151
|
Rosado IV, Kressler D, de la Cruz J. Functional analysis of Saccharomyces cerevisiae ribosomal protein Rpl3p in ribosome synthesis. Nucleic Acids Res 2007; 35:4203-13. [PMID: 17569673 PMCID: PMC1919493 DOI: 10.1093/nar/gkm388] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ribosome synthesis in eukaryotes requires a multitude of trans-acting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied trans-acting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA3, 27SBS and 7SL/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented.
Collapse
Affiliation(s)
- Iván V. Rosado
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain and Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Dieter Kressler
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain and Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
| | - Jesús de la Cruz
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain and Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany
- *To whom correspondence should be addressed. +34 95 455 71 06+34 95 455 71 04
| |
Collapse
|
152
|
Zemp I, Kutay U. Nuclear export and cytoplasmic maturation of ribosomal subunits. FEBS Lett 2007; 581:2783-93. [PMID: 17509569 DOI: 10.1016/j.febslet.2007.05.013] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 05/06/2007] [Indexed: 01/20/2023]
Abstract
Based on the characterization of ribosome precursor particles and associated trans-acting factors, a biogenesis pathway for the 40S and 60S subunits has emerged. After nuclear synthesis and assembly steps, pre-ribosomal subunits are exported through the nuclear pore complex in a Crm1- and RanGTP-dependent manner. Subsequent cytoplasmic biogenesis steps of pre-60S particles include the facilitated release of several non-ribosomal proteins, yielding fully functional 60S subunits. Cytoplasmic maturation of 40S subunit precursors includes rRNA dimethylation and pre-rRNA cleavage, allowing 40S subunits to achieve translation competence. We review current knowledge of nuclear export and cytoplasmic maturation of ribosomal subunits.
Collapse
Affiliation(s)
- Ivo Zemp
- Institute of Biochemistry, HPM F11.1, Schafmattstr. 18, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
153
|
West M, Hedges JB, Lo KY, Johnson AW. Novel interaction of the 60S ribosomal subunit export adapter Nmd3 at the nuclear pore complex. J Biol Chem 2007; 282:14028-37. [PMID: 17347149 DOI: 10.1074/jbc.m700256200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nuclear export of the large (60S) ribosomal subunit depends on the adapter protein Nmd3 to provide a nuclear export signal (NES). The leucine-rich NES is recognized by the export receptor Crm1 to mediate export via interaction with the nuclear pore complex (NPC). Here, we show that certain mutant Nmd3 proteins that are impaired for binding to the 60S subunit accumulate at the nuclear envelope. These mutant proteins also show enhanced binding to Crm1, both in vivo and in vitro. Although their interaction with the NPC is dependent on recognition of the NES by Crm1, their interaction with Crm1 is not strictly dependent on RanGTP. Using a collection of GFP-tagged nucleoporin mutants, we identified several nucleoporins, including components of the Nup82 complex that copurified with the mutant Nmd3. The Nup82 complex is on the cytoplasmic face of the NPC and has previously been shown to be important as a terminal binding site for Crm1-mediated export. Mutations in the Nup82 complex led to accumulation of wild-type Nmd3 in the nucleoplasm, suggesting that the interaction of mutant Nmd3 with the Nup82 complex reflects a defect in the bona fide export pathway for the 60S subunit. These results suggest that in the absence of the ribosome, Nmd3 is not efficiently released from Crm1 at the NPC.
Collapse
Affiliation(s)
- Matthew West
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, the University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
154
|
Yao W, Roser D, Köhler A, Bradatsch B, Bassler J, Hurt E. Nuclear Export of Ribosomal 60S Subunits by the General mRNA Export Receptor Mex67-Mtr2. Mol Cell 2007; 26:51-62. [PMID: 17434126 DOI: 10.1016/j.molcel.2007.02.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/02/2007] [Accepted: 02/21/2007] [Indexed: 01/13/2023]
Abstract
The yeast Mex67-Mtr2 complex and its homologous metazoan counterpart TAP-p15 operate as nuclear export receptors by binding and translocating mRNA through the nuclear pore complexes. Here, we show how Mex67-Mtr2 can also function in the nuclear export of the ribosomal 60S subunit. Biochemical and genetic studies reveal a previously unrecognized interaction surface on the NTF2-like scaffold of the Mex67-Mtr2 heterodimer, which in vivo binds to pre-60S particles and in vitro can interact with 5S rRNA. Crucial structural requirements for this binding platform are loop insertions in the middle domain of Mex67 and Mtr2, which are absent from human TAP-p15. Notably, when the positively charged amino acids in the Mex67 loop are mutated, interaction of Mex67-Mtr2 with pre-60S particles and 5S rRNA is inhibited, and 60S subunits, but not mRNA, accumulate in the nucleus. Thus, the general mRNA exporter Mex67-Mtr2 contains a distinct electrostatic interaction surface for transporting 60S preribosomal cargo.
Collapse
Affiliation(s)
- Wei Yao
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
155
|
Rosado IV, Dez C, Lebaron S, Caizergues-Ferrer M, Henry Y, de la Cruz J. Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol Cell Biol 2007; 27:1207-21. [PMID: 17145778 PMCID: PMC1800719 DOI: 10.1128/mcb.01523-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/08/2006] [Accepted: 11/24/2006] [Indexed: 11/20/2022] Open
Abstract
We report the characterization of the yeast Npa2p (Urb2p) protein, which is essential for 60S ribosomal subunit biogenesis. We identified this protein in a synthetic lethal screening with the rsa3 null allele. Rsa3p is a genetic partner of the putative RNA helicase Dbp6p. Mutation or depletion of Npa2p leads to a net deficit in 60S subunits and a decrease in the levels all 27S pre-rRNAs and mature 25S and 5.8S rRNAs. This is likely due to instability of early pre-60S particles. Consistent with a role of Npa2p in 60S subunit biogenesis, green fluorescent protein-tagged Npa2p localizes predominantly to the nucleolus and TAP-tagged Npa2p sediments with large complexes in sucrose gradients and is associated mainly with 27SA(2) pre-rRNA-containing preribosomal particles. In addition, we reveal a genetic synthetic interaction between Npa2p, several factors required for early steps of 60S subunit biogenesis (Dbp6p, Dbp7p, Dbp9p, Npa1p, Nop8p, and Rsa3p), and the 60S protein Rpl3p. Furthermore, coimmunoprecipitation and gel filtration analyses demonstrated that at least Npa2p, Dbp6p, Npa1p, Nop8p, and Rsa3p are present together in a subcomplex of low molecular mass whose integrity is independent of RNA. Our results support the idea that these five factors work in concert during the early steps of 60S subunit biogenesis.
