151
|
|
152
|
Kessler BM. Otubains. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7149335 DOI: 10.1016/b978-0-12-382219-2.00476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 800 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of Chapter 476 is Otubains. Keywords: Otubains, deubiquitylating enzymes, Ubiquitin, Ubiquitin-like proteins, interferon-stimulated genes, Ubiquitin processing enzymes, crystal structure, interferon stimulated genes, ISG15, DUB, OTU, poly-Ubiquitin chains, signal transduction, protein degradation, protein targeting.
Collapse
|
153
|
Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc Natl Acad Sci U S A 2012; 109:E2920-8. [PMID: 23043113 DOI: 10.1073/pnas.1211145109] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) is a gene-expression mechanism used to express many viral and some cellular genes. In contrast, efficient natural utilization of -2 PRF has not been demonstrated previously in eukaryotic systems. Like all nidoviruses, members of the Arteriviridae (a family of positive-stranded RNA viruses) express their replicase polyproteins pp1a and pp1ab from two long ORFs (1a and 1b), where synthesis of pp1ab depends on -1 PRF. These polyproteins are posttranslationally cleaved into at least 13 functional nonstructural proteins. Here we report that porcine reproductive and respiratory syndrome virus (PRRSV), and apparently most other arteriviruses, use an additional PRF mechanism to access a conserved alternative ORF that overlaps the nsp2-encoding region of ORF1a in the +1 frame. We show here that this ORF is translated via -2 PRF at a conserved G_GUU_UUU sequence (underscores separate ORF1a codons) at an estimated efficiency of around 20%, yielding a transframe fusion (nsp2TF) with the N-terminal two thirds of nsp2. Expression of nsp2TF in PRRSV-infected cells was verified using specific Abs, and the site and direction of frameshifting were determined via mass spectrometric analysis of nsp2TF. Further, mutagenesis showed that the frameshift site and an unusual frameshift-stimulatory element (a conserved CCCANCUCC motif 11 nucleotides downstream) are required to direct efficient -2 PRF. Mutations preventing nsp2TF expression impair PRRSV replication and produce a small-plaque phenotype. Our findings demonstrate that -2 PRF is a functional gene-expression mechanism in eukaryotes and add another layer to the complexity of arterivirus genome expression.
Collapse
|
154
|
Beura LK, Subramaniam S, Vu HLX, Kwon B, Pattnaik AK, Osorio FA. Identification of amino acid residues important for anti-IFN activity of porcine reproductive and respiratory syndrome virus non-structural protein 1. Virology 2012; 433:431-9. [PMID: 22995188 PMCID: PMC7111991 DOI: 10.1016/j.virol.2012.08.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 02/03/2023]
Abstract
The non-structural protein 1 (nsp1) of porcine reproductive and respiratory syndrome virus is partly responsible for inhibition of type I interferon (IFN) response by the infected host. By performing alanine-scanning mutagenesis, we have identified amino acid residues in nsp1α and nsp1β (the proteolytic products of nsp1) that when substituted with alanine(s) exhibited significant relief of IFN-suppression. A mutant virus (16-5A, in which residues 16–20 of nsp1β were substituted with alanines) encoding mutant nsp1β recovered from infectious cDNA clone was shown to be attenuated for growth in vitro and induced significantly higher amount of type I IFN transcripts in infected macrophages. In infected pigs, the 16-5A virus exhibited reduced growth at early times after infection but quickly regained wild type growth properties as a result of substitutions within the mutated sequences. The results indicate a strong selection pressure towards maintaining the IFN-inhibitory property of the virus for successful propagation in pigs.
Collapse
Affiliation(s)
- Lalit K Beura
- School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900, USA
| | | | | | | | | | | |
Collapse
|
155
|
Wang D, Fang L, Li K, Zhong H, Fan J, Ouyang C, Zhang H, Duan E, Luo R, Zhang Z, Liu X, Chen H, Xiao S. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J Virol 2012; 86:9311-22. [PMID: 22718831 PMCID: PMC3416110 DOI: 10.1128/jvi.00722-12] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/12/2012] [Indexed: 12/18/2022] Open
Abstract
Foot-and-mouth disease is a highly contagious viral illness of wild and domestic cloven-hoofed animals. The causative agent, foot-and-mouth disease virus (FMDV), replicates rapidly, efficiently disseminating within the infected host and being passed on to susceptible animals via direct contact or the aerosol route. To survive in the host, FMDV has evolved to block the host interferon (IFN) response. Previously, we and others demonstrated that the leader proteinase (L(pro)) of FMDV is an IFN antagonist. Here, we report that another FMDV-encoded proteinase, 3C(pro), also inhibits IFN-α/β response and the expression of IFN-stimulated genes. Acting in a proteasome- and caspase-independent manner, the 3C(pro) of FMDV proteolytically cleaved nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), a bridging adaptor protein essential for activating both NF-κB and interferon-regulatory factor signaling pathways. 3C(pro) specifically targeted NEMO at the Gln 383 residue, cleaving off the C-terminal zinc finger domain from the protein. This cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of 3C(pro) abrogated NEMO cleavage and the inhibition of IFN induction. Collectively, our data identify NEMO as a substrate for FMDV 3C(pro) and reveal a novel mechanism evolved by a picornavirus to counteract innate immune signaling.
