prognostic prediction of CRC, and to establish a technological platform for CRC screening, diagnosis, and efficacy monitoring through fecal DNA detection.
METHODS NGS was used to sequence the stool DNA of patients with CRC, which were then compared with the genetic testing results of the stool samples of normal controls and patients with benign intestinal disease, as well as the tumor tissues of CRC patients. Specific genes or gene combinations in fecal DNA suitable for diagnosis and prognostic prediction of CRC were screened, and their significances in diagnosing CRC and predicting patients' prognosis were comprehensively evaluated.
RESULTS High mutation frequencies of TP53, APC, and KRAS were detected in the stools and tumor tissues of CRC patients prior to surgery. Contrastively, no pathogenic mutations of the above three genes were noted in the postoperative stools, the normal controls, or the benign intestinal disease group. This indicates that tumor-specific DNA was detectable in the preoperative stools of CRC patients. The preoperative fecal expression of tumor-associated genes can reflect the gene mutations in tumor tissues to some extent. Compared to the postoperative stools and the stools in the two control groups, the pathogenic mutation frequencies of TP53 and KRAS were significantly higher for the preoperative stools (χ2 = 7.328, P < 0.05; χ2 = 4.219, P < 0.05), suggesting that fecal TP53 and KRAS genes can be used for CRC screening, diagnosis, and prognostic prediction. No significant difference in the pathogenic mutation frequency of the APC gene was found from the postoperative stools or the two control groups (χ2 = 0.878, P > 0.05), so further analysis with larger sample size is required. Among CRC patients, the pathogenic mutation sites of TP53 occurred in 16 of 27 preoperative stools, with a true positive rate of 59.26%, while the pathogenic mutation sites of KRAS occurred in 10 stools, with a true positive rate of 37.04%. The sensitivity and negative predictive values of the combined genetic testing of TP53 and KRAS were 66.67% (18/27) and 68.97%, respectively, both of which were higher than those of TP53 or KRAS mutation detection alone, suggesting that the combined genetic testing can improve the CRC detection rate. The mutation sites TP53 exon 4 A84G and EGFR exon 20 I821T (mutation start and stop positions were both 7579436 for the former, while 55249164 for the latter) were found in the preoperative stools and tumor tissues. These "undetected" mutation sites may be new types of mutations occurring during the CRC carcinogenesis and progression, which needs to be confirmed through further research. Some mutations of "unknown clinical significance" were found in such genes as TP53, PTEN, KRAS, BRAF, AKT1, and PIK3CA, whose clinical values is worthy of further exploration.
CONCLUSION NGS-based fecal genetic testing can be used as a complementary technique for the CRC diagnosis. Fecal TP53 and KRAS can be used as specific genes for the screening, diagnosis, prognostic prediction, and recurrence monitoring of CRC. Moreover, the combined testing of TP53 and KRAS genes can improve the CRC detection rate.
Collapse
Affiliation(s)
- Si-Yu He
- Department of Clinical Laboratory, Taizhou People's Hospital (Postgraduate Training Base of Dalian Medical University), Taizhou 225300, Jiangsu Province, China
- Department of Clinical Laboratory, The First People's Hospital of Tianmen City, Tianmen 431700, Hubei Province, China
| | - Ying-Chun Li
- Department of General Surgery, Taizhou People's Hospital (Postgraduate Training Base of Dalian Medical University), Taizhou 225300, Jiangsu Province, China
| | - Yong Wang
- Department of General Surgery, Taizhou People's Hospital (Postgraduate Training Base of Dalian Medical University), Taizhou 225300, Jiangsu Province, China
| | - Hai-Lin Peng
- Department of Clinical Laboratory, Taizhou People's Hospital (Postgraduate Training Base of Dalian Medical University), Taizhou 225300, Jiangsu Province, China
| | - Cheng-Lin Zhou
- Department of Clinical Laboratory, Taizhou People's Hospital (Postgraduate Training Base of Dalian Medical University), Taizhou 225300, Jiangsu Province, China
| | - Chuan-Meng Zhang
- Central Laboratory, Taizhou People's Hospital (Postgraduate training base of Dalian Medical University), Taizhou 225300, Jiangsu Province, China
| | - Sheng-Lan Chen
- Department of Laboratory, Taizhou Genewill Medical Laboratory Company Limited, Taizhou 225300, Jiangsu Province, China
| | - Jian-Feng Yin
- Department of Laboratory, Jiangsu CoWin Biotech Co., Ltd., Taizhou 225300, Jiangsu Province, China
| | - Mei Lin
- Department of Clinical Laboratory, Taizhou People's Hospital (Postgraduate Training Base of Dalian Medical University), Taizhou 225300, Jiangsu Province, China
| |
Collapse
|
161
|
Klyushova LS, Kandalintseva NV, Grishanova AY. Antioxidant Activity of New Sulphur- and Selenium-Containing Analogues of Potassium Phenosan against H 2O 2-Induced Cytotoxicity in Tumour Cells. Curr Issues Mol Biol 2022; 44:3131-3145. [PMID: 35877440 PMCID: PMC9317250 DOI: 10.3390/cimb44070216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Among known phenolic antioxidants, the overwhelming majority of compounds have lipophilic properties and the number of known water-soluble compounds is very small. The list of hydrophilic phenolic antioxidants can be expanded via the synthesis of a structurally related series of polyfunctional compounds for further research on their biological activity in vitro. New sulphur- and selenium-containing analogues of antioxidant potassium phenosan were synthesised. In vitro cytotoxicity and cytostaticity as well as antioxidant activity against H2O2-induced cytotoxicity to human cell lines (HepG2, Hep-2 and MCF-7) were investigated by high-content analysis. A selenium-containing analogue showed higher biological activity than did a sulphur-containing one. As compared to the activity of potassium phenosan, the selenium-containing analogue had a cell line-dependent antioxidant effect against H2O2-induced cytotoxicity: comparable in HepG2 cells and greater in Hep-2 cells. The selenium-containing analogue significantly increased the death of MCF-7 cells at concentrations above 50 µM. The sulphur-containing analogue has lower biological activity as compared to potassium phenosan and the selenium-containing analogue.
Collapse
Affiliation(s)
- Lyubov S. Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, 2/12 Timakova Str., 630060 Novosibirsk, Russia;
| | - Natalya V. Kandalintseva
- Department of Chemistry, Novosibirsk State Pedagogical University, 28 Vilyuyskaya Str., 630126 Novosibirsk, Russia;
| | - Alevtina Y. Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, 2/12 Timakova Str., 630060 Novosibirsk, Russia;
| |
Collapse
|
162
|
Green solvent-free synthesis of new N-heterocycle-L-ascorbic acid hybrids and their antiproliferative evaluation. Future Med Chem 2022; 14:1187-1202. [DOI: 10.4155/fmc-2022-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The authors' aim was to improve the application of copper-catalyzed azide-alkyne cycloaddition in the synthesis of hybrids containing biologically significant nucleobases and L-ascorbic acid scaffolds by introducing an environmentally friendly and waste-free ball mill. Results: Two series of hybrids with a purine, pyrrolo[2,3- d]pyrimidine or 5-substituted pyrimidine attached to 2,3-dibenzyl-L-ascorbic acid via a hydroxyethyl- (15a–23a) or ethylidene-1,2,3-triazolyl (15b–23b) bridge were prepared by ball milling and conventional synthesis. The unsaturated 6-chloroadenine L-ascorbic acid derivative 16b can be highlighted as a lead compound and showed strong antiproliferative activity against HepG2 (hepatocellular carcinoma) and SW620 (colorectal adenocarcinoma) cells. Conclusion: Mechanochemical synthesis was superior in terms of sustainability, reaction rate and yield, highlighting the advantageous applications of ball milling over classical reactions.
