151
|
Cholesterol-rich microdomains as docking platforms for respiratory syncytial virus in normal human bronchial epithelial cells. J Virol 2011; 86:1832-43. [PMID: 22090136 DOI: 10.1128/jvi.06274-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the major causes of respiratory infections in children, and it is the main pathogen causing bronchiolitis in infants. The binding and entry mechanism by which RSV infects respiratory epithelial cells has not yet been determined. In this study, the earliest stages of RSV infection in normal human bronchial epithelial cells were probed by tracking virions with fluorescent lipophilic dyes in their membranes. Virions colocalized with cholesterol-containing plasma membrane microdomains, identified by their ability to bind cholera toxin subunit B. Consistent with an important role for cholesterol in RSV infection, cholesterol depletion profoundly inhibited RSV infection, while cholesterol repletion reversed this inhibition. Merger of the outer leaflets of the viral envelope and the cell membrane appeared to be triggered at these sites. Using small-molecule inhibitors, RSV infection was found to be sensitive to Pak1 inhibition, suggesting the requirement of a subsequent step of cytoskeletal reorganization that could involve plasma membrane rearrangements or endocytosis. It appears that RSV entry depends on its ability to dock to cholesterol-rich microdomains (lipid rafts) in the plasma membrane where hemifusion events begin, assisted by a Pak1-dependent process.
Collapse
|
152
|
Lundin A, Bergström T, Andrighetti-Fröhner CR, Bendrioua L, Ferro V, Trybala E. Potent anti-respiratory syncytial virus activity of a cholestanol-sulfated tetrasaccharide conjugate. Antiviral Res 2011; 93:101-9. [PMID: 22101246 DOI: 10.1016/j.antiviral.2011.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/14/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
A number of different viruses including respiratory syncytial virus (RSV) initiate infection of cells by binding to cell surface glycosaminoglycans and sulfated oligo- and polysaccharide mimetics of these receptors exhibit potent antiviral activity in cultured cells. We investigated whether the introduction of different lipophilic groups to the reducing end of sulfated oligosaccharides would modulate their anti-RSV activity. Our results demonstrate that the cholestanol-conjugated tetrasaccharide (PG545) exhibited ∼5- to 16-fold enhanced anti-RSV activity in cultured cells compared with unmodified sulfated oligosaccharides. Furthermore, PG545 displayed virus-inactivating (virucidal) activity, a feature absent in sulfated oligosaccharides. To inhibit RSV infectivity PG545 had to be present during the initial steps of viral infection of cells. The anti-RSV activity of PG545 was due to both partial inhibition of the virus attachment to cells and a more profound interference with some post-attachment steps as PG545 efficiently neutralized infectivity of the cell-adsorbed virus. The anti-RSV activity of PG545 was reduced when tested in the presence of human nasal secretions. Serial passages of RSV in the presence of increasing concentrations of PG545 selected for weakly resistant viral variants that comprised the F168S and the P180S amino acid substitutions in the viral G protein. Altogether we identified a novel and potent inhibitor of RSV, which unlike sulfated oligo- and polysaccharide compounds, could irreversibly inactivate RSV infectivity.
Collapse
Affiliation(s)
- Anna Lundin
- Department of Clinical Virology, University of Gothenburg, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
153
|
RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses. Proc Natl Acad Sci U S A 2011; 108:19036-41. [PMID: 22065774 DOI: 10.1073/pnas.1113643108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process.
Collapse
|
154
|
Farzan SF, Palermo LM, Yokoyama CC, Orefice G, Fornabaio M, Sarkar A, Kellogg GE, Greengard O, Porotto M, Moscona A. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery. J Biol Chem 2011; 286:37945-37954. [PMID: 21799008 PMCID: PMC3207398 DOI: 10.1074/jbc.m111.256248] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/26/2011] [Indexed: 11/06/2022] Open
Abstract
Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Laura M Palermo
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Christine C Yokoyama
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Gianmarco Orefice
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Micaela Fornabaio
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, 23298-0540
| | - Aurijit Sarkar
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, 23298-0540
| | - Glen E Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, 23298-0540
| | - Olga Greengard
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021; Department of Pediatrics, Mount Sinai School of Medicine, New York, New York 10029
| | - Matteo Porotto
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021
| | - Anne Moscona
- Departments of Pediatrics and of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021.
| |
Collapse
|
155
|
Paz AC, Javaherian S, McGuigan AP. Tools for micropatterning epithelial cells into microcolonies on transwell filter substrates. LAB ON A CHIP 2011; 11:3440-3448. [PMID: 21860858 DOI: 10.1039/c1lc20506d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Despite the importance of epithelial tissue in most major organs there have been limited attempts to tissue engineer artificial epithelium. A key feature of mature epithelium is the presence of an apical-basal polarization, which develops over 7-20 days in culture. Currently, the most widely used 2D system to generate polarized epithelium in vitro involves the filter insert culture system, however this system is expensive, laborious and requires large numbers of cells per sample. We have developed a set of micropatterning techniques to spatially control the organization of epithelial cells into microsheets on filter inserts under the culture conditions necessary to induce epithelial cell polarization. Micropatterning improves cell uniformity within each microsheet, allows multiple sheet analysis on one filter insert, and reduced cell number requirements. We describe an agarose patterning method that allows maintenance of cell patterns for over 15 days, the time necessary to induce apical-basal polarization. We also describe a Parafilm™ patterning method that allows patterning for 5 to 15 days depending on cell type and only allows the generation of stripes and circular microsheets. The parafilm™ method however is extremely straightforward and could be easily adopted by any laboratory without the need of access to specialized microfabrication equipment. We also demonstrate that micropatterning epithelial cells does not alter the localization of the apical-basal marker ZO-1 or the formation of cilia, a marker of epithelium maturation. Our methods provide a novel tool for studying epithelial biology in polarized epithelium microsheets of controlled size.
Collapse
Affiliation(s)
- Ana C Paz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
156
|
Zhang L, Collins PL, Lamb RA, Pickles RJ. Comparison of differing cytopathic effects in human airway epithelium of parainfluenza virus 5 (W3A), parainfluenza virus type 3, and respiratory syncytial virus. Virology 2011; 421:67-77. [PMID: 21986028 DOI: 10.1016/j.virol.2011.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/26/2011] [Accepted: 08/27/2011] [Indexed: 10/16/2022]
Abstract
Parainfluenza virus 5 (PIV5) infects a wide range of animals including dogs, pigs, cats, and humans; however, its association with disease in humans remains controversial. In contrast to parainfluenza virus 3 (PIV3) or respiratory syncytial virus (RSV), PIV5 is remarkably non-cytopathic in monolayer cultures of immortalized epithelial cells. To compare the cytopathology produced by these viruses in a relevant human tissue, we infected an in vitro model of human ciliated airway epithelium and measured outcomes of cytopathology. PIV5, PIV3 and, RSV all infected ciliated cells, and PIV5 and PIV3 infection was dependent on sialic acid residues. Only PIV5-infected cells formed syncytia. PIV5 infection resulted in a more rapid loss of infected cells by shedding of infected cells into the lumen. These studies revealed striking differences in cytopathology of PIV5 versus PIV3 or RSV and indicate the extent of cytopathology determined in cell-lines does not predict events in differentiated airway cells.
Collapse
Affiliation(s)
- Liqun Zhang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
157
|
Chest computed tomographic imaging characteristics of viral acute lower respiratory tract illnesses: a case-control study. J Comput Assist Tomogr 2011; 35:524-30. [PMID: 21765314 DOI: 10.1097/rct.0b013e31821d6cd3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to determine whether computed tomographic (CT) findings can distinguish viral lower respiratory tract illness (LRTI) from other conditions. METHODS Three radiologists reviewed CT images of patients with LRTI who underwent testing for respiratory viral infection. Imaging findings in subjects with positive viral assays were compared with subjects with negative assays. RESULTS Of 334 subjects, 93 were positive for viral LRTI. Tree-in-bud opacities and bronchial wall thickening were observed more often in subjects with viral LRTI (P < 0.05). Multifocal airspace disease occurred with similar frequency in both groups. Diffuse airspace opacification was negatively associated with viral LRTI. Pleural effusion was observed more often among subjects without viral LRTI (P < 0.001). CONCLUSIONS Airway inflammatory changes such as tree-in-bud opacities, bronchial wall thickening, and peribronchiolar consolidation are associated with community-acquired viral LRTI. Recognition of these findings should prompt testing for viral infection. Multifocal consolidation is commonly found in cases of viral LRTI but is nonspecific.