Collapse
Affiliation(s)
- Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Huijuan Zhong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxiu Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chao Ouyang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Erzhen Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiologic Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
156
|
Zhou Y, Yang X, Wang HN, Zhang A, Zhang Z, Kang R, Zeng F, Li H. Molecular characterization of a complete genome and 12 Nsp2 genes of PRRSV of southwestern China. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:102-114. [PMID: 23412837 DOI: 10.1007/s12560-012-9083-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 06/19/2012] [Indexed: 06/01/2023]
Abstract
One genome and 12 Nsp2 genes of porcine reproductive and respiratory syndrome virus (PRRSV), isolated from southwestern China during 2009-2010, were sequenced and analyzed. The whole genome comparison analysis revealed that SCwhn09CD is a North American-type PRRSV with separate 30aa deletion in Nsp2 gene, and its sequence highly identical to highly pathogenic PRRSV (HP-PRRSV) outbreak in 2006 in almost half area of China. However, an extra 7aa deletion was detected in its Nsp2 coding region. Based on the phylogenetic analysis of Nsp2 gene, all the 12 viruses were grouped into North American-type PRRSV, but two in classical-PRRSV (C-PRRSV) subcluster without typical 30aa deletion and ten in HP-PRRSV subcluster with the signature deletion. In addition, many nucleotide substitutions were found in all 12 Nsp2 genes and extra three novel deletions were identified in three out of ten HP-PRRSV. Combining the above data, it may be concluded that: (1) HP-PRRSV and C-PRRSV co-existed in the local pig farms and the majority of the viruses is HR-PRRSV, and (2) the HR-PRRSV continues to undergo its genomic divergence although it does not outbreak in large-scale in recent years. Therefore, continuous surveillance on PRRSV is necessary for the controlling of the virus in this region.
Collapse
Affiliation(s)
- YingShun Zhou
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, 985 Project Science Innovative Platform for Resource and Environment Protection of Southwestern, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu, 610064, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Brockmeier SL, Loving CL, Vorwald AC, Kehrli ME, Baker RB, Nicholson TL, Lager KM, Miller LC, Faaberg KS. Genomic sequence and virulence comparison of four Type 2 porcine reproductive and respiratory syndrome virus strains. Virus Res 2012; 169:212-21. [PMID: 23073232 DOI: 10.1016/j.virusres.2012.07.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 02/05/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a ubiquitous and costly virus that exhibits substantial sequence and virulence disparity among diverse isolates. In this study, we compared the whole genomic sequence and virulence of 4 Type 2 PRRSV isolates. Among the 4 isolates, SDSU73, MN184, and NADC30 were all clearly more virulent than NADC31, and among the 3 more virulent isolates, there were subtle differences based on viral replication, lung lesions, lymphadenopathy, febrile response, decreased weight gains, and cytokine responses in the lung. Lesions consistent with bacterial bronchopneumonia were present to varying degrees in pigs infected with PRRSV, and bacteria typically associated with the porcine respiratory disease complex were isolated from the lung of these pigs. Genomic sequence evaluation indicates that SDSU73 is most similar to the nucleotide sequence of JA142, the parental strain of Ingelvac(®) PRRS ATP, while the nucleotide sequences of NADC30 and NADC31 are more similar to strain MN184. Both the NADC30 and NADC31 isolates of PRRSV, isolated in 2008, maintain the nonstructural protein 2 (nsp2) deletion seen in MN184 that was isolated in 2001, but NADC31 has two additional 15 and 36 nucleotide deletions, and these strains are 8-14% different on a nucleotide basis from the MN184 strain. These results indicate that newer U.S. Type 2 strains still exhibit variability in sequence and pathogenicity and although PRRSV strains appear to be reducing the size of the nsp2 over time, this does not necessarily mean that the strain is more virulent.
Collapse
Affiliation(s)
- Susan L Brockmeier
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Córdoba L, Feagins AR, Opriessnig T, Cossaboom CM, Dryman BA, Huang YW, Meng XJ. Rescue of a genotype 4 human hepatitis E virus from cloned cDNA and characterization of intergenotypic chimeric viruses in cultured human liver cells and in pigs. J Gen Virol 2012; 93:2183-2194. [PMID: 22837416 DOI: 10.1099/vir.0.043711-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) is an important but extremely understudied human pathogen. Genotypes 1 and 2 are restricted to humans, whereas genotypes 3 and 4 are zoonotic, infecting both humans and pigs. This report describes, for the first time, the successful rescue of infectious HEV in vitro and in vivo from cloned cDNA of a genotype 4 human HEV (strain TW6196E). The complete genomic sequence of the TW6196E virus was determined and a full-length cDNA clone (pHEV-4TW) was assembled. Capped RNA transcripts from the pHEV-4TW clone were replication competent in Huh7 cells and infectious in HepG2/C3A cells. Pigs inoculated intrahepatically with capped RNA transcripts from pHEV-4TW developed an active infection, as evidenced by faecal virus shedding and seroconversion, indicating the successful rescue of infectious genotype 4 HEV and cross-species infection of pigs by a genotype 4 human HEV. To demonstrate the utility of the genotype 4 HEV infectious clone and to evaluate the potential viral determinant(s) for species tropism, four intergenotypic chimeric clones were constructed by swapping various genomic regions between genotypes 1 and 4, and genotypes 1 and 3. All four chimeric clones were replication competent in Huh7 cells, but only the two chimeras with sequences swapped between genotypes 1 and 4 human HEVs produced viruses capable of infecting HepG2/C3A cells. None of the four chimeras was able to establish a robust infection in pigs. The availability of a genotype 4 HEV infectious clone affords an opportunity to delineate the molecular mechanisms of HEV cross-species infection in the future.
Collapse
Affiliation(s)
- Laura Córdoba
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Alicia R Feagins
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Caitlin M Cossaboom
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Barbara A Dryman
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Yao-Wei Huang
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| |
Collapse
|
159
|
Xu D, Lillico SG, Barnett MW, Whitelaw CBA, Archibald AL, Ait-Ali T. USP18 restricts PRRSV growth through alteration of nuclear translocation of NF-κB p65 and p50 in MARC-145 cells. Virus Res 2012; 169:264-7. [PMID: 22796444 PMCID: PMC3501733 DOI: 10.1016/j.virusres.2012.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 11/30/2022]
Abstract
Although the functions of porcine respiratory and reproductive syndrome virus (PRRSV) proteins are increasingly understood, the roles of host factors in modifying infection are less well understood. Growing evidence places deubiquitination at the core of a multitude of regulatory processes, ranging from cell growth to innate immune response and health, such as cancer, degenerative and infectious diseases. This report provides further information on the functional role of the porcine ubiquitin-specific peptidase 18 (USP18) during innate immune responses to PRRSV. We have shown that constitutive overexpression of the porcine USP18 in MARC-145 cells restricts PRRSV growth, at least in part via early activation of NF-κB. Viral growth of PRRSV may be perturbed by increasing and decreasing nuclear translocation of p65 and p50, respectively. Our data highlight USP18 as a host restriction factor during innate immune response to PRRSV.