Collapse
|
163
|
Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11071324. [PMID: 35883815 PMCID: PMC9311581 DOI: 10.3390/antiox11071324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
Abstract
Undue elevation of ROS levels commonly occurs during cancer evolution as a result of various antitumor therapeutics and/or endogenous immune response. Overwhelming ROS levels induced cancer cell death through the dysregulation of ROS-sensitive glycolytic enzymes, leading to the catastrophic depression of glycolysis and oxidative phosphorylation (OXPHOS), which are critical for cancer survival and progression. However, cancer cells also adapt to such catastrophic oxidative and metabolic stresses by metabolic reprograming, resulting in cancer residuality, progression, and relapse. This adaptation is highly dependent on NADPH and GSH syntheses for ROS scavenging and the upregulation of lipolysis and glutaminolysis, which fuel tricarboxylic acid cycle-coupled OXPHOS and biosynthesis. The underlying mechanism remains poorly understood, thus presenting a promising field with opportunities to manipulate metabolic adaptations for cancer prevention and therapy. In this review, we provide a summary of the mechanisms of metabolic regulation in the adaptation of cancer cells to oxidative stress and the current understanding of its regulatory role in cancer survival and progression.
Collapse
Affiliation(s)
- Yongquan Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Yan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (Z.Z.); (Y.C.); (S.Q.); (L.Z.)
| | - Wei Gao
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610106, China
- Correspondence: (W.G.); (Z.S.)
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, China
- Correspondence: (W.G.); (Z.S.)
| |
Collapse
|
164
|
Peng L, You J, Wang L, Shi L, Liao T, Huang Q, Xiong S, Yin T. Insight into the mechanism on texture change of Wuchang bream muscle during live transportation using a UPLC-QTOF-MS based metabolomics method. Food Chem 2022; 398:133796. [DOI: 10.1016/j.foodchem.2022.133796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/23/2022] [Accepted: 07/24/2022] [Indexed: 01/18/2023]
|
165
|
O’Leary BR, Ruppenkamp EK, Steers GJ, Du J, Carroll RS, Wagner BA, Buettner GR, Cullen JJ. Pharmacological Ascorbate Enhances Chemotherapies in Pancreatic Ductal Adenocarcinoma. Pancreas 2022; 51:684-693. [PMID: 36099493 PMCID: PMC9547864 DOI: 10.1097/mpa.0000000000002086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Pharmacological ascorbate (P-AscH - , high-dose, intravenous vitamin C) has shown promise as an adjuvant therapy for pancreatic ductal adenocarcinoma (PDAC) treatment. The objective of this study was to determine the effects of P-AscH - when combined with PDAC chemotherapies. METHODS Clonogenic survival, combination indices, and DNA damage were determined in human PDAC cell lines treated with P-AscH - in combination with 5-fluorouracil, paclitaxel, or FOLFIRINOX (combination of leucovorin, 5-fluorouracil, irinotecan, oxaliplatin). Tumor volume changes, overall survival, blood analysis, and plasma ascorbate concentration were determined in vivo in mice treated with P-AscH - with or without FOLFIRINOX. RESULTS P-AscH - combined with 5-fluorouracil, paclitaxel, or FOLFIRINOX significantly reduced clonogenic survival in vitro. The DNA damage, measured by γH2AX protein expression, was increased after treatment with P-AscH - , FOLFIRINOX, and their combination. In vivo, tumor growth rate was significantly reduced by P-AscH - , FOLFIRINOX, and their combination. Overall survival was significantly increased by the combination of P-AscH - and FOLFIRINOX. Treatment with P-AscH - increased red blood cell and hemoglobin values but had no effect on white blood cell counts. Plasma ascorbate concentrations were significantly elevated in mice treated with P-AscH - with or without FOLFIRINOX. CONCLUSIONS The addition of P-AscH - to standard of care chemotherapy has the potential to be an effective adjuvant for PDAC treatment.
Collapse
Affiliation(s)
- Brianne R. O’Leary
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Elena K. Ruppenkamp
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Garett J. Steers
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Juan Du
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Rory S. Carroll
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Brett A. Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Garry R. Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Joseph J. Cullen
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
166
|
Exogenous iron impairs the anti-cancer effect of ascorbic acid both in vitro and in vivo. J Adv Res 2022; 46:149-158. [PMID: 35777727 PMCID: PMC10105075 DOI: 10.1016/j.jare.2022.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The anti-cancer effect of high concentrations of ascorbic acid (AA) has been well established while its underlying mechanisms remain unclear. The association between iron and AA has attracted great attention but was still controversial due to the complicated roles of iron in tumors. OBJECTIVES Our study aims to explore the anti-cancer mechanisms of AA and the interaction between AA and iron in cancer. METHODS The MTT and ATP assays were used to evaluate the cytotoxicity of AA. Reactive oxygen species (ROS) generation, calcium (Ca2+), and lipid peroxidation were monitored with flow cytometry. Mitochondrial dysfunction was assessed by mitochondrial membrane potential (MMP) detection with JC-1 or tetramethylrhodamine methyl ester (TMRM) staining. Mitochondrial swelling was monitored with MitoTracker Green probe. FeSO4 (Fe2+), FeCl3 (Fe3+), Ferric ammonium citrate (Fe3+), hemin chloride (Fe3+) were used as an iron donor to investigate the effects of iron on AA's anti-tumor activity. The in vivo effects of AA and iron were analyzed in xenograft zebrafish and allograft mouse models. RESULTS High concentrations of AA exhibited cytotoxicity in a panel of cancer cells. AA triggered ROS-dependent non-apoptotic cell death. AA-induced cell death was essentially mediated by the accumulated intracellular Ca2+, which was partly originated from endoplasmic reticulum (ER). Surprisingly, exogenous iron could significantly reverse AA-induced ROS generation, Ca2+ overloaded, and cell death. Especially, the iron supplements significantly impaired the in vivo anti-tumor activity of AA. CONCLUSIONS Our study elucidated the protective roles of iron in ROS/Ca2+ mediated necrosis triggered by AA both in vitro and in vivo, which might shed novel insight into the anti-cancer mechanisms and provide clinical application strategies for AA in cancer treatment.
Collapse
|
167
|
Ascorbate as a Bioactive Compound in Cancer Therapy: The Old Classic Strikes Back. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123818. [PMID: 35744943 PMCID: PMC9229419 DOI: 10.3390/molecules27123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Cancer is a disease of high mortality, and its prevalence has increased steadily in the last few years. However, during the last decade, the development of modern chemotherapy schemes, new radiotherapy techniques, targeted therapies and immunotherapy has brought new hope in the treatment of these diseases. Unfortunately, cancer therapies are also associated with frequent and, sometimes, severe adverse events. Ascorbate (ascorbic acid or vitamin C) is a potent water-soluble antioxidant that is produced in most mammals but is not synthesised endogenously in humans, which lack enzymes for its synthesis. Ascorbate has antioxidant effects that correspond closely to the dose administered. Interestingly, this natural antioxidant induces oxidative stress when given intravenously at a high dose, a paradoxical effect due to its interactions with iron. Importantly, this deleterious property of ascorbate can result in increased cell death. Although, historically, ascorbate has been reported to exhibit anti-tumour properties, this effect has been questioned due to the lack of available mechanistic detail. Recently, new evidence has emerged implicating ferroptosis in several types of oxidative stress-mediated cell death, such as those associated with ischemia–reperfusion. This effect could be positively modulated by the interaction of iron and high ascorbate dosing, particularly in cell systems having a high mitotic index. In addition, it has been reported that ascorbate may behave as an adjuvant of favourable anti-tumour effects in cancer therapies such as radiotherapy, radio-chemotherapy, chemotherapy, immunotherapy, or even in monotherapy, as it facilitates tumour cell death through the generation of reactive oxygen species and ferroptosis. In this review, we provide evidence supporting the view that ascorbate should be revisited to develop novel, safe strategies in the treatment of cancer to achieve their application in human medicine.
