151
|
Abstract
Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.
Collapse
Affiliation(s)
- H Sun
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
152
|
Poleev A, Hartmann A, Stamm S. A trans-acting factor, isolated by the three-hybrid system, that influences alternative splicing of the amyloid precursor protein minigene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4002-10. [PMID: 10866799 DOI: 10.1046/j.1432-1327.2000.01431.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two clones were isolated in a three-hybrid screen of a rat fetal brain P5 cDNA library with an intronic splicing enhancer of the amyloid precursor protein (APP) gene as RNA bait. These clones represent the rat homologues of the previously described genes CUG-binding protein (CUG-BP) and Siah-binding protein (Siah-BP). Both interact in a sequence-specific manner with the RNA bait used for library screening as well as with the CUG repeat. In contrast, no interactions were observed in the three-hybrid assay with other baits tested. In two-hybrid assays, Siah-BP interacts with U2AF65 as well as with itself. EWS, an RGG-type RNA-binding protein associated with Ewing sarcoma, was identified as an interacting partner for the CUG-BP homologue in a two-hybrid assay for protein-protein interactions performed with various factors involved in RNA metabolism. Splicing assays performed by RT-PCR from cells cotransfected with certain cDNAs and an APP minigene, used as a reporter, indicate exclusion of exon 8 if the CUG-BP homologue is present. We conclude that clone AF169013 and its counterpart in human CUG-BP could be the trans-acting factors that interact with the splicing enhancer downstream of exon 8, and in this way influence alternative splicing of the APP minigene.
Collapse
Affiliation(s)
- A Poleev
- Max-Planck-Institute for Neurobiology, Munich, Germany.
| | | | | |
Collapse
|
153
|
D'Souza I, Schellenberg GD. Determinants of 4-repeat tau expression. Coordination between enhancing and inhibitory splicing sequences for exon 10 inclusion. J Biol Chem 2000; 275:17700-9. [PMID: 10748133 DOI: 10.1074/jbc.m909470199] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the tau gene are pathogenic causing autosomal dominant frontotemporal dementia with Parkinsonism-chromosome 17 type (FTDP-17). Some mutations in tau exon 10 (E10) and immediately adjacent sequences cause disease by altering E10 splicing. To determine the mechanism of normal E10 splicing regulation and how FTDP-17 mutations alter splicing, mutational analysis of E10 was performed. The results show that E10 contains a complex array of both enhancer and inhibitor cis-acting elements that modulate usage of a weak 5' splice site. The 5' end of E10 contains a previously unrecognized multipartite exon splicing enhancer (ESE) composed of an SC35-like binding sequence, a purine-rich sequence, and an AC-rich element. Downstream of this ESE is a purine-rich exon splicing inhibitor. Intronic sequences immediately downstream of E10 also are inhibitory. The results support an alternative model in which I10 inhibitory sequences appear to function as a linear sequence. The cis-elements described are not redundant, and all appear required for normal E10 splicing. Results with double mutations demonstrate that the ESE and the intronic inhibitory element collaborate to regulate splicing. Thus splicing of tau E10 is regulated by a complex set of cis-acting elements that span nearly the entire exon and also include intronic sequences.
Collapse
Affiliation(s)
- I D'Souza
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, Washington 98108, USA
| | | |
Collapse
|
154
|
Morris NP, Oxford JT, Davies GB, Smoody BF, Keene DR. Developmentally regulated alternative splicing of the alpha1(XI) collagen chain: spatial and temporal segregation of isoforms in the cartilage of fetal rat long bones. J Histochem Cytochem 2000; 48:725-41. [PMID: 10820146 DOI: 10.1177/002215540004800601] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Type XI collagen is a component of the heterotypic collagen fibrils of fetal cartilage and is required to maintain the unusually thin diameter of these fibrils. The mature matrix form of the molecule retains an N-terminal variable region whose structure is modulated by alternative exon splicing that is tissue-specific and developmentally regulated. In the alpha1(XI) chain, antibodies to two of the peptides, p6b and p8, encoded by the alternatively spliced exons localized these epitopes to the surface of the collagen fibrils and were used to determine the pattern of isoform expression during the development of rat long bones (humerus). Expression of the p6b isoform was restricted to the periphery of the cartilage underlying the perichondrium of the diaphysis, a pattern that appears de novo at embryonic Day (E) 14. P8 isoforms appeared to be associated with early stages of chondrocyte differentiation and were detected throughout prechondrogenic mesenchyme and immature cartilage. After E16, p8 isoforms gradually disappeared from the diaphysis and then from the epiphysis preceding chondrocyte hypertrophy, but were highly evident at the periarticular joint surface, where ongoing chondrogenesis accompanies the formation of articular cartilage. The spatially restricted and differentiation-specific distribution of alpha1(XI) isoforms is evidence that Type XI collagen participates in skeletal development via a mechanism that may be distinct from regulation of fibrillogenesis.