Collapse
Affiliation(s)
- Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
160
|
Chand RJ, Trible BR, Rowland RRR. Pathogenesis of porcine reproductive and respiratory syndrome virus. Curr Opin Virol 2012; 2:256-63. [DOI: 10.1016/j.coviro.2012.02.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
|
161
|
Post-transcriptional control of type I interferon induction by porcine reproductive and respiratory syndrome virus in its natural host cells. Viruses 2012; 4:725-33. [PMID: 22754646 PMCID: PMC3386621 DOI: 10.3390/v4050725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 12/28/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is not only a poor inducer of type I interferon but also inhibits the efficient induction of type I interferon by porcine transmissible gastroenteritis virus (TGEV) and synthetic dsRNA molecules, Poly I:C. However, the mechanistic basis by which PRRSV interferes with the induction of type I interferon in its natural host cells remains less well defined. The purposes of this review are to summarize the key findings in supporting the post-transcriptional control of type I interferon in its natural host cells and to propose the possible role of translational control in the regulation of type I interferon induction by PRRSV.
Collapse
|
162
|
Porcine reproductive and respiratory syndrome virus nonstructural protein 2 contributes to NF-κB activation. Virol J 2012; 9:83. [PMID: 22546080 PMCID: PMC3443020 DOI: 10.1186/1743-422x-9-83] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/30/2012] [Indexed: 01/10/2023] Open
Abstract
Background Nuclear factor-kappaB (NF-κB) is an inducible transcription factor that plays a key role in inflammation and immune responses, as well as in the regulation of cell proliferation and survival. Previous studies by our group and others have demonstrated that porcine reproductive and respiratory syndrome virus (PRRSV) infection could activate NF-κB in MARC-145 cells and alveolar macrophages. The nucleocapsid (N) protein was identified as an NF-κB activator among the structural proteins encoded by PRRSV; however, it remains unclear whether the nonstructural proteins (Nsps) contribute to NF-κB activation. In this study, we identified which Nsps can activate NF-κB and investigated the potential mechanism(s) by which they act. Results By screening the individual Nsps of PRRSV strain WUH3, Nsp2 exhibited great potential to activate NF-κB in MARC-145 and HeLa cells. Overexpression of Nsp2 induced IκBα degradation and nuclear translocation of NF-κB. Furthermore, Nsp2 also induced NF-κB-dependent inflammatory factors, including interleukin (IL)-6, IL-8, COX-2, and RANTES. Compared with the Nsp2 of the classical PRRSV strain, the Nsp2 of highly pathogenic PRRSV (HP-PRRSV) strains that possess a 30 amino acid (aa) deletion in Nsp2 displayed greater NF-κB activation. However, the 30-aa deletion was demonstrated to not be associated with NF-κB activation. Further functional domain analyses revealed that the hypervariable region (HV) of Nsp2 was essential for NF-κB activation. Conclusions Taken together, these data indicate that PRRSV Nsp2 is a multifunctional protein participating in the modulation of host inflammatory response, which suggests an important role of Nsp2 in pathogenesis and disease outcomes.
Collapse
|
163
|
Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 2012; 4:424-46. [PMID: 22590680 PMCID: PMC3347317 DOI: 10.3390/v4040424] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against viral infection, and in turn, viruses have evolved to evade host immune surveillance. As a result, viruses may persist in host and develop chronic infections. Type I interferons (IFN-α/β) are among the most potent antiviral cytokines triggered by viral infections. Porcine reproductive and respiratory syndrome (PRRS) is a disease of pigs that is characterized by negligible induction of type I IFNs and viral persistence for an extended period. For IFN production, RIG-I/MDA5 and JAK-STAT pathways are two major signaling pathways, and recent studies indicate that PRRS virus is armed to modulate type I IFN responses during infection. This review describes the viral strategies for modulation of type I IFN responses. At least three non-structural proteins (Nsp1, Nsp2, and Nsp11) and a structural protein (N nucleocapsid protein) have been identified and characterized to play roles in the IFN suppression and NF-κB pathways. Nsp's are early proteins while N is a late protein, suggesting that additional signaling pathways may be involved in addition to the IFN pathway. The understanding of molecular bases for virus-mediated modulation of host innate immune signaling will help us design new generation vaccines and control PRRS.
Collapse
|
164
|
Interaction between innate immunity and porcine reproductive and respiratory syndrome virus. Anim Health Res Rev 2012; 12:149-67. [PMID: 22152291 DOI: 10.1017/s1466252311000144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate immunity provides frontline antiviral protection and bridges adaptive immunity against virus infections. However, viruses can evade innate immune surveillance potentially causing chronic infections that may lead to pandemic diseases. Porcine reproductive and respiratory syndrome virus (PRRSV) is an example of an animal virus that has developed diverse mechanisms to evade porcine antiviral immune responses. Two decades after its discovery, PRRSV is still one of the most globally devastating viruses threatening the swine industry. In this review, we discuss the molecular and cellular composition of the mammalian innate antiviral immune system with emphasis on the porcine system. In particular, we focus on the interaction between PRRSV and porcine innate immunity at cellular and molecular levels. Strategies for targeting innate immune components and other host metabolic factors to induce ideal anti-PRRSV protection are also discussed.