Collapse
Affiliation(s)
- Iván V Rosado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
156
|
Meyer AE, Hung NJ, Yang P, Johnson AW, Craig EA. The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 2007; 104:1558-63. [PMID: 17242366 PMCID: PMC1785244 DOI: 10.1073/pnas.0610704104] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Indexed: 12/20/2022] Open
Abstract
J-proteins and Hsp70 chaperones function together in diverse cellular processes. We identified a cytosolic J-protein, Jjj1, of Saccharomyces cerevisiae that is associated with 60S ribosomal particles. Unlike Zuo1, a 60S subunit-associated J-protein that is a component of the chaperone machinery that binds nascent polypeptide chains upon their exit from the ribosome, Jjj1 plays a role in ribosome biogenesis. Cells lacking Jjj1 have phenotypes very similar to those lacking Rei1, a ribosome biogenesis factor associated with pre-60S ribosomal particles in the cytosol. Jjj1 stimulated the ATPase activity of the general cytosolic Hsp70 Ssa, but not Ssb, Zuo1's ribosome-associated Hsp70 partner. Overexpression of Jjj1, which is normally approximately 40-fold less abundant than Zuo1, can partially rescue the phenotypes of cells lacking Zuo1 as well as cells lacking Ssb. Together, these results are consistent with the idea that Jjj1 normally functions with Ssa in a late, cytosolic step of the biogenesis of 60S ribosomal subunits. In addition, because of its ability to bind 60S subunits, we hypothesize that Jjj1, when overexpressed, is able to partially substitute for the Zuo1:Ssb chaperone machinery by recruiting Ssa to the ribosome, facilitating its interaction with nascent polypeptide chains.
Collapse
Affiliation(s)
- Alison E. Meyer
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| | - Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and Institute of Molecular Biology, University of Texas, Austin, TX 78712
| | - Peizhen Yang
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| | - Arlen W. Johnson
- Section of Molecular Genetics and Microbiology and Institute of Molecular Biology, University of Texas, Austin, TX 78712
| | - Elizabeth A. Craig
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| |
Collapse
|
157
|
Baydoun H, Duc-Dodon M, Lebrun S, Gazzolo L, Bex F. Regulation of the human T-cell leukemia virus gene expression depends on the localization of regulatory proteins Tax, Rex and p30II in specific nuclear subdomains. Gene 2007; 386:191-201. [PMID: 17071021 DOI: 10.1016/j.gene.2006.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/31/2006] [Accepted: 09/07/2006] [Indexed: 12/11/2022]
Abstract
The human T-cell leukemia virus HTLV-1 encodes regulatory proteins, Tax, Rex and p30(II), which are involved in the control of viral gene expression at the transcriptional and post-transcriptional levels. Tax localizes in unique nuclear bodies that contain components of the transcription and splicing complexes. In this work, we studied the relative intracellular localizations of Tax, Rex and p30(II). Run-on transcription assays and immunocytochemistry at light and electron microscopy levels indicated that the Tax nuclear bodies included both de novo transcribed RNA and the RNA polymerase II form that is phosphorylated on its carboxy-terminal domain whereas contacts with chromatin were observed at the periphery of these nuclear bodies. Rex first accumulated in nucleolar foci and then spread across the whole nucleus to display a diffuse and punctuate nucleoplasmic distribution. This distribution of Rex was observed in HTLV-1 transformed lymphocytes and in COS cells expressing the HTLV-1 provirus. Rex colocalized with the cellular export factor CRM-1 in the nucleolar foci as well as in the nucleoplasmic foci that did not overlap with Tax nuclear bodies but were found at the boundaries of the Tax bodies. In addition, we demonstrate that p30(II) interacts with Rex and colocalizes with the Rex/CRM-1 complexes in the nucleoli leading to their clearance from the nucleoplasm. Our results suggest that transcripts originating from Tax-induced activation of gene expression at the boundaries of the Tax bodies are transported out of the nucleus by nucleoplasmic Rex/CRM-1 complexes that are first assembled in nucleolar foci. In addition, p30(II) might exert its negative effect on viral RNA transport by preventing the release of the Rex/CRM-1 complexes from sequestration in nucleolar foci. These data support the idea that the transcriptional and post-transcriptional regulation of HTLV-1 gene expression depends on the concentration of select regulatory complexes at specific area of the nucleus.
Collapse
Affiliation(s)
- Hicham Baydoun
- Institute for Microbiological Research J-M Wiame and Laboratory of Microbiology, University of Brussels, Belgium
| | | | | | | | | |
Collapse
|
158
|
Chiocchetti A, Zhou J, Zhu H, Karl T, Haubenreisser O, Rinnerthaler M, Heeren G, Oender K, Bauer J, Hintner H, Breitenbach M, Breitenbach-Koller L. Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp Gerontol 2006; 42:275-86. [PMID: 17174052 DOI: 10.1016/j.exger.2006.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/27/2006] [Accepted: 11/07/2006] [Indexed: 11/17/2022]
Abstract
The yeast ribosome is composed of two subunits, the large 60S subunit (LSU) and the small 40S subunit (SSU) and harbors 78 ribosomal proteins (RPs), 59 of which are encoded by duplicate genes. Recently, deletions of the LSU paralogs RPL31A and RPL6B were found to increase significantly yeast replicative life span (RLS). RPs Rpl10 and Rps6 are known translational regulators. Here, we report that heterozygosity for rpl10Delta but not for rpl25Delta, both LSU single copy RP genes, increased RLS by 24%. Deletion of the SSU RPS6B paralog, but not of the RPS6A paralog increased replicative life span robustly by 45%, while deletion of both the SSU RPS18A, and RPS18B paralogs increased RLS moderately, but significantly by 15%. Altering the gene dosage of RPL10 reduced the translating ribosome population, whereas deletion of the RPS6A, RPS6B, RPS18A, and RPS18B paralogs produced a large shift in free ribosomal subunit stoichiometry. We observed a reduction in growth rate in all deletion strains and reduced cell size in the SSU RPS6B, RPS6A, and RPS18B deletion strains. Thus, reduction of gene dosage of RP genes belonging to both the 60S and the 40S subunit affect lifespan, possibly altering the aging process by modulation of translation.