Collapse
|
158
|
Conese M, Ascenzioni F, Boyd AC, Coutelle C, De Fino I, De Smedt S, Rejman J, Rosenecker J, Schindelhauer D, Scholte BJ. Gene and cell therapy for cystic fibrosis: from bench to bedside. J Cyst Fibros 2011; 10 Suppl 2:S114-28. [PMID: 21658631 DOI: 10.1016/s1569-1993(11)60017-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Clinical trials in cystic fibrosis (CF) patients established proof-of-principle for transfer of the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) gene to airway epithelial cells. However, the limited efficacy of gene transfer vectors as well as extra- and intracellular barriers have prevented the development of a gene therapy-based treatment for CF. Here, we review the use of new viral and nonviral gene therapy vectors, as well as human artificial chromosomes, to overcome barriers to successful CFTR expression. Pre-clinical studies will surely benefit from novel animal models, such as CF pigs and ferrets. Prenatal gene therapy is a potential alternative to gene transfer to fully developed lungs. However, unresolved issues, including the possibility of adverse effects on pre- and postnatal development, the risk of initiating oncogenic or degenerative processes and germ line transmission require further investigation. Finally, we discuss the therapeutic potential of stem cells for CF lung disease.
Collapse
Affiliation(s)
- Massimo Conese
- Institute for the Experimental Treatment of Cystic Fibrosis, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Li W, Zhang L, Wu Z, Pickles RJ, Samulski RJ. AAV-6 mediated efficient transduction of mouse lower airways. Virology 2011; 417:327-33. [PMID: 21752418 PMCID: PMC3163804 DOI: 10.1016/j.virol.2011.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/27/2011] [Accepted: 06/13/2011] [Indexed: 01/20/2023]
Abstract
AAV1 and AAV6 are two closely related AAV serotypes. In the present study, we found AAV6 was more efficient in transducing mouse lower airway epithelia in vitro and in vivo than AAV1. To further explore the mechanism of this difference, we found that significantly more AAV1 bound to mouse airway epithelia than AAV6, yet transduction by AAV6 was far superior. Lectin competition assays demonstrated that both AAV1 and AAV6 similarly utilize α-2, 3-, and to a lesser extend α-2, 6- linked sialic acids as the receptors for transduction. Furthermore, the rates of AAV endocytosis could not account for the transduction differences of AAV1 and AAV6. Finally, it was revealed that AAV6 was less susceptible to ubiquitin/proteasome-mediated blocks than AAV1 when transducing mouse airway epithelia. Thus compared with AAV1, AAV6 has a unique ability to escape proteasome-mediated degradation, which is likely responsible for its higher transduction efficiency in mouse airway epithelium.
Collapse
Affiliation(s)
- Wuping Li
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology at Beijing and The Institute of Blood Transfusion at Chengdu, Chinese Academy of Medical Sciences, 100730 China.
| | | | | | | | | |
Collapse
|
160
|
Abstract
Viral respiratory infections cause significant morbidity and mortality in infants and young children as well as in at-risk adults and the elderly. Although many viral pathogens are capable of causing respiratory disease, vaccine development has to focus on a limited number of pathogens, such as those that commonly cause serious lower respiratory illness (LRI). Whereas influenza virus vaccines have been available for some time (see the review by Clark and Lynch in this issue), vaccines against other medically important viruses such as respiratory syncytial virus (RSV), the parainfluenza viruses (PIVs), and metapneumovirus (MPVs) are not available. This review aims to provide a brief update on investigational vaccines against RSV, the PIVs, and MPV that have been evaluated in clinical trials or are currently in clinical development.
Collapse
Affiliation(s)
- Alexander C Schmidt
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 10001, USA.
| |
Collapse
|
161
|
Illumination of parainfluenza virus infection and transmission in living animals reveals a tissue-specific dichotomy. PLoS Pathog 2011; 7:e1002134. [PMID: 21750677 PMCID: PMC3131265 DOI: 10.1371/journal.ppat.1002134] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/07/2011] [Indexed: 11/19/2022] Open
Abstract
The parainfluenza viruses (PIVs) are highly contagious respiratory paramyxoviruses and a leading cause of lower respiratory tract (LRT) disease. Since no vaccines or antivirals exist, non-pharmaceutical interventions are the only means of control for these pathogens. Here we used bioluminescence imaging to visualize the spatial and temporal progression of murine PIV1 (Sendai virus) infection in living mice after intranasal inoculation or exposure by contact. A non-attenuated luciferase reporter virus (rSeV-luc(M-F*)) that expressed high levels of luciferase yet was phenotypically similar to wild-type Sendai virus in vitro and in vivo was generated to allow visualization. After direct intranasal inoculation, we unexpectedly observed that the upper respiratory tract (URT) and trachea supported robust infection under conditions that result in little infection or pathology in the lungs including a low inoculum of virus, an attenuated virus, and strains of mice genetically resistant to lung infection. The high permissivity of the URT and trachea to infection resulted in 100% transmission to naïve contact recipients, even after low-dose (70 PFU) inoculation of genetically resistant BALB/c donor mice. The timing of transmission was consistent with the timing of high viral titers in the URT and trachea of donor animals but was independent of the levels of infection in the lungs of donors. The data therefore reveals a disconnect between transmissibility, which is associated with infection in the URT, and pathogenesis, which arises from infection in the lungs and the immune response. Natural infection after transmission was universally robust in the URT and trachea yet limited in the lungs, inducing protective immunity without weight loss even in genetically susceptible 129/SvJ mice. Overall, these results reveal a dichotomy between PIV infection in the URT and trachea versus the lungs and define a new model for studies of pathogenesis, development of live virus vaccines, and testing of antiviral therapies. Human parainfluenza viruses (HPIVs) are a leading cause of pediatric hospitalization for lower respiratory tract infection, yet it is unknown why primary infection typically induces immunity without causing severe pathology. To study the determinants of PIV spread within the respiratory tracts of living animals, we developed a model for non-invasive imaging of living mice infected with Sendai virus, the murine counterpart of HPIV1. This system allowed us to measure the temporal and spatial dynamics of paramyxovirus infection throughout the respiratory tracts of living animals after direct inoculation or transmission. We found that the upper respiratory tract and trachea were highly permissive to infection, even under conditions that limit lower respiratory infection and pathogenesis. The timing of transmission coincided with high virus growth in the upper respiratory tracts and trachea of donor mice independent of the extent of infection in the lungs. After transmission, infection spread preferentially in the upper respiratory tract and trachea, inducing protective immunity without weight loss. Our work reveals a disconnect between Sendai virus transmissibility and pathogenicity, and the experimental model developed here will be instrumental in studying PIV pathogenesis.
Collapse
|
162
|
Le Nouën C, Hillyer P, Winter CC, McCarty T, Rabin RL, Collins PL, Buchholz UJ. Low CCR7-mediated migration of human monocyte derived dendritic cells in response to human respiratory syncytial virus and human metapneumovirus. PLoS Pathog 2011; 7:e1002105. [PMID: 21731495 PMCID: PMC3121884 DOI: 10.1371/journal.ppat.1002105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/21/2011] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) and, to a lesser extent, human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), can re-infect symptomatically throughout life without significant antigenic change, suggestive of incomplete or short-lived immunity. In contrast, re-infection by influenza A virus (IAV) largely depends on antigenic change, suggestive of more complete immunity. Antigen presentation by dendritic cells (DC) is critical in initiating the adaptive immune response. Antigen uptake by DC induces maturational changes that include decreased expression of the chemokine receptors CCR1, CCR2, and CCR5 that maintain DC residence in peripheral tissues, and increased expression of CCR7 that mediates the migration of antigen-bearing DC to lymphatic tissue. We stimulated human monocyte-derived DC (MDDC) with virus and found that, in contrast to HPIV3 and IAV, HMPV and HRSV did not efficiently decrease CCR1, 2, and 5 expression, and did not efficiently increase CCR7 expression. Consistent with the differences in CCR7 mRNA and protein expression, MDDC stimulated with HRSV or HMPV migrated less efficiently to the CCR7 ligand CCL19 than did IAV-stimulated MDDC. Using GFP-expressing recombinant virus, we showed that the subpopulation of MDDC that was robustly infected with HRSV was particularly inefficient in chemokine receptor modulation. HMPV- or HRSV-stimulated MDDC responded to secondary stimulation with bacterial lipopolysaccharide or with a cocktail of proinflammatory cytokines by increasing CCR7 and decreasing CCR1, 2 and 5 expression, and by more efficient migration to CCL19, suggesting that HMPV and HRSV suboptimally stimulate rather than irreversibly inhibit MDDC migration. This also suggests that the low concentration of proinflammatory cytokines released from HRSV- and HMPV-stimulated MDDC is partly responsible for the low CCR7-mediated migration. We propose that inefficient migration of HRSV- and HMPV-stimulated DC to lymphatic tissue contributes to reduced adaptive responses to these viruses.
