151
|
Begley M, Hill C, Ross RP. Tolerance of Listeria monocytogenes to cell envelope-acting antimicrobial agents is dependent on SigB. Appl Environ Microbiol 2006; 72:2231-4. [PMID: 16517678 PMCID: PMC1393204 DOI: 10.1128/aem.72.3.2231-2234.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutation of sigB impairs the ability of Listeria monocytogenes to grow in sublethal levels, and to survive in lethal concentrations, of the bacteriocins nisin and lacticin 3147 and the antibiotics ampicillin and penicillin G. SigB may therefore represent an attractive target for the development of new control and treatment strategies for this important pathogen.
Collapse
Affiliation(s)
- Máire Begley
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
152
|
Gray MJ, Freitag NE, Boor KJ. How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun 2006; 74:2505-12. [PMID: 16622185 PMCID: PMC1459693 DOI: 10.1128/iai.74.5.2505-2512.2006] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Michael J Gray
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
153
|
Seletzky JM, Noack U, Fricke J, Hahn S, Büchs J. Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress. Appl Microbiol Biotechnol 2006; 72:1297-307. [PMID: 16642330 DOI: 10.1007/s00253-006-0436-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/19/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Respiration measurement in shake flasks is introduced as a new method to characterize the metabolic activity of microorganisms during and after stress exposure. The major advantage of the new method is the possibility to determine the metabolic activity independent of manual sampling without the necessity to change the culture vessel or the cultivation medium. This excludes stress factors, which may be induced by transferring the microorganisms to plates or respirometers. The negative influence, which interruptions of the shaker during sampling times may have on the growth of microorganisms was demonstrated. The applicability of the method was verified by characterizing the behavior of Corynebacterium glutamicum grown on the carbon source L: -lactic acid under stress factors such as carbon starvation, anaerobic conditions, lactic acid, osmolarity, and pH. The following conditions had no effect on the metabolic activity of C. glutamicum: a carbon starvation of up to 19 h, anaerobic conditions, lactic acid concentrations up to 10 g/l, 3-(N-morpholino) propanesulfonic acid buffer concentrations up to 42 g/l, or pH from 6.4 to 7.4. Lactic-acid concentrations from 10 to 30 g/l lead to a decrease of the growth rate and the biomass substrate yield without effecting the oxygen substrate conversion. Without adaptation, the organism did not grow at pH< or =5 or > or =9.
Collapse
Affiliation(s)
- Juri M Seletzky
- Biochemical Engineering, RWTH Aachen University, Sammelbau Biologie, Worringerweg 1, 52056 Aachen, Germany
| | | | | | | | | |
Collapse
|
154
|
Hillmann F, Fischer RJ, Bahl H. The rubrerythrin-like protein Hsp21 of Clostridium acetobutylicum is a general stress protein. Arch Microbiol 2006; 185:270-6. [PMID: 16463182 DOI: 10.1007/s00203-006-0091-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 01/18/2006] [Accepted: 01/20/2006] [Indexed: 10/25/2022]
Abstract
The small heat shock protein Hsp21 of Clostridium acetobutylicum was recently identified as a rubrerythrin-like protein with a rubredoxin-like FeS(4) domain at the N-terminus and a ferritin-like diiron domain at the C-terminus. Here, we report that the two identical tandem genes rbr3A and rbr3B, which encode the heat shock protein Hsp21, show the transcription pattern of general stress genes. Northern blot analysis indicated that the transcription of the rbr3AB operon is induced by various environmental stress conditions: in addition to heat and oxidative stress, an increase of the pH of the growth medium from 4.5 to 6.2, addition of the salt NaCl (400 mM) or of the solvent butanol (3.5% v/v), and lowering the incubation temperature from 37 to 25 degrees C resulted in transiently increased transcript levels. The promoter region deduced from the 5' end of the mRNA has only limited similarity to the consensus promoter sequence of Gram-positive bacteria. A conserved inverted repeat between this promoter and the initiation codon is proposed to have a regulatory role. Although C. acetobutylicum is regarded as a strictly anaerobic bacterium, live/dead staining demonstrated that it can survive exposure to air or H(2)O(2) and other stressors to various extents.
Collapse
Affiliation(s)
- Falk Hillmann
- Division of Microbiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18051, Rostock, Germany
| | | | | |
Collapse
|
155
|
Garner MR, Njaa BL, Wiedmann M, Boor KJ. Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun 2006; 74:876-86. [PMID: 16428730 PMCID: PMC1360341 DOI: 10.1128/iai.74.2.876-886.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 09/29/2005] [Accepted: 11/08/2005] [Indexed: 01/07/2023] Open
Abstract
Contributions of the alternative sigma factor sigmaB to Listeria monocytogenes infection were investigated using strains bearing null mutations in sigB, prfA, or inlA or in selected inlA or prfA promoter regions. The DeltaP4inlA strain, which has a deletion in the sigmaB-dependent P4inlA promoter, and the DeltasigB strain had significantly reduced invasion efficiencies relative to that of the wild-type strain in the Caco-2 human colorectal epithelial cell line, while the invasion efficiency of a strain bearing a deletion in the partially sigmaB dependent P2prfA promoter region did not differ from that of the wild type. The virulence of the DeltasigB and DeltaP4inlA strains was attenuated in intragastrically inoculated guinea pigs, with the DeltasigB strain showing greater attenuation, while the virulence capacity of the DeltaP2prfA strain was similar to that of the wild-type strain, suggesting that attenuation of virulence due to the DeltasigB mutation does not result from loss of sigmaB-dependent prfA transcription. Our results show that sigmaB-dependent activation of inlA is important for cell invasion and gastrointestinal infection and suggest that sigmaB-regulated genes in addition to inlA appear to contribute to gastrointestinal infection. Interestingly, the virulence of the DeltasigB strain was not attenuated in intravenously infected guinea pigs. We conclude that (i) L. monocytogenes sigmaB plays a critical role in invasion of human host cells, (ii) sigmaB-mediated contributions to invasion are, in part, due to direct effects on inlA transcription but not on prfA transcription, and (iii) sigmaB plays a critical role during the gastrointestinal stage of listeriosis in the guinea pig but is not important for systemic spread of the organism.