Collapse
Affiliation(s)
- Andreas Chiocchetti
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Klauck SM, Felder B, Kolb-Kokocinski A, Schuster C, Chiocchetti A, Schupp I, Wellenreuther R, Schmötzer G, Poustka F, Breitenbach-Koller L, Poustka A. Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 2006; 11:1073-84. [PMID: 16940977 DOI: 10.1038/sj.mp.4001883] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism has a strong genetic background with a higher frequency of affected males suggesting involvement of X-linked genes and possibly also other factors causing the unbalanced sex ratio in the etiology of the disorder. We have identified two missense mutations in the ribosomal protein gene RPL10 located in Xq28 in two independent families with autism. We have obtained evidence that the amino-acid substitutions L206M and H213Q at the C-terminal end of RPL10 confer hypomorphism with respect to the regulation of the translation process while keeping the basic translation functions intact. This suggests the contribution of a novel, possibly modulating aberrant cellular function operative in autism. Previously, we detected high expression of RPL10 by RNA in situ hybridization in mouse hippocampus, a constituent of the brain limbic system known to be afflicted in autism. Based on these findings, we present a model for autistic disorder where a change in translational function is suggested to impact on those cognitive functions that are mediated through the limbic system.
Collapse
Affiliation(s)
- S M Klauck
- Division of Molecular Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Hedges J, Chen YI, West M, Bussiere C, Johnson AW. Mapping the Functional Domains of Yeast NMD3, the Nuclear Export Adapter for the 60 S Ribosomal Subunit. J Biol Chem 2006; 281:36579-87. [PMID: 17015443 DOI: 10.1074/jbc.m606798200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear export of the large ribosomal subunit requires the adapter protein Nmd3p to provide a leucine-rich nuclear export signal that is recognized by the export receptor Crm1. Nmd3p binds to the pre-60 S subunit in the nucleus. After export to the cytoplasm, the release of Nmd3p depends on the ribosomal protein Rpl10p and the GTPase Lsg1p. Here, we have carried out a mutational analysis of Nmd3 to better define the domains responsible for nucleocytoplasmic shuttling and ribosome binding. We show that mutations in two regions of Nmd3p affect 60 S binding, suggesting that its binding to the subunit is multivalent.
Collapse
Affiliation(s)
- John Hedges
- Section of Molecular Genetics and Microbiology and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78172-1095, USA
| | | | | | | | | |
Collapse
|
161
|
Biton M, Mandelboim M, Arvatz G, Michaeli S. RNAi interference of XPO1 and Sm genes and their effect on the spliced leader RNA in Trypanosoma brucei. Mol Biochem Parasitol 2006; 150:132-43. [PMID: 16916550 DOI: 10.1016/j.molbiopara.2006.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 07/03/2006] [Accepted: 07/11/2006] [Indexed: 12/30/2022]
Abstract
In trypanosomes, trans-splicing is a major essential RNA-processing mechanism that involves the addition of a spliced leader sequence to all mRNAs from a small RNA species, known as the spliced leader RNA (SL RNA). SL RNA maturation is poorly understood and it is not clear where assembly with Sm proteins takes place. In this study, we followed the localization of the SL RNA during knockdown of Sm proteins and XPO1, which in metazoa functions in transport of mRNA and U snRNAs from the nucleus to the cytoplasm. We found that XPO1 has no role in SL RNA biogenesis in wild-type cells, or when the cells are depleted of Sm proteins. During Sm depletion, 'defective' SL RNA lacking cap modification at position +4 first accumulates in the nucleus, suggesting that Sm assembly on SL RNA most probably takes place in this compartment. Only after massive nuclear accumulation is the 'defective' SL RNA exported to the cytoplasm to form SL RNP-C, which may be a route to dispose of SL RNA when its normal biogenesis is blocked.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Autoantigens/genetics
- Autoantigens/physiology
- Cell Nucleus/chemistry
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Karyopherins/genetics
- Karyopherins/physiology
- Kinetics
- Protozoan Proteins/genetics
- Protozoan Proteins/physiology
- RNA Interference
- RNA Processing, Post-Transcriptional/physiology
- RNA, Protozoan/analysis
- RNA, Protozoan/metabolism
- RNA, Spliced Leader/analysis
- RNA, Spliced Leader/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/physiology
- Trans-Splicing
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/physiology
- snRNP Core Proteins
- Exportin 1 Protein
Collapse
Affiliation(s)
- Moshe Biton
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
162
|
Panse VG, Kressler D, Pauli A, Petfalski E, Gnädig M, Tollervey D, Hurt E. Formation and nuclear export of preribosomes are functionally linked to the small-ubiquitin-related modifier pathway. Traffic 2006; 7:1311-21. [PMID: 16978391 PMCID: PMC7610852 DOI: 10.1111/j.1600-0854.2006.00471.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ribosomal precursor particles are initially assembled in the nucleolus prior to their transfer to the nucleoplasm and export to the cytoplasm. In a screen to identify thermosensitive (ts) mutants defective in the export of pre-60S ribosomal subunit, we isolated the rix16-1 mutant. In this strain, nucleolar accumulation of the Rpl25-eGFP reporter was complemented by UBA2 (a subunit of the E1 sumoylation enzyme). Mutations in UBC9 (E2 enzyme), ULP1 [small-ubiquitin-related modifier (SUMO) isopeptidase] and SMT3 (SUMO-1) caused 60S export defects. A directed analysis of the SUMO proteome revealed that many ribosome biogenesis factors are sumoylated. Importantly, preribosomal particles along both the 60S and the 40S synthesis pathways were decorated with SUMO, showing its direct involvement. Consistent with this, early 60S assembly factors were genetically linked to SUMO conjugation. Notably, the SUMO deconjugating enzyme Ulp1, which localizes to the nuclear pore complex (NPC), was functionally linked to the 60S export factor Mtr2. Together our data suggest that sumoylation of preribosomal particles in the nucleus and subsequent desumoylation at the NPC is necessary for efficient ribosome biogenesis and export in eukaryotes.