Collapse
Affiliation(s)
- Cyril Le Nouën
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philippa Hillyer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Christine C. Winter
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas McCarty
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ronald L. Rabin
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
163
|
Golda A, Malek N, Dudek B, Zeglen S, Wojarski J, Ochman M, Kucewicz E, Zembala M, Potempa J, Pyrc K. Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells. J Gen Virol 2011; 92:1358-1368. [PMID: 21325482 PMCID: PMC3168281 DOI: 10.1099/vir.0.028381-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 02/14/2011] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms of augmented bacterial pathogenicity in post-viral infections is the first step in the development of an effective therapy. This study assessed the effect of human coronavirus NL63 (HCoV-NL63) on the adherence of bacterial pathogens associated with respiratory tract illnesses. It was shown that HCoV-NL63 infection resulted in an increased adherence of Streptococcus pneumoniae to virus-infected cell lines and fully differentiated primary human airway epithelium cultures. The enhanced binding of bacteria correlated with an increased expression level of the platelet-activating factor receptor (PAF-R), but detailed evaluation of the bacterium-PAF-R interaction revealed a limited relevance of this process.
Collapse
Affiliation(s)
- Anna Golda
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Natalia Malek
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Bartosz Dudek
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Slawomir Zeglen
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Jacek Wojarski
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Marek Ochman
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Ewa Kucewicz
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Marian Zembala
- Department of Cardiac Surgery and Transplantology, Silesian Center for Heart Diseases, Szpitalna 2, 41-800 Zabrze, Poland
| | - Jan Potempa
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- University of Louisville School of Dentistry, Department of Oral Health and Rehabilitation, 501 South Preston St, Louisville, KY 40202, USA
| | - Krzysztof Pyrc
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
164
|
The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 2011; 24:210-29. [PMID: 21233513 DOI: 10.1128/cmr.00014-10] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.
Collapse
|
165
|
Griesenbach U, Alton EW. Current Status and Future Directions of Gene and Cell Therapy for Cystic Fibrosis. BioDrugs 2011; 25:77-88. [DOI: 10.2165/11586960-000000000-00000] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
166
|
Villenave R, O'Donoghue D, Thavagnanam S, Touzelet O, Skibinski G, Heaney LG, McKaigue JP, Coyle PV, Shields MD, Power UF. Differential cytopathogenesis of respiratory syncytial virus prototypic and clinical isolates in primary pediatric bronchial epithelial cells. Virol J 2011; 8:43. [PMID: 21272337 PMCID: PMC3039598 DOI: 10.1186/1743-422x-8-43] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/27/2011] [Indexed: 12/02/2022] Open
Abstract
Background Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.
Collapse
Affiliation(s)
- Rémi Villenave
- Centre for Infection & Immunity, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7BL, Northern Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Effects of human respiratory syncytial virus, metapneumovirus, parainfluenza virus 3 and influenza virus on CD4+ T cell activation by dendritic cells. PLoS One 2010; 5:e15017. [PMID: 21124776 PMCID: PMC2993941 DOI: 10.1371/journal.pone.0015017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/11/2010] [Indexed: 12/24/2022] Open
Abstract
Background Human respiratory syncytial virus (HRSV), and to a lesser extent human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), re-infect symptomatically throughout life without antigenic change, suggestive of incomplete immunity. One causative factor is thought to be viral interference with dendritic cell (DC)-mediated stimulation of CD4+ T cells. Methodology, Principal Findings We infected human monocyte-derived DC with purified HRSV, HMPV, HPIV3, or influenza A virus (IAV) and compared their ability to induce activation and proliferation of autologous CD4+ T cells in vitro. IAV was included because symptomatic re-infection without antigenic change is less frequent, suggesting that immune protection is more complete and durable. We examined virus-specific memory responses and superantigen-induced responses by multiparameter flow cytometry. Live virus was more stimulatory than inactivated virus in inducing DC-mediated proliferation of virus-specific memory CD4+ T cells, suggesting a lack of strong suppression by live virus. There were trends of increasing proliferation in the order: HMPV<HRSV<HPIV3<IAV, and greater production of interferon-γ and tumor necrosis factor-α by proliferating cells in response to IAV, but differences were not significant. Exposure of DC to HRSV, HPIV3, or IAV reduced CD4+ T cell proliferation in response to secondary stimulus with superantigen, but the effect was transitory and greatest for IAV. T cell cytokine production was similar, with no evidence of Th2 or Th17 skewing. Conclusions, Significance Understanding the basis for the ability of HRSV in particular to symptomatically re-infect without significant antigenic change is of considerable interest. The present results show that these common respiratory viruses are similar in their ability to induce DC to activate CD4+ T cells. Thus, the results do not support the common model in which viral suppression of CD4+ T cell activation and proliferation by HRSV, HMPV, and HPIV3 is a major factor in the difference in re-infectability compared to IAV.
Collapse
|
168
|
Zhang L, Limberis MP, Thompson C, Antunes MB, Luongo C, Wilson JM, Collins PL, Pickles RJ. α-Fetoprotein gene delivery to the nasal epithelium of nonhuman primates by human parainfluenza viral vectors. Hum Gene Ther 2010; 21:1657-64. [PMID: 20735256 DOI: 10.1089/hum.2010.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, enormous effort has been focused on developing virus-based gene delivery vectors to target the respiratory airway epithelium as a potential treatment for cystic fibrosis (CF) lung disease. However, amongst other problems, the efficiency of gene delivery to the differentiated airway epithelial cells of the lung has been too low for clinical benefit. Although not a target for CF therapy, the nasal epithelium exhibits cellular morphology and composition similar to that of the lower airways, thus representing an accessible and relevant tissue target for evaluating novel and improved gene delivery vectors. We previously reported that replication-competent human parainfluenza virus (PIV)-based vectors efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to sufficient numbers of cultured CF airway epithelial cells to completely correct the bioelectric function of CF cells to normal levels, resulting in restoration of mucus transport. Here, using an in vitro model of rhesus airway epithelium, we demonstrate that PIV mediates efficient gene transfer in rhesus epithelium as in the human counterpart. Naive rhesus macaques were inoculated intranasally with a PIV vector expressing rhesus macaque α-fetoprotein (rhAFP), and expression was monitored longitudinally. rhAFP was detected in nasal lavage fluid and in serum samples, indicating that PIV-mediated gene transfer was effective and that rhAFP was secreted into both mucosal and serosal compartments. Although expression was transient, lasting up to 10 days, it paralleled virus replication, suggesting that as PIV was cleared, rhAFP expression was lost. No adverse reactions or signs of discomfort were noted, and only mild, transient elevations of a small number of inflammatory cytokines were measured at the peak of virus replication. In summary, rhAFP proved suitable for monitoring in vivo gene delivery over time, and PIV vectors appear to be promising airway-specific gene transfer vehicles that warrant further development.
Collapse
Affiliation(s)
- Liqun Zhang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, 27759, USA.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
|
170
|
Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry. PLoS Pathog 2010; 6:e1001168. [PMID: 21060819 PMCID: PMC2965769 DOI: 10.1371/journal.ppat.1001168] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/29/2010] [Indexed: 11/19/2022] Open
Abstract
In the paramyxovirus cell entry process, receptor binding triggers conformational changes in the fusion protein (F) leading to viral and cellular membrane fusion. Peptides derived from C-terminal heptad repeat (HRC) regions in F have been shown to inhibit fusion by preventing formation of the fusogenic six-helix bundle. We recently showed that the addition of a cholesterol group to HRC peptides active against Nipah virus targets these peptides to the membrane where fusion occurs, dramatically increasing their antiviral effect. In this work, we report that unlike the untagged HRC peptides, which bind to the postulated extended intermediate state bridging the viral and cell membranes, the cholesterol tagged HRC-derived peptides interact with F before the fusion peptide inserts into the target cell membrane, thus capturing an earlier stage in the F-activation process. Furthermore, we show that cholesterol tagging renders these peptides active in vivo: the cholesterol-tagged peptides cross the blood brain barrier, and effectively prevent and treat in an established animal model what would otherwise be fatal Nipah virus encephalitis. The in vivo efficacy of cholesterol-tagged peptides, and in particular their ability to penetrate the CNS, suggests that they are promising candidates for the prevention or therapy of infection by Nipah and other lethal paramyxoviruses.