Collapse
Affiliation(s)
- M R Garner
- Department of Food Science, 413 Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
156
|
Abstract
Identifying specific mechanisms that contribute to microbial survival under rapidly changing conditions could provide insight into stress response systems across life forms.
Collapse
Affiliation(s)
- Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
157
|
Kimura B. Recent Advances in the Study of the Genotypic Diversity and Ecology of Listeria monocytogenes. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bon Kimura
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology
| |
Collapse
|
158
|
van Schaik W, Zwietering MH, de Vos WM, Abee T. Deletion of the sigB gene in Bacillus cereus ATCC 14579 leads to hydrogen peroxide hyperresistance. Appl Environ Microbiol 2005; 71:6427-30. [PMID: 16204573 PMCID: PMC1265915 DOI: 10.1128/aem.71.10.6427-6430.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sigB gene of Bacillus cereus ATCC 14579 encodes the alternative sigma factor sigma(B). Deletion of sigB in B. cereus leads to hyperresistance to hydrogen peroxide. The expression of katA, which encodes one of the catalases of B. cereus, is upregulated in the sigB deletion mutant, and this may contribute to the hydrogen peroxide-resistant phenotype.
Collapse
Affiliation(s)
- Willem van Schaik
- Laboratory of Food Microbiology, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
159
|
Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005; 69:527-543. [PMID: 16339734 DOI: 10.1128/mmbr.69.4.527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Sigma factors provide promoter recognition specificity to RNA polymerase holoenzyme, contribute to DNA strand separation, and then dissociate from the core enzyme following transcription initiation. As the regulon of a single sigma factor can be composed of hundreds of genes, sigma factors can provide effective mechanisms for simultaneously regulating expression of large numbers of prokaryotic genes. One newly emerging field is identification of the specific roles of alternative sigma factors in regulating expression of virulence genes and virulence-associated genes in bacterial pathogens. Virulence genes encode proteins whose functions are essential for the bacterium to effectively establish an infection in a host organism. In contrast, virulence-associated genes can contribute to bacterial survival in the environment and therefore may enhance the capacity of the bacterium to spread to new individuals or to survive passage through a host organism. As alternative sigma factors have been shown to regulate expression of both virulence and virulence-associated genes, these proteins can contribute both directly and indirectly to bacterial virulence. Sigma factors are classified into two structurally unrelated families, the sigma70 and the sigma54 families. The sigma70 family includes primary sigma factors (e.g., Bacillus subtilis sigma(A)) as well as related alternative sigma factors; sigma54 forms a distinct subfamily of sigma factors referred to as sigma(N) in almost all species for which these proteins have been characterized to date. We present several examples of alternative sigma factors that have been shown to contribute to virulence in at least one organism. For each sigma factor, when applicable, examples are drawn from multiple species.
Collapse
Affiliation(s)
- Mark J Kazmierczak
- Department of Food Science, Cornell University, 414 Stocking Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
160
|
Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005; 69:527-43. [PMID: 16339734 PMCID: PMC1306804 DOI: 10.1128/mmbr.69.4.527-543.2005] [Citation(s) in RCA: 269] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sigma factors provide promoter recognition specificity to RNA polymerase holoenzyme, contribute to DNA strand separation, and then dissociate from the core enzyme following transcription initiation. As the regulon of a single sigma factor can be composed of hundreds of genes, sigma factors can provide effective mechanisms for simultaneously regulating expression of large numbers of prokaryotic genes. One newly emerging field is identification of the specific roles of alternative sigma factors in regulating expression of virulence genes and virulence-associated genes in bacterial pathogens. Virulence genes encode proteins whose functions are essential for the bacterium to effectively establish an infection in a host organism. In contrast, virulence-associated genes can contribute to bacterial survival in the environment and therefore may enhance the capacity of the bacterium to spread to new individuals or to survive passage through a host organism. As alternative sigma factors have been shown to regulate expression of both virulence and virulence-associated genes, these proteins can contribute both directly and indirectly to bacterial virulence. Sigma factors are classified into two structurally unrelated families, the sigma70 and the sigma54 families. The sigma70 family includes primary sigma factors (e.g., Bacillus subtilis sigma(A)) as well as related alternative sigma factors; sigma54 forms a distinct subfamily of sigma factors referred to as sigma(N) in almost all species for which these proteins have been characterized to date. We present several examples of alternative sigma factors that have been shown to contribute to virulence in at least one organism. For each sigma factor, when applicable, examples are drawn from multiple species.
Collapse
Affiliation(s)
- Mark J Kazmierczak
- Department of Food Science, Cornell University, 414 Stocking Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
161
|
Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev 2005; 29:625-51. [PMID: 16102595 DOI: 10.1016/j.femsre.2004.09.003] [Citation(s) in RCA: 1214] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 08/30/2004] [Accepted: 09/14/2004] [Indexed: 02/07/2023] Open
Abstract
Commensal and pathogenic microorganisms must resist the deleterious actions of bile in order to survive in the human gastrointestinal tract. Herein we review the current knowledge on the mechanisms by which Gram-positive and Gram-negative bacteria contend with bile stress. We describe the antimicrobial actions of bile, assess the variations in bile tolerance between bacterial genera and examine the interplay between bile stress and other stresses. The molecular mechanisms underlying bile tolerance are investigated and the relationship between bile and virulence is examined. Finally, the potential benefits of bile research are briefly discussed.
Collapse
Affiliation(s)
- Máire Begley
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | | | | |
Collapse
|
162
|
van Schaik W, Abee T. The role of sigmaB in the stress response of Gram-positive bacteria -- targets for food preservation and safety. Curr Opin Biotechnol 2005; 16:218-24. [PMID: 15831390 DOI: 10.1016/j.copbio.2005.01.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The alternative sigma factor sigmaB modulates the stress response of several Gram-positive bacteria, including Bacillus subtilis and the food-borne human pathogens Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus. In all these bacteria, sigmaB is responsible for the transcription of genes that can confer stress resistance to the vegetative cell. Recent findings indicate that sigmaB also plays an important role in antibiotic resistance, pathogenesis and cellular differentiation processes such as biofilm formation and sporulation. Although there are important differences in the regulation of sigmaB and in the set of genes regulated by sigmaB in B. subtilis, B. cereus, L. monocytogenes and S. aureus, there are also some conserved themes. A mechanistic understanding of the sigmaB activation processes and assessment of its regulon could provide tools for pathogen control and inactivation both in the food industry and clinical settings.