Collapse
|
168
|
Fan HL, Liu ST, Chang YL, Chiu YL, Huang SM, Chen TW. In Vitro Cell Density Determines the Sensitivity of Hepatocarcinoma Cells to Ascorbate. Front Oncol 2022; 12:843742. [PMID: 35677156 PMCID: PMC9169715 DOI: 10.3389/fonc.2022.843742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary histological subtype of liver cancer, and its incidence rates increase with age. Recently, systemic therapies, such as immune checkpoint inhibitors, monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been more beneficial than conventional therapies for treating HCC. Nonetheless, the prognosis of late-stage HCC remains dismal because of its high recurrence rates, even with substantial advances in current therapeutic strategies. A new treatment, such as a combination of current systemic therapies, is urgently required. Therefore, we adopted a repurposing strategy and tried to combine ascorbate with TKIs, including lenvatinib and regorafenib, in HepG2 and Hep3B cells. We investigated the potential functional impact of pharmacological concentrations of ascorbate on the cell-cycle profiles, mitochondrial membrane potential, oxidative response, synergistic effects of lenvatinib or regorafenib, and differential responsiveness between HepG2 and Hep3B cells. Our data suggest that the relative level of cell density is an important determinant for ascorbate cytotoxicity in HCC. Furthermore, the data also revealed that the cytotoxic effect of pharmacological concentrations of ascorbate might not be mediated via our proposed elevation of ROS generation. Ascorbate might be involved in redox homeostasis to enhance the efficacy of TKIs in HepG2 and Hep3B cells. The synergistic effects of ascorbate with TKIs (lenvatinib and regorafenib) support their potential as an adjuvant for HCC targeted TKI therapy. This research provides a cheap and new combinatory therapy for HCC treatment.
Collapse
Affiliation(s)
- Hsiu-Lung Fan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Teng-Wei Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
169
|
Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants (Basel) 2022; 11:antiox11061128. [PMID: 35740025 PMCID: PMC9220137 DOI: 10.3390/antiox11061128] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances and signaling aberrations, can promote carcinogenesis and malignant progression by inducing gene mutations and activating pro-oncogenic signaling, providing a possible rationale for targeting oxidative stress in cancer treatment. While numerous antioxidants have demonstrated therapeutic potential, their clinical efficacy in cancer remains unproven. Here, we review the rationale for, and recent advances in, pre-clinical and clinical research on antioxidant therapy in cancer, including targeting ROS with nonenzymatic antioxidants, such as NRF2 activators, vitamins, N-acetylcysteine and GSH esters, or targeting ROS with enzymatic antioxidants, such as NOX inhibitors and SOD mimics. In addition, we will offer insights into prospective therapeutic options for improving the effectiveness of antioxidant therapy, which may expand its applications in clinical cancer treatment.
Collapse
|
170
|
High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15060711. [PMID: 35745630 PMCID: PMC9231292 DOI: 10.3390/ph15060711] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the idea that Vitamin C (Vit-C) could be utilized as a form of anti-cancer therapy has generated many contradictory arguments. Recent insights into the physiological characteristics of Vit-C, its pharmacokinetics, and results from preclinical reports, however, suggest that high-dose Vit-C could be effectively utilized in the management of various tumor types. Studies have shown that the pharmacological action of Vit-C can attack various processes that cancerous cells use for their growth and development. Here, we discuss the anti-cancer functions of Vit-C, but also the potential for the use of Vit-C as an epigenetic regulator and immunotherapy enhancer. We also provide a short overview of the current state of systems for scavenging reactive oxygen species (ROS), especially in the context of their influencing high-dose Vit-C toxicity for the inhibition of cancer growth. Even though the mechanisms of Vit-C action are promising, they need to be supported with robust randomized and controlled clinical trials. Moreover, upcoming studies should focus on how to define the most suitable cancer patient populations for high-dose Vit-C treatments and develop effective strategies that combine Vit-C with various concurrent cancer treatment regimens.
Collapse
|
171
|
De Marchi J, Cé R, Bruschi L, Santos M, Paese K, Lavayen V, Klamt F, Pohlmann A, Guterres S. Triclosan and ⍺-bisabolol–loaded nanocapsule functionalized with ascorbic acid as a dry powder formulation against A549 lung cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
172
|
Di Tano M, Longo VD. Fasting and cancer: from yeast to mammals. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:81-106. [PMID: 36283768 DOI: 10.1016/bs.ircmb.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fasting and fasting mimicking diets extend lifespan and healthspan in mouse models and decrease risk factors for cancer and other age-related pathologies in humans. Normal cells respond to fasting and the consequent decrease in nutrients by down-regulating proto-oncogene pathways to enter a stress-resistant mode, which protects them from different cancer therapies. In contrast, oncogene mutations and the constitutive activation of pathways including RAS, AKT, and PKA allow cancer cells to disobey fasting-dependent anti-growth signal. Importantly, in different tumor types, fasting potentiates the toxicity of various therapies by increasing reactive oxygen species and oxidative stress, which ultimately leads to DNA damage and cell death. This effect is not limited to chemotherapy, since periodic fasting/FMD cycles potentiate the effects of tyrosine kinase inhibitors, hormone therapy, radiotherapy, and pharmacological doses of vitamin C. In addition, the anticancer effects of fasting/FMD can also be tumor-independent and involve an immunotherapy-like activation of T cell-dependent attack of tumor cells. Supported by a range of pre-clinical studies, clinical trials are beginning to confirm the safety and efficacy of fasting/FMD cycles in improving the potential of different cancer therapies, while decreasing side effects to healthy cells and tissues.
Collapse
Affiliation(s)
- Maira Di Tano
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valter D Longo
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy; Longevity Institute, Leonard Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
173
|
Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112608. [PMID: 35681589 PMCID: PMC9179307 DOI: 10.3390/cancers14112608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network, and several promising TME-targeted therapies, such as immunotherapy and targeted therapies, are now facing problems over low response rates and drug resistance. Vitamin C (VitC) has been extensively studied as a dietary nutrient and multi-targeted natural drug for fighting against tumor cells. The focus has been recently on its crucial functions in the TME. Here, we discuss the potential mechanisms of VitC in several specialized microenvironments, characterize the current status of its preclinical and clinical applications, and offer suggestions for future studies. This article is intended to provide basic researchers and clinicians with a detailed picture of VitC targeting the tumor microenvironment. Abstract Based on the enhanced knowledge on the tumor microenvironment (TME), a more comprehensive treatment landscape for targeting the TME has emerged. This microenvironment provides multiple therapeutic targets due to its diverse characteristics, leading to numerous TME-targeted strategies. With multifaced activities targeting tumors and the TME, vitamin C is renown as a promising candidate for combination therapy. In this review, we present new advances in how vitamin C reshapes the TME in the immune, hypoxic, metabolic, acidic, neurological, mechanical, and microbial dimensions. These findings will open new possibilities for multiple therapeutic avenues in the fight against cancer. We also review the available preclinical and clinical evidence of vitamin C combined with established therapies, highlighting vitamin C as an adjuvant that can be exploited for novel therapeutics. Finally, we discuss unresolved questions and directions that merit further investigation.
Collapse
|
174
|
Mirisola MG, Longo VD. Yeast Chronological Lifespan: Longevity Regulatory Genes and Mechanisms. Cells 2022; 11:cells11101714. [PMID: 35626750 PMCID: PMC9139625 DOI: 10.3390/cells11101714] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
S. cerevisiae plays a pivotal role as a model system in understanding the biochemistry and molecular biology of mammals including humans. A considerable portion of our knowledge on the genes and pathways involved in cellular growth, resistance to toxic agents, and death has in fact been generated using this model organism. The yeast chronological lifespan (CLS) is a paradigm to study age-dependent damage and longevity. In combination with powerful genetic screening and high throughput technologies, the CLS has allowed the identification of longevity genes and pathways but has also introduced a unicellular “test tube” model system to identify and study macromolecular and cellular damage leading to diseases. In addition, it has played an important role in studying the nutrients and dietary regimens capable of affecting stress resistance and longevity and allowing the characterization of aging regulatory networks. The parallel description of the pro-aging roles of homologs of RAS, S6 kinase, adenylate cyclase, and Tor in yeast and in higher eukaryotes in S. cerevisiae chronological survival studies is valuable to understand human aging and disease. Here we review work on the S. cerevisiae chronological lifespan with a focus on the genes regulating age-dependent macromolecular damage and longevity extension.