Collapse
Affiliation(s)
- Vikram Govind Panse
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Dieter Kressler
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- These authors contributed equally to this work
| | - Andrea Pauli
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
- These authors contributed equally to this work
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elisabeth Petfalski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Maren Gnädig
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
163
|
Seiser RM, Sundberg AE, Wollam BJ, Zobel-Thropp P, Baldwin K, Spector MD, Lycan DE. Ltv1 is required for efficient nuclear export of the ribosomal small subunit in Saccharomyces cerevisiae. Genetics 2006; 174:679-91. [PMID: 16888326 PMCID: PMC1602086 DOI: 10.1534/genetics.106.062117] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/31/2006] [Indexed: 01/28/2023] Open
Abstract
In eukaryotes, 40S and 60S ribosomal subunits are assembled in the nucleus and exported to the cytoplasm independently of one another. Nuclear export of the 60S requires the adapter protein Nmd3, but no analogous adapter has been identified for the 40S. Ltv1 is a nonessential, nonribosomal protein that is required for 40S subunit biogenesis in yeast. Cells lacking LTV1 grow slowly, are hypersensitive to inhibitors of protein synthesis, and produce about half as many 40S subunits as do wild-type cells. Ltv1 interacts with Crm1, co-sediments in sucrose gradients with 43S/40S subunits, and copurifies with late 43S particles. Here we show that Ltv1 shuttles between nucleus and cytoplasm in a Crm1-dependent manner and that it contains a functional NES that is sufficient to direct the export of an NLS-containing reporter. Small subunit export is reduced in Deltaltv1 mutants, as judged by the altered distribution of the 5'-ITS1 rRNA and the 40S ribosomal protein RpS3. Finally, we show a genetic interaction between LTV1 and YRB2, a gene that encodes a Ran-GTP-, Crm1-binding protein that facilitates the small subunit export. We propose that Ltv1 functions as one of several possible adapter proteins that link the nuclear export machinery to the small subunit.
Collapse
Affiliation(s)
- Robert M Seiser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Rao MRKS, Kumari G, Balasundaram D, Sankaranarayanan R, Mahalingam S. A novel lysine-rich domain and GTP binding motifs regulate the nucleolar retention of human guanine nucleotide binding protein, GNL3L. J Mol Biol 2006; 364:637-54. [PMID: 17034816 DOI: 10.1016/j.jmb.2006.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 01/13/2023]
Abstract
A variety of G-proteins and GTPases are known to be involved in nucleolar function. We describe here a new evolutionarily conserved putative human GTPase, guanine nucleotide binding protein-like 3-like (GNL3L). Genes encoding proteins related to GNL3L are present in bacteria and yeast to metazoa and suggests its critical role in development. Conserved domain search analysis revealed that the GNL3L contains a circularly permuted G-motif described by a G5-G4-G1-G2-G3 pattern similar to the HSR1/MMR1 GTP-binding protein subfamily. Highly conserved and critical residues were identified from a three-dimensional structural model obtained for GNL3L using the crystal structure of an Ylqf GTPase from Bacillus subtilis. We demonstrate here that GNL3L is transported into the nucleolus by a novel lysine-rich nucleolar localization signal (NoLS) residing within 1-50 amino acid residues. NoLS identified here is necessary and sufficient to target the heterologous proteins to the nucleolus. We show for the first time that the lysine-rich targeting signal interacts with the nuclear transport receptor, importin-beta and transports GNL3L into the nucleolus. Interestingly, depletion of intracellular GTP blocks GNL3L accumulation into the nucleolar compartment. Furthermore, mutations within the G-domains alter the GTP binding ability of GNL3L and abrogate wild-type nucleolar retention even in the presence of functional NoLS, suggesting that the efficient nucleolar retention of GNL3L involves activities of both basic NoLS and GTP-binding domains. Collectively, these data suggest that GNL3L is composed of distinct modules, each of which plays a specific role in molecular interactions for its nucleolar retention and subsequent function(s) within the nucleolus.
Collapse
Affiliation(s)
- M R K Subba Rao
- Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad 500076, India
| | | | | | | | | |
Collapse
|
165
|
Honma Y, Kitamura A, Shioda R, Maruyama H, Ozaki K, Oda Y, Mini T, Jenö P, Maki Y, Yonezawa K, Hurt E, Ueno M, Uritani M, Hall MN, Ushimaru T. TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. EMBO J 2006; 25:3832-42. [PMID: 16888624 PMCID: PMC1553199 DOI: 10.1038/sj.emboj.7601262] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 05/06/2006] [Indexed: 01/07/2023] Open
Abstract
The protein kinase TOR (target of rapamycin) controls several steps of ribosome biogenesis, including gene expression of rRNA and ribosomal proteins, and processing of the 35S rRNA precursor, in the budding yeast Saccharomyces cerevisiae. Here we show that TOR also regulates late stages of ribosome maturation in the nucleoplasm via the nuclear GTP-binding protein Nog1. Nog1 formed a complex that included 60S ribosomal proteins and pre-ribosomal proteins Nop7 and Rlp24. The Nog1 complex shuttled between the nucleolus and the nucleoplasm for ribosome biogenesis, but it was tethered to the nucleolus by both nutrient depletion and TOR inactivation, causing cessation of the late stages of ribosome biogenesis. Furthermore, after this, Nog1 and Nop7 proteins were lost, leading to complete cessation of ribosome maturation. Thus, the Nog1 complex is a critical regulator of ribosome biogenesis mediated by TOR. This is the first description of a physiological regulation of nucleolus-to-nucleoplasm translocation of pre-ribosome complexes.
Collapse
Affiliation(s)
- Yoshimi Honma
- Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Aiko Kitamura
- Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Ryo Shioda
- Faculty of Science, Shizuoka University, Shizuoka, Japan
| | | | - Kanako Ozaki
- Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Yoko Oda
- Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Thierry Mini
- Department of Biochemistry, Biozentrum, University of Basel, Basel, Switzerland
| | - Paul Jenö
- Department of Biochemistry, Biozentrum, University of Basel, Basel, Switzerland
| | - Yasushi Maki
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | | | - Ed Hurt
- Biochemie-Zentrum Heidelberg (BZH), Heidelberg, Germany
| | - Masaru Ueno
- Faculty of Science, Shizuoka University, Shizuoka, Japan
| | | | - Michael N Hall
- Department of Biochemistry, Biozentrum, University of Basel, Basel, Switzerland
| | - Takashi Ushimaru
- Faculty of Science, Shizuoka University, Shizuoka, Japan
- Department of Biochemistry, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
166
|
Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M. Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export. J Biol Chem 2006; 281:19378-86. [PMID: 16675447 DOI: 10.1074/jbc.m512585200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear pore complex (NPC) conducts macromolecular transport to and from the nucleus and provides a kinetic/hydrophobic barrier composed of phenylalanine-glycine (FG) repeats. Nuclear transport is achieved through permeation of this barrier by transport receptors. The transport receptor CRM1 facilitates export of a large variety of cargoes. Export of the preribosomal 60 S subunit follows this pathway through the adaptor protein NMD3. Using RNA interference, we depleted two FG-containing cytoplasmically oriented NPC complexes, Nup214-Nup88 and Nup358, and investigated CRM1-mediated export. A dramatic defect in NMD3-mediated export of preribosomes was found in Nup214-Nup88-depleted cells, whereas only minor export defects were evident in other CRM1 cargoes or upon depletion of Nup358. We show that the large C-terminal FG domain of Nup214 is not accessible to freely diffusing molecules from the nucleus, indicating that it does not conduct 60 S preribosomes through the NPC. Consistently, derivatives of Nup214 lacking the FG-repeat domain rescued the 60 S export defect. We show that the coiled-coil region of Nup214 is sufficient for 60 S nuclear export, coinciding with recruitment of Nup88 to the NPC. Our data indicate that Nup214 plays independent roles in NPC function by participating in the kinetic/hydrophobic barrier through its FG-rich domain and by enabling NPC gating through association with Nup88.