Collapse
Affiliation(s)
- Willem van Schaik
- Wageningen Centre for Food Sciences and Laboratory of Food Microbiology, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | | |
Collapse
|
163
|
Affiliation(s)
- C G M Gahan
- Department of Microbiology, University College Cork, Cork, Ireland.
| | | |
Collapse
|
164
|
Sue D, Fink D, Wiedmann M, Boor KJ. sigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. MICROBIOLOGY-SGM 2005; 150:3843-3855. [PMID: 15528669 DOI: 10.1099/mic.0.27257-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Listeria monocytogenes must overcome a variety of stress conditions in the host digestive tract to cause foodborne infections. The alternative sigma factor sigma(B), encoded by sigB, is responsible for regulating transcription of several L. monocytogenes virulence and stress-response genes, including genes that contribute to establishment of gastrointestinal infections. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the virulence genes inlA and bsh, the stress-response genes opuCA and lmo0669 (encoding a carnitine transporter and an oxidoreductase, respectively) and the housekeeping gene rpoB. Assays were conducted on mid-exponential phase L. monocytogenes cells exposed to conditions reflecting osmotic (0.3 M NaCl) or acid (pH 4.5) conditions typical for the human intestinal lumen. In exponential-phase cells, as well as under osmotic and acid stress, inlA, opuCA and bsh showed significantly lower absolute expression levels in a L. monocytogenes DeltasigB null mutant compared to wild-type. A statistical model that normalized target gene expression relative to rpoB showed that accumulation of inlA, opuCA and bsh transcripts was significantly increased in the wild-type strain within 5 min of acid and osmotic stress exposure; lmo0669 transcript accumulation increased significantly only after acid exposure. It was concluded that sigma(B) is essential for rapid induction of the tested stress-response and virulence genes under conditions typically encountered during gastrointestinal passage. As inlA, bsh and opuCA are critical for gastrointestinal infections in animal models, the data also suggest that sigma(B) contributes to the ability of L. monocytogenes to cause foodborne infections.
Collapse
Affiliation(s)
- David Sue
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Fink
- Department of Statistical Science, Cornell University, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
165
|
Schwab U, Bowen B, Nadon C, Wiedmann M, Boor KJ. The Listeria monocytogenes prfAP2 promoter is regulated by sigma B in a growth phase dependent manner. FEMS Microbiol Lett 2005; 245:329-36. [PMID: 15837390 DOI: 10.1016/j.femsle.2005.03.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/15/2005] [Accepted: 03/15/2005] [Indexed: 11/25/2022] Open
Abstract
Listeria monocytogenes prfA, encoding positive regulatory factor A, is transcribed from three promoters (prfAP1, prfAP2, and PplcA). The prfAP2 promoter was previously proposed to be sigma B (sigma(B))-dependent. This hypothesis was tested by creating prfA promoter-gus transcriptional fusions in both L. monocytogenes wild-type (wt) and DeltasigB backgrounds and then measuring (i) beta-glucuronidase (GUS) activities; (ii) gus mRNA transcript levels; and (iii) the presence or absence of GUS in cells by immunofluorescence staining. prfAP2-directed expression increased as the wt L. monocytogenes strain entered stationary phase, whereas prfAP2-directed expression was greatly reduced in the DeltasigB strain, confirming both growth phase- and sigma(B)-dependent transcription of prfAP2. We conclude that prfAP2 is directly regulated by sigma(B).
Collapse
Affiliation(s)
- Ute Schwab
- Department of Food Science, Cornell University, 415 Stocking Hall, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
166
|
Vande Broek A, Gysegom P, Ona O, Hendrickx N, Prinsen E, Van Impe J, Vanderleyden J. Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:311-323. [PMID: 15828683 DOI: 10.1094/mpmi-18-0311] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Expression of the Azospirillum brasilense ipdC gene, encoding an indole-3-pyruvate decarboxylase, a key enzyme in the production of indole-3-acetic acid (IAA) in this bacterium, is upregulated by IAA. Here, we demonstrate that the ipdC gene is the promoter proximal gene in a bicistronic operon. Database searches revealed that the second gene of this operon, named iaaC, is well conserved evolutionarily and that the encoded protein is homologous to the Escherichia coli protein SCRP-27A, the zebrafish protein ES1, and the human protein KNP-I/GT335 (HES1), all of unknown function and belonging to the DJ-1/PfpI superfamily. In addition to this operon structure, iaaC is also transcribed monocistronically. Mutation analysis of the latter gene indicated that the encoded protein is involved in controlling IAA biosynthesis but not ipdC expression. Besides being upregulated by IAA, expression of the ipdC-iaaC operon is pH dependent and maximal at acidic pH. The ipdC promoter was studied using a combination of deletion analyses and site-directed mutagenesis. A dyadic sequence (ATTGTTTC(GAAT)GAAACAAT), centered at -48 was demonstrated to be responsible for the IAA inducibility. This bacterial auxin-responsive element does not control the pH-dependent expression of ipdC-iaaC.
Collapse
Affiliation(s)
- A Vande Broek
- Center of Microbial and Plant Genetics, KULeuven, Heverlee, Belgium
| | | | | | | | | | | | | |
Collapse
|
167
|
Schwab U, Hu Y, Wiedmann M, Boor KJ. Alternative sigma factor sigmaB is not essential for listeria monocytogenes surface attachment. J Food Prot 2005; 68:311-7. [PMID: 15726974 DOI: 10.4315/0362-028x-68.2.311] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes is a foodborne pathogen frequently isolated from the food processing environment. Multiple lines of evidence suggested a possible role for the L. monocytogenes alternative transcription factor sigma B (sigmaB) in surface attachment and biofilm formation. Therefore, through plate count and microscopic techniques, the L. monocytogenes 10403S strain and an otherwise isogenic deltasigB strain were tested for attachment to stainless steel. Analysis of microscopic images revealed that after 72 h at 24 degrees C under static conditions the tested L. monocytogenes strains attached uniformly to surfaces as single cells. Both strains were capable of rapid attachment (i.e., numbers of attached cells were essentially the same after either 5 min or 24 h of incubation). Numbers of attached deltasigB cells were significantly lower than those of the wild-type strain after 48 and 72 h of incubation at 24 degrees C (P = 0.001). Similar numbers of the deltasigB strain attached to stainless steel regardless of temperature (24 or 37 degrees C); however, deltasigB cells attached at higher relative numbers in the presence of 6% NaCl after 48 and 72 h. Furthermore, in the presence of Pseudomonas fluorescens, similarly high numbers of wild-type and deltasigB cells attached to the surfaces, forming mixed biofilms. Our data suggest that sigmaB is not required for initial surface attachment of L. monocytogenes.