Collapse
|
165
|
Lee YJ, Lee C. Stress-activated protein kinases are involved in porcine reproductive and respiratory syndrome virus infection and modulate virus-induced cytokine production. Virology 2012; 427:80-9. [PMID: 22424736 DOI: 10.1016/j.virol.2012.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 02/08/2023]
Abstract
The present study examined the role of the p38 MAPK and JNK pathways during PRRSV infection in immortalized porcine alveolar macrophage (PAM) cells. Infection with PRRSV was found to progressively activate p38 and JNK1/2 up to 36 h postinfection and then their phosphorylation levels dramatically decreased to baseline at 48 h postinfection. In contrast, UV-inactivated PRRSV failed to trigger phosphorylation of these SAPKs, indicating that the post-entry process is responsible for their activation. Independent treatment of cells with a selective p38 or JNK inhibitor markedly impaired PRRSV infection, resulting in significant reduction in synthesis of viral genomic and subgenomic RNAs, viral protein expression, and progeny virus production. Notably, cytokine production in PAM cells infected with PRRSV was shown to be altered by inhibiting these SAPKs. Altogether, our data suggest that the p38 and JNK signaling pathways play pivotal roles in PRRSV replication and may regulate immune responses during virus infection.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea
| | | |
Collapse
|
166
|
The presence of alpha interferon at the time of infection alters the innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:508-14. [PMID: 22301694 DOI: 10.1128/cvi.05490-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry worldwide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak, which results in delayed elimination of virus from the host and inferior vaccine protection. PRRSV has been shown to induce a meager alpha interferon (IFN-α) response, and we hypothesized that elevated IFN-α levels early in infection would shorten the induction time and increase elements of the adaptive immune response. To test this, we measured both antibody and cell-mediated immunity in pigs after the administration of a nonreplicating human adenovirus type 5 vector expressing porcine IFN-α (Ad5-pIFN-α) at the time of PRRSV infection and compared the results to those for pigs infected with PRRSV alone. Viremia was delayed, and there was a decrease in viral load in the sera of pigs administered the Ad5-pIFN-α. Although seroconversion was slightly delayed in pigs receiving Ad5-pIFN-α, probably due to the early reduction in viral replication, little difference in the overall or neutralizing antibody response was seen. However, there was an increase in the number of virus-specific IFN-γ-secreting cells detected in the pigs receiving Ad5-pIFN-α, as well as an altered cytokine profile in the lung at 14 days postinfection, indicating that the presence of IFN-α at the time of infection can alter innate and adaptive immune responses to PRRSV.
Collapse
|
167
|
Nonstructural protein 2 of porcine reproductive and respiratory syndrome virus inhibits the antiviral function of interferon-stimulated gene 15. J Virol 2012; 86:3839-50. [PMID: 22258253 DOI: 10.1128/jvi.06466-11] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type I interferon (alpha/beta interferon [IFN-α/β]) stimulates the expression of interferon-stimulated gene 15 (ISG15), which encodes a ubiquitin-like protein, ISG15. Free ISG15 and ISG15 conjugates function in diverse cellular pathways, particularly regulation of antiviral innate immune responses. In this study, we demonstrate that ISG15 overexpression inhibits porcine reproductive and respiratory syndrome virus (PRRSV) replication in cell culture and that the antiviral activity of interferon is reduced by inhibition of ISG15 conjugation. PRRSV nonstructural protein 2 (nsp2) was previously identified as a potential antagonist of ISG15 production and conjugation. The protein contains a papain-like protease domain (PLP2) that plays a crucial role in the proteolytic cleavage of the PRRSV replicase polyproteins. PLP2 was also proposed to belong to the ovarian tumor domain-containing superfamily of deubiquitinating enzymes (DUBs), which is capable of inhibiting ISG15 production and counteracting ISG15 conjugation to cellular proteins. To determine whether this immune antagonist function could be selectively inactivated, we engineered a panel of mutants with deletions and/or mutations at the N-terminal border of the nsp2 PLP2-DUB domain. A 23-amino-acid deletion (amino acids 402 to 424 of the ORF1a-encoded protein) largely abolished the inhibitory effect of nsp2 on ISG15 production and conjugation, but no viable recombinant virus was recovered. A 19-amino-acid deletion (amino acids 402 to 420), in combination with a downstream point mutation (S465A), partially relieved the ISG15 antagonist function and yielded a viable recombinant virus. Taken together, our data demonstrate that ISG15 and ISGylation play an important role in the response to PRRSV infection and that nsp2 is a key factor in counteracting the antiviral function of ISG15.
Collapse
|
168
|
Nauwynck HJ, Van Gorp H, Vanhee M, Karniychuk U, Geldhof M, Cao A, Verbeeck M, Van Breedam W. Micro-Dissecting the Pathogenesis and Immune Response of PRRSV Infection Paves the Way for More Efficient PRRSV Vaccines. Transbound Emerg Dis 2012; 59 Suppl 1:50-4. [DOI: 10.1111/j.1865-1682.2011.01292.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
169
|
Holzer B, Bakshi S, Bridgen A, Baron MD. Inhibition of interferon induction and action by the nairovirus Nairobi sheep disease virus/Ganjam virus. PLoS One 2011; 6:e28594. [PMID: 22163042 PMCID: PMC3230622 DOI: 10.1371/journal.pone.0028594] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/11/2011] [Indexed: 12/24/2022] Open
Abstract
The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU.