Collapse
Affiliation(s)
- N P Morris
- Research Department, Shriners Hospital for Children, Portland, OR 97201, USA.
| | | | | | | | | |
Collapse
|
155
|
Stangl K, Cascorbi I, Laule M, Klein T, Stangl V, Rost S, Wernecke KD, Felix SB, Bindereif A, Baumann G, Roots I. High CA repeat numbers in intron 13 of the endothelial nitric oxide synthase gene and increased risk of coronary artery disease. PHARMACOGENETICS 2000; 10:133-40. [PMID: 10762001 DOI: 10.1097/00008571-200003000-00005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) plays a key role in vascular homeostasis. Because its product, nitric oxide, possesses vasodilatory and antiatherogenic properties, an altered eNOS function might promote atherosclerosis. We investigated the association between variations in CA repeat copy number [(CA), polymorphism] in intron 13 of the eNOS gene and the risk of coronary artery disease. (CA), polymorphism was investigated in 1000 consecutive patients with angiographically confirmed coronary artery disease and 1000 age- and gender-matched control subjects by a PCR-based fragment length calculation. Twenty-eight different alleles were identified containing 17-44 CA repeats. The presence of one allele containing > or = 38 repeats was associated with an excess risk of coronary artery disease (odds ratio 1.94, 95% confidence interval 1.31-2.86, P = 0.001). Carriers of alleles containing > or = 38 CA repeats were, in particular, overrepresented in the subgroup without common cardiovascular risk factors (odds ratio 3.39, 95% confidence interval 1.30-8.86, P = 0.009). Logistic regression analysis revealed that the (CA), polymorphism proved to be an independent risk factor (relative risk 2.17, 95% confidence interval 1.44-3.27, P = 0.0002). Our findings indicate that high numbers of CA repeats in intron 13 of the eNOS gene are associated with an excess risk of coronary artery disease.
Collapse
Affiliation(s)
- K Stangl
- Medizinische Klinik mit Schwerpunkt Kardiologie, Angiologie und Pneumologie, Charité, Humboldt Universität zu Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Liu HX, Chew SL, Cartegni L, Zhang MQ, Krainer AR. Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 2000; 20:1063-71. [PMID: 10629063 PMCID: PMC85223 DOI: 10.1128/mcb.20.3.1063-1071.2000] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exonic splicing enhancers (ESEs) are important cis elements required for exon inclusion. Using an in vitro functional selection and amplification procedure, we have identified a novel ESE motif recognized by the human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can also function in a different exonic context from the one used for the selection procedure. The selected sequences share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score matrix was generated from the selected sequences according to the nucleotide frequency at each position of their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the mouse immunoglobulin M (IgM) and human immunodeficiency virus tat genes. Multiple SC35 high-score motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon sequences.
Collapse
Affiliation(s)
- H X Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208, USA
| | | | | | | | | |
Collapse
|
157
|
Tu M, Tong W, Perkins R, Valentine CR. Predicted changes in pre-mRNA secondary structure vary in their association with exon skipping for mutations in exons 2, 4, and 8 of the Hprt gene and exon 51 of the fibrillin gene. Mutat Res 2000; 432:15-32. [PMID: 10729708 DOI: 10.1016/s1383-5726(99)00011-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exon skipping that accompanies exonic mutation might be caused by an effect of the mutation on pre-mRNA secondary structure. Previous attempts to associate predicted secondary structure of pre-mRNA with exon skipping have been hindered by either a small number of available mutations, sub-optimal structures, or weak effects on exon skipping. This report identifies more extensive sets of mutations from the human and hamster Hprt gene whose association with exon skipping is clear. Optimal secondary structures of the wild-type and mutant pre-mRNA surrounding each exon were predicted by energy minimization and were compared by energy dot plots. A significant association was found between the occurrence of exon skipping and the disruption of a stem containing the acceptor site consensus sequences of exon 8 of the human Hprt gene. However, no change in secondary structure was associated with skipping of exon 4 of the hamster Hprt gene. Using updated energy parameters we found a different structure than that previously reported for exon 2 of the hamster Hprt gene. In contrast to the previously reported structure, no significant association was found between predicted structural changes and skipping of exon 2. For all three Hprt exons studied, there was a significantly greater number of deoxythymidine substitutions among mutations accompanied by exon skipping than among mutations without exon skipping. For exon 8, deoxythymidine substitution was also associated with structural changes in the stem containing the acceptor site consensus sequences. For exon 51 of the human fibrillin gene, structural differences from wild type were predicted for all four mutations accompanied by exon skipping that were not were predicted for a single mutation without exon skipping. Our results suggest that both primary and secondary pre-mRNA structure contribute to definition of Hprt exons, which may involve exonic splicing enhancers.
Collapse
Affiliation(s)
- M Tu
- R.O.W. Sciences, National Center for Toxicological Research, Jefferson, AR 72079-9501, USA
| | | | | | | |
Collapse
|
158
|
Lu B, Dotzlaw H, Leygue E, Murphy LJ, Watson PH, Murphy LC. Estrogen receptor-alpha mRNA variants in murine and human tissues. Mol Cell Endocrinol 1999; 158:153-61. [PMID: 10630415 DOI: 10.1016/s0303-7207(99)00169-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A side-by-side comparison of several normal mouse and human tissues was undertaken in order to determine if exon-deleted variant ER-alpha mRNAs are expressed in the mouse. The data showed that the complex pattern of ER-alpha alternative splicing that is detected in multiple human tissues was not apparent in murine tissues. Only low levels of an exon-4 deleted ER-alpha transcript were detected in murine tissues, although multiple relatively abundant exon-deleted ER-alpha transcripts were detected in human tissues. The data support a species-specific difference in the expression of ER-alpha variant mRNAs between mouse and human.