Collapse
Affiliation(s)
- Mario G. Mirisola
- Department of Surgery, Oncology and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
- Correspondence: (M.G.M.); (V.D.L.)
| | - Valter D. Longo
- Department of Biological Sciences, Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Correspondence: (M.G.M.); (V.D.L.)
| |
Collapse
|
175
|
Auranofin and Pharmacologic Ascorbate as Radiomodulators in the Treatment of Pancreatic Cancer. Antioxidants (Basel) 2022; 11:antiox11050971. [PMID: 35624835 PMCID: PMC9137675 DOI: 10.3390/antiox11050971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer accounts for nearly one fourth of all new cancers worldwide. Little progress in the development of novel or adjuvant therapies has been made over the past few decades and new approaches to the treatment of pancreatic cancer are desperately needed. Pharmacologic ascorbate (P-AscH−, high-dose, intravenous vitamin C) is being investigated in clinical trials as an adjunct to standard-of-care chemoradiation treatments. In vitro, P-AscH− has been shown to sensitize cancer cells to ionizing radiation in a manner that is dependent on the generation of H2O2 while simultaneously protecting normal tissue from radiation damage. There is renewed interest in Auranofin (Au), an FDA-approved medication utilized in the treatment of rheumatoid arthritis, as an anti-cancer agent. Au inhibits the thioredoxin antioxidant system, thus increasing the overall peroxide burden on cancer cells. In support of current literature demonstrating Au’s effectiveness in breast, colon, lung, and ovarian cancer, we offer additional data that demonstrate the effectiveness of Au alone and in combination with P-AscH− and ionizing radiation in pancreatic cancer treatment. Combining P-AscH− and Au in the treatment of pancreatic cancer may confer multiple mechanisms to increase H2O2-dependent toxicity amongst cancer cells and provide a promising translatable avenue by which to enhance radiation effectiveness and improve patient outcomes.
Collapse
|
176
|
Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis 2022; 11:24. [PMID: 35534478 PMCID: PMC9085865 DOI: 10.1038/s41389-022-00400-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractLung cancer is the leading cause of cancer-related death worldwide despite the success of therapies targeting oncogenic drivers and immune-checkpoint inhibitors. Although metabolic enzymes offer additional targets for therapy, the precise metabolic proteome of lung adenocarcinomas is unknown, hampering its clinical translation. Herein, we used Reverse Phase Protein Arrays to quantify the changes in enzymes of glycolysis, oxidation of pyruvate, fatty acid metabolism, oxidative phosphorylation, antioxidant response and protein oxidative damage in 128 tumors and paired non-tumor adjacent tissue of lung adenocarcinomas to profile the proteome of metabolism. Steady-state levels of mitochondrial proteins of fatty acid oxidation, oxidative phosphorylation and of the antioxidant response are independent predictors of survival and/or of disease recurrence in lung adenocarcinoma patients. Next, we addressed the mechanisms by which the overexpression of ATPase Inhibitory Factor 1, the physiological inhibitor of oxidative phosphorylation, which is an independent predictor of disease recurrence, prevents metastatic disease. We highlight that IF1 overexpression promotes a more vulnerable and less invasive phenotype in lung adenocarcinoma cells. Finally, and as proof of concept, the therapeutic potential of targeting fatty acid assimilation or oxidation in combination with an inhibitor of oxidative phosphorylation was studied in mice bearing lung adenocarcinomas. The results revealed that this therapeutic approach significantly extended the lifespan and provided better welfare to mice than cisplatin treatments, supporting mitochondrial activities as targets of therapy in lung adenocarcinoma patients.
Collapse
|
177
|
Khan MZI, Tam MSY, Azam Z, Law HKW. Proteomic profiling of metabolic proteins as potential biomarkers of radioresponsiveness for colorectal cancer. J Proteomics 2022; 262:104600. [DOI: 10.1016/j.jprot.2022.104600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 12/24/2022]
|
178
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
179
|
Synthesis and In Vitro Characterization of Ascorbyl Palmitate-Loaded Solid Lipid Nanoparticles. Polymers (Basel) 2022; 14:polym14091751. [PMID: 35566920 PMCID: PMC9102913 DOI: 10.3390/polym14091751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antitumor applications of ascorbic acid (AA) and its oxidized form dehydroascorbic acid (DHA) can be quite challenging due to their instability and sensitivity to degradation in aqueous media. To overcome this obstacle, we have synthesized solid lipid nanoparticles loaded with ascorbyl palmitate (SLN-AP) with variations in proportions of the polymer Pluronic F-68. SLNs were synthesized using the hot homogenization method, characterized by measuring the particle size, polydispersity, zeta potential and visualized by TEM. To investigate the cellular uptake of the SLN, we have incorporated coumarin-6 into the same SLN formulation and followed their successful uptake for 48 h. We have tested the cytotoxicity of the SLN formulations and free ascorbate forms, AA and DHA, on HEK 293 and U2OS cell lines by MTT assay. The SLN-AP in both formulations have a cytotoxic effect at lower concentrations when compared to ascorbate applied the form of AA or DHA. Better selectivity for targeting tumor cell line was observed with 3% Pluronic F-68. The antioxidative effect of the SLN-AP was observed as early as 1 h after the treatment with a small dose of ascorbate applied (5 µM). SLN-AP formulation with 3% Pluronic F-68 needs to be further optimized as an ascorbate carrier due to its intrinsic cytotoxicity.
Collapse
|
180
|
Koo S, Lee M, Sharma A, Li M, Zhang X, Pu K, Chi S, Kim JS. Harnessing GLUT1‐Targeted Pro‐oxidant Ascorbate for Synergistic Phototherapeutics. Angew Chem Int Ed Engl 2022; 61:e202110832. [DOI: 10.1002/anie.202110832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 01/14/2023]
Affiliation(s)
- Seyoung Koo
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Min‐Goo Lee
- Department of Life Science Korea University Seoul 02841 Korea
| | - Amit Sharma
- Central Scientific Instruments Organisation (CSIR) Sector-30C Chandigarh 160030 India
| | - Mingle Li
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- School of Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Sung‐Gil Chi
- Department of Life Science Korea University Seoul 02841 Korea
| | - Jong Seung Kim
- Department of Chemistry Korea University Seoul 02841 Korea
| |
Collapse
|
181
|
Montrose DC, Galluzzi L. Restored Ketosis Drives Anticancer Immunity in Colorectal Cancer. Cancer Res 2022; 82:1464-1466. [DOI: 10.1158/0008-5472.can-22-0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Abstract
Dietary interventions including alterations in the amount or type of specific macronutrients have been shown to mediate antineoplastic effects in preclinical tumor models, but the underlying mechanisms are only partially understood. In this issue of Cancer Research, Wei and colleagues demonstrate that restoring ketogenesis in the colorectal cancer microenvironment decreases the KLF5-dependent synthesis of CXCL12 by cancer-associated fibroblasts, ultimately enhancing tumor infiltration by immune effector cells and increasing the therapeutic efficacy of an immune checkpoint inhibitor specific for PD-1. These findings provide a novel, therapeutically actionable link between suppressed ketogenesis and immunoevasion in the colorectal cancer microenvironment.
See related article by Wei et al., p. 1575
Collapse
Affiliation(s)
- David C. Montrose
- Department of Pathology, Stony Brook University, Stony Brook, New York
- Stony Brook Cancer Center, Stony Brook, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
182
|
|
183
|
Therapeutic Efficacy of Pharmacological Ascorbate on Braf Inhibitor Resistant Melanoma Cells In Vitro and In Vivo. Cells 2022; 11:cells11071229. [PMID: 35406796 PMCID: PMC8997901 DOI: 10.3390/cells11071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
High-dose ascorbate paradoxically acts as a pro-oxidant causing the formation of hydrogen peroxide in an oxygen dependent manner. Tumor cells (in particular melanoma cells) show an increased vulnerability to ascorbate induced reactive oxygen species (ROS). Therefore, high-dose ascorbate is a promising pharmacological approach to treating refractory melanomas, e.g., with secondary resistance to targeted BRAF inhibitor therapy. BRAF mutated melanoma cells were treated with ascorbate alone or in combination with the BRAF inhibitor vemurafenib. Viability, cell cycle, ROS production, and the protein levels of phospho-ERK1/2, GLUT-1 and HIF-1α were analyzed. To investigate the treatment in vivo, C57BL/6NCrl mice were subcutaneously injected with D4M.3A (BrafV600E) melanoma cells and treated with intraperitoneal injections of ascorbate with or without vemurafenib. BRAF mutated melanoma cell lines either sensitive or resistant to vemurafenib were susceptible to the induction of cell death by pharmacological ascorbate. Treatment of BrafV600E melanoma bearing mice with ascorbate resulted in plasma levels in the pharmacologically active range and significantly improved the therapeutic effect of vemurafenib. We conclude that intravenous high-dose ascorbate will be beneficial for melanoma patients by interfering with the tumor’s energy metabolism and can be safely combined with standard melanoma therapies such as BRAF inhibitors without pharmacological interference.