Collapse
Affiliation(s)
- Rafael Bernad
- Department of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
167
|
Schäfer T, Maco B, Petfalski E, Tollervey D, Böttcher B, Aebi U, Hurt E. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 2006; 441:651-5. [PMID: 16738661 DOI: 10.1038/nature04840] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/25/2006] [Indexed: 11/09/2022]
Abstract
The formation of eukaryotic ribosomes is a multistep process that takes place successively in the nucleolar, nucleoplasmic and cytoplasmic compartments. Along this pathway, multiple pre-ribosomal particles are generated, which transiently associate with numerous non-ribosomal factors before mature 60S and 40S subunits are formed. However, most mechanistic details of ribosome biogenesis are still unknown. Here we identify a maturation step of the yeast pre-40S subunit that is regulated by the protein kinase Hrr25 and involves ribosomal protein Rps3. A high salt concentration releases Rps3 from isolated pre-40S particles but not from mature 40S subunits. Electron microscopy indicates that pre-40S particles lack a structural landmark present in mature 40S subunits, the 'beak'. The beak is formed by the protrusion of 18S ribosomal RNA helix 33, which is in close vicinity to Rps3. Two protein kinases Hrr25 and Rio2 are associated with pre-40S particles. Hrr25 phosphorylates Rps3 and the 40S synthesis factor Enp1. Phosphorylated Rsp3 and Enp1 readily dissociate from the pre-ribosome, whereas subsequent dephosphorylation induces formation of the beak structure and salt-resistant integration of Rps3 into the 40S subunit. In vivo depletion of Hrr25 inhibits growth and leads to the accumulation of immature 40S subunits that contain unstably bound Rps3. We conclude that the kinase activity of Hrr25 regulates the maturation of 40S ribosomal subunits.
Collapse
Affiliation(s)
- Thorsten Schäfer
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
168
|
Schütz S, Chemnitz J, Spillner C, Frohme M, Hauber J, Kehlenbach RH. Stimulated expression of mRNAs in activated T cells depends on a functional CRM1 nuclear export pathway. J Mol Biol 2006; 358:997-1009. [PMID: 16580684 DOI: 10.1016/j.jmb.2006.02.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 12/20/2022]
Abstract
In metazoans, the nuclear export of bulk mRNAs is mediated by the export receptor TAP, together with its binding partner p15. A number of viral mRNAs, including the unspliced and partially spliced mRNA species of the human immunodeficiency virus (HIV), however, use an alternative export route via the importin beta-related export receptor CRM1. This raises the question of whether a subset of cellular mRNAs might be exported by CRM1 as well. To identify such mRNAs, we performed a systematic screen in different cell lines, using representational difference analyses of cDNA (cDNA-RDA). In HeLa and Cl-4 cells no cellular transcripts could be identified as exported via CRM1. In contrast, we found a number of CRM1-dependent mRNAs in Jurkat T cells, most of which are induced during a T cell response. One of the identified gene products, the dendritic cell marker CD83, was analyzed in detail. CD83 expression depends on a functional CRM1 pathway in activated Jurkat T cells as well as in a heterologous expression system, independent of activation. Our results point to an important role of the CRM1-dependent export pathway for the expression of CD83 and other genes under conditions of T cell activation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Antigens, CD/genetics
- Base Sequence
- Cell Line
- DNA, Complementary/genetics
- Gene Expression
- Genes, env
- HIV/genetics
- HeLa Cells
- Humans
- Immunoglobulins/genetics
- In Vitro Techniques
- Jurkat Cells
- Karyopherins/antagonists & inhibitors
- Karyopherins/metabolism
- Lymphocyte Activation/genetics
- Membrane Glycoproteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Exportin 1 Protein
- CD83 Antigen
Collapse
Affiliation(s)
- Sylvia Schütz
- University of Heidelberg, Department of Virology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
169
|
Lebreton A, Saveanu C, Decourty L, Rain JC, Jacquier A, Fromont-Racine M. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. ACTA ACUST UNITED AC 2006; 173:349-60. [PMID: 16651379 PMCID: PMC2063836 DOI: 10.1083/jcb.200510080] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eukaryotic pre-ribosomes go through cytoplasmic maturation steps before entering translation. The nucleocytoplasmic proteins participating in these late stages of maturation are reimported to the nucleus. In this study, we describe a functional network focused on Rei1/Ybr267w, a strictly cytoplasmic pre-60S factor indirectly involved in nuclear 27S pre-ribosomal RNA processing. In the absence of Rei1, the nuclear import of at least three other pre-60S factors is impaired. The accumulation in the cytoplasm of a small complex formed by the association of Arx1 with a novel factor, Alb1/Yjl122w, inhibits the release of the putative antiassociation factor Tif6 from the premature large ribosomal subunits and its recycling to the nucleus. We propose a model in which Rei1 is a key factor for the coordinated dissociation and recycling of the last pre-60S factors before newly synthesized large ribosomal subunits enter translation.