Collapse
Affiliation(s)
- B Lu
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
159
|
Guth S, Martínez C, Gaur RK, Valcárcel J. Evidence for substrate-specific requirement of the splicing factor U2AF(35) and for its function after polypyrimidine tract recognition by U2AF(65). Mol Cell Biol 1999; 19:8263-71. [PMID: 10567551 PMCID: PMC84910 DOI: 10.1128/mcb.19.12.8263] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
U2 snRNP auxiliary factor (U2AF) promotes U2 snRNP binding to pre-mRNAs and consists of two subunits of 65 and 35 kDa, U2AF(65) and U2AF(35). U2AF(65) binds to the polypyrimidine (Py) tract upstream from the 3' splice site and plays a key role in assisting U2 snRNP recruitment. It has been proposed that U2AF(35) facilitates U2AF(65) binding through a network of protein-protein interactions with other splicing factors, but the requirement and function of U2AF(35) remain controversial. Here we show that recombinant U2AF(65) is sufficient to activate the splicing of two constitutively spliced pre-mRNAs in extracts that were chromatographically depleted of U2AF. In contrast, U2AF(65), U2AF(35), and the interaction between them are required for splicing of an immunoglobulin micro; pre-RNA containing an intron with a weak Py tract and a purine-rich exonic splicing enhancer. Remarkably, splicing activation by U2AF(35) occurs without changes in U2AF(65) cross-linking to the Py tract. These results reveal substrate-specific requirements for U2AF(35) and a novel function for this factor in pre-mRNA splicing.
Collapse
Affiliation(s)
- S Guth
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
160
|
Bourgeois CF, Popielarz M, Hildwein G, Stevenin J. Identification of a bidirectional splicing enhancer: differential involvement of SR proteins in 5' or 3' splice site activation. Mol Cell Biol 1999; 19:7347-56. [PMID: 10523623 PMCID: PMC84728 DOI: 10.1128/mcb.19.11.7347] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The adenovirus E1A pre-mRNA undergoes alternative splicing whose modulation occurs during infection, through the use of three different 5' splice sites and of one major or one minor 3' splice site. Although this pre-mRNA has been extensively used as a model to compare the transactivation properties of SR proteins, no cis-acting element has been identified in the transcript sequence. Here we describe the identification and the characterization of a purine-rich splicing enhancer, located just upstream of the 12S 5' splice site, which is formed from two contiguous 9-nucleotide (nt) purine motifs (Pu1 and Pu2). We demonstrate that this sequence is a bidirectional splicing enhancer (BSE) in vivo and in vitro, because it activates both the downstream 12S 5' splice site through the Pu1 motif and the upstream 216-nt intervening sequence (IVS) 3' splice site through both motifs. UV cross-linking and immunoprecipitation experiments indicate that the BSE interacts with several SR proteins specifically, among them 9G8 and ASF/SF2, which bind preferentially to the Pu1 and Pu2 motifs, respectively. Interestingly, we show by in vitro complementation assays that SR proteins have distinct transactivatory properties. In particular, 9G8, but not ASF/SF2 or SC35, is able to strongly activate the recognition of the 12S 5' splice site in a BSE-dependent manner in wild-type E1A or in a heterologous context, whereas ASF/SF2 or SC35, but not 9G8, activates the upstream 216-nt IVS splicing. Thus, our results identify a novel exonic BSE and the SR proteins which are involved in its differential activity.
Collapse
Affiliation(s)
- C F Bourgeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
161
|
Wu Q, Krainer AR. AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol 1999; 19:3225-36. [PMID: 10207048 PMCID: PMC84117 DOI: 10.1128/mcb.19.5.3225] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Q Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
162
|
Schaal TD, Maniatis T. Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences. Mol Cell Biol 1999; 19:1705-19. [PMID: 10022858 PMCID: PMC83964 DOI: 10.1128/mcb.19.3.1705] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Splicing enhancers are RNA sequences required for accurate splice site recognition and the control of alternative splicing. In this study, we used an in vitro selection procedure to identify and characterize novel RNA sequences capable of functioning as pre-mRNA splicing enhancers. Randomized 18-nucleotide RNA sequences were inserted downstream from a Drosophila doublesex pre-mRNA enhancer-dependent splicing substrate. Functional splicing enhancers were then selected by multiple rounds of in vitro splicing in nuclear extracts, reverse transcription, and selective PCR amplification of the spliced products. Characterization of the selected splicing enhancers revealed a highly heterogeneous population of sequences, but we identified six classes of recurring degenerate sequence motifs five to seven nucleotides in length including novel splicing enhancer sequence motifs. Analysis of selected splicing enhancer elements and other enhancers in S100 complementation assays led to the identification of individual enhancers capable of being activated by specific serine/arginine (SR)-rich splicing factors (SC35, 9G8, and SF2/ASF). In addition, a potent splicing enhancer sequence isolated in the selection specifically binds a 20-kDa SR protein. This enhancer sequence has a high level of sequence homology with a recently identified RNA-protein adduct that can be immunoprecipitated with an SRp20-specific antibody. We conclude that distinct classes of selected enhancers are activated by specific SR proteins, but there is considerable sequence degeneracy within each class. The results presented here, in conjunction with previous studies, reveal a remarkably broad spectrum of RNA sequences capable of binding specific SR proteins and/or functioning as SR-specific splicing enhancers.
Collapse
Affiliation(s)
- T D Schaal
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
163
|
Sierakowska H, Sambade MJ, Schümperli D, Kole R. Sensitivity of splice sites to antisense oligonucleotides in vivo. RNA (NEW YORK, N.Y.) 1999; 5:369-377. [PMID: 10094306 PMCID: PMC1369766 DOI: 10.1017/s135583829998130x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A series of HeLa cell lines which stably express beta-globin pre-mRNAs carrying point mutations at nt 654, 705, or 745 of intron 2 has been developed. The mutations generate aberrant 5' splice sites and activate a common 3' cryptic splice site upstream leading to aberrantly spliced beta-globin mRNA. Antisense oligonucleotides, which in vivo blocked aberrant splice sites and restored correct splicing of the pre-mRNA, revealed major differences in the sensitivity of these sites to antisense probes. Although the targeted pre-mRNAs differed only by single point mutations, the effective concentrations of the oligonucleotides required for correction of splicing varied up to 750-fold. The differences among the aberrant 5' splice sites affected sensitivity of both the 5' and 3' splice sites; in particular, sensitivity of both splice sites was severely reduced by modification of the aberrant 5' splice sites to the consensus sequence. These results suggest large differences in splicing of very similar pre-mRNAs in vivo. They also indicate that antisense oligonucleotides may provide useful tools for studying the interactions of splicing machinery with pre-mRNA.