Collapse
|
184
|
Burke B, Bailie JE. Randomized trial of topical ascorbic acid in DMSO versus imiquimod for the treatment of basal cell carcinoma. Biomed Pharmacother 2022; 148:112710. [PMID: 35217280 DOI: 10.1016/j.biopha.2022.112710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Skin cancer is the most common cancer in the United States and among Caucasians worldwide, with more people diagnosed each year than all other cancers combined. Basal cell cancer is the most common form with an estimated 4.3 million cases diagnosed annually, and treatment costs estimated at $4.8 billion. The objective of this study was to compare efficacy of a topical solution consisting of 30% ascorbic acid in 95% dimethylsulfoxide with topical imiquimod in the treatment of basal cell carcinoma. Twenty-five patients with 29 biopsy confirmed basal cell carcinomas were randomly assigned to receive either the topically applied ascorbic acid treatment twice daily for 8 weeks or topical imiquimod, a standard and well characterized topical treatment. After 8 weeks, post-treatment biopsy of lesions showed complete resolution of 13/15 (86.7%) in the ascorbic acid group, while 8/14 (57.1%) lesions in the IMQ group were resolved (p < 0.05 Chi Square). Topical ascorbic acid was superior at 8 weeks, and non-inferior at 12 weeks to topical imiquimod in the treatment of low risk nodular and superficial lesions. In addition, ascorbic acid was associated with fewer adverse effects than imiquimod. 70% of patients in the imiquinod group showed residual hypopigmentation at 30mo follow up versus 0% in the ascorbate group.
Collapse
Affiliation(s)
- Briant Burke
- Center for Biomedical Research, Inc., Boise, ID 83706, USA.
| | | |
Collapse
|
185
|
Crist SB, Nemkov T, Dumpit RF, Dai J, Tapscott SJ, True LD, Swarbrick A, Sullivan LB, Nelson PS, Hansen KC, Ghajar CM. Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nat Cell Biol 2022; 24:538-553. [PMID: 35411081 PMCID: PMC11312424 DOI: 10.1038/s41556-022-00881-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
Skeletal muscle has long been recognized as an inhospitable site for disseminated tumour cells (DTCs). Yet its antimetastatic nature has eluded a thorough mechanistic examination. Here, we show that DTCs traffic to and persist within skeletal muscle in mice and in humans, which raises the question of how this tissue suppresses colonization. Results from mouse and organotypic culture models along with metabolomic profiling suggested that skeletal muscle imposes a sustained oxidative stress on DTCs that impairs their proliferation. Functional studies demonstrated that disrupting reduction-oxidation homeostasis via chemogenetic induction of reactive oxygen species slowed proliferation in a more fertile organ: the lung. Conversely, enhancement of the antioxidant potential of tumour cells through ectopic expression of catalase in the tumour or host mitochondria allowed robust colonization of skeletal muscle. These findings reveal a profound metabolic bottleneck imposed on DTCs and sustained by skeletal muscle. A thorough understanding of this biology could reveal previously undocumented DTC vulnerabilities that can be exploited to prevent metastasis in other more susceptible tissues.
Collapse
Affiliation(s)
- Sarah B Crist
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ruth F Dumpit
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jinxiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Lawrence D True
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
186
|
Li Z, Ge Y, Dong J, Wang H, Zhao T, Wang X, Liu J, Gao S, Shi L, Yang S, Huang C, Hao J. BZW1 Facilitates Glycolysis and Promotes Tumor Growth in Pancreatic Ductal Adenocarcinoma Through Potentiating eIF2α Phosphorylation. Gastroenterology 2022; 162:1256-1271.e14. [PMID: 34951995 PMCID: PMC9436032 DOI: 10.1053/j.gastro.2021.12.249] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/23/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by severe metabolic stress due to fibrosis and poor vascularization. BZW1 is an eIF5-mimic protein involved in tumorigenesis and progression. The aim of this study was to investigate the role of BZW1 in metabolic stress resistance in PDAC. METHODS BZW1 expression was evaluated in human PDAC tissue microarray and PDAC cells. Glycolysis regulation of BZW1 and its correlation with glycolysis-related genes was analyzed. Tumor growth, cell proliferation, and apoptosis were evaluated in mice xenograft tumors and patient-derived organoids. RESULTS The results of bioinformatic screening identified that BZW1 was 1 of the top 3 genes favorable for tumor progression in PDAC. The analysis of our cohort confirmed that BZW1 was overexpressed in human PDAC tissues compared with nontumor tissues, and its abnormal expression was correlated with large tumor size and poor prognosis. BZW1 promoted cell proliferation and inhibited apoptosis in both mouse xenograft models and PDAC-derived organoids via facilitating glycolysis in the oxygen-glucose-deprivation condition. Mechanically, BZW1 served as an adaptor for PKR-like endoplasmic reticulum (ER) kinase (PERK), facilitated the phosphorylation of eIF2α, promoted internal ribosome entry site-dependent translation of HIF1α and c-Myc, and thereby boosted the Warburg effect. In organoid-based xenografts with high BZW1 levels, both the PERK/eIF2α phosphorylation inhibitor GSK2606414 and ISRIB significantly suppressed tumor growth and prolonged animal survival. CONCLUSIONS BZW1 is a key molecule in the internal ribosome entry site-dependent translation of HIF1α/c-Myc and plays crucial roles in the glycolysis of PDAC. BZW1 might serve as a therapeutic target for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Zengxun Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yi Ge
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jie Dong
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hongwei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Tiansuo Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Song Gao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Chongbiao Huang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
187
|
Yi Y, Wu M, Zhou X, Xiong M, Tan Y, Yu H, Liu Z, Wu Y, Zhang Q. Ascorbic acid 2-glucoside preconditioning enhances the ability of bone marrow mesenchymal stem cells in promoting wound healing. Stem Cell Res Ther 2022; 13:119. [PMID: 35313962 PMCID: PMC8935805 DOI: 10.1186/s13287-022-02797-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Background Nowadays, wound is associated with a complicated repairing process and still represents a significant biomedical burden worldwide. Bone marrow mesenchymal stem cells (BMSCs) possess multidirectional differentiation potential and secretory function, emerging as potential cellular candidates in treating wounds. Ascorbic acid 2-glucoside (AA2G) is a well-known antioxidant and its function in BMSC-promoting wound healing is worth exploring. Methods The in vitro cell proliferation, migration, and angiogenesis of BMSCs and AA2G-treated BMSCs were detected by flow cytometry, EDU staining, scratch assay, transwell assay, and immunofluorescence (IF). Besides, the collagen formation effect of AA2G-treated BMSCs conditioned medium (CM) on NIH-3T3 cells was evaluated by hydroxyproline, qRT-PCR and IF staining detection. Next, in the wound healing mouse model, the histological evaluation of wound tissue in PBS, BMSCs, and AA2G-treated BMSCs group were further investigated. Lastly, western blot and ELISA were used to detect the expression levels of 5-hmc, TET2 and VEGF protein, and PI3K/AKT pathway activation in BMSCs treated with or without AA2G. Results The in vitro results indicated that AA2G-treated BMSCs exhibited stronger proliferation and improved the angiogenesis ability of vascular endothelial cells. In addition, the AA2G-treated BMSCs CM enhanced migration and collagen formation of NIH-3T3 cells. In vivo, the AA2G-treated BMSCs group had a faster wound healing rate and a higher degree of vascularization in the new wound, compared with the PBS and BMSCs group. Moreover, AA2G preconditioning might enhance the demethylation process of BMSCs by regulating TET2 and up-regulating VEGF expression by activating the PI3K/AKT pathway. Conclusions AA2G-treated BMSCs promoted wound healing by promoting angiogenesis and collagen deposition, thereby providing a feasible strategy to reinforce the biofunctionability of BMSCs in treating wounds. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02797-0.