Collapse
Affiliation(s)
- Ute Schwab
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
168
|
Kim H, Boor KJ, Marquis H. Listeria monocytogenes sigmaB contributes to invasion of human intestinal epithelial cells. Infect Immun 2004; 72:7374-8. [PMID: 15557671 PMCID: PMC529113 DOI: 10.1128/iai.72.12.7374-7378.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of sigma(B) in Listeria monocytogenes infection of human intestinal epithelial cells was investigated. Invasion defects associated with loss of sigma(B) paralleled those of a DeltainlA strain independently of the sigma(B)-dependent P2(prfA) promoter. Concomitantly, amounts of inlA transcript and InlA protein were significantly decreased in the DeltasigB strain.
Collapse
Affiliation(s)
- Heesun Kim
- Department of Microbiology and Immunology, VMC 5-169, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
169
|
Abstract
Genome sequences are now available for many of the microbes that cause food-borne diseases. The information contained in pathogen genome sequences, together with the development of themed and whole-genome DNA microarrays and improved proteomics techniques, might provide tools for the rapid detection and identification of such organisms, for assessing their biological diversity and for understanding their ability to respond to stress. The genomic information also provides insight into the metabolic capacity and versatility of microbes; for example, specific metabolic pathways might contribute to the growth and survival of pathogens in a range of niches, such as food-processing environments and the human host. New concepts are emerging about how pathogens function, both within foods and in interactions with the host. The future should bring the first practical benefits of genome sequencing to the field of microbial food safety, including strategies and tools for the identification and control of emerging pathogens.
Collapse
Affiliation(s)
- Tjakko Abee
- Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN Wageningen, The Netherlands.
| | | | | |
Collapse
|
170
|
Chaturongakul S, Boor KJ. RsbT and RsbV contribute to sigmaB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl Environ Microbiol 2004; 70:5349-56. [PMID: 15345420 PMCID: PMC520851 DOI: 10.1128/aem.70.9.5349-5356.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sigma B (sigma(B)) is a stress-responsive alternative sigma factor that has been identified in various gram-positive bacteria. Seven different regulators of sigma B (Rsbs) are located in the sigB operons of both Bacillus subtilis and Listeria monocytogenes. In B. subtilis, these proteins contribute to regulation of sigma(B) activity by conveying environmental and energy stress signals through two well-established branches of a signal transduction pathway. RsbT contributes to regulation of sigma(B) activity in response to environmental stresses, while RsbV contributes to sigma(B) activation under both environmental and energy stresses in B. subtilis. To probe L. monocytogenes Rsb roles in sigma(B)-mediated responses to various stresses, in-frame deletions were created in rsbT and rsbV. Phenotypic characterization of the L. monocytogenes rsbT and rsbV null mutants revealed that both mutants were similar to the DeltasigB strain in their abilities to survive under environmental stress conditions (exposure to synthetic gastric fluid, pH 2.5, acidified brain heart infusion broth [BHI], or oxidative stress [13 mM cumene hydroperoxide]). Under energy stress conditions (carbon starvation in defined media, entry into stationary phase, or reduced intracellular ATP), both DeltarsbT and DeltarsbV showed survival reductions similar to that of the DeltasigB strain. These observations suggest that the pathways for Rsb-dependent regulation of sigma(B) activity differ between L. monocytogenes and B. subtilis. As sigma(B) also activates transcription of the L. monocytogenes prfAP2 promoter, we evaluated virulence-associated characteristics of DeltaprfAP1rsbT and DeltaprfAP1rsbV double mutants in hemolysis and tissue culture assays. Both double mutants showed identical phenotypes to DeltaprfAP1P2 and DeltaprfAP1sigB double mutants, i.e., reduced hemolysis activity and reduced plaque size in mouse fibroblast cells. These findings indicate that RsbT and RsbV both contribute to sigma(B) activation in L. monocytogenes during exposure to environmental and energy stresses as well as during tissue culture infection.
Collapse
Affiliation(s)
- Soraya Chaturongakul
- Department of Food Science, 413 Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
171
|
de Vos WM, Bron PA, Kleerebezem M. Post-genomics of lactic acid bacteria and other food-grade bacteria to discover gut functionality. Curr Opin Biotechnol 2004; 15:86-93. [PMID: 15081044 DOI: 10.1016/j.copbio.2004.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent years have seen an explosion in the number of complete or almost complete genomic sequences of lactic acid bacteria and other food-grade bacteria that are used in functional foods to increase the health of the consumer. These have been instrumental in the development of functional, comparative and other post-genomics approaches that provide the possibility to detect, unravel and understand their functionality in the human intestinal tract. In conjunction with other high-throughput approaches, these advances can be exploited in the functional food innovation cycle for developing new or designed probiotic and other bacterial products that impact gut health.
Collapse
Affiliation(s)
- Willem M de Vos
- Wageningen Center for Food Sciences and Laboratory of Microbiology, Diedenweg 20, PO Box 557, 6700 AN, Wageningen, The Netherlands.