Collapse
Affiliation(s)
- H Sierakowska
- Lineberger Comprehensive Cancer Center and Department of Pharmacology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
164
|
Cavaloc Y, Bourgeois CF, Kister L, Stévenin J. The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers. RNA (NEW YORK, N.Y.) 1999; 5:468-83. [PMID: 10094314 PMCID: PMC1369774 DOI: 10.1017/s1355838299981967] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The activity of the SR protein family of splicing factors in constitutive or alternative splicing requires direct interactions with the pre-mRNA substrate. Thus it is important to define the high affinity targets of the various SR species and to evaluate their ability to discriminate between defined RNA targets. We have analyzed the binding specificity of the 30-kDa SR protein 9G8, which contains a zinc knuckle in addition to the RNA binding domain (RBD). Using a SELEX approach, we demonstrate that 9G8 selects RNA sequences formed by GAC triplets, whereas a mutated zinc knuckle variant selects different RNA sequences, centered around a (A/U)C(A/U)(A/U)C motif, indicating that the zinc knuckle is involved in the RNA recognition specificity of 9G8. In contrast, SC35 selects sequences composed of pyrimidine or purine-rich motifs. Analyses of RNA-protein interactions with purified recombinant 30-kDa SR proteins or in nuclear extracts, by means of UV crosslinking and immunoprecipitation, demonstrate that 9G8, SC35, and ASF/SF2 recognize their specific RNA targets with high specificity. Interestingly, the RNA sequences selected by the mutated zinc knuckle 9G8 variant are efficiently recognized by SRp20, in agreement with the fact that the RBD of 9G8 and SRp20 are similar. Finally, we demonstrate the ability of 9G8 and of its zinc knuckle variant, or SRp20, to act as efficient splicing transactivators through their specific RNA targets. Our results provide the first evidence for cooperation between an RBD and a zinc knuckle in defining the specificity of an RNA binding domain.
Collapse
Affiliation(s)
- Y Cavaloc
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
165
|
Gersappe A, Pintel DJ. CA- and purine-rich elements form a novel bipartite exon enhancer which governs inclusion of the minute virus of mice NS2-specific exon in both singly and doubly spliced mRNAs. Mol Cell Biol 1999; 19:364-75. [PMID: 9858560 PMCID: PMC83894 DOI: 10.1128/mcb.19.1.364] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/1998] [Accepted: 09/23/1998] [Indexed: 01/04/2023] Open
Abstract
The alternatively spliced 290-nucleotide NS2-specific exon of the parvovirus minute virus of mice (MVM), which is flanked by a large intron upstream and a small intron downstream, constitutively appears both in the R1 mRNA as part of a large 5'-terminal exon (where it is translated in open reading frame 3 [ORF3]), and in the R2 mRNA as an internal exon (where it is translated in ORF2). We have identified a novel bipartite exon enhancer element, composed of CA-rich and purine-rich elements within the 5' and 3' regions of the exon, respectively, that is required to include NS2-specific exon sequences in mature spliced mRNA in vivo. These two compositionally different enhancer elements are somewhat redundant in function: either element alone can at least partially support exon inclusion. They are also interchangeable: either element can function at either position. Either a strong 3' splice site upstream (i.e., the exon 5' terminus) or a strong 5' splice site downstream (i.e., the exon 3' terminus) is sufficient to prevent skipping of the NS2-specific exon, and a functional upstream 3' splice site is required for inclusion of the NS2-specific exon as an internal exon into the mature, doubly spliced R2 mRNA. The bipartite enhancer functionally strengthens these termini: the requirement for both the CA-rich and purine-rich elements can be overcome by improvements to the polypyrimidine tract of the upstream intron 3' splice site, and the purine-rich element also supports exon inclusion mediated through the downstream 5' splice sites. In summary, a suboptimal large-intron polypyrimidine tract, sequences within the downstream small intron, and a novel bipartite exonic enhancer operate together to yield the balanced levels of R1 and R2 observed in vivo. We suggest that the unusual bipartite exonic enhancer functions to mediate proper levels of inclusion of the NS2-specific exon in both singly spliced R1 and doubly spliced R2.
Collapse
Affiliation(s)
- A Gersappe
- Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | |
Collapse
|
166
|
Hodges D, Cripps RM, O'Connor ME, Bernstein SI. The role of evolutionarily conserved sequences in alternative splicing at the 3' end of Drosophila melanogaster myosin heavy chain RNA. Genetics 1999; 151:263-76. [PMID: 9872965 PMCID: PMC1460470 DOI: 10.1093/genetics/151.1.263] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exon 18 of the muscle myosin heavy chain gene (Mhc) of Drosophila melanogaster is excluded from larval transcripts but included in most adult transcripts. To identify cis-acting elements regulating this alternative RNA splicing, we sequenced the 3' end of Mhc from the distantly related species D. virilis. Three noncoding regions are conserved: (1) the nonconsensus splice junctions at either end of exon 18; (2) exon 18 itself; and (3) a 30-nucleotide, pyrimidine-rich sequence located about 40 nt upstream of the 3' splice site of exon 18. We generated transgenic flies expressing Mhc mini-genes designed to test the function of these regions. Improvement of both splice sites of adult-specific exon 18 toward the consensus sequence switches the splicing pattern to include exon 18 in all larval transcripts. Thus nonconsensus splice junctions are critical to stage-specific exclusion of this exon. Deletion of nearly all of exon 18 does not affect stage-specific utilization. However, splicing of transcripts lacking the conserved pyrimidine sequence is severely disrupted in adults. Disruption is not rescued by insertion of a different polypyrimidine tract, suggesting that the conserved pyrimidine-rich sequence interacts with tissue-specific splicing factors to activate utilization of the poor splice sites of exon 18 in adult muscle.