Collapse
Affiliation(s)
- Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiaomei Zhou
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Honghao Yu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zeming Liu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
188
|
Zheng YL, Tu ZS, Cui HM, Yan S, Duan DC, Tang W, Dai F, Zhou B. Redox-Based Strategy for Selectively Inducing Energy Crisis Inside Cancer Cells: An Example of Modifying Dietary Curcumin to Target Mitochondria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2898-2910. [PMID: 35213152 DOI: 10.1021/acs.jafc.1c07690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reprograming of energy metabolism is a major hallmark of cancer, but its effective intervention is still a challenging task due to metabolic heterogeneity and plasticity of cancer cells. Herein, we report a general redox-based strategy for meeting the challenge. The strategy was exemplified by a dietary curcumin analogue (MitoCur-1) that was designed to target mitochondria (MitoCur-1). By virtue of its electrophilic and mitochondrial-targeting properties, MitoCur-1 generated reactive oxygen species (ROS) more effectively and selectively in HepG2 cells than in L02 cells via the inhibition of mitochondrial antioxidative thioredoxin reductase 2 (TrxR2). The ROS generation preferentially mediated the energy crisis of HepG2 cells in a dual-inhibition fashion against both mitochondrial and glycolytic metabolisms, which could hit the metabolic plasticity of HepG2 cells. The ROS-dependent energy crisis also allowed its preferential killing of HepG2 cells (IC50 = 1.4 μM) over L02 cells (IC50 = 9.1 μM), via induction of cell-cycle arrest, apoptosis and autophagic death, and its high antitumor efficacy in vivo, in nude mice bearing HepG2 tumors (15 mg/kg). These results highlight that inhibiting mitochondrial TrxR2 to produce ROS by electrophiles is a promising redox-based strategy for the effective intervention of cancer cell energy metabolic reprograming.
Collapse
Affiliation(s)
- Ya-Long Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Zhi-Shan Tu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Hong-Mei Cui
- School of Public Health, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shuai Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - De-Chen Duan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Wei Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| |
Collapse
|
189
|
Xia Y, Yang J, Li C, Hao X, Fan H, Zhao Y, Tang J, Wan X, Lian S, Yang J. TMT-Based Quantitative Proteomics Analysis Reveals the Panoramic Pharmacological Molecular Mechanism of β-Elemonic Acid Inhibition of Colorectal Cancer. Front Pharmacol 2022; 13:830328. [PMID: 35242040 PMCID: PMC8886227 DOI: 10.3389/fphar.2022.830328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide but has limited available therapeutic methods; therefore, there is a need to develop highly efficient prevention and treatment strategies. Here, we investigated the anti-cancer activity of β-elemonic acid (EA) in CRC in vitro and in vivo. Our results showed that EA inhibited cell proliferation and migration in the CRC cell lines SW480 and HCT116. Moreover, EA significantly suppressed the growth of transplanted colorectal tumors in nude mice. Interestingly, high-throughput tandem mass tag (TMT)-based quantitative proteomics indicated that EA mainly targets tumor mitochondria and attenuates the translation of 54 mitochondrial ribosome proteins, many of which are discovered significantly upregulated in clinical CRC patients. More interestingly, EA at a low concentration (lower than 15 μg/ml) repressed the cell cycle by downregulating CDK1, CDK6, and CDC20, whereas at a high concentration (higher than 15 μg/ml), caused a non-apoptotic cell death-ferroptosis via downregulating ferritin (FTL) and upregulating transferrin (TF), ferroxidase (CP), and acyl-CoA synthetase long-chain family member 4 (ACSL4). This is the first report on the panoramic molecular mechanism of EA against CRC, which would make great contributions to developing a novel drug for colorectal cancer therapy.
Collapse
Affiliation(s)
- Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Jinfan Yang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Chao Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiaopeng Hao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Huixia Fan
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yuyang Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Jinfu Tang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Xiufu Wan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, China
| |
Collapse
|
190
|
Koo S, Lee M, Sharma A, Li M, Zhang X, Pu K, Chi S, Kim JS. Harnessing GLUT1‐Targeted Pro‐oxidant Ascorbate for Synergistic Phototherapeutics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Seyoung Koo
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Min‐Goo Lee
- Department of Life Science Korea University Seoul 02841 Korea
| | - Amit Sharma
- Central Scientific Instruments Organisation (CSIR) Sector-30C Chandigarh 160030 India
| | - Mingle Li
- Department of Chemistry Korea University Seoul 02841 Korea
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- School of Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering Nanyang Technological University 70 Nanyang Drive 637457 Singapore Singapore
| | - Sung‐Gil Chi
- Department of Life Science Korea University Seoul 02841 Korea
| | - Jong Seung Kim
- Department of Chemistry Korea University Seoul 02841 Korea
| |
Collapse
|
191
|
Jandaghi P, Hosseini Z, Chilibeck P, Hanley AJ, Deguire JR, Bandy B, Pahwa P, Vatanparast H. The Role of Immunomodulatory Nutrients in Alleviating Complications Related to SARS-CoV-2: A Scoping Review. Adv Nutr 2022; 13:424-438. [PMID: 34932789 PMCID: PMC8970839 DOI: 10.1093/advances/nmab128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/26/2021] [Accepted: 10/20/2021] [Indexed: 01/21/2023] Open
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic has warranted the need to investigate potential therapies or prophylaxis against this infectious respiratory disease. There is emerging evidence about the potential role of nutrients on COVID-19 in addition to using medications such as hydroxychloroquine and azithromycin. This scoping review aims to explore the literature evaluating the effect of immunomodulatory nutrients on the outcomes including hospitalization, intensive care unit admission, oxygen requirement, and mortality in COVID-19 patients. A literature search of databases including Medline, EMBASE, CINAHL, Web of Science, Cochrane, Scopus, and PubMed, as well as hand-searching in Google Scholar (up to 10 February 2021) was conducted. All human studies with different study designs and without limitation on publication year were included except for non-English-language and review articles. Overall, out of 4412 studies, 19 met our inclusion criteria. Four studies examined the impact of supplementation with vitamin C, 4 studies - zinc, 8 studies - vitamin D, and 3 studies investigated the combination of 2 (zinc and vitamin C) or 3 (vitamin D, vitamin B-12, and magnesium) nutrients. Although limited data exist, available evidence demonstrated that supplementation with immune-supportive micronutrients such as vitamins D and C and zinc may modulate immunity and alleviate the severity and risk of infection. The effectiveness of vitamin C, vitamin D, and zinc on COVID-19 was different based on baseline nutrient status, the duration and dosage of nutrient therapy, time of administration, and severity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease. This review indicated that supplementation with high-dose vitamin C, vitamin D, and zinc may alleviate the complications caused by COVID-19, including inflammatory markers, oxygen therapy, length of hospitalization, and mortality; however, studies were mixed regarding these effects. Further randomized clinical trials are necessary to identify the most effective nutrients and the safe dosage to combat SARS-CoV-2.