Collapse
|
171
|
Lundin A, Bergström T, Bendrioua L, Kann N, Adamiak B, Trybala E. Two novel fusion inhibitors of human respiratory syncytial virus. Antiviral Res 2010; 88:317-24. [PMID: 20965215 DOI: 10.1016/j.antiviral.2010.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/14/2010] [Accepted: 10/11/2010] [Indexed: 12/11/2022]
Abstract
To search for novel drugs against human respiratory syncytial virus (RSV), we have screened a diversity collection of 16,671 compounds for anti-RSV activity in cultures of HEp-2 cells. Two of the hit compounds, i.e., the N-(2-hydroxyethyl)-4-methoxy-N-methyl-3-(6-methyl[1,2,4]triazolo[3,4-a]phthalazin-3-yl)benzenesulfonamide (designated as P13) and the 1,4-bis(3-methyl-4-pyridinyl)-1,4-diazepane (designated as C15), reduced the virus infectivity with IC₅₀ values of 0.11 and 0.13μM respectively. The concentration of P13 and C15 that reduced the viability of HEp-2 cells by 50% was 310 and 75μM respectively. Both P13 and C15 exhibited no direct virucidal activity or inhibitory effects on the virus attachment to cells. However, to inhibit formation of RSV-induced syncytial plaques P13 and C15 had to be present during the virus entry into the cells and the cell-to-cell transmission of the virus. The RSV multiplication in HEp-2 cells in the presence of P13 or C15 resulted in rapid selection of viral variants that were ∼1000 times less sensitive to these drugs than original virus. Sequencing of resistant viruses revealed presence of amino acid substitutions in the F protein of RSV, i.e., the D489G for C15-selected, and the T400I and N197T (some clones) for the P13-selected virus variants. In conclusion, we have identified two novel fusion inhibitors of RSV, and the detailed understanding of their mode of antiviral activity including selection for the drug resistant viral variants may help to develop selective and efficient anti-RSV drugs.
Collapse
Affiliation(s)
- Anna Lundin
- Department of Clinical Virology, University of Gothenburg, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
172
|
Okada SF, Zhang L, Kreda SM, Abdullah LH, Davis CW, Pickles RJ, Lazarowski ER, Boucher RC. Coupled nucleotide and mucin hypersecretion from goblet-cell metaplastic human airway epithelium. Am J Respir Cell Mol Biol 2010; 45:253-60. [PMID: 20935191 DOI: 10.1165/rcmb.2010-0253oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolite adenosine regulate airway mucociliary clearance via activation of purinoceptors. In this study, we investigated the contribution of goblet cells to airway epithelial ATP release. Primary human bronchial epithelial (HBE) cultures, typically dominated by ciliated cells, were induced to develop goblet cell metaplasia by infection with respiratory syncytial virus (RSV) or treatment with IL-13. Under resting conditions, goblet-cell metaplastic cultures displayed enhanced mucin secretion accompanied by increased rates of ATP release and mucosal surface adenosine accumulation as compared with nonmetaplastic control HBE cultures. Intracellular calcium chelation [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester] or disruption of the secretory pathways (nocodazole, brefeldin A, and N-ethylmaleimide) decreased mucin secretion and ATP release in goblet-cell metaplastic HBE cultures. Conversely, stimuli that triggered calcium-regulated mucin secretion (e.g., ionomycin or UTP) increased luminal ATP release and adenyl purine accumulation in control and goblet-cell metaplastic HBE cultures. Goblet cell-associated ATP release was not blocked by the connexin/pannexin hemichannel inhibitor carbenoxolone, suggesting direct nucleotide release from goblet cell vesicles rather than the hemichannel insertion. Collectively, our data demonstrate that nucleotide release is increased by goblet cell metaplasia, reflecting, at least in part, a mechanism tightly associated with goblet cell mucin secretion. Increased goblet cell nucleotide release and resultant adenosine accumulation provide compensatory mechanisms to hydrate mucins by paracrine stimulation of ciliated cell ion and water secretion and maintain mucociliary clearance, and to modulate inflammatory responses.
Collapse
Affiliation(s)
- Seiko F Okada
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Cytopathogenesis of Sendai virus in well-differentiated primary pediatric bronchial epithelial cells. J Virol 2010; 84:11718-28. [PMID: 20810726 DOI: 10.1128/jvi.00798-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sendai virus (SeV) is a murine respiratory virus of considerable interest as a gene therapy or vaccine vector, as it is considered nonpathogenic in humans. However, little is known about its interaction with the human respiratory tract. To address this, we developed a model of respiratory virus infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs). These physiologically authentic cultures are comprised of polarized pseudostratified multilayered epithelium containing ciliated, goblet, and basal cells and intact tight junctions. To facilitate our studies, we rescued a replication-competent recombinant SeV expressing enhanced green fluorescent protein (rSeV/eGFP). rSeV/eGFP infected WD-PBECs efficiently and progressively and was restricted to ciliated and nonciliated cells, not goblet cells, on the apical surface. Considerable cytopathology was evident in the rSeV/eGFP-infected cultures postinfection. This manifested itself by ciliostasis, cell sloughing, apoptosis, and extensive degeneration of WD-PBEC cultures. Syncytia were also evident, along with significant basolateral secretion of proinflammatory chemokines, including IP-10, RANTES, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), interleukin 6 (IL-6), and IL-8. Such deleterious responses are difficult to reconcile with a lack of pathogenesis in humans and suggest that caution may be required in exploiting replication-competent SeV as a vaccine vector. Alternatively, such robust responses might constitute appropriate normal host responses to viral infection and be a prerequisite for the induction of efficient immune responses.
Collapse
|
174
|
Toll-like receptor 4-mediated activation of p38 mitogen-activated protein kinase is a determinant of respiratory virus entry and tropism. J Virol 2010; 84:11359-73. [PMID: 20702616 DOI: 10.1128/jvi.00804-10] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses exert a heavy toll of morbidity and mortality worldwide. Despite this burden there are few specific treatments available for respiratory virus infections. Since many viruses utilize host cell enzymatic machinery such as protein kinases for replication, we determined whether pharmacological inhibition of kinases could, in principle, be used as a broad antiviral strategy for common human respiratory virus infections. A panel of green fluorescent protein (GFP)-expressing recombinant respiratory viruses, including an isolate of H1N1 influenza virus (H1N1/Weiss/43), was used to represent a broad range of virus families responsible for common respiratory infections (Adenoviridae, Paramyxoviridae, Picornaviridae, and Orthomyxoviridae). Kinase inhibitors were screened in a high-throughput assay that detected virus infection in human airway epithelial cells (1HAEo-) using a fluorescent plate reader. Inhibition of p38 mitogen-activated protein kinase (MAPK) signaling was able to significantly inhibit replication by all viruses tested. Therefore, the pathways involved in virus-mediated p38 and extracellular signal-regulated kinase (ERK) MAPK activation were investigated using bronchial epithelial cells and primary fibroblasts derived from MyD88 knockout mouse lungs. Influenza virus, which activated p38 MAPK to approximately 10-fold-greater levels than did respiratory syncytial virus (RSV) in 1HAEo- cells, was internalized about 8-fold faster and more completely than RSV. We show for the first time that p38 MAPK is a determinant of virus infection that is dependent upon MyD88 expression and Toll-like receptor 4 (TLR4) ligation. Imaging of virus-TLR4 interactions showed significant clustering of TLR4 at the site of virus-cell interaction, triggering phosphorylation of downstream targets of p38 MAPK, suggesting the need for a signaling receptor to activate virus internalization.