Collapse
Affiliation(s)
- D Hodges
- Biology Department and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614, USA
| | | | | | | |
Collapse
|
167
|
Dye BT, Buvoli M, Mayer SA, Lin CH, Patton JG. Enhancer elements activate the weak 3' splice site of alpha-tropomyosin exon 2. RNA (NEW YORK, N.Y.) 1998; 4:1523-1536. [PMID: 9848651 PMCID: PMC1369723 DOI: 10.1017/s1355838298980360] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have identified four purine-rich sequences that act as splicing enhancer elements to activate the weak 3' splice site of alpha-tropomyosin exon 2. These elements also activate the splicing of heterologous substrates containing weak 3' splice sites or mutated 5' splice sites. However, they are unique in that they can activate splicing whether they are placed in an upstream or downstream exon, and the two central elements can function regardless of their position relative to one another. The presence of excess RNAs containing these enhancers could effectively inhibit in vitro pre-mRNA splicing reactions in a substrate-dependent manner and, at lower concentrations of competitor RNA, the addition of SR proteins could relieve the inhibition. However, when extracts were depleted by incubation with biotinylated exon 2 RNAs followed by passage over streptavidin agarose, SR proteins were not sufficient to restore splicing. Instead, both SR proteins and fractions containing a 110-kD protein were necessary to rescue splicing. Using gel mobility shift assays, we show that formation of stable enhancer-specific complexes on alpha-tropomyosin exon 2 requires the presence of both SR proteins and the 110-kD protein. By analogy to the doublesex exon enhancer elements in Drosophila, our results suggest that assembly of mammalian exon enhancer complexes requires both SR and non-SR proteins to activate selection of weak splice sites.
Collapse
Affiliation(s)
- B T Dye
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
168
|
Wu Q, Krainer AR. Purine-rich enhancers function in the AT-AC pre-mRNA splicing pathway and do so independently of intact U1 snRNP. RNA (NEW YORK, N.Y.) 1998; 4:1664-1673. [PMID: 9848661 PMCID: PMC1369733 DOI: 10.1017/s1355838298981432] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A rare class of introns in higher eukaryotes is processed by the recently discovered AT-AC spliceosome. AT-AC introns are processed inefficiently in vitro, but the reaction is stimulated by exon-definition interactions involving binding of U1 snRNP to the 5' splice site of the downstream conventional intron. We report that purine-rich exonic splicing enhancers also strongly stimulate sodium channel AT-AC splicing. Intact U2, U4, or U6 snRNAs are not required for enhancer function or for exon definition. Enhancer function is independent of U1 snRNP, showing that splicing stimulation by a downstream 5' splice site and by an exonic enhancer differ mechanistically.
Collapse
Affiliation(s)
- Q Wu
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
169
|
Zheng ZM, Huynen M, Baker CC. A pyrimidine-rich exonic splicing suppressor binds multiple RNA splicing factors and inhibits spliceosome assembly. Proc Natl Acad Sci U S A 1998; 95:14088-93. [PMID: 9826658 PMCID: PMC24331 DOI: 10.1073/pnas.95.24.14088] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bovine papillomavirus type 1 (BPV-1) exonic splicing suppressor (ESS) is juxtaposed immediately downstream of BPV-1 splicing enhancer 1 and negatively modulates selection of a suboptimal 3' splice site at nucleotide 3225. The present study demonstrates that this pyrimidine-rich ESS inhibits utilization of upstream 3' splice sites by blocking early steps in spliceosome assembly. Analysis of the proteins that bind to the ESS showed that the U-rich 5' region binds U2AF65 and polypyrimidine tract binding protein, the C-rich central part binds 35- and 54-55-kDa serine/arginine-rich (SR) proteins, and the AG-rich 3' end binds alternative splicing factor/splicing factor 2. Mutational and functional studies indicated that the most critical region of the ESS maps to the central C-rich core (GGCUCCCCC). This core sequence, along with additional nonspecific downstream nucleotides, is sufficient for partial suppression of spliceosome assembly and splicing of BPV-1 pre-mRNAs. The inhibition of splicing by the ESS can be partially relieved by excess purified HeLa SR proteins, suggesting that the ESS suppresses pre-mRNA splicing by interfering with normal bridging and recruitment activities of SR proteins.