Collapse
Affiliation(s)
- Barbara Holzer
- Institute for Animal Health, Pirbright, Surrey, United Kingdom
| | - Siddharth Bakshi
- Institute for Animal Health, Pirbright, Surrey, United Kingdom
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, United Kingdom
| | - Anne Bridgen
- School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, United Kingdom
| | - Michael D. Baron
- Institute for Animal Health, Pirbright, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
170
|
Arterivirus and nairovirus ovarian tumor domain-containing Deubiquitinases target activated RIG-I to control innate immune signaling. J Virol 2011; 86:773-85. [PMID: 22072774 DOI: 10.1128/jvi.06277-11] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The innate immune response constitutes the first line of defense against viral infection and is extensively regulated through ubiquitination. The removal of ubiquitin from innate immunity signaling factors by deubiquitinating enzymes (DUBs) therefore provides a potential opportunity for viruses to evade this host defense system. It was previously found that specific proteases encoded by the unrelated arteri- and nairoviruses resemble the ovarian tumor domain-containing (OTU) family of DUBs. In arteriviruses, this domain has been characterized before as a papain-like protease (PLP2) that is also involved in replicase polyprotein processing. In nairoviruses, the DUB resides in the polymerase protein but is not essential for RNA replication. Using both in vitro and cell-based assays, we now show that PLP2 DUB activity is conserved in all members of the arterivirus family and that both arteri- and nairovirus DUBs inhibit RIG-I-mediated innate immune signaling when overexpressed. The potential relevance of RIG-I-like receptor (RLR) signaling for the innate immune response against arterivirus infection is supported by our finding that in mouse embryonic fibroblasts, the production of beta interferon primarily depends on the recognition of arterivirus RNA by the pattern-recognition receptor MDA5. Interestingly, we also found that both arteri- and nairovirus DUBs inhibit RIG-I ubiquitination upon overexpression, suggesting that both MDA5 and RIG-I have a role in countering infection by arteriviruses. Taken together, our results support the hypothesis that arteri- and nairoviruses employ their deubiquitinating potential to inactivate cellular proteins involved in RLR-mediated innate immune signaling, as exemplified by the deubiquitination of RIG-I.
Collapse
|
171
|
Pudupakam RS, Kenney SP, Córdoba L, Huang YW, Dryman BA, LeRoith T, Pierson FW, Meng XJ. Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication. J Virol 2011; 85:10031-40. [PMID: 21775444 PMCID: PMC3196386 DOI: 10.1128/jvi.00763-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/07/2011] [Indexed: 12/15/2022] Open
Abstract
The RNA genome of the hepatitis E virus (HEV) contains a hypervariable region (HVR) in ORF1 that tolerates small deletions with respect to infectivity. To further investigate the role of the HVR in HEV replication, we constructed a panel of mutants with overlapping deletions in the N-terminal, central, and C-terminal regions of the HVR by using a genotype 1 human HEV luciferase replicon and analyzed the effects of deletions on viral RNA replication in Huh7 cells. We found that the replication levels of the HVR deletion mutants were markedly reduced in Huh7 cells, suggesting a role of the HVR in viral replication efficiency. To further verify the results, we constructed HVR deletion mutants by using a genetically divergent, nonmammalian avian HEV, and similar effects on viral replication efficiency were observed when the avian HEV mutants were tested in LMH cells. Furthermore, the impact of complete HVR deletion on virus infectivity was tested in chickens, using an avian HEV mutant with a complete HVR deletion. Although the deletion mutant was still replication competent in LMH cells, the complete HVR deletion resulted in a loss of avian HEV infectivity in chickens. Since the HVR exhibits extensive variations in sequence and length among different HEV genotypes, we further examined the interchangeability of HVRs and demonstrated that HVR sequences are functionally exchangeable between HEV genotypes with regard to viral replication and infectivity in vitro, although genotype-specific HVR differences in replication efficiency were observed. The results showed that although the HVR tolerates small deletions with regard to infectivity, it may interact with viral and host factors to modulate the efficiency of HEV replication.
Collapse
Affiliation(s)
- R. S. Pudupakam
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Scott P. Kenney
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Laura Córdoba
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Yao-Wei Huang
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Barbara A. Dryman
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Tanya LeRoith
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - F. William Pierson
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| | - Xiang-Jin Meng
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
172
|
Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). Vaccine 2011; 29:8192-204. [DOI: 10.1016/j.vaccine.2011.09.013] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 02/07/2023]
|
173
|
Inn KS, Lee SH, Rathbun JY, Wong LY, Toth Z, Machida K, Ou JHJ, Jung JU. Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J Virol 2011; 85:10899-904. [PMID: 21835791 PMCID: PMC3187500 DOI: 10.1128/jvi.00690-11] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/02/2011] [Indexed: 01/24/2023] Open
Abstract
Virus infection triggers interferon (IFN)-mediated innate immune defenses in part through viral nucleic acid interactions. However, the immune recognition mechanisms by which the host identifies incoming DNA viruses are still elusive. Here, we show that increased levels of Kaposi's sarcoma-associated herpesvirus (KSHV) persistency are observed in retinoic acid-inducible gene I (RIG-I)-deficient cells and that KSHV ORF64, a tegument protein with deubiqutinase (DUB) activity, suppresses RIG-I-mediated IFN signaling by reducing the ubiquitination of RIG-I, crucial for its activation. This study suggests that RIG-I plays a potential role in sensing KSHV infection and that KSHV ORF64 DUB counteracts RIG-I signaling.
Collapse
Affiliation(s)
- Kyung-Soo Inn
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Sun-Hwa Lee
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Jessica Y. Rathbun
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Lai-Yee Wong
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Zsolt Toth
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| |
Collapse
|
174
|
Sagong M, Lee C. Porcine reproductive and respiratory syndrome virus nucleocapsid protein modulates interferon-β production by inhibiting IRF3 activation in immortalized porcine alveolar macrophages. Arch Virol 2011; 156:2187-95. [PMID: 21947566 PMCID: PMC7086947 DOI: 10.1007/s00705-011-1116-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/13/2011] [Indexed: 12/24/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection appears to elicit a weak innate immune response suppressing type 1 interferon (IFN) production. Recent studies have revealed that several nonstructural proteins encoded by the PRRSV genome independently antagonize the type 1 IFN system. The present study sought to identify the structural proteins that possess the immune evasion properties in immortalized porcine alveolar macrophages (PAM). Each structural protein gene was stably expressed in a porcine monocyte-derived macrophage cell line, PAM-pCD163, and tested for its potential to inhibit IFN-β induction. We then focused on the nucleocapsid (N) protein, which has a strong inhibitory effect on dsRNA-induced IFN-β production. Upon dsRNA stimulation, IFN-β production was shown to decrease proportionally with increasing levels of N expression. Furthermore, the PRRSV N protein was found to down-regulate IFN-dependent gene production by dsRNA. Taken together, these results indicate the ability of N to modulate the dsRNA-mediated IFN induction pathways. In addition, the N protein significantly interfered with dsRNA-induced phosphorylation and nuclear translocation of IRF3. Our data suggest that the PRRSV N protein is a responsible component, independent of other nonstructural elements, for evading the IFN response by antagonizing IRF3 activation.