Collapse
|
175
|
Moscona A, Porotto M, Palmer S, Tai C, Aschenbrenner L, Triana-Baltzer G, Li QX, Wurtman D, Niewiesk S, Fang F. A recombinant sialidase fusion protein effectively inhibits human parainfluenza viral infection in vitro and in vivo. J Infect Dis 2010; 202:234-41. [PMID: 20533871 DOI: 10.1086/653621] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The first step in infection by human parainfluenza viruses (HPIVs) is binding to the surface of respiratory epithelial cells via interaction between viral receptor-binding molecules and sialic acid-containing receptors. DAS181, a recombinant sialidase protein containing the catalytic domain of Actinomyces viscosus sialidase, removes cell surface sialic acid, and we proposed that it would inhibit HPIV infection. METHODS Depletion of sialic acid receptors by DAS181 was evaluated by lectin-binding assays. Anti-HPIV activity in cultured cell lines and in human airway epithelium was assessed by the reduction in viral genomes and/or plaque forming units on treatment. In vivo efficacy of intranasally administered DAS181 was assessed using a cotton rat model. RESULTS DAS181-mediated desialylation led to anti-HPIV activity in cell lines and human airway epithelium. Intranasal DAS181 in cotton rats, a model for human disease, significantly curtailed infection. CONCLUSIONS Enzymatic removal of the sialic acid moiety of HPIV receptors inhibits infection with all tested HPIV strains, both in vitro and in cotton rats. Enzyme-mediated removal of sialic acid receptors represents a novel antiviral strategy for HPIV. The results of this study raise the possibility of a broad spectrum antiviral agent for influenza virus and HPIVs.
Collapse
Affiliation(s)
- Anne Moscona
- Departments of Pediatrics, Weill Medical College of Cornell University, New York, New York 10021, USA. (
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Foot-and-mouth disease virus replicates only transiently in well-differentiated porcine nasal epithelial cells. J Virol 2010; 84:9149-60. [PMID: 20592089 DOI: 10.1128/jvi.00642-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three-dimensional (3D) porcine nasal mucosal and tracheal mucosal epithelial cell cultures were developed to analyze foot-and-mouth disease virus (FMDV) interactions with mucosal epithelial cells. The cells in these cultures differentiated and polarized until they closely resemble the epithelial layers seen in vivo. FMDV infected these cultures predominantly from the apical side, primarily by binding to integrin alphav beta6, in an Arg-Gly-Asp (RGD)-dependent manner. However, FMDV replicated only transiently without any visible cytopathic effect (CPE), and infectious progeny virus could be recovered only from the apical side. The infection induced the production of beta interferon (IFN-beta) and the IFN-inducible gene Mx1 mRNA, which coincided with the disappearance of viral RNA and progeny virus. The induction of IFN-beta mRNA correlated with the antiviral activity of the supernatants from both the apical and basolateral compartments. IFN-alpha mRNA was constitutively expressed in nasal mucosal epithelial cells in vitro and in vivo. In addition, FMDV infection induced interleukin 8 (IL-8) protein, granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES mRNA in the infected epithelial cells, suggesting that it plays an important role in modulating the immune response.
Collapse
|
177
|
Respiratory syncytial virus engineered to express the cystic fibrosis transmembrane conductance regulator corrects the bioelectric phenotype of human cystic fibrosis airway epithelium in vitro. J Virol 2010; 84:7770-81. [PMID: 20504917 DOI: 10.1128/jvi.00346-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is the most common lethal recessive genetic disease in the Caucasian population. It is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that is normally expressed in ciliated airway epithelial cells and the submucosal glands of the lung. Since the CFTR gene was first characterized in 1989, a major goal has been to develop an effective gene therapy for CF lung disease, which has the potential to ameliorate morbidity and mortality. Respiratory syncytial virus (RSV) naturally infects the ciliated cells in the human airway epithelium. In addition, the immune response mounted against an RSV infection does not prevent subsequent infections, suggesting that an RSV-based vector might be effectively readministered. To test whether the large 4.5-kb CFTR gene could be expressed by a recombinant RSV and whether infectious virus could be used to deliver CFTR to ciliated airway epithelium derived from CF patients, we inserted the CFTR gene into four sites in a recombinant green fluorescent protein-expressing RSV (rgRSV) genome to generate virus expressing four different levels of CFTR protein. Two of these four rgRSV-CFTR vectors were capable of expressing CFTR with little effect on viral replication. rgRSV-CFTR infection of primary human airway epithelial cultures derived from CF patients resulted in expression of CFTR protein that was properly localized at the luminal surface and corrected the chloride ion channel defect in these cells.
Collapse
|
178
|
Abstract
OBJECTIVES The cell surface receptor used by an influenza virus to infect that cell is an N-acetyl neuraminic acid (NANA) residue terminally linked by an alpha2,3 or alpha2,6 bond to a carbohydrate moiety of a glycoprotein or glycolipid. Our aim was to determine a quick and technically simple method to determine cell receptor usage by whole influenza A virus particles. METHODS We employed surface plasmon resonance to detect the binding of viruses to fetuin, a naturally occurring glycoprotein that has both alpha2,3- and alpha2,6-linked NANA, and free 3'-sialyllactose or 6'-sialyllactose to compete virus binding. All virus stocks were produced in embryonated chicken's eggs. RESULTS The influenza viruses tested bound preferentially to NANAalpha2,3Gal or to NANAalpha2,6Gal, or showed no preference. Two PR8 viruses had different binding preferences. Binding preferences of viruses correlated well with their known biological properties. CONCLUSIONS Our data suggest that it is not easy to predict receptor usage by influenza viruses. However, direct experimental determination as described here can inform experiments concerned with viral pathogenesis, biology and structure. In principle, the methodology can be used for any virus that binds to a terminal NANA residue.
Collapse
Affiliation(s)
- Bo Meng
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | |
Collapse
|
179
|
Roth JP, Li JKK, Barnard DL. Human parainfluenza virus type 3 (HPIV-3): construction and rescue of an infectious, recombinant virus expressing the enhanced green fluorescent protein (EGFP). CURRENT PROTOCOLS IN MICROBIOLOGY 2010; Chapter 15:Unit 15F.1. [PMID: 20440682 PMCID: PMC2895816 DOI: 10.1002/9780471729259.mc15f01s17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability to rescue an infectious, recombinant RNA virus from a cDNA clone has led to new opportunities for measuring viral replication from a viral expressed reporter gene. In this protocol, the process of inserting the enhanced green fluorescent protein (EGFP) gene into the human parainfluenza virus type 3 (HPIV-3) antigenome and rescuing a recombinant, infectious virus is described. The first step in this process includes the generation of a cDNA clone copied from viral RNA isolated from an HPIV-3 wild-type infection. Next, the EGFP gene is inserted into the viral genome so that it is expressed independently during virus replication. Third, the viral support genes that are responsible for viral replication are cloned into T7 expression plasmids. Finally, an infectious, rHPIV3-EGFP virus is rescued from the cDNA clone with assistance from the viral support genes. Ultimately, cells infected with the rHPIV3-EGFP virus will emit green fluorescence that can be photographed and quantitated.
Collapse
Affiliation(s)
- Jason P. Roth
- Institute for Antiviral Research, Department of Animal, Dairy, Veterinary Sciences, Utah State University, Logan, UT 84322-5600, USA
| | - Joseph K.-K. Li
- Department of Biology, Utah State University, Logan, UT 84322-5305, USA
| | - Dale L. Barnard
- Institute for Antiviral Research, Department of Animal, Dairy, Veterinary Sciences, Utah State University, Logan, UT 84322-5600, USA
| |
Collapse
|
180
|
Schaap-Nutt A, Scull MA, Schmidt AC, Murphy BR, Pickles RJ. Growth restriction of an experimental live attenuated human parainfluenza virus type 2 vaccine in human ciliated airway epithelium in vitro parallels attenuation in African green monkeys. Vaccine 2010; 28:2788-98. [PMID: 20139039 PMCID: PMC2844349 DOI: 10.1016/j.vaccine.2010.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 11/10/2022]
Abstract
Human parainfluenza viruses (HPIVs) are common causes of severe pediatric respiratory viral disease. We characterized wild-type HPIV2 infection in an in vitro model of human airway epithelium (HAE) and found that the virus replicates to high titer, sheds apically, targets ciliated cells, and induces minimal cytopathology. Replication of an experimental, live attenuated HPIV2 vaccine strain, containing both temperature sensitive (ts) and non-ts attenuating mutations, was restricted >30-fold compared to rHPIV2-WT in HAE at 32 °C and exhibited little productive replication at 37 °C. This restriction paralleled attenuation in the upper and lower respiratory tract of African green monkeys, supporting the HAE model as an appropriate and convenient system for characterizing HPIV2 vaccine candidates.