Collapse
Affiliation(s)
- Z M Zheng
- Basic Research Laboratory, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Building 41, Room D305, Bethesda, MD 20892-5055, USA.
| | | | | |
Collapse
|
170
|
Sakuntabhai A, Hammami-Hauasli N, Bodemer C, Rochat A, Prost C, Barrandon Y, de Prost Y, Lathrop M, Wojnarowska F, Bruckner-Tuderman L, Hovnanian A. Deletions within COL7A1 exons distant from consensus splice sites alter splicing and produce shortened polypeptides in dominant dystrophic epidermolysis bullosa. Am J Hum Genet 1998; 63:737-48. [PMID: 9718359 PMCID: PMC1377417 DOI: 10.1086/302029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We describe two familial cases of dominant dystrophic epidermolysis bullosa (DDEB) that are heterozygous for deletions in COL7A1 that alter splicing, despite intact consensus splice-site sequences. One patient shows a 28-bp genomic deletion (6081del28) in exon 73 associated with the activation of a cryptic donor splice site within this exon; the combination of both defects restores the phase and replaces the last 11 Gly-X-Y repeats of exon 73 by a noncollagenous sequence, Glu-Ser-Leu. The second patient demonstrates a 27-bp deletion in exon 87 (6847del27), causing in-frame skipping of this exon; consensus splice sites, putative branch sites, and introns flanking exons 73 and 87 showed a normal sequence. Keratinocytes from the probands synthesized normal and shortened type VII collagen polypeptides and showed intracellular accumulation of type VII procollagen molecules. This first report of genomic deletions in COL7A1 in DDEB suggests a role for exonic sequences in the control of splicing of COL7A1 pre-mRNA and provides evidence that shortened type VII collagen polypeptides can alter, in a dominant manner, anchoring-fibril formation and can cause DDEB of differing severity.
Collapse
Affiliation(s)
- A Sakuntabhai
- Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Some genes that contain premature nonsense codons express alternatively-spliced mRNA that has skipped the exon containing the nonsense codon. This paradoxical association of translation signals (nonsense codons) and RNA splicing has inspired numerous explanations. The first is based on the fact that premature nonsense codons often reduce mRNA abundance. The reduction in abundance of full-length mRNA then allows more efficient amplification during PCR of normal, minor, exon-deleted products. This mechanism has been demonstrated to explain an extensive correlation between nonsense codons and exon-skipping for the hamster Hprt gene. The second explanation is that the mutation producing an in-frame nonsense codon has an effect on exon definition. This has been demonstrated for the Mup and hamster Hprt gene by virtue of the fact that missense mutations at the same sites also are associated with the same exon-deleted mRNA. The third general explanation is that a hypothetical process takes place in the nucleus that recognizes nonsense codons, termed 'nuclear scanning', which then has an effect on mRNA splicing. Definitive evidence for nuclear scanning is lacking. My analysis of both nonsense and missense mutations associated with exon skipping in a large number of genes revealed that both types of mutations frequently introduce a T into a purine-rich DNA sequence and are often within 30 base pairs of the nearest exon boundary. This is intriguing given that purine-rich splicing enhancers are known to be inhibited by the introduction of a T. Almost all mutations associated with exon skipping occur in purine-rich or A/C-rich sequences, also characteristics of splicing enhancers. I conclude that most cases of exon skipping associated with premature termination codons may be adequately explained either by a structural effect on exon definition or by nonquantitative methods to measure mRNA, rather than an effect on a putative nuclear scanning mechanism.
Collapse
Affiliation(s)
- C R Valentine
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR 72079-9502, USA.
| |
Collapse
|
172
|
López-Estraño C, Tschudi C, Ullu E. Exonic sequences in the 5' untranslated region of alpha-tubulin mRNA modulate trans splicing in Trypanosoma brucei. Mol Cell Biol 1998; 18:4620-8. [PMID: 9671472 PMCID: PMC109048 DOI: 10.1128/mcb.18.8.4620] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1998] [Accepted: 05/26/1998] [Indexed: 02/08/2023] Open
Abstract
Previous studies have identified a conserved AG dinucleotide at the 3' splice site (3'SS) and a polypyrimidine (pPy) tract that are required for trans splicing of polycistronic pre-mRNAs in trypanosomatids. Furthermore, the pPy tract of the Trypanosoma brucei alpha-tubulin 3'SS region is required to specify accurate 3'-end formation of the upstream beta-tubulin gene and trans splicing of the downstream alpha-tubulin gene. Here, we employed an in vivo cis competition assay to determine whether sequences other than those of the AG dinucleotide and the pPy tract were required for 3'SS identification. Our results indicate that a minimal alpha-tubulin 3'SS, from the putative branch site region to the AG dinucleotide, is not sufficient for recognition by the trans-splicing machinery and that polyadenylation is strictly dependent on downstream trans splicing. We show that efficient use of the alpha-tubulin 3'SS is dependent upon the presence of exon sequences. Furthermore, beta-tubulin, but not actin exon sequences or unrelated plasmid sequences, can replace alpha-tubulin exon sequences for accurate trans-splice-site selection. Taken together, these results support a model in which the informational content required for efficient trans splicing of the alpha-tubulin pre-mRNA includes exon sequences which are involved in modulation of trans-splicing efficiency. Sequences that positively regulate trans splicing might be similar to cis-splicing enhancers described in other systems.
Collapse
Affiliation(s)
- C López-Estraño
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8022, USA
| | | | | |
Collapse
|
173
|
Simpson CG, McQuade C, Lyon J, Brown JW. Characterization of exon skipping mutants of the COP1 gene from Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:125-131. [PMID: 9744100 DOI: 10.1046/j.1365-313x.1998.00184.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The removal of introns from pre-mRNA requires accurate recognition and selection of the intron splice sites. Mutations which alter splice site selection and which lead to skipping of specific exons are indicative of intron/exon recognition mechanisms involving an exon definition process. In this paper, three independent mutants to the COP1 gene in Arabidopsis which show exon skipping were identified and the mutations which alter the normal splicing pattern were characterized. The mutation in cop1-1 was a G-->A change 4 nt upstream from the 3' splice site of intron 5, while the mutation in cop1-2 was a G-->A at the first nucleotide of intron 6, abolishing the conserved G within the 5' splice site consensus. The effect of these mutations was skipping of exon 6. The mutation in cop1-8 was G-->A in the final nucleotide of intron 10 abolishing the conserved G within the 3' splice site consensus and leading to skipping of exon 11. The splicing patterns surrounding exons 6 and 11 of COP1 in these three mutant lines of Arabidopsis provide evidence for exon definition mechanisms operating in plant splicing.