Collapse
Affiliation(s)
- Mingeun Sagong
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | | |
Collapse
|
175
|
Guo B, Vorwald AC, Alt DP, Lager KM, Bayles DO, Faaberg KS. Large scale parallel pyrosequencing technology: PRRSV strain VR-2332 nsp2 deletion mutant stability in swine. Virus Res 2011; 161:162-9. [PMID: 21839789 DOI: 10.1016/j.virusres.2011.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 01/06/2023]
Abstract
Fifteen porcine reproductive and respiratory syndrome virus (PRRSV) isolate genomes were derived simultaneously using 454 pyrosequencing technology. The viral isolates sequenced were from a recent swine study, in which engineered Type 2 prototype PRRSV strain VR-2332 mutants, with 87, 184, 200, and 403 amino acid deletions in the second hypervariable region of nsp2, were found to be stable in the nsp2 coding region after in vivo infection (Faaberg et al., 2010). Furthermore, 3 of 4 mutants achieved replication kinetics similar to wt virus by study end. We hypothesized that other mutations elsewhere in the virus may have contributed to their replication fitness in swine. To further assess the stability of the engineered viruses, all sequenced genomes were compared and contrasted. No specific mutations occurred in all nsp2 deletion mutant genomes that were not also seen in the parent genome of Type 2 PRRSV strain VR-2332. Second site (non-nsp2) deletions and/or insertions were not evident after replication in swine. The number of point mutations seen increased slightly with deletion size, but even the largest deletion (403 aa) had very few consensus mutations. Thus, our findings provide further substantiation that the nsp2 deletion mutant genomes were genetically stable after in vivo passage.
Collapse
Affiliation(s)
- Baoqing Guo
- Veterinary Diagnostic & Production Animal Medicine, Iowa State University, Ames, IA, USA
| | | | | | | | | | | |
Collapse
|
176
|
Ni YY, Huang YW, Cao D, Opriessnig T, Meng XJ. Establishment of a DNA-launched infectious clone for a highly pneumovirulent strain of type 2 porcine reproductive and respiratory syndrome virus: identification and in vitro and in vivo characterization of a large spontaneous deletion in the nsp2 region. Virus Res 2011; 160:264-73. [PMID: 21763365 DOI: 10.1016/j.virusres.2011.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/22/2011] [Accepted: 06/30/2011] [Indexed: 11/19/2022]
Abstract
A highly pneumovirulent strain of porcine reproductive and respiratory syndrome virus (PRRSV), ATCC VR2385, was isolated from a pig exhibiting typical PRRS in the early 90s. While passaging the virus in monkey kidney cells, we identified a large spontaneous deletion of a 435-bp in the nsp2 gene. To assess the biological significance of this spontaneous deletion, we first determined the full-length genomic sequence of this virus and established a DNA-launched infectious clone of the passage 14 virus containing the 435-bp nsp2 deletion (designated as pIR-VR2385-CA). The full-length viral genome engineered with two ribozyme elements at both ends was placed under the control of the eukaryotic CMV promoter. The infectious virus was successfully rescued from pIR-VR2385-CA DNA-transfected BHK-21 cells. To characterize the biological and pathological significance of this large nsp2 deletion, we subsequently constructed another DNA-launched infectious clone, pIR-VR2385-R, in which we restored the deleted 435-bp nsp2 sequence back to the pIR-VR2385-CA backbone. The growth characteristics of the two rescued viruses (VR2385-CA and VR2385-R) were compared, and the results showed that the VR2385-CA virus with the nsp2 deletion replicated more efficiently in vitro (1.0-1.5 log titer higher) than the VR2385-R virus with the restored nsp2 sequence but the VR2385-CA virus exhibited a significantly reduced serum viral RNA load in vivo. A comparative pathogenicity study in pigs (n=10) revealed that the nsp2 deletion had no effect on virus virulence, and the restored nsp2 sequence in the VR2385-R virus remains stable during virus replication in pigs. The results from this study indicates that the spontaneous nsp2 deletion plays a role for enhanced PRRSV replication in vitro but has no effect on the pathogenicity of the virus.
Collapse
Affiliation(s)
- Yan-Yan Ni
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0913 , USA
| | | | | | | | | |
Collapse
|
177
|
Endoribonuclease activities of porcine reproductive and respiratory syndrome virus nsp11 was essential for nsp11 to inhibit IFN-β induction. Mol Immunol 2011; 48:1568-72. [PMID: 21481939 PMCID: PMC7112683 DOI: 10.1016/j.molimm.2011.03.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/02/2011] [Accepted: 03/08/2011] [Indexed: 01/11/2023]
Abstract
Previous studies have shown that PRRSV nsp11, which was an endoribonuclease, was an interferon antagonist, however, the mechanism that nsp11 inhibited IFN-β production was unclear. To explore whether the endoribonuclease was required for nsp11 to disrupt the IFN-β production, substitutions of the presumed catalytic histidine and lysine residues of nsp11 were introduced into plasmid pcDNA 3.1-FLAG. The results showed that mutation that inactivated endoribonuclease made nsp11 lose its ability to inhibit Poly(I:C)-induced IFN-β promoter activity. In conclusion, our present work indicated that the endoribonuclease activity of nsp11 was essential for nsp11 to inhibit the IFN-β induction.