Collapse
Affiliation(s)
- Anne Schaap-Nutt
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-2007, USA
| | | | | | | | | |
Collapse
|
181
|
Abstract
Cystic fibrosis (CF) is characterised by respiratory and pancreatic deficiencies that stem from the loss of fully functional CFTR (CF transmembrane conductance regulator) at the membrane of epithelial cells. Current treatment modalities aim to delay the deterioration in lung function, Which is mostly responsible for the relatively short life expectancy of CF sufferers; however none have so far successfully dealt with the underlying molecular defect. Novel pharmacological approaches to ameliorate the lack of active CFTR in respiratory epithelial cells are beginning to address more of the pathophysiological defects caused by CFTR mutations. However, CFTR gene replacement by gene therapy remains the most likely option for addressing the basic defects, including ion transport and inflammatory functions of CFTR. In this chapter, We will review the latest preclinical and clinical advances in pharmacotherapy and gene therapy for CF lung disease.
Collapse
|
182
|
Schaap-Nutt A, D'Angelo C, Scull MA, Amaro-Carambot E, Nishio M, Pickles RJ, Collins PL, Murphy BR, Schmidt AC. Human parainfluenza virus type 2 V protein inhibits interferon production and signaling and is required for replication in non-human primates. Virology 2009; 397:285-98. [PMID: 19969320 PMCID: PMC2822077 DOI: 10.1016/j.virol.2009.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/19/2009] [Accepted: 11/10/2009] [Indexed: 12/28/2022]
Abstract
In wild-type human parainfluenza virus type 2 (WT HPIV2), one gene (the P/V gene) encodes both the polymerase-associated phosphoprotein (P) and the accessory V protein. We generated a HPIV2 virus (rHPIV2-Vko) in which the P/V gene encodes only the P protein to examine the role of V in replication in vivo and as a potential live attenuated virus vaccine. Preventing expression of V protein severely impaired virus recovery from cDNA and growth in vitro, particularly in IFN-competent cells. rHPIV2-Vko, unlike WT HPIV2, strongly induced IFN-β and permitted IFN signaling, leading to establishment of a robust antiviral state. rHPIV2-Vko infection induced extensive syncytia and cytopathicity that was due to both apoptosis and necrosis. Replication of rHPIV2-Vko was highly restricted in the respiratory tract of African green monkeys and in differentiated primary human airway epithelial (HAE) cultures, suggesting that V protein is essential for efficient replication of HPIV2 in organized epithelial cells and that rHPIV2-Vko is over-attenuated for use as a live attenuated vaccine.
Collapse
Affiliation(s)
- Anne Schaap-Nutt
- Laboratory of Infectious Diseases, RNA Viruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Li W, Zhang L, Johnson JS, Zhijian W, Grieger JC, Ping-Jie X, Drouin LM, Agbandje-McKenna M, Pickles RJ, Samulski RJ. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium. Mol Ther 2009; 17:2067-77. [PMID: 19603002 PMCID: PMC2801879 DOI: 10.1038/mt.2009.155] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 06/11/2009] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.
Collapse
Affiliation(s)
- Wuping Li
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina 27599-7352, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Ayora-Talavera G, Shelton H, Scull MA, Ren J, Jones IM, Pickles RJ, Barclay WS. Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tracheal airway epithelium. PLoS One 2009; 4:e7836. [PMID: 19924306 PMCID: PMC2775162 DOI: 10.1371/journal.pone.0007836] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 10/13/2009] [Indexed: 02/06/2023] Open
Abstract
The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA) variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.
Collapse
Affiliation(s)
| | - Holly Shelton
- Department of Virology, Imperial College London, London, United Kingdom
| | - Margaret A. Scull
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Junyuan Ren
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Raymond J. Pickles
- Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wendy S. Barclay
- Department of Virology, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
185
|
Residues in the heptad repeat a region of the fusion protein modulate the virulence of Sendai virus in mice. J Virol 2009; 84:810-21. [PMID: 19906935 DOI: 10.1128/jvi.01990-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the molecular basis of fusion (F) protein refolding during membrane fusion has been studied extensively in vitro, little is known about the biological significance of membrane fusion activity in parainfluenza virus replication and pathogenesis in vivo. Two recombinant Sendai viruses, F-L179V and F-K180Q, were generated that contain F protein mutations in the heptad repeat A region of the ectodomain, a region of the protein known to regulate F protein activation. In vitro, the F-L179V virus caused increased syncytium formation (cell-cell membrane fusion) yet had a rate of replication and levels of F protein expression and cleavage similar to wild-type virus. The F-K180Q virus had a reduced replication rate along with reduced levels of F protein expression, cleavage, and fusogenicity. In DBA/2 mice, the hyperfusogenic F-L179V virus induced greater morbidity and mortality than wild-type virus, while the attenuated F-K180Q virus was much less pathogenic. During the first week of infection, virus replication and inflammation in the lungs were similar for wild-type and F-L179V viruses. After approximately 1 week of infection, the clearance of F-L179V virus was delayed, and more extensive interstitial inflammation and necrosis were observed in the lungs, affecting entire lobes of the lungs and having significantly greater numbers of syncytial cell masses in alveolar spaces on day 10. On the other hand, the slower-growing F-K180Q virus caused much less extensive inflammation than wild-type virus, presumably due to its reduced replication rate, and did not cause observable syncytium formation in the lungs. Overall, the results show that residues in the heptad repeat A region of the F protein modulate the virulence of Sendai virus in mice by influencing both the spread and clearance of the virus and the extent and severity of inflammation. An understanding of how the F protein contributes to infection and inflammation in vivo may assist in the development of antiviral therapies against respiratory paramyxoviruses.
Collapse
|
186
|
Respiratory syncytial virus grown in Vero cells contains a truncated attachment protein that alters its infectivity and dependence on glycosaminoglycans. J Virol 2009; 83:10710-8. [PMID: 19656891 DOI: 10.1128/jvi.00986-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) contains a heavily glycosylated 90-kDa attachment glycoprotein (G). Infection of HEp-2 and Vero cells in culture depends largely on virion G protein binding to cell surface glycosaminoglycans (GAGs). This GAG-dependent phenotype has been described for RSV grown in HEp-2 cells, but we have found that it is greatly reduced by a single passage in Vero cells. Virions produced from Vero cells primarily display a 55-kDa G glycoprotein. This smaller G protein represents a post-Golgi compartment form that is lacking its C terminus, indicating that the C terminus is required for GAG dependency. Vero cell-grown virus infected primary well-differentiated human airway epithelial (HAE) cell cultures 600-fold less efficiently than did HEp-2 cell-grown virus, indicating that the C terminus of the G protein is also required for virus attachment to this model of the in vivo target cells. This reduced infectivity for HAE cell cultures is not likely to be due to the loss of GAG attachment since heparan sulfate, the primary GAG used by RSV for attachment to HEp-2 cells, is not detectable at the apical surface of HAE cell cultures where RSV enters. Growing RSV stocks in Vero cells could dramatically reduce the initial infection of the respiratory tract in animal models or in volunteers receiving attenuated virus vaccines, thereby reducing the efficiency of infection or the efficacy of the vaccine.
Collapse
|
187
|
CFTR delivery to 25% of surface epithelial cells restores normal rates of mucus transport to human cystic fibrosis airway epithelium. PLoS Biol 2009; 7:e1000155. [PMID: 19621064 PMCID: PMC2705187 DOI: 10.1371/journal.pbio.1000155] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/11/2009] [Indexed: 12/19/2022] Open
Abstract
Delivering CFTR to ciliated cells of cystic fibrosis (CF) patients fully restores ion and fluid transport to the lumenal surface of airway epithelium and returns mucus transport rates to those of non-CF airways. Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl− and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways. The ciliated epithelium that lines the conducting airways of the lung normally functions to transport hydrated mucus secretions out of the airways to maintain respiratory sterility. Cystic fibrosis (CF) lung disease results from reduced airway surface hydration leading to decreased mucus clearance that precipitates bacterial infection and progressive obstructive lung disease. CF is a genetic disease, and the mutant protein is a chloride ion channel (CFTR) that normally regulates ion and fluid transport on the airway surface. Restoration of corrected CFTR function to the airway epithelium of CF patients by delivering a new CFTR gene to airway epithelial cells has long been envisioned as a therapeutic strategy for CF lung disease. Towards this goal, we use a novel viral vector to deliver CFTR to a culture model that represents the ciliated airway epithelium of CF patients and show that this strategy restores airway surface hydration and mucus transport to levels of that in non-CF individuals. This study demonstrates efficient and efficacious CFTR delivery to CF ciliated airway epithelium and that CFTR delivered to approximately 25% of the surface epithelial cells restores normal levels of airway surface hydration and mucus transport. These studies serve as a benchmark for the efficiency of CFTR gene delivery to CF airways for future CF gene therapy studies in vivo.