Collapse
Affiliation(s)
- C G Simpson
- Cell and Molecular Genetics Department, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | |
Collapse
|
174
|
Liu HX, Zhang M, Krainer AR. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 1998; 12:1998-2012. [PMID: 9649504 PMCID: PMC316967 DOI: 10.1101/gad.12.13.1998] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/1997] [Accepted: 04/17/1998] [Indexed: 01/04/2023]
Abstract
Using an in vitro randomization and functional selection procedure, we have identified three novel classes of exonic splicing enhancers (ESEs) recognized by human SF2/ASF, SRp40, and SRp55, respectively. These ESEs are functional in splicing and are highly specific. For SF2/ASF and SRp55, in most cases, only the cognate SR protein can efficiently recognize an ESE and activate splicing. In contrast, the SRp40-selected ESEs can function with either SRp40 or SRp55, but not with SF2/ASF. UV cross-linking/competition and immunoprecipitation experiments showed that SR proteins recognize their cognate ESEs in nuclear extract by direct and specific binding. A motif search algorithm was used to derive consensus sequences for ESEs recognized by these SR proteins. Each SR protein yielded a distinct 5- to 7-nucleotide degenerate consensus. These three consensus sequences occur at higher frequencies in exons than in introns and may thus help define exon-intron boundaries. They occur in clusters within regions corresponding to naturally occurring, mapped ESEs. We conclude that a remarkably diverse set of sequences can function as ESEs. The degeneracy of these motifs is consistent with the fact that exonic enhancers evolved within extremely diverse protein coding sequences and are recognized by a small number of SR proteins that bind RNA with limited sequence specificity.
Collapse
Affiliation(s)
- H X Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208 USA
| | | | | |
Collapse
|
175
|
Jin W, Huang ES, Bi W, Cote GJ. Exon sequence is required for regulated RNA splicing of the human fibroblast growth factor receptor-1 alpha-exon. J Biol Chem 1998; 273:16170-6. [PMID: 9632672 DOI: 10.1074/jbc.273.26.16170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative RNA processing of the human fibroblast growth factor receptor-1 transcript results in receptor forms that vary in their affinity for fibroblast growth factor. An alternative RNA processing event involving recognition of the alpha-exon is deregulated during neoplastic transformation of glial cells. We have previously established a splicing reporter/transfection cell culture model system to identify sequences involved in recognition of this exon. In this study, the system was used to identify two sequence elements that differentially function to regulate splicing of this exon. Exclusion of the alpha-exon in glioblastoma cells specifically required the downstream intron sequence comprising the 5'-splice site. Replacement or mutation of this sequence increasing complementarity to U1 RNA resulted in enhanced exon recognition in SNB-19 glioblastoma cells. Sequences within the exon were found to be required for alpha-exon inclusion. Deletion and gain-of-function experiments identified a 69-nucleotide exon sequence that was specifically required for alpha-exon inclusion. These studies indicate that multiple sequences are required for the regulated recognition of the alpha-exon.
Collapse
Affiliation(s)
- W Jin
- Section of Endocrinology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
176
|
Abstract
In vitro selection of combinatorial nucleic acid libraries leads to specific target-binding molecules--RNA, single stranded DNA, modified RNA or modified DNA, commonly designated as aptamers--and to novel catalytic nucleic acids. The current state of aptamer and ribozyme technology is such that it establishes itself as a means of obtaining useful tools for molecular biology, diagnostics, molecular medicine and bio-organic chemistry.
Collapse
Affiliation(s)
- M Famulok
- Institut für Biochemie, LMU München, Germany.
| | | |
Collapse
|
177
|
König H, Ponta H, Herrlich P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 1998; 17:2904-13. [PMID: 9582284 PMCID: PMC1170631 DOI: 10.1093/emboj/17.10.2904] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing of pre-mRNA is a fundamental mechanism of differential gene expression in that it can give rise to functionally distinct proteins from a single gene, according to the developmental or physiological state of cells in multicellular organisms. In the pre-mRNA of the cell surface molecule CD44, the inclusion of up to 10 variant exons (v1-v10) is regulated during development, upon activation of lymphocytes and dendritic cells, and during tumour progression. Using minigene constructs containing CD44 exon v5, we have discovered exonic RNA elements that couple signal transduction to alternative splicing. They form a composite splice regulator encompassing an exon recognition element and splice silencer elements. Both type of elements are necessary to govern cell type-specific inclusion of the exon as well as inducible inclusion in T cells after stimulation by concanavalin A, by Ras signalling or after activation of protein kinase C by phorbol ester. Inducible splicing does not depend on de novo protein synthesis. The coupling of signal transduction to alternative splicing by such elements probably represents the mechanism whereby splice patterns of genes are established during development and can be changed under physiological and pathological conditions.