Collapse
Affiliation(s)
- Alice Lebreton
- Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique URA2171, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
170
|
Dez C, Houseley J, Tollervey D. Surveillance of nuclear-restricted pre-ribosomes within a subnucleolar region of Saccharomyces cerevisiae. EMBO J 2006; 25:1534-46. [PMID: 16541108 PMCID: PMC1440318 DOI: 10.1038/sj.emboj.7601035] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 02/14/2006] [Indexed: 11/09/2022] Open
Abstract
We previously hypothesized that HEAT-repeat (Huntington, elongation A subunit, TOR) ribosome synthesis factors function in ribosome export. We report that the HEAT-repeat protein Sda1p is a component of late 60S pre-ribosomes and is required for nuclear export of both ribosomal subunits. In strains carrying the ts-lethal sda1-2 mutation, pre-60S particles were rapidly degraded following transfer to 37 degrees C. Polyadenylated forms of the 27S pre-rRNA and the 25S rRNA were detected, suggesting the involvement of the Trf4p/Air/Mtr4p polyadenylation complex (TRAMP). The absence of Trf4p suppressed polyadenylation and stabilized the pre-rRNA and rRNA. The absence of the nuclear exosome component Rrp6p also conferred RNA stabilization, with some hyperadenylation. We conclude that the nuclear-restricted pre-ribosomes are polyadenylated by TRAMP and degraded by the exosome. In sda1-2 strains at 37 degrees C, pre-40S and pre-60S ribosomes initially accumulated in the nucleoplasm, but then strongly concentrated in a subnucleolar focus, together with exosome and TRAMP components. Localization of pre-ribosomes to this focus was lost in sda1-2 strains lacking Trf4p or Rrp6p. We designate this nucleolar focus the No-body and propose that it represents a site of pre-ribosome surveillance.
Collapse
Affiliation(s)
- Christophe Dez
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jonathan Houseley
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
171
|
Gill T, Aulds J, Schmitt ME. A specialized processing body that is temporally and asymmetrically regulated during the cell cycle in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2006; 173:35-45. [PMID: 16585272 PMCID: PMC2063784 DOI: 10.1083/jcb.200512025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNase mitochondrial RNA processing (MRP) is an essential ribonucleoprotein endoribonuclease that functions in the degradation of specific mRNAs involved in cell cycle regulation. We have investigated where this processing event occurs and how it is regulated. As expected, results demonstrate that RNase MRP is predominantly localized in the nucleolus, where it processes ribosomal RNAs. However, after the initiation of mitosis, RNase MRP localizes throughout the entire nucleus and in a single discrete cytoplasmic spot that persists until the completion of telophase. Furthermore, this spot was asymmetrically found in daughter cells, where the RNase MRP substrate, CLB2 mRNA, localizes. Both the mitotic exit network and fourteen early anaphase release pathways are nonessential but important for the temporal changes in localization. Asymmetric localization was found to be dependent on the locasome. The evidence suggests that these spots are specialized processing bodies for the degradation of transcripts that are cell cycle regulated and daughter cell localized. We have called these TAM bodies for temporal asymmetric MRP bodies.
Collapse
Affiliation(s)
- Tina Gill
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
172
|
Wälti MA, Villalba C, Buser RM, Grünler A, Aebi M, Künzler M. Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. EUKARYOTIC CELL 2006; 5:732-44. [PMID: 16607020 PMCID: PMC1459662 DOI: 10.1128/ec.5.4.732-744.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 01/19/2006] [Indexed: 01/08/2023]
Abstract
The ink cap Coprinopsis cinerea is a model organism for studying fruiting body (mushroom) formation in homobasidiomycetes. Mutant screens and expression studies have implicated a number of genes in this developmental process. Functional analysis of these genes, however, is hampered by the lack of reliable reverse genetics tools for C. cinerea. Here, we report the applicability of gene targeting by RNA silencing for this organism. Efficient silencing of both an introduced GFP expression cassette and the endogenous cgl1 and cgl2 isogenes was achieved by expression of homologous hairpin RNAs. In latter case, silencing was the result of a hairpin construct containing solely cgl2 sequences, demonstrating the possibility of simultaneous silencing of whole gene families by a single construct. Expression of the hairpin RNAs reduced the mRNA levels of the target genes by at least 90%, as determined by quantitative real-time PCR. The reduced mRNA levels were accompanied by cytosine methylation of transcribed and nontranscribed DNA at both silencing and target loci in the case of constitutive high-level expression of the hairpin RNA but not in the case of transient expression. These results suggest the presence of both posttranscriptional and transcriptional gene silencing mechanisms in C. cinerea and demonstrate the applicability of targeted gene silencing as a powerful reverse genetics approach in this organism.
Collapse
Affiliation(s)
- Martin A Wälti
- Institute of Microbiology, ETH Zürich, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
173
|
Couté Y, Burgess JA, Diaz JJ, Chichester C, Lisacek F, Greco A, Sanchez JC. Deciphering the human nucleolar proteome. MASS SPECTROMETRY REVIEWS 2006; 25:215-34. [PMID: 16211575 DOI: 10.1002/mas.20067] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleoli are plurifunctional nuclear domains involved in the regulation of several major cellular processes such as ribosome biogenesis, the biogenesis of non-ribosomal ribonucleoprotein complexes, cell cycle, and cellular aging. Until recently, the protein content of nucleoli was poorly described. Several proteomic analyses have been undertaken to discover the molecular bases of the biological roles fulfilled by nucleoli. These studies have led to the identification of more than 700 proteins. Extensive bibliographic and bioinformatic analyses allowed the classification of the identified proteins into functional groups and suggested potential functions of 150 human proteins previously uncharacterized. The combination of improvements in mass spectrometry technologies, the characterization of protein complexes, and data mining will assist in furthering our understanding of the role of nucleoli in different physiological and pathological cell states.
Collapse
Affiliation(s)
- Yohann Couté
- Biomedical Proteomics Research Group, Département de Biologie Structurale et Bioinformatique, Centre Médical Universitaire, 1 Rue Michel Servet, 1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
174
|
Kolb-Kokocinski A, Mehrle A, Bechtel S, Simpson JC, Kioschis P, Wiemann S, Wellenreuther R, Poustka A. The systematic functional characterisation of Xq28 genes prioritises candidate disease genes. BMC Genomics 2006; 7:29. [PMID: 16503986 PMCID: PMC1431524 DOI: 10.1186/1471-2164-7-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 02/17/2006] [Indexed: 12/03/2022] Open
Abstract
Background Well known for its gene density and the large number of mapped diseases, the human sub-chromosomal region Xq28 has long been a focus of genome research. Over 40 of approximately 300 X-linked diseases map to this region, and systematic mapping, transcript identification, and mutation analysis has led to the identification of causative genes for 26 of these diseases, leaving another 17 diseases mapped to Xq28, where the causative gene is still unknown. To expedite disease gene identification, we have initiated the functional characterisation of all known Xq28 genes. Results By using a systematic approach, we describe the Xq28 genes by RNA in situ hybridisation and Northern blotting of the mouse orthologs, as well as subcellular localisation and data mining of the human genes. We have developed a relational web-accessible database with comprehensive query options integrating all experimental data. Using this database, we matched gene expression patterns with affected tissues for 16 of the 17 remaining Xq28 linked diseases, where the causative gene is unknown. Conclusion By using this systematic approach, we have prioritised genes in linkage regions of Xq28-mapped diseases to an amenable number for mutational screens. Our database can be queried by any researcher performing highly specified searches including diseases not listed in OMIM or diseases that might be linked to Xq28 in the future.