Collapse
Affiliation(s)
- Parisa Jandaghi
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Zeinab Hosseini
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - Philip Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Jason R Deguire
- Centre for Population Health Data, Statistics Canada, Ottawa, Canada
| | - Brian Bandy
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Punam Pahwa
- Department of Community Health and Epidemiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hassan Vatanparast
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada; School of Public Health, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
192
|
Wu S, Zhang K, Liang Y, Wei Y, An J, Wang Y, Yang J, Zhang H, Zhang Z, Liu J, Shi J. Nano-enabled Tumor Systematic Energy Exhaustion via Zinc (II) Interference Mediated Glycolysis Inhibition and Specific GLUT1 Depletion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103534. [PMID: 34913610 PMCID: PMC8895132 DOI: 10.1002/advs.202103534] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Indexed: 05/19/2023]
Abstract
Despite the promise of tumor starvation therapies, they are often associated with nonspecific and incomplete energy blockade. Here, a novel paradigm of starvation therapy is proposed to synergize the "Zn2+ interference"-mediated glycolysis inhibition and Zn2+ -activating GLUT1 (Glucose transporter 1) tumor specific depletion for systematic energy exhaustion. It is discovered that ZIF-8 (zinc imidazolate metal-organic frameworks ) can induce abrupt intracellular Zn2+ elevation preferentially in melanoma cells, and then achieve effective glycolysis blockade through "Zn2+ interference"-triggered decrease of NAD+ and inactivation of GAPDH, making it a powerful tumor energy nanoinhibitor. Meanwhile, Zn2+ -activating DNAzymes for specifically cleaving GLUT1 mRNA is designed. This DNAzyme can only be activated under intracellular Zn2+ overloading, and then directionally cut off glucose supply, which further restrains the adaptive up-regulation of glycolytic flux after glycolysis inhibition in tumors. Afterward, DNAzymes are loaded in ZIF-8 concurrently tethered by hyaluronic acid (HA), constructing a "nanoenabled energy interrupter ". Such a rational design presents a preferential accumulation tendency to tumor sites due to the active CD44-targeting mechanisms, specifically achieves remarkable systematic energy exhaustion in melanoma cells, and affords 80.8% in tumor growth suppression without systemic toxicity in vivo. This work verifies a fascinating therapeutic platform enabling ion interference-inductive starvation strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Sixuan Wu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Yan Liang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Yongbin Wei
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Jingyi An
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Yifei Wang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Jiali Yang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Hongling Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou450001P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001P. R. China
| | - Junjie Liu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou450001P. R. China
| |
Collapse
|
193
|
Du YT, Long Y, Tang W, Liu XF, Dai F, Zhou B. Prooxidative inhibition against NF-κB-mediated inflammation by pharmacological vitamin C. Free Radic Biol Med 2022; 180:85-94. [PMID: 35038551 DOI: 10.1016/j.freeradbiomed.2022.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Vitamin C (VC), widely found in vegetables and fruits, operates as an electron donor to perform various biological functions including anti-inflammatory activity. However, the mechanisms by which VC inhibits inflammation remain insufficiently understood. Accordingly, we performed a detail mechanistic study on anti-inflammatory activity of VC at millimolar (pharmacological) concentrations in lipopolysaccharides-stimulated RAW264.7 cells. It was found that VC and its two-electron oxidative product, dehydroascorbate (DHA) constructs an efficient redox cycle with the aid of intracellular glutathione and copper ions, thereby facilitating the generation of reactive oxygen species (ROS) and the ROS-dependent inhibition against the NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Yu-Ting Du
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, 034000, China
| | - Ying Long
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Wei Tang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Xue-Feng Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China; School of Pharmacy, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu, 730000, China.
| |
Collapse
|
194
|
Jung Y, Noda N, Takaya J, Abo M, Toh K, Tajiri K, Cui C, Zhou L, Sato SI, Uesugi M. Discovery of Non-Cysteine-Targeting Covalent Inhibitors by Activity-Based Proteomic Screening with a Cysteine-Reactive Probe. ACS Chem Biol 2022; 17:340-347. [PMID: 35076225 DOI: 10.1021/acschembio.1c00824] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covalent inhibitors of enzymes are increasingly appreciated as pharmaceutical seeds, yet discovering non-cysteine-targeting inhibitors remains challenging. Herein, we report an intriguing experience during our activity-based proteomic screening of 1601 reactive small molecules, in which we monitored the ability of library molecules to compete with a cysteine-reactive iodoacetamide probe. One epoxide molecule, F8, exhibited unexpected enhancement of the probe reactivity for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a rate-limiting glycolysis enzyme. In-depth mechanistic analysis suggests that F8 forms a covalent adduct with an aspartic acid in the active site to displace NAD+, a cofactor of the enzyme, with concomitant enhancement of the probe reaction with the catalytic cysteine. The mechanistic underpinning permitted the identification of an optimized aspartate-reactive GAPDH inhibitor. Our findings exemplify that activity-based proteomic screening with a cysteine-reactive probe can be used for discovering covalent inhibitors that react with non-cysteine residues.
Collapse
Affiliation(s)
- Yejin Jung
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naotaka Noda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junichiro Takaya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Abo
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kohei Toh
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ken Tajiri
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Changyi Cui
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Zhou
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shin-ichi Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
195
|
Zhang X, Li S, He J, Jin YJ, Zhang R, Dong W, Lin M, Yang Y, Tian T, Zhou Y, Xu Y, Lei QY, Zhang J, Zhang Q, Xu Y, Lv L. TET2 suppresses VHL deficiency-driven clear cell renal cell carcinoma by inhibiting HIF signaling. Cancer Res 2022; 82:2097-2109. [PMID: 35176127 DOI: 10.1158/0008-5472.can-21-3013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
Inactivating mutations of von Hippel-Lindau (VHL) are highly prevalent in clear cell renal cell carcinoma (ccRCC). Improved understanding of the vulnerabilities of VHL-deficient ccRCC could lead to improved treatment strategies. The activity of DNA dioxygenase TET2 is significantly reduced in multiple cancers by different mechanisms, but its role in ccRCC progression remains unclear. Here, we report that increased expression of TET2, but not TET1 and TET3, is negatively associated with tumor metastasis and advanced tumor stage and positively associated with good prognosis uniquely in ccRCC among all 33 types of cancer in the TCGA datasets. TET2 restrained glycolysis and pentose phosphate pathway metabolism in a VHL deficiency-dependent manner, thereby suppressing ccRCC progression. Notably, TET2 and VHL mutations tended to co-occur in ccRCC, providing genetic evidence that they cooperate to inhibit the progression of ccRCC. Mechanistically, TET2 was recruited by transcription factor HNF4α to activate FBP1 expression, which antagonized the function of HIF1/2α in metabolic reprogramming to impede ccRCC growth. Stimulating the TET2-FBP1 axis with vitamin C repressed the growth of VHL-deficient ccRCC with wild-type TET2 and increased the sensitivity to glycolysis inhibitors. Moreover, combined expression levels of the HNF4α-TET2-FBP1 axis served as a biomarker of prognosis in ccRCC patients. This study reveals a unique function of TET2 in the suppression of tumor metabolism and HIF signaling, and it also provides therapeutic targets, potential drugs, and prognostic markers for the management of ccRCC.
Collapse
Affiliation(s)
| | | | - Jing He
- Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | - Qun-Ying Lei
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | - Qing Zhang
- The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Lei Lv
- Fudan University, Shanghai, China
| |
Collapse
|
196
|
Petruzzelli M, Ferrer M, Schuijs MJ, Kleeman SO, Mourikis N, Hall Z, Perera D, Raghunathan S, Vacca M, Gaude E, Lukey MJ, Jodrell DI, Frezza C, Wagner EF, Venkitaraman AR, Halim TYF, Janowitz T. Early Neutrophilia Marked by Aerobic Glycolysis Sustains Host Metabolism and Delays Cancer Cachexia. Cancers (Basel) 2022; 14:963. [PMID: 35205709 PMCID: PMC8870098 DOI: 10.3390/cancers14040963] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
An elevated neutrophil-lymphocyte ratio negatively predicts the outcome of patients with cancer and is associated with cachexia, the terminal wasting syndrome. Here, using murine model systems of colorectal and pancreatic cancer we show that neutrophilia in the circulation and multiple organs, accompanied by extramedullary hematopoiesis, is an early event during cancer progression. Transcriptomic and metabolic assessment reveals that neutrophils in tumor-bearing animals utilize aerobic glycolysis, similar to cancer cells. Although pharmacological inhibition of aerobic glycolysis slows down tumor growth in C26 tumor-bearing mice, it precipitates cachexia, thereby shortening the overall survival. This negative effect may be explained by our observation that acute depletion of neutrophils in pre-cachectic mice impairs systemic glucose homeostasis secondary to altered hepatic lipid processing. Thus, changes in neutrophil number, distribution, and metabolism play an adaptive role in host metabolic homeostasis during cancer progression. Our findings provide insight into early events during cancer progression to cachexia, with implications for therapy.