| | | | | |
Collapse
|
172
|
Wemekamp-Kamphuis HH, Wouters JA, de Leeuw PPLA, Hain T, Chakraborty T, Abee T. Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol 2004; 70:3457-66. [PMID: 15184144 PMCID: PMC427741 DOI: 10.1128/aem.70.6.3457-3466.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding the alternative sigma factor sigma(B) in Listeria monocytogenes is induced upon exposure of cells to several stresses. In this study, we investigated the impact of a sigB null mutation on the survival of L. monocytogenes EGD-e at low pH, during high-hydrostatic-pressure treatment, and during freezing. The survival of Delta sigB mutant exponential-phase cells at pH 2.5 was 10,000-fold lower than the survival of EGD-e wild-type cells. Moreover, the Delta sigB mutant failed to show an acid tolerance response. Upon preexposure for 1 h to pH 4.5, the survival at pH 2.5 was 100,000-fold lower for the Delta sigB mutant than for the wild type. The glutamate decarboxylase (GAD) acid resistance system is important in survival and adaptation of L. monocytogenes in acidic conditions. The sigma(B) dependence of the gad genes (gadA, gadB, gadC, gadD, and gadE) was analyzed in silico. Putative sigma(B)-dependent promoter sites were found upstream of the gadCB operon (encoding a glutamate/gamma-aminobutyrate antiporter and a glutamate decarboxylase, respectively) and the lmo2434 gene (gadD, encoding a putative glutamate decarboxylase). Reverse transcriptase PCR revealed that expression of the gadCB operon and expression of gadD are indeed sigma(B) dependent. In addition, a proteomics approach was used to analyze the protein expression profiles upon acid exposure. Although the GAD proteins were not recovered, nine proteins accumulated in the wild type but not in the Delta sigB strain. These proteins included Pfk, GalE, ClpP, and Lmo1580. Exposure to pH 4.5, in order to preload cells with active sigma(B) and consequently with sigma (B)-dependent general stress proteins, also provided considerable protection against high-hydrostatic-pressure treatment and freezing. The combined data argue that the expression of sigma(B)-dependent genes provides L. monocytogenes with nonspecific multiple-stress resistance that may be relevant for survival in the natural environment as well as during food processing.
Collapse
|
173
|
van Schaik W, Zwietering MH, de Vos WM, Abee T. Identification of sigmaB-dependent genes in Bacillus cereus by proteome and in vitro transcription analysis. J Bacteriol 2004; 186:4100-9. [PMID: 15205411 PMCID: PMC421595 DOI: 10.1128/jb.186.13.4100-4109.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor sigmaB of the food pathogen Bacillus cereus is activated upon stress exposure and plays a role in the adaptive response of vegetative cells. This study describes the identification of sigmaB-dependent genes in B. cereus. Two-dimensional gel electrophoresis was performed with protein extracts from a sigmaB-overproducing B. cereus strain. Nine protein spots, which were absent from the negative control, were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry or N-terminal sequencing. The sigmaB-dependent expression of the corresponding genes was confirmed by Northern blot analysis with RNA isolated from B. cereus ATCC 14579 and its sigB null mutant. Northern blot analysis also revealed that six other genes were part of sigmaB-dependent operons. The proteins that are predicted to be encoded by the sigmaB-dependent genes include an intracellular protease, a Mg2+ transporter, and a thiamine biosynthesis protein (ThiG). Highly conserved promoter sites were found to precede all sigmaB-dependent genes, with the exception of thiG. By searching the B. cereus genome for this conserved promoter sequence, five more candidate sigmaB-dependent genes were identified. Northern blot analysis and in vitro transcription experiments with a reconstituted B. cereus sigmaB-RNA polymerase holoenzyme confirmed the sigmaB dependency of two of these genes and strongly suggested that two other genes, encoding an oligopeptide-binding OppA-like protein and subunit II of the cytochrome d ubiquinol oxidase, are also sigmaB dependent. In conclusion, sigmaB of B. cereus not only regulates genes directly involved in the stress response but may also control specific metabolic rearrangements.
Collapse
|
174
|
Moorhead SM, Dykes GA. Influence of the sigB gene on the cold stress survival and subsequent recovery of two Listeria monocytogenes serotypes. Int J Food Microbiol 2004; 91:63-72. [PMID: 14967561 DOI: 10.1016/s0168-1605(03)00332-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Revised: 05/16/2003] [Accepted: 06/06/2003] [Indexed: 11/21/2022]
Abstract
The influence of serotype and the role of the sigB gene of Listeria monocytogenes during the survival and recovery on different substrates were determined. Wild-type and sigB mutants of two serotypes of L. monocytogenes were inoculated into buffer and onto beef steaks, and incubated at 4 degrees C for 8 weeks during which samples were removed and Listeria numbers determined. Growth kinetics of stationary phase wild-type and sigB mutant cells were compared, without prechilling and after prechilling at 4 degrees C. The two serotypes had similar survival capabilities under the conditions examined, and the sigB gene was influential in survival of chill stress, but was dependent upon additional nutritional factors. Prechilling cells prior to growth extended the lag phase of both strains, and this lag phase extension was compounded by the absence of a functional sigB gene. In conclusion, the sigB gene is involved in the survival and recovery from chill stress by the two serotypes tested. Additional factors such as previous growth conditions, nutritional requirements and serotype susceptibility are also contributory. This study adds relevant information regarding the influence of the sigB gene, in conjunction with the historical growth conditions and serotype differences. Understanding the significance of these factors may be useful in creating improved recovery systems for the detection of L. monocytogenes from at-risk foods.
Collapse
Affiliation(s)
- Sandra M Moorhead
- Food Safety Group, AgResearch Ltd., Ruakura MIRINZ Centre, East Street, Private Bag 3123, Hamilton, New Zealand.
| | | |
Collapse
|
175
|
Sue D, Boor KJ, Wiedmann M. Sigma(B)-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. MICROBIOLOGY-SGM 2004; 149:3247-3256. [PMID: 14600237 DOI: 10.1099/mic.0.26526-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Listeria monocytogenes is a food-borne pathogen that can persist and grow under a wide variety of environmental conditions including low pH and high osmolarity. The alternative sigma factor sigma(B) contributes to L. monocytogenes survival under extreme conditions. The purpose of this study was to identify and confirm specific sigma(B)-dependent genes in L. monocytogenes and to characterize their expression patterns under various stress conditions. opuCA, lmo1421 and bsh were identified as putative sigma(B)-dependent genes based on the presence of a predicted sigma(B)-dependent promoter sequence upstream of each gene. opuCA and lmo1421 encode known and putative compatible solute transporter proteins, respectively, and bsh encodes a conjugated bile salt hydrolase (BSH). Reporter fusions and semi-quantitative RT-PCR techniques were used to confirm sigma(B)-dependent regulation of these stress-response genes and to determine their expression patterns in response to environmental stresses. RT-PCR demonstrated that opuCA, lmo1421 and bsh transcript levels are reduced in stationary-phase L. monocytogenes deltasigB cells relative to levels present in wild-type cells. Furthermore, BSH activity is abolished in a L. monocytogenes deltasigB strain. RT-PCR confirmed growth-phase-dependent expression of opuCA, with highest levels of expression in stationary-phase cells. The L. monocytogenes wild-type strain exhibited two- and threefold induction of opuCA expression and seven- and fivefold induction of lmo1421 expression following 10 and 15 min exposure to 0.5 M KCl, respectively, as determined by RT-PCR, suggesting rapid induction of sigma(B) activity in exponential-phase L. monocytogenes upon exposure to salt stress. Single-copy chromosomal opuCA-gus reporter fusions also showed significant induction of opuCA expression following exposure of exponential-phase cells to increased salt concentrations (0.5 M NaCl or 0.5 M KCl). In conjunction with recent findings that indicate a role for opuCA and bsh in L. monocytogenes virulence, the data presented here provide further evidence of specific sigma(B)-mediated contributions to both environmental stress resistance and intra-host survival in L. monocytogenes.