Collapse
|
188
|
Adair BM. Nanoparticle vaccines against respiratory viruses. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:405-14. [PMID: 20049806 PMCID: PMC7169756 DOI: 10.1002/wnan.45] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Influenza virus, respiratory syncytial virus (RSV), and parainfluenza type 3 virus (PI-3V) are the major viral agents which are consistently involved in causing lower respiratory tract disease in humans and animals. The virus infection begins in the upper respiratory tract, where immune responses are initiated, and then progresses to the lower respiratory tract where destruction of cells and tissues leads to bronchitis, bronchiolitis, and pneumonia, which is occasionally fatal. Nanoparticle vaccines, incorporating antigenic components from influenza, RSV, or PI-3V have been shown to be capable of stimulating mucosal and systemic immune responses, which can prevent the spread of infection to the lower respiratory tract. The encapsulation of viral proteins within nanoparticles may also facilitate production of respiratory vaccines which are efficacious in infants, where presence of maternally derived antibodies can reduce vaccine efficacy.
Collapse
Affiliation(s)
- Brian M Adair
- Virology Department, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stormont, Belfast, Northern Ireland, UK.
| |
Collapse
|
189
|
Kumlin U, Olofsson S, Dimock K, Arnberg N. Sialic acid tissue distribution and influenza virus tropism. Influenza Other Respir Viruses 2009; 2:147-54. [PMID: 19453419 PMCID: PMC4941897 DOI: 10.1111/j.1750-2659.2008.00051.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract Avian influenza A viruses exhibit a strong preference for using α2,3‐linked sialic acid as a receptor. Until recently, the presumed lack of this receptor in human airways was believed to constitute an efficient barrier to avian influenza A virus infection of humans. Recent zoonotic outbreaks of avian influenza A virus have triggered researchers to analyse tissue distribution of sialic acid in further detail. Here, we review and extend the current knowledge about sialic acid distribution in human tissues, and discuss viruses with ocular tropism and their preference for α2,3‐linked sialic acid.
Collapse
Affiliation(s)
- Urban Kumlin
- Department of Clinical Microbiology, Division of Virology, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
190
|
Abstract
In 2005, a human bocavirus was discovered in children with respiratory tract illnesses. Attempts to culture this virus on conventional cell lines has failed thus far. We investigated whether the virus can replicate on pseudostratified human airway epithelium. This cell culture system mimics the human airway environment and facilitates culturing of various respiratory agents. The cells were inoculated with human bocavirus-positive nasopharyngeal washes from children, and virus replication was monitored by measuring apical release of the virus via real-time PCR. Furthermore, we identified different viral mRNAs in the infected cells. All mRNAs were transcribed from a single promoter but varied due to alternative splicing and alternative polyadenylation, similar to what has been described for bovine parvovirus and minute virus of canines, the other two members of the Bocavirus genus. Thus, transcription of human bocavirus displays strong homology to the transcription of the other bocaviruses. In conclusion, we report here for the first time that human bocavirus can be propagated in an in vitro culture system and present a detailed map of the set of mRNAs that are produced by the virus.
Collapse
|
191
|
Scull MA, Gillim-Ross L, Santos C, Roberts KL, Bordonali E, Subbarao K, Barclay WS, Pickles RJ. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways. PLoS Pathog 2009; 5:e1000424. [PMID: 19436701 PMCID: PMC2673688 DOI: 10.1371/journal.ppat.1000424] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/10/2009] [Indexed: 11/19/2022] Open
Abstract
Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C), avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C). These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C), rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2) or A/PR/8/34 (H1N1) genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA) and neuraminidase (NA) from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and suggests that adaptation of avian influenza viruses to efficient infection at 32 degrees C may represent a critical evolutionary step enabling human-to-human transmission.
Collapse
Affiliation(s)
- Margaret A Scull
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Human parainfluenza virus infection of the airway epithelium: viral hemagglutinin-neuraminidase regulates fusion protein activation and modulates infectivity. J Virol 2009; 83:6900-8. [PMID: 19386708 DOI: 10.1128/jvi.00475-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three discrete activities of the paramyxovirus hemagglutinin-neuraminidase (HN) protein, receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein, each affect the promotion of viral fusion and entry. For human parainfluenza virus type 3 (HPIV3), the effects of specific mutations that alter these functions of the receptor-binding protein have been well characterized using cultured monolayer cells, which have identified steps that are potentially relevant to pathogenesis. In the present study, proposed mechanisms that are relevant to pathogenesis were tested in natural host cell cultures, a model of the human airway epithelium (HAE) in which primary HAE cells are cultured at an air-liquid interface and retain functional properties. Infection of HAE cells with wild-type HPIV3 and variant viruses closely reflects that seen in an animal model, the cotton rat, suggesting that HAE cells provide an ideal system for assessing the interplay of host cell and viral factors in pathogenesis and for screening for inhibitory molecules that would be effective in vivo. Both HN's receptor avidity and the function and timing of F activation by HN require a critical balance for the establishment of ongoing infection in the HAE, and these HN functions independently modulate the production of active virions. Alterations in HN's F-triggering function lead to the release of noninfectious viral particles and a failure of the virus to spread. The finding that the dysregulation of F triggering prohibits successful infection in HAE cells suggests that antiviral strategies targeted to HN's F-triggering activity may have promise in vivo.
Collapse
|
193
|
Griesenbach U, Alton EWFW. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009; 61:128-39. [PMID: 19138713 DOI: 10.1016/j.addr.2008.09.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022]
Abstract
Gene therapy is currently being developed for a wide range of acute and chronic lung diseases. The target cells, and to a degree the extra and intra-cellular barriers, are disease-specific and over the past decade the gene therapy community has recognized that no one vector is good for all applications, but that the gene transfer agent (GTA) has to be carefully matched to the specific disease target. Gene therapy is particularly attractive for diseases that currently do not have satisfactory treatment options and probably easier for monogenic disorders than for complex diseases. Cystic fibrosis (CF) fulfils these criteria and is, therefore, a good candidate for gene therapy-based treatment. This review will focus on CF as an example for lung gene therapy, but lessons learned may be applicable to other target diseases.
Collapse
Affiliation(s)
- Uta Griesenbach
- Department of Gene Therapy, Faculty of Medicine at the National Heart and Lung Institute, Imperial College London, Manresa Road, London SW36LR, UK.
| | | |
Collapse
|
194
|
A recombinant, infectious human parainfluenza virus type 3 expressing the enhanced green fluorescent protein for use in high-throughput antiviral assays. Antiviral Res 2009; 82:12-21. [PMID: 19189850 DOI: 10.1016/j.antiviral.2009.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/05/2009] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
The ability to rescue an infectious, recombinant, negative-stranded, RNA virus from a complementary DNA (cDNA) clone, has led to new opportunities for measuring viral replication from a viral expressed reporter gene. In this study, the enhanced green fluorescent protein (EGFP) gene was inserted into the human parainfluenza virus type 3 (HPIV-3) antigenome and a recombinant, infectious virus was rescued. Maximum EGFP expression levels, measured by fluorescence, were seen at day 3. Comparison of a 3-day, viral expressed EGFP fluorescence assay to a 7-day, neutral red assay, based on complete cell destruction in virus infected MA-104 cells, yielded Z'-factor values of 0.83 and 0.70, respectively. A 3-day, endpoint EGFP-based antiviral assay and a 7-day, endpoint neutral red based antiviral assay were run in parallel to establish antiviral sensitivity profiles of 23 compounds based on selective index (SI) values. Using an SI threshold of 10, the EGFP-based antiviral assay had a sensitivity of 100% and a specificity of 54%. Thus, the use of an EGFP-based antiviral assay for testing potential antiviral compounds against HPIV-3 in a high-throughput format may be justified.