Collapse
Affiliation(s)
- Anja Kolb-Kokocinski
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
- Embryo Gene Expression Patterns, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Alexander Mehrle
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Stephanie Bechtel
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Jeremy C Simpson
- Cell Biology and Biophysics Programme, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Petra Kioschis
- Institute of Molecular Biology and Cell Culture Technology, Mannheim University of Applied Sciences, Windeckstrasse 110, 68163 Mannheim, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Ruth Wellenreuther
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Annemarie Poustka
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
175
|
Combs DJ, Nagel RJ, Ares M, Stevens SW. Prp43p is a DEAH-box spliceosome disassembly factor essential for ribosome biogenesis. Mol Cell Biol 2006; 26:523-34. [PMID: 16382144 PMCID: PMC1346896 DOI: 10.1128/mcb.26.2.523-534.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/13/2005] [Accepted: 10/17/2005] [Indexed: 11/20/2022] Open
Abstract
The known function of the DEXH/D-box protein Prp43p is the removal of the U2, U5, and U6 snRNPs from the postsplicing lariat-intron ribonucleoprotein complex. We demonstrate that affinity-purified Prp43p-associated material includes the expected spliceosomal components; however, we also identify several preribosomal complexes that are specifically purified with Prp43p. Conditional prp43 mutant alleles confer a 35S pre-rRNA processing defect, with subsequent depletion of 27S and 20S precursors. Upon a shift to a nonpermissive temperature, both large and small-ribosomal-subunit proteins accumulate in the nucleolus of prp43 mutants. Pulse-chase analysis demonstrates delayed kinetics of 35S, 27S, and 20S pre-rRNA processing with turnover of these intermediates. Microarray analysis of pre-mRNA splicing defects in prp43 mutants shows a very mild effect, similar to that of nonessential pre-mRNA splicing factors. Prp43p is the first DEXH/D-box protein shown to function in both RNA polymerase I and polymerase II transcript metabolism. Its essential function is in its newly characterized role in ribosome biogenesis of both ribosomal subunits, positioning Prp43p to regulate both pre-mRNA splicing and ribosome biogenesis.
Collapse
Affiliation(s)
- D Joshua Combs
- Program in Cellular and Molecular Biology, University of Texas at Austin, 1 University Station #A4800, 2500 Speedway 2.448, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
176
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
177
|
Kemmer D, Huang Y, Shah SP, Lim J, Brumm J, Yuen MMS, Ling J, Xu T, Wasserman WW, Ouellette BFF. Ulysses - an application for the projection of molecular interactions across species. Genome Biol 2005; 6:R106. [PMID: 16356269 PMCID: PMC1414088 DOI: 10.1186/gb-2005-6-12-r106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 08/03/2005] [Accepted: 11/08/2005] [Indexed: 11/21/2022] Open
Abstract
Ulysses, a new software for the parallel analysis and display of protein interactions detected in various species, is described. We developed Ulysses as a user-oriented system that uses a process called Interolog Analysis for the parallel analysis and display of protein interactions detected in various species. Ulysses was designed to perform such Interolog Analysis by the projection of model organism interaction data onto homologous human proteins, and thus serves as an accelerator for the analysis of uncharacterized human proteins. The relevance of projections was assessed and validated against published reference collections. All source code is freely available, and the Ulysses system can be accessed via a web interface .
Collapse
Affiliation(s)
- Danielle Kemmer
- Center for Genomics and Bioinformatics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver V5Z 4H4, BC, Canada
| | - Yong Huang
- UBC Bioinformatics Centre, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - Sohrab P Shah
- UBC Bioinformatics Centre, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
- Department of Computer Science, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - Jonathan Lim
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver V5Z 4H4, BC, Canada
| | - Jochen Brumm
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver V5Z 4H4, BC, Canada
| | - Macaire MS Yuen
- UBC Bioinformatics Centre, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - John Ling
- UBC Bioinformatics Centre, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - Tao Xu
- UBC Bioinformatics Centre, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver V5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - BF Francis Ouellette
- UBC Bioinformatics Centre, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, BC, Canada
| |
Collapse
|
178
|
Dong J, Lai R, Jennings JL, Link AJ, Hinnebusch AG. The novel ATP-binding cassette protein ARB1 is a shuttling factor that stimulates 40S and 60S ribosome biogenesis. Mol Cell Biol 2005; 25:9859-73. [PMID: 16260602 PMCID: PMC1280274 DOI: 10.1128/mcb.25.22.9859-9873.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/05/2005] [Accepted: 08/15/2005] [Indexed: 01/01/2023] Open
Abstract
ARB1 is an essential yeast protein closely related to members of a subclass of the ATP-binding cassette (ABC) superfamily of proteins that are known to interact with ribosomes and function in protein synthesis or ribosome biogenesis. We show that depletion of ARB1 from Saccharomyces cerevisiae cells leads to a deficit in 18S rRNA and 40S subunits that can be attributed to slower cleavage at the A0, A1, and A2 processing sites in 35S pre-rRNA, delayed processing of 20S rRNA to mature 18S rRNA, and a possible defect in nuclear export of pre-40S subunits. Depletion of ARB1 also delays rRNA processing events in the 60S biogenesis pathway. We further demonstrate that ARB1 shuttles from nucleus to cytoplasm, cosediments with 40S, 60S, and 80S/90S ribosomal species, and is physically associated in vivo with TIF6, LSG1, and other proteins implicated previously in different aspects of 60S or 40S biogenesis. Mutations of conserved ARB1 residues expected to function in ATP hydrolysis were lethal. We propose that ARB1 functions as a mechanochemical ATPase to stimulate multiple steps in the 40S and 60S ribosomal biogenesis pathways.