Collapse
Affiliation(s)
- David Sue
- Department of Food Science, Cornell University, 412 Stocking Hall, Ithaca, NY 14853, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, 412 Stocking Hall, Ithaca, NY 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, 412 Stocking Hall, Ithaca, NY 14853, USA
| |
Collapse
|
176
|
van Schaik W, Tempelaars MH, Wouters JA, de Vos WM, Abee T. The alternative sigma factor sigmaB of Bacillus cereus: response to stress and role in heat adaptation. J Bacteriol 2004; 186:316-25. [PMID: 14702299 PMCID: PMC305760 DOI: 10.1128/jb.186.2.316-325.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A gene cluster encoding the alternative sigma factor sigma(B), three predicted regulators of sigma(B) (RsbV, RsbW, and RsbY), and one protein whose function is not known (Orf4) was identified in the genome sequence of the food pathogen Bacillus cereus ATCC 14579. Western blotting with polyclonal antibodies raised against sigma(B) revealed that there was 20.1-fold activation of sigma(B) after a heat shock from 30 to 42 degrees C. Osmotic upshock and ethanol exposure also upregulated sigma(B), albeit less than a heat shock. When the intracellular ATP concentration was decreased by exposure to carbonyl cyanide m-chlorophenylhydrazone (CCCP), only limited increases in sigma(B) levels were observed, revealing that stress due to ATP depletion is not an important factor in sigma(B) activation in B. cereus. Analysis of transcription of the sigB operon by Northern blotting and primer extension revealed the presence of a sigma(B)-dependent promoter upstream of the first open reading frame (rsbV) of the sigB operon, indicating that transcription of sigB is autoregulated. A second sigma(B)-dependent promoter was identified upstream of the last open reading frame (orf4) of the sigB operon. Production of virulence factors and the nonhemolytic enterotoxin Nhe in a sigB null mutant was the same as in the parent strain. However, sigma(B) was found to play a role in the protective heat shock response of B. cereus. The sigB null mutant was less protected against the lethal temperature of 50 degrees C by a preadaptation to 42 degrees C than the parent strain was, resulting in a more-than-100-fold-reduced survival of the mutant after 40 min at 50 degrees C.
Collapse
Affiliation(s)
- Willem van Schaik
- Wageningen Centre for Food Sciences. Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
177
|
Moorhead SM, Dykes GA, Cursons RT. An SNP-based PCR assay to differentiate between Listeria monocytogenes lineages derived from phylogenetic analysis of the sigB gene. J Microbiol Methods 2003; 55:425-32. [PMID: 14529964 DOI: 10.1016/s0167-7012(03)00188-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alternative sigma factor sigB gene is involved in the stress response regulation of Listeria monocytogenes, and contributes towards growth and survival in adverse conditions. This gene was examined to determine if it could be a useful indicator of lineage differentiation, similar to the established method based on ribotyping. The sigB sequence was resolved in four local L. monocytogenes strains and the phylogenetic relationship among these, and a further 21 sigB gene sequences from strains of different serotype and lineage including two Listeria innocua strains, obtained from the GenBank database were determined. The sigB nucleotide sequences of these 25 Listeria strains were then examined for single nucleotide polymorphic (SNP) sites that could differentiate between the three lineages. Based on nucleotide sequences L. monocytogenes lineage I/serotype 1/2b and 4b clustered together, lineage II/serotype 1/2a and 1/2c strains clustered together, lineage III/serotypes 4a and 4c strains clustered together and L. innocua strains clustered together as an outgroup. SNPs differentiating the three lineages were identified. Individual allele-specific PCR reactions based on these polymorphisms were successful in grouping known and a further 37 local L. monocytogenes isolates into the three lineages.
Collapse
Affiliation(s)
- Sandra M Moorhead
- Food Safety Team, AgResearch Ltd., Ruakura MIRINZ Centre, East Street, Private Bag 3123, Hamilton, New Zealand.
| | | | | |
Collapse
|
178
|
Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M. Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 2003; 185:5722-34. [PMID: 13129943 PMCID: PMC193959 DOI: 10.1128/jb.185.19.5722-5734.2003] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the stress-responsive alternative sigma factor sigma(B) has been identified in different species of Bacillus, Listeria, and Staphylococcus, the sigma(B) regulon has been extensively characterized only in B. subtilis. We combined biocomputing and microarray-based strategies to identify sigma(B)-dependent genes in the facultative intracellular pathogen Listeria monocytogenes. Hidden Markov model (HMM)-based searches identified 170 candidate sigma(B)-dependent promoter sequences in the strain EGD-e genome sequence. These data were used to develop a specialized, 208-gene microarray, which included 166 genes downstream of HMM-predicted sigma(B)-dependent promoters as well as selected virulence and stress response genes. RNA for the microarray experiments was isolated from both wild-type and Delta sigB null mutant L. monocytogenes cells grown to stationary phase or exposed to osmotic stress (0.5 M KCl). Microarray analyses identified a total of 55 genes with statistically significant sigma(B)-dependent expression under the conditions used in these experiments, with at least 1.5-fold-higher expression in the wild type over the sigB mutant under either stress condition (51 genes showed at least 2.0-fold-higher expression in the wild type). Of the 55 genes exhibiting sigma(B)-dependent expression, 54 were preceded by a sequence resembling the sigma(B) promoter consensus sequence. Rapid amplification of cDNA ends-PCR was used to confirm the sigma(B)-dependent nature of a subset of eight selected promoter regions. Notably, the sigma(B)-dependent L. monocytogenes genes identified through this HMM/microarray strategy included both stress response genes (e.g., gadB, ctc, and the glutathione reductase gene lmo1433) and virulence genes (e.g., inlA, inlB, and bsh). Our data demonstrate that, in addition to regulating expression of genes important for survival under environmental stress conditions, sigma(B) also contributes to regulation of virulence gene expression in L. monocytogenes. These findings strongly suggest that sigma(B) contributes to L. monocytogenes gene expression during infection.