Collapse
|
195
|
Bukreyev A, Marzi A, Feldmann F, Zhang L, Yang L, Ward JM, Dorward DW, Pickles RJ, Murphy BR, Feldmann H, Collins PL. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge. Virology 2009; 383:348-61. [PMID: 19010509 PMCID: PMC2649782 DOI: 10.1016/j.virol.2008.09.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
Abstract
We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/DeltaF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/DeltaF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/DeltaF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Base Sequence
- Blood/virology
- Body Weight
- Cell Line
- Chlorocebus aethiops
- Ebola Vaccines/genetics
- Ebola Vaccines/immunology
- Guinea Pigs
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Lung/virology
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Organ Culture Techniques
- Parainfluenza Virus 3, Human/genetics
- Parainfluenza Virus 3, Human/immunology
- Survival Analysis
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Virion/ultrastructure
Collapse
Affiliation(s)
- Alexander Bukreyev
- National Institute of Allergy and Infectious Diseases, Building 50, Room 6505, NIAID, National Institutes of Health, 50 South Dr. MSC 8007, Bethesda, MD 20892-8007, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3. Virology 2009; 385:169-82. [PMID: 19128816 DOI: 10.1016/j.virol.2008.11.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/08/2008] [Accepted: 11/25/2008] [Indexed: 12/25/2022]
Abstract
Human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), and human parainfluenza virus type 3 (HPIV3) are common, important respiratory pathogens, but HRSV has a substantially greater impact with regard to acute disease, long-term effects on airway function, and frequency of re-infection. It has been reported to strongly interfere with the functioning of dendritic cells (DC). We compared HRSV to HMPV and HPIV3 with regard to their effects on human monocyte-derived immature DC (IDC). Side-by-side analysis distinguished between common effects versus those specific to individual viruses. The use of GFP-expressing viruses yielded clear identification of robustly infected cells and provided the means to distinguish between direct effects of robust viral gene expression versus bystander effects. All three viruses infected inefficiently based on GFP expression, with considerable donor-to donor-variability. The GFP-negative cells exhibited low, abortive levels of viral RNA synthesis. The three viruses induced low-to-moderate levels of DC maturation and cytokine/chemokine responses, increasing slightly in the order HRSV, HMPV, and HPIV3. Infection at the individual cell level was relatively benign, such that in general GFP-positive cells were neither more nor less able to mature compared to GFP-negative bystanders, and cells were responsive to a secondary treatment with lipopolysaccharide, indicating that the ability to mature was not impaired. However, there was a single exception, namely that HPIV3 down-regulated CD38 expression at the RNA level. Maturation by these viruses was anti-apoptotic. Inefficient infection of IDC and sub-optimal maturation might result in reduced immune responses, but these effects would be common to all three viruses rather than specific to HRSV.
Collapse
|
197
|
Limberis MP, Vandenberghe LH, Zhang L, Pickles RJ, Wilson JM. Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 2008; 17:294-301. [PMID: 19066597 DOI: 10.1038/mt.2008.261] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have characterized the ability of adeno-associated virus (AAV) serotypes 1-9 in addition to nineteen novel vectors isolated from various tissues, to transduce mouse and human ciliated airway epithelium (HAE). Vectors expressing alpha-1-antitrypsin (AAT) and beta-galactosidase were co-instilled into the mouse lung. Of all the vectors tested rh.64R1, AAV5 and AAV6 were the most efficient. The high transduction observed in mouse was reproduced in HAE cell cultures for both rh.64R1 and AAV6 but not for AAV5. Since AAV6 was the most efficient vector in mouse and HAE we also tested the transduction efficiencies of the AAV6 singleton vectors (i.e., AAV6 variants with targeted mutations) in these models. Of these, AAV6.2 transduced mouse airway epithelium and HAE with greater efficiency than all other AAV vectors tested. We demonstrated that AAV6.2 exhibits improved transduction efficiency compared to previously reported AAVs in mouse airways and in culture models of human airway epithelium and that this vector requires further development for preclinical and clinical testing.
Collapse
Affiliation(s)
- Maria P Limberis
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
198
|
S Banach B, Orenstein JM, Fox LM, Randell SH, Rowley AH, Baker SC. Human airway epithelial cell culture to identify new respiratory viruses: coronavirus NL63 as a model. J Virol Methods 2008; 156:19-26. [PMID: 19027037 PMCID: PMC2671689 DOI: 10.1016/j.jviromet.2008.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 10/07/2008] [Accepted: 10/13/2008] [Indexed: 11/30/2022]
Abstract
Propagation of new human respiratory virus pathogens in established cell lines is hampered by a lack of predictability regarding cell line permissivity and by availability of suitable antibody reagents to detect infection in cell lines that do not exhibit significant cytopathic effect. Recently, molecular methods have been used to amplify and identify novel nucleic acid sequences directly from clinical samples, but these methods may be hampered by the quantity of virus present in respiratory secretions at different time points following the onset of infection. Human airway epithelial (HAE) cultures, which effectively mimic the human bronchial environment, allow for cultivation of a wide variety of human respiratory viral pathogens. The goal of the experiments described here was to determine if propagation and identification of a human respiratory virus may be achieved through inoculation of HAE cultures followed by whole transcriptome amplification (WTA) and sequence analysis. To establish proof-of-principle human coronavirus NL63 (HCoV-NL63) was evaluated, and the first visualization of HCoV-NL63 virus by transmission electron microscopy (TEM) is reported. Initial propagation of human respiratory secretions onto HAE cultures followed by TEM and WTA of culture supernatant may be a useful approach for visualization and detection of new human respiratory pathogens that have eluded identification by traditional approaches.
Collapse
Affiliation(s)
- Bridget S Banach
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, 2160 South First Avenue, Maywood, IL, USA
| | | | | | | | | | | |
Collapse
|
199
|
Differential sensitivity of differentiated epithelial cells to respiratory viruses reveals different viral strategies of host infection. J Virol 2008; 83:1962-8. [PMID: 19052091 DOI: 10.1128/jvi.01271-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To address the initiation of virus infection in the respiratory tract, we established two culture systems for differentiated bovine airway epithelial cells (BAEC). Filter-grown BAEC differentiated under air-liquid interface (ALI) conditions to generate a pseudo-stratified mucociliary epithelium. Alternatively, precision-cut lung slices (PCLS) from the bovine airways were generated that retained the original composition and distribution of differentiated epithelial cells. With both systems, epithelial cells were readily infected by bovine parainfluenza virus 3 (BPIV3). Ciliated cells were the most prominent cell type affected by BPIV3. Surprisingly, differentiated BAEC were resistant to infection by bovine respiratory syncytial virus (BRSV), when the virus was applied at the same multiplicity of infection that was sufficient for infection by BPIV3. In the case of PCLS, infection by BRSV was observed in cells located in lower cell layers but not in epithelial cells facing the lumen of the airways. The identity of the infected cells could not be determined because of a lack of specific antibodies. Increasing the virus titer 30-fold resulted in infection of the ALI cultures of BAEC, whereas in PCLS the ciliated epithelium was still refractory to infection by BRSV. These results indicate that differentiated BAEC are readily infected by BPIV3 but rather resistant to infection by BRSV. Disease caused by BRSV may require that calves encounter environmental stimuli that render BAEC susceptible to infection.
Collapse
|
200
|
Systematic assembly of a full-length infectious clone of human coronavirus NL63. J Virol 2008; 82:11948-57. [PMID: 18818320 DOI: 10.1128/jvi.01804-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Historically, coronaviruses were predominantly associated with mild upper respiratory disease in humans. More recently, three novel coronaviruses associated with severe human respiratory disease were found, including (i) the severe acute respiratory syndrome coronavirus, associated with a significant atypical pneumonia and 10% mortality; (ii) HKU-1, associated with chronic pulmonary disease; and (iii) NL63, associated with both upper and lower respiratory tract disease in children and adults worldwide. These discoveries establish coronaviruses as important human pathogens and underscore the need for continued research toward the development of platforms that will enable genetic manipulation of the viral genome, allowing for rapid and rational development and testing of candidate vaccines, vaccine vectors, and therapeutics. In this report, we describe a reverse genetics system for NL63, whereby five contiguous cDNAs that span the entire genome were used to generate a full-length cDNA. Recombinant NL63 viruses which contained the expected marker mutations replicated as efficiently as the wild-type NL63 virus. In addition, we engineered the heterologous green fluorescent protein gene in place of open reading frame 3 (ORF3) of the NL63 clone, simultaneously creating a unique marker for NL63 infection and demonstrating that the ORF3 protein product is nonessential for the replication of NL63 in cell culture. The availability of the NL63 and NL63gfp clones and recombinant viruses provides powerful tools that will help advance our understanding of this important human pathogen.
Collapse
|