Collapse
Affiliation(s)
- Michele Petruzzelli
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
| | - Miriam Ferrer
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
| | - Martijn J. Schuijs
- CRUK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge CB2 0RE, UK; (M.J.S.); (S.R.); (D.I.J.); (T.Y.F.H.)
| | - Sam O. Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
| | - Nicholas Mourikis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
| | - Zoe Hall
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - David Perera
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
| | - Shwethaa Raghunathan
- CRUK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge CB2 0RE, UK; (M.J.S.); (S.R.); (D.I.J.); (T.Y.F.H.)
| | - Michele Vacca
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK;
| | - Edoardo Gaude
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
| | - Michael J. Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
| | - Duncan I. Jodrell
- CRUK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge CB2 0RE, UK; (M.J.S.); (S.R.); (D.I.J.); (T.Y.F.H.)
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
| | - Erwin F. Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine Department of Dermatology, Medical University of Vienna (MUV), 1090 Vienna, Austria;
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUV), 1090 Vienna, Austria
| | - Ashok R. Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK; (M.P.); (M.F.); (D.P.); (E.G.); (C.F.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Timotheus Y. F. Halim
- CRUK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge CB2 0RE, UK; (M.J.S.); (S.R.); (D.I.J.); (T.Y.F.H.)
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (S.O.K.); (N.M.); (M.J.L.)
- Northwell Health Cancer Institute, New Hyde Park, NY 11042, USA
| |
Collapse
|
197
|
Mir HA, Ali R, Wani ZA, Khanday FA. Pro-oxidant vitamin C mechanistically exploits p66Shc/Rac1GTPase pathway in inducing cytotoxicity. Int J Biol Macromol 2022; 205:154-168. [PMID: 35181322 DOI: 10.1016/j.ijbiomac.2022.02.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/25/2022]
Abstract
P66Shc is the master regulator of oxidative stress whose pro-oxidant functioning is governed by ser36 phosphorylation. Phosphorylated p66Shc via Rac1GTPase activation modulates ROS levels which in turn influence its pro-oxidative functions. Vitamin C at higher concentrations exhibits cytotoxic activity in various cancers, inducing ROS mediated cell death via pro-apoptotic mechanisms. Here we show a novel role of p66Shc in mediating pro-oxidant activity of vitamin C. Effect of vitamin C on the viability of breast cancer and normal cells was studied. High doses of vitamin C decreased viability of cancerous cells but not normal cells. Docking study displayed significant binding affinity of vitamin C with p66Shc PTB domain. Western blot results suggest that vitamin C not only enhances p66Shc expression but also induces its ser36 phosphorylation. Vitamin C at high doses was also found to activate Rac1, enhance ROS production and induce apoptosis. Interestingly, ser36 phosphorylation mutant transfection and pretreatment with antioxidant N-acetylcysteine results indicate that vitamin C induced Rac1 activation, ROS production and apoptosis is p66Shc ser36 phosphorylation dependent. Overall, results highlight that vitamin C mechanistically explores p66Shc/Rac1 pathway in inducing apoptosis and thus can pave a way to use this pathway as a potential therapeutic target in breast cancers.
Collapse
Affiliation(s)
- Hilal Ahmad Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Roshia Ali
- Department of Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Zahoor Ahmad Wani
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Firdous Ahmad Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
198
|
A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2339584. [PMID: 35178152 PMCID: PMC8847026 DOI: 10.1155/2022/2339584] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial β-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated β-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial β-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition “β-oxidation shuttle”. It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.
Collapse
|
199
|
Bekhet OH, Eid ME. The interplay between reactive oxygen species and antioxidants in cancer progression and therapy: a narrative review. Transl Cancer Res 2022; 10:4196-4206. [PMID: 35116715 PMCID: PMC8799102 DOI: 10.21037/tcr-21-629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
Objective To unveil the role of reactive oxygen species (ROS) and antioxidants in signaling and involvement in cancer progression and therapy. Background Cancer is considered one of the main causes of mortality in developed countries and expected to be more in developing countries as well. Although some cancers may develop at young age, yet almost all types of cancers are an accumulation of genetic and epigenetic cell damages. Cancer is considered a diverse collection of diseases on a cellular level rather than a single disease; and each disease has a different cause as well. ROS have been seen as harmful toxic molecules; however, they are recognized for cellular signaling capabilities. Elevated levels of ROS have protumorigenic activities; they induce cancer cell proliferation, and adaptation to hypoxia in addition to other effects like DNA damage and genetic instability. They are produced excessively by cancer cells to hyperactivate cellular transformation meanwhile increasing antioxidant capacity to avoid cell death. Methods We discussed peer reviewed published research work from 1987 to 2021. In this paper, we review the role of antioxidants as defensive barrier against excessive ROS levels for maintaining oxidation-reduction (redox) balance; however, antioxidant can also strive in tumor cells with their scavenging capacities and maintain protumorigenic signaling and resist the cancer cell oxidative stress and apoptosis. High doses of antioxidant compounds could be toxic to cells as they are capable of reacting with the physiological concentrations of ROS present for normal cellular processes and signaling. Conclusions Maintaining cellular redox homeostasis is vital for healthy biological system. Therefore, therapeutic modalities for cancer including antioxidants and ROS management should be used at certain doses to target specific redox pathways involved in cancer progression without disrupting the overall redox balance in normal cells.
Collapse
Affiliation(s)
- Osama Hussein Bekhet
- Pole of Endocrinology, Diabetes and Nutrition, Catholic University of Louvain, Woluwe-Saint-Lambert, Belgium
| | - Mohamed Elsayed Eid
- Laboratory of Natural Products Chemistry, Mediterranean Agronomic Institute of Chania, Crete, Greece
| |
Collapse
|
200
|
Yuan Y, Li H, Pu W, Chen L, Guo D, Jiang H, He B, Qin S, Wang K, Li N, Feng J, Wen J, Cheng S, Zhang Y, Yang W, Ye D, Lu Z, Huang C, Mei J, Zhang HF, Gao P, Jiang P, Su S, Sun B, Zhao SM. Cancer metabolism and tumor microenvironment: fostering each other? SCIENCE CHINA. LIFE SCIENCES 2022; 65:236-279. [PMID: 34846643 DOI: 10.1007/s11427-021-1999-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live. Metabolic reprogramming supports tumor cell high demand of biogenesis for their rapid proliferation, and helps tumor cell to survive under certain genetic or environmental stresses. Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes, in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways. Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation. This cancer metabolic phenotype, described firstly by German physiologist Otto Warburg, insures enhanced glycolytic metabolism for the biosynthesis of macromolecules. The conception of metabolite signaling, i.e., metabolites are regulators of cell signaling, provides novel insights into how reactive oxygen species (ROS) and other metabolites deregulation may regulate redox homeostasis, epigenetics, and proliferation of cancer cells. Moreover, the unveiling of noncanonical functions of metabolic enzymes, such as the moonlighting functions of phosphoglycerate kinase 1 (PGK1), reassures the importance of metabolism in cancer development. The metabolic, microRNAs, and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome. Among them, cancer microenvironmental cells are immune cells which exert profound effects on cancer cells. Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.
Collapse
Affiliation(s)
- Yiyuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China
| | - Huimin Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wang Pu
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Leilei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China
| | - Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongfei Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Wen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shipeng Cheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yaguang Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Weiwei Yang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences and School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Canhua Huang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Jun Mei
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hua-Feng Zhang
- CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ping Gao
- School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China.
| | - Peng Jiang
- Tsinghua University School of Life Sciences, and Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Bing Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200438, China.
| |
Collapse
|