Collapse
|
179
|
Cotter PD, Hill C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 2003; 67:429-53, table of contents. [PMID: 12966143 PMCID: PMC193868 DOI: 10.1128/mmbr.67.3.429-453.2003] [Citation(s) in RCA: 791] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the responses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | |
Collapse
|
180
|
Weeks ME, James DC, Robinson GK, Smales CM. Global changes in gene expression observed at the transition from growth to stationary phase in
Listeria monocytogenes
ScottA batch culture. Proteomics 2003; 4:123-35. [PMID: 14730677 DOI: 10.1002/pmic.200300527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Listeria monocytogenes is a food-borne Gram-positive bacterium that is responsible for a variety of infections (worldwide) annually. The organism is able to survive a variety of environmental conditions and stresses, however, the mechanisms by which L. monocytogenes adapts to environmental change are yet to be fully elucidated. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. We have utilized a proteomic approach to investigate the response of L. monocytogenes batch cultures to the transition from exponential to stationary growth phase. Proteomic analysis showed that batch cultures of L. monocytogenes perceived stress and began preparations for stationary phase much earlier (approximately A(600) = 0.75, mid-exponential) than predicted by growth characteristics alone. Global analysis of the proteome revealed that the expression levels of more than 50% of all proteins observed changed significantly over a 7-9 h period during this transition phase. We have highlighted ten proteins in particular whose expression levels appear to be important in the early onset of the stationary phase. The significance of these findings in terms of functionality and the mechanistic picture are discussed.
Collapse
Affiliation(s)
- Mark E Weeks
- Research School of Biosciences, University of Kent, Canterbury, Kent, UK
| | | | | | | |
Collapse
|
181
|
Ferreira A, Sue D, O'Byrne CP, Boor KJ. Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 2003; 69:2692-8. [PMID: 12732538 PMCID: PMC154505 DOI: 10.1128/aem.69.5.2692-2698.2003] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, sigma(B), which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and DeltasigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the DeltasigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both DeltasigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is sigma(B) independent. sigma(B)-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional sigma(B) reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. sigma(B) does not appear to contribute to pH(i) homeostasis through regulation of net proton movement across the cell membrane or by regulation of pH(i) buffering by the GAD system under the conditions examined in this study. In summary, a functional sigma(B) protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.
Collapse
Affiliation(s)
- Adriana Ferreira
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
182
|
Fraser KR, Sue D, Wiedmann M, Boor K, O'Byrne CP. Role of sigmaB in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is sigmaB dependent. Appl Environ Microbiol 2003; 69:2015-22. [PMID: 12676677 PMCID: PMC154801 DOI: 10.1128/aem.69.4.2015-2022.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of the compatible solute transport systems in Listeria monocytogenes by the stress-inducible sigma factor sigma(B) was investigated. Using wild-type strain 10403S and an otherwise isogenic strain carrying an in-frame deletion in sigB, we have examined the role of sigma(B) in regulating the ability of cells to utilize betaine and carnitine during growth under conditions of hyperosmotic stress. Cells lacking sigma(B) were defective for the utilization of carnitine but retained the ability to utilize betaine as an osmoprotectant. When compatible solute transport studies were performed, the initial rates of uptake of both betaine and carnitine were found to be reduced in the sigB mutant; carnitine transport was almost abolished, whereas betaine transport was reduced to approximately 50% of that of the parent strain. Analysis of the cytoplasmic pools of compatible solutes during balanced growth revealed that both carnitine and betaine steady-state pools were reduced in the sigB mutant. Transcriptional reporter fusions to the opuC (which encodes an ABC carnitine transporter) and betL (which encodes an a secondary betaine transporter) operons were generated by using a promoterless copy of the gus gene from Escherichia coli. Measurement of beta-glucuronidase activities directed by opuC-gus and betL-gus revealed that transcription of opuC is largely sigma(B) dependent, consistent with the existence of a potential sigma(B) consensus promoter motif upstream from opuCA. The transcription of betL was found to be sigB independent. Reverse transcriptase PCR experiments confirmed these data and indicated that the transcription of all three known compatible solute uptake systems (opuC, betL, and gbu), as well as a gene that is predicted to encode a compatible solute transporter subunit (lmo1421) is induced in response to elevated osmolarity. The osmotic induction of opuCA and lmo1421 was found to be strongly sigma(B) dependent. Together these observations suggest that sigma(B) plays a major role in the regulation of carnitine utilization by L. monocytogenes but is not essential for betaine utilization by this pathogen.