Collapse
|
178
|
Shi X, Zhang G, Wang L, Li X, Zhi Y, Wang F, Fan J, Deng R. The nonstructural protein 1 papain-like cysteine protease was necessary for porcine reproductive and respiratory syndrome virus nonstructural protein 1 to inhibit interferon-β induction. DNA Cell Biol 2011; 30:355-62. [PMID: 21438756 DOI: 10.1089/dna.2010.1188] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus nonstructural protein 1 (nsp1) could be auto-cleaved into nsp1α and nsp1β, both of which had the papain-like cysteine protease activities. Previous studies have shown that porcine reproductive and respiratory syndrome virus nsp1 was an interferon (IFN) antagonist. However, the mechanism by which nsp1 inhibited IFN-β production was unclear. Here, we used site-directed mutagenesis that inactivated the papain-like cysteine protease activities of nsp1 to explore whether the papain-like cysteine protease activities were required for nsp1 to disrupt IFN-β production. The results showed that mutations that inactivated papain-like cysteine protease activity of nsp1α made nsp1 lose its IFN antagonism activity, whereas mutations that inactivated papain-like cysteine protease activity of nsp1β did not influence the IFN antagonism activity of nsp1. In conclusion, our present work indicated that the papain-like cysteine protease activity of nsp1α was necessary for nsp1 to inhibit IFN-β induction.
Collapse
Affiliation(s)
- Xibao Shi
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
179
|
The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J Virol 2011; 85:3758-66. [PMID: 21307201 DOI: 10.1128/jvi.02589-10] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) is a papain-like proteinase that plays an important role in FMDV pathogenesis. Previously, it has been shown that L(pro) is involved in the inhibition of the type I interferon (IFN) response by FMDV. However, the underlying mechanisms remain unclear. Here we demonstrate that FMDV Lb(pro), a shorter form of L(pro), has deubiquitinating activity. Sequence alignment and structural bioinformatics analyses revealed that the catalytic residues (Cys51 and His148) are highly conserved in FMDV Lb(pro) of all seven serotypes and that the topology of FMDV Lb(pro) is remarkably similar to that of ubiquitin-specific protease 14 (USP14), a cellular deubiquitylation enzyme (DUB), and to that of severe acute respiratory syndrome coronavirus (SARS-CoV) papain-like protease (PLpro), a coronaviral DUB. Both purified Lb(pro) protein and in vivo ectopically expressed Lb(pro) removed ubiquitin (Ub) moieties from cellular substrates, acting on both lysine-48- and lysine-63-linked polyubiquitin chains. Furthermore, Lb(pro) significantly inhibited ubiquitination of retinoic acid-inducible gene I (RIG-I), TANK-binding kinase 1 (TBK1), TNF receptor-associated factor 6 (TRAF6), and TRAF3, key signaling molecules in activation of type I IFN response. Mutations in Lb(pro) that ablate the catalytic activity (C51A or D163N/D164N) or disrupt the SAP (for SAF-A/B, Acinus, and PIAS) domain (I83A/L86A) abrogated the DUB activity of Lb(pro) as well as its ability to block signaling to the IFN-β promoter. Collectively, these results demonstrate that FMDV Lb(pro) possesses DUB activity in addition to serving as a viral proteinase and describe a novel mechanism evolved by FMDV to counteract host innate antiviral responses.
Collapse
|
180
|
Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. Proc Natl Acad Sci U S A 2011; 108:2222-7. [PMID: 21245344 DOI: 10.1073/pnas.1013388108] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The attachment of ubiquitin (Ub) and the Ub-like (Ubl) molecule interferon-stimulated gene 15 (ISG15) to cellular proteins mediates important innate antiviral responses. Ovarian tumor (OTU) domain proteases from nairoviruses and arteriviruses were recently found to remove these molecules from host proteins, which inhibits Ub and ISG15-dependent antiviral pathways. This contrasts with the Ub-specific activity of known eukaryotic OTU-domain proteases. Here we describe crystal structures of a viral OTU domain from the highly pathogenic Crimean-Congo haemorrhagic fever virus (CCHFV) bound to Ub and to ISG15 at 2.5-Å and 2.3-Å resolution, respectively. The complexes provide a unique structural example of ISG15 bound to another protein and reveal the molecular mechanism of an ISG15 cross-reactive deubiquitinase. To accommodate structural differences between Ub and ISG15, the viral protease binds the β-grasp folds of Ub and C-terminal Ub-like domain of ISG15 in an orientation that is rotated nearly 75° with respect to that observed for Ub bound to a representative eukaryotic OTU domain from yeast. Distinct structural determinants necessary for binding either substrate were identified and allowed the reengineering of the viral OTU protease into enzymes with increased substrate specificity, either for Ub or for ISG15. Our findings now provide the basis to determine in vivo the relative contributions of deubiquitination and deISGylation to viral immune evasion tactics, and a structural template of a promiscuous deubiquitinase from a haemorrhagic fever virus that can be targeted for inhibition using small-molecule-based strategies.