Collapse
Affiliation(s)
- H König
- Forschungzentrum Karlsruhe, Institut für Genetik, Karlsruhe, Germany
| | | | | |
Collapse
|
178
|
Carpenter CD, Simon AE. Analysis of sequences and predicted structures required for viral satellite RNA accumulation by in vivo genetic selection. Nucleic Acids Res 1998; 26:2426-32. [PMID: 9580696 PMCID: PMC147565 DOI: 10.1093/nar/26.10.2426] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In vivo genetic selection was used to study the sequences and structures required for accumulation of subviral sat-RNA C associated with turnip crinkle virus (TCV). This technique is advantageous over site-specific mutagenesis by allowing side-by-side selection from numerous sequence possibilities as well as sequence evolution. A 22 base hairpin and 6 base single-stranded tail located at the 3'-terminus of sat-RNA C were previously identified as the promoter for minus strand synthesis. Approximately 50% of plants co-inoculated with TCV and sat-RNA C containing randomized sequence in place of the 22 base hairpin accumulated sat-RNA in uninoculated leaves. The 22 base region differed in sat-RNA accumulating in all infected plants, but nearly all were predicted to fold into a hairpin structure that maintained the 6 base tail as a single-stranded sequence. Two additional rounds of sat-RNA amplification led to four sequence family 'winners', with three families containing multiple variants, indicating that evolution of these sequences was occurring in plants. Three of the four sequence family winners had the same 3 bp at the base of the stem as wild-type sat-RNA C. Two of the winners shared 15 of 22 identical bases, including the entire stem region and extending two bases into the loop. These results demonstrate the utility of the in vivo selection approach by showing that both sequence and structure contribute to a more active 3'-end region for accumulation of sat-RNA C.
Collapse
MESH Headings
- Base Sequence
- Brassica/virology
- Carmovirus/genetics
- Evolution, Molecular
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- RNA, Satellite/biosynthesis
- RNA, Satellite/chemistry
- RNA, Satellite/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Selection, Genetic
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- C D Carpenter
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
179
|
Lu B, Leygue E, Dotzlaw H, Murphy LJ, Murphy LC, Watson PH. Estrogen receptor-beta mRNA variants in human and murine tissues. Mol Cell Endocrinol 1998; 138:199-203. [PMID: 9685228 DOI: 10.1016/s0303-7207(98)00050-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Estrogen receptor (ER)-beta mRNA splice variants have been identified in human breast tumors as well as normal human and mouse ovarian, uterine and mammary tissues. In both species transcripts deleted in exons 5 or 6, or 5 + 6 have been characterized by RT-PCR followed by cloning and sequencing. In mouse tissues an ER-beta transcript containing 54 nucleotides inserted in frame between exons 5 and 6 was identified. Interestingly, no equivalent of the mouse inserted transcript was detected in any of the four human tissues analyzed.
Collapse
Affiliation(s)
- B Lu
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | |
Collapse
|
180
|
Staffa A, Acheson NH, Cochrane A. Novel exonic elements that modulate splicing of the human fibronectin EDA exon. J Biol Chem 1997; 272:33394-401. [PMID: 9407134 DOI: 10.1074/jbc.272.52.33394] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three exons in the fibronectin primary transcript are alternatively spliced in a tissue- and developmental stage-specific manner. One of these exons, EDA, has been shown previously by others to contain two splicing regulatory elements between 155 and 180 nucleotides downstream of the 3'-splice site: an exon splicing enhancer and a negative element. By transient expression of a chimeric beta-globin/fibronectin EDA intron in COS-7 cells, we have identified two additional exonic splicing regulatory elements. RNA generated by a construct containing the first 120 nucleotides of the fibronectin EDA exon was spliced with an efficiency of approximately 50%. Deletion of most of the fibronectin EDA exon sequences resulted in a 20-fold increase in the amount of spliced RNA, indicative of an exon splicing silencer. Deletion and mutagenesis studies suggest that the fibronectin exon splicing silencer is associated with a conserved RNA secondary structure. In addition, sequences between nucleotides 93 and 118 of the EDA exon contain a non-purine-rich splicing enhancer as demonstrated by its ability to function in a heterologous context.
Collapse
Affiliation(s)
- A Staffa
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
181
|
Buvoli M, Mayer SA, Patton JG. Functional crosstalk between exon enhancers, polypyrimidine tracts and branchpoint sequences. EMBO J 1997; 16:7174-83. [PMID: 9384594 PMCID: PMC1170318 DOI: 10.1093/emboj/16.23.7174] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We recently identified enhancer elements that activate the weak 3' splice site of alpha-tropomyosin exon 2 as well as a variety of heterologous weak 3' splice sites. To understand their mechanism of action, we devised an iterative selection strategy to identify functional pyrimidine tracts and branchpoint sequences in the presence or absence of enhancer elements. Surprisingly, we found that strong pyrimidine tracts were selected regardless of the presence of enhancer elements. However, the presence of enhancer elements resulted in the selection of multiple, non-consensus branchpoint sequences. Thus, enhancer elements apparently activate weak 3' splice sites primarily by increasing the efficiency of splicing of introns containing branchpoint sequences with less than optimal U2-branchpoint pairing arrangements. Comparison of consensus sequences from both our selection strategy and compilations of published intron sequences suggests that exon enhancer elements could be widespread and play an important role in the selection of 3' splice sites.
Collapse
Affiliation(s)
- M Buvoli
- Department of Molecular Biology, Vanderbilt University, Box 1820 Station B, Nashville, TN 37235, USA
| | | | | |
Collapse
|
182
|
Cooper TA, Mattox W. The regulation of splice-site selection, and its role in human disease. Am J Hum Genet 1997; 61:259-66. [PMID: 9311728 PMCID: PMC1715899 DOI: 10.1086/514856] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- T A Cooper
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|