Collapse
Affiliation(s)
- Katy R Fraser
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
183
|
Milohanic E, Glaser P, Coppée JY, Frangeul L, Vega Y, Vázquez-Boland JA, Kunst F, Cossart P, Buchrieser C. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 2003; 47:1613-25. [PMID: 12622816 DOI: 10.1046/j.1365-2958.2003.03413.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PrfA is the major regulator of Listeria virulence gene expression. This protein is a member of the Crp/Fnr family of transcription regulators. To gain a deeper understanding of the PrfA regulon, we constructed a whole-genome array based on the complete genome sequence of Listeria monocytogenes strain EGDe and evaluated the expression profiles of the wild-type EGDe and a prfA-deleted mutant (EGDe Delta prfA). Both strains were grown at 37 degrees C in brain-heart infusion broth (BHI) and BHI supplemented with either activated charcoal, a compound known to enhance virulence gene expression, or cellobiose, a sugar reported to downregulate virulence gene expression in spite of full expression of PrfA. We identified three groups of genes that are regulated differently. Group I comprises, in addition to the 10 already known genes, two new genes, lmo2219 and lmo0788, both positively regulated and preceded by a putative PrfA box. Group II comprises eight negatively regulated genes: lmo0278 is preceded by a putative PrfA box, and the remaining seven genes (lmo0178-lmo0184) are organized in an operon. Group III comprises 53 genes, of which only two (lmo0596 and lmo2067) are preceded by a putative PrfA box. Charcoal addition induced upregulation of group I genes but abolished regulation by PrfA of most group III genes. In the presence of cellobiose, all the group I genes were downregulated, whereas group III genes remained fully activated. Group II genes were repressed in all conditions tested. A comparison of the expression profiles between a second L. monocytogenes strain (P14), its spontaneous mutant expressing a constitutively active PrfA variant (P14prfA*) and its corresponding prfA-deleted mutant (P14 Delta prfA) and the EGDe strain revealed interesting strain-specific differences. Sequences strongly similar to a sigma B-dependent promoter were identified upstream of 22 group III genes. These results suggest that PrfA positively regulates a core set of 12 genes preceded by a PrfA box and probably expressed from a sigma A-dependent promoter. In contrast, a second set of PrfA-regulated genes lack a PrfA box and are expressed from a sigma B-dependent promoter. This study reveals that PrfA can act as an activator or a repressor and suggests that PrfA may directly or indirectly activate different sets of genes in association with different sigma factors.
Collapse
Affiliation(s)
- Eliane Milohanic
- Unité des Interactions Bactéries-Cellules and Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 28, Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Helloin E, Bouttefroy A, Gay M, Phan Thanh L. Impact of preheating on the behavior of Listeria monocytogenes in a broth that mimics Camembert cheese composition. J Food Prot 2003; 66:265-71. [PMID: 12597487 DOI: 10.4315/0362-028x-66.2.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of preheating on the survival of L. monocytogenes in Richard's broth, which mimics the composition of Camembert cheese composition, was examined. Experiments were carried out to reproduce contamination of cheese with environmental heat-stressed cells of L. monocytogenes surviving hot-cleaning procedures. Cells in mid-log phase were heated for 30 min at 56 degrees C before being inoculated into Richard's broth. The pHs and temperatures of Richard's broth were chosen to recreate the conditions of curd dripping (pH 5, 25 degrees C), of the beginning of cheese ripening (pH 5, 12 degrees C), and of the beginning (pH 5, 4 degrees C) and the end (pH 7, 4 degrees C) of cheese storage. Immediately after heat treatment, the viability loss was especially high for strain 306715, which exhibited only 0.6% +/- 0.2% survival, compared with 22% +/- 8.7% for strain EGD. The percentages of the surviving heated cells that were injured were 93% +/- 8% for strain 306715 and 98% +/- 3% for strain EGD. The destruction of the surviving L. monocytogenes cells was accelerated when they encountered the pH and temperature conditions of Camembert cheese during manufacturing, ripening, and cold storage (pH 5 at 25, 12, and 4 degrees C, respectively). The multiplication of the surviving heated cells was retarded under favorable growth conditions similar to those of storage by the distributor and the consumer (pH 7 at 4 and 12 degrees C, respectively).
Collapse
Affiliation(s)
- E Helloin
- Association ASEPT, BP 2047, 53020 Laval cedex 9, France
| | | | | | | |
Collapse
|
185
|
Begley M, Gahan CGM, Hill C. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 2002; 68:6005-12. [PMID: 12450822 PMCID: PMC134417 DOI: 10.1128/aem.68.12.6005-6012.2002] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2002] [Accepted: 09/09/2002] [Indexed: 11/20/2022] Open
Abstract
Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses.
Collapse
Affiliation(s)
- Máire Begley
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
186
|
Azam M, Kesarwani M, Chakraborty S, Natarajan K, Datta A. Cloning and characterization of the 5'-flanking region of the oxalate decarboxylase gene from Flammulina velutipes. Biochem J 2002; 367:67-75. [PMID: 12020349 PMCID: PMC1222848 DOI: 10.1042/bj20011573] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2001] [Revised: 03/25/2002] [Accepted: 05/21/2002] [Indexed: 11/17/2022]
Abstract
The oxalate-degrading enzyme, oxalate decarboxylase (OXDC), was purified and characterized from Flammulina velutipes, a basidiomycetous fungus [Mehta and Datta (1991) J. Biol. Chem. 266, 23548-23553]. The cDNA cloning and analyses revealed that OXDC transcription was induced by oxalic acid. However, in this report, we show that OXDC transcription is induced by low pH, not by oxalate. To understand the regulatory mechanism of OXDC expression, we have cloned and analysed a 580-bp genomic fragment from the 5'-flanking region of the OXDC gene. Sequence analysis showed the presence of several eukaryotic transcription factor binding motifs within the -580 bp of the upstream region. Electrophoretic-mobility-shift assays with partially purified cell extracts revealed specific binding of a factor in acid-induced, but not in uninduced, extracts. Furthermore, DNase I protection assays using the partially purified fraction from oxalic acid-induced extract revealed a footprint of a 13-bp sequence 5'GCGGGGTCGCCGA3', termed low pH responsive element (LPRE), corresponding to the -287 to -275 bp region of the OXDC promoter. Our results suggest that in F. velutipes cells, activation of OXDC transcription in response to low pH is mediated by the binding of a novel transcription factor through the LPRE site in the OXDC promoter.
Collapse
Affiliation(s)
- Mohammad Azam
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi - 110067, India
| | | | | | | | | |
Collapse
|
187
|
Nadon CA, Bowen BM, Wiedmann M, Boor KJ. Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 2002; 70:3948-52. [PMID: 12065541 PMCID: PMC128067 DOI: 10.1128/iai.70.7.3948-3952.2002] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Listeria monocytogenes positive regulatory factor A protein (PrfA) is initiated from either of two promoters immediately upstream of prfA (prfAp(1) and prfAp(2)) or from the upstream plcA promoter. We demonstrate that prfAp(2) is a functional sigma(B)-dependent promoter and that a sigB deletion mutation affects the virulence phenotype of L. monocytogenes. Thus, the alternative sigma factor sigma(B) contributes to virulence in L. monocytogenes.
Collapse
Affiliation(s)
- Celine A Nadon
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|