Collapse
|
181
|
Wang Y, Luo R, Fang L, Wang D, Bi J, Chen H, Xiao S. Porcine reproductive and respiratory syndrome virus (PRRSV) infection activates chemokine RANTES in MARC-145 cells. Mol Immunol 2011; 48:586-91. [DOI: 10.1016/j.molimm.2010.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/06/2010] [Accepted: 10/25/2010] [Indexed: 12/01/2022]
|
182
|
Li H, Zheng Z, Zhou P, Zhang B, Shi Z, Hu Q, Wang H. The cysteine protease domain of porcine reproductive and respiratory syndrome virus non-structural protein 2 antagonizes interferon regulatory factor 3 activation. J Gen Virol 2010; 91:2947-58. [PMID: 20826620 DOI: 10.1099/vir.0.025205-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is growing evidence that porcine reproductive and respiratory syndrome virus (PRRSV) has developed mechanisms to subvert the host innate immune response. PRRSV non-structural protein 2 (Nsp2) was suggested previously as a potential interferon (IFN) antagonist. This study focused on Nsp2 to investigate its inhibitory mechanism of IFN induction. It was demonstrated that Nsp2 strongly inhibited IFN-β production by antagonizing activation of the IFN regulatory factor 3 (IRF-3) pathway induced by the Sendai virus (SeV). Further studies revealed that the cysteine protease domain (PL2) of Nsp2 was necessary for IFN antagonism. Additionally, both full-length Nsp2 and the PL2 protease domain of Nsp2 were found to inhibit SeV-induced phosphorylation and nuclear translocation of IRF-3. These findings suggest that Nsp2 is likely to play an important role in subversion of IRF-3-dependent innate antiviral defences, providing a basis for elucidating the mechanisms underlying PRRSV pathogenesis.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | |
Collapse
|
183
|
The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res 2010; 154:61-76. [PMID: 20696193 PMCID: PMC7114499 DOI: 10.1016/j.virusres.2010.07.030] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/07/2010] [Accepted: 07/31/2010] [Indexed: 12/24/2022]
Abstract
Our knowledge about the structure and function of the nonstructural proteins (nsps) encoded by the arterivirus replicase gene has advanced in recent years. The continued characterization of the nsps of the arterivirus prototype equine arteritis virus has not only corroborated several important functional predictions, but also revealed various novel features of arteriviral replication. For porcine reproductive and respiratory syndrome virus (PRRSV), based on bioinformatics predictions and experimental studies, a processing map for the pp1a and pp1ab replicase polyproteins has been developed. Crystal structures have been resolved for two of the PRRSV nonstructural proteins that possess proteinase activity (nsp1α and nsp4). The functional characterization of the key enzymes for arterivirus RNA synthesis, the nsp9 RNA polymerase and nsp10 helicase, has been initiated. In addition, progress has been made on nsp functions relating to the regulation of subgenomic mRNAs synthesis (nsp1), the induction of replication-associated membrane rearrangements (nsp2 and nsp3), and an intriguing replicative endoribonuclease (nsp11) for which the natural substrate remains to be identified. The role of nsps in viral pathogenesis and host immunity is also being explored, and specific nsps (including nsp1α/β, nsp2, nsp4, nsp7, and nsp11) have been implicated in the modulation of host immune responses to PRRSV infection. The nsp3–8 region was identified as containing major virulence factors, although mechanistic information is scarce. The biological significance of PRRSV nsps in virus-host interactions and the technical advancements in engineering the PRRSV genome by reverse genetics are also reflected in recent developments in the area of vaccines and diagnostic assays.
Collapse
|
184
|
Proteolytic products of the porcine reproductive and respiratory syndrome virus nsp2 replicase protein. J Virol 2010; 84:10102-12. [PMID: 20668084 DOI: 10.1128/jvi.01208-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nsp2 replicase protein of porcine reproductive and respiratory syndrome virus (PRRSV) was recently demonstrated to be processed from its precursor by the PL2 protease at or near the G(1196)|G(1197) dipeptide in transfected CHO cells. Here the proteolytic cleavage of PRRSV nsp2 was further investigated in virally infected MARC-145 cells by using two recombinant PRRSVs expressing epitope-tagged nsp2. The data revealed that PRRSV nsp2 exists as different isoforms, termed nsp2a, nsp2b, nsp2c, nsp2d, nsp2e, and nsp2f, during PRRSV infection. Moreover, on the basis of deletion mutagenesis and antibody probing, these nsp2 species appeared to share the same N terminus but to differ in their C termini. The largest protein, nsp2a, corresponded to the nsp2 product identified in transfected CHO cells. nsp2b and nsp2c were processed within or near the transmembrane (TM) region, presumably at or near the conserved sites G(981)|G(982) and G(828)|G(829)|G(830), respectively. The C termini for nsp2d, -e, and -f were mapped within the nsp2 middle hypervariable region, but no conserved cleavage sites could be definitively predicted. The larger nsp2 species emerged almost simultaneously in the early stage of PRRSV infection. Pulse-chase analysis revealed that all six nsp2 species were relatively stable and had low turnover rates. Deletion mutagenesis revealed that the smaller nsp2 species (e.g., nsp2d, nsp2e, and nsp2f) were not essential for viral replication in cell culture. Lastly, we identified a cellular chaperone, named heat shock 70-kDa protein 5 (HSPA5), that was strongly associated with nsp2, which may have important implications for PRRSV replication. Overall, these findings indicate that PRRSV nsp2 is increasingly emerging as a multifunctional protein and may have a profound impact on PRRSV replication and viral pathogenesis.
Collapse
|
185
|
Yoo D, Song C, Sun Y, Du Y, Kim O, Liu HC. Modulation of host cell responses and evasion strategies for porcine reproductive and respiratory syndrome virus. Virus Res 2010; 154:48-60. [PMID: 20655963 PMCID: PMC7114477 DOI: 10.1016/j.virusres.2010.07.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/24/2010] [Accepted: 07/18/2010] [Indexed: 12/13/2022]
Abstract
The immune surveillance system protects host cells from viral infection, and viruses have evolved to escape this system for efficient proliferation in the host. Host cells produce cytokines and chemokines in response to viral infection, and among such effector molecules, type I interferons are the principal antiviral cytokines and therefore effective targets for viruses to disarm host surveillance. Porcine reproductive and respiratory syndrome virus (PRRSV) expresses proteins that circumvent the IFN response and other cellular processes, and to compensate the small coding capacity of PRRSV, these proteins are multifunctional. To date, at least four viral proteins have been identified and studied as viral antagonists of host defenses: N as a structural protein and three non-structural proteins, Nsp1 (Nsp1α and Nsp1β), Nsp2, and Nsp11. Among these, N and Nsp1 are nuclear-cytoplasmic proteins distributed in both the nucleus and cytoplasm of cells. Nsp1 and Nsp2 are viral proteases while Nsp11 is an endoribonuclease. This review describes the current understanding of the role of these proteins in modulating the host innate immune responses. Blocking against virus-mediated inhibition of the innate response may lead to the future development of effective vaccines. The understanding of viral mechanisms modulating the normal cellular processes will be a key to the design of an effective control strategy for PRRS.
Collapse
Affiliation(s)
- Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA.
| | | | | | | | | | | |
Collapse
|