Collapse
Affiliation(s)
- Jinsheng Dong
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
179
|
Volta V, Ceci M, Emery B, Bachi A, Petfalski E, Tollervey D, Linder P, Marchisio PC, Piatti S, Biffo S. Sen34p depletion blocks tRNA splicing in vivo and delays rRNA processing. Biochem Biophys Res Commun 2005; 337:89-94. [PMID: 16188229 DOI: 10.1016/j.bbrc.2005.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022]
Abstract
Tif6p (eIF6) is necessary for 60S biogenesis, rRNA maturation and must be released from 60S to permit 80S assembly and translation. We characterized Tif6p interactors. Tif6p is mostly on 66S-60S pre-ribosomes, partly free. Tif6p complex(es) contain nucleo-ribosomal factors and Asc1p. Surprisingly, Tif6p particle contains the low-abundance endonuclease Sen34p. We analyzed Sen34p role on rRNA/tRNA synthesis, in vivo. Sen34p depletion impairs tRNA splicing and causes unexpected 80S accumulation. Accordingly, Sen34p overexpression causes 80S decrease and increased polysomes which suggest increased translational efficiency. With delayed kinetics, Sen34p depletion impairs rRNA processing. We conclude that Sen34p is absolutely required for tRNA splicing and that it is a rate-limiting element for efficient translation. Finally, we confirm that Tif6p accompanies 27S pre-rRNA maturation to 25S rRNA and we suggest that Sen34p endonuclease in Tif6p complex may affect also rRNA maturation.
Collapse
Affiliation(s)
- Viviana Volta
- Molecular Histology and Cell Growth, DIBIT-HSR, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Niepel M, Strambio-de-Castillia C, Fasolo J, Chait BT, Rout MP. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. ACTA ACUST UNITED AC 2005; 170:225-35. [PMID: 16027220 PMCID: PMC2171418 DOI: 10.1083/jcb.200504140] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The two yeast proteins Mlp1p and Mlp2p (homologues of the vertebrate protein Tpr) are filamentous proteins attached to the nuclear face of nuclear pore complexes. Here we perform a proteomic analysis, which reveals that the two Mlps have strikingly different interacting partners, testifying to their different roles within the cell. We find that Mlp2p binds directly to Spc110p, Spc42p, and Spc29p, which are three core components of the spindle pole body (SPB), the nuclear envelope–associated yeast spindle organizer. We further show that SPB function is compromised in mlp2 mutants. Cells lacking Mlp2p form significantly smaller SPBs, accumulate aberrant SPB component-containing structures inside the nucleus, and have stochastic failures of cell division. In addition, depletion of Mlp2p is synthetically lethal with mutants impaired in SPB assembly. Based on these data, we propose that Mlp2p links the SPB to the peripheral Mlp assembly, and that this linkage is required for efficient incorporation of components into the SPB.
Collapse
Affiliation(s)
- Mario Niepel
- The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
181
|
Du X, Rao MRKS, Chen XQ, Wu W, Mahalingam S, Balasundaram D. The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA. Mol Biol Cell 2005; 17:460-74. [PMID: 16251348 PMCID: PMC1345682 DOI: 10.1091/mbc.e05-09-0848] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Grn1p from fission yeast and GNL3L from human cells, two putative GTPases from the novel HSR1_MMR1 GTP-binding protein subfamily with circularly permuted G-motifs play a critical role in maintaining normal cell growth. Deletion of Grn1 resulted in a severe growth defect, a marked reduction in mature rRNA species with a concomitant accumulation of the 35S pre-rRNA transcript, and failure to export the ribosomal protein Rpl25a from the nucleolus. Deleting any of the Grn1p G-domain motifs resulted in a null phenotype and nuclear/nucleolar localization consistent with the lack of nucleolar export of preribosomes accompanied by a distortion of nucleolar structure. Heterologous expression of GNL3L in a Deltagrn1 mutant restored processing of 35S pre-rRNA, nuclear export of Rpl25a and cell growth to wild-type levels. Genetic complementation in yeast and siRNA knockdown in HeLa cells confirmed the homologous proteins Grn1p and GNL3L are required for growth. Failure of two similar HSR1_MMR1 putative nucleolar GTPases, Nucleostemin (NS), or the dose-dependent response of breast tumor autoantigen NGP-1, to rescue deltagrn1 implied the highly specific roles of Grn1p or GNL3L in nucleolar events. Our analysis uncovers an important role for Grn1p/GNL3L within this unique group of nucleolar GTPases.
Collapse
Affiliation(s)
- Xianming Du
- Laboratory of Nucleopore Biology, Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117609, Singapore
| | | | | | | | | | | |
Collapse
|
182
|
Graindorge JS, Rousselle JC, Senger B, Lenormand P, Namane A, Lacroute F, Fasiolo F. Deletion of EFL1 results in heterogeneity of the 60 S GTPase-associated rRNA conformation. J Mol Biol 2005; 352:355-69. [PMID: 16095611 DOI: 10.1016/j.jmb.2005.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/29/2005] [Accepted: 07/11/2005] [Indexed: 12/19/2022]
Abstract
Previous work suggested that the release of the nucleolar Tif6 from nascent 60 S subunits occurs in the cytoplasm and requires the cytoplasmic EF-2-like GTPase, Efl1. To check whether this release involves an rRNA structural rearrangement mediated by Efl1, we analyzed the rRNA conformation of the GTPase center of 80 S ribosomes in three contexts: wild-type, Deltaefl1 and a dominant suppressor R1 of Deltaefl1. This analysis was restricted to domain II and VI of 25 S rRNA. The rRNA analysis of R1 ribosomes allows us to distinguish the effects due to depletion of Efl1 from the resulting nucleolar deficit of Tif6. Efl1 inhibits the EF-2 GTPase activity, suggesting that the two proteins share a similar ribosome-binding site. The 80 S ribosomes from either type failed to show any difference of conformation in the two rRNA domains analyzed. However, the same analysis performed on the pool of free 60 S subunits reveals several rRNA conformational differences between wild-type and Deltaefl1 subunits, whereas that from the suppressor strain is similar to wild-type. This suggests that the nucleolar deficit of Tif6 during assembly of the 60 S preribosomes is responsible for the changes in rRNA conformation observed in Deltaefl1 60 S subunits. We also purified 60 S preribosomes from the three genetic contexts by TAP-tagging Tif6. The protein content of 60 S preribosomes associated with Tif6p in a Deltaefl1 strain are obtained at a lower yield but have, surprisingly, a protein composition that is a priori similar to that of wild-type and the suppressor strain.
Collapse
Affiliation(s)
- Jean-Sébastien Graindorge
- UPR no. 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
183
|
de la Cruz J, Sanz-Martínez E, Remacha M. The essential WD-repeat protein Rsa4p is required for rRNA processing and intra-nuclear transport of 60S ribosomal subunits. Nucleic Acids Res 2005; 33:5728-39. [PMID: 16221974 PMCID: PMC1253832 DOI: 10.1093/nar/gki887] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 09/20/2005] [Accepted: 09/20/2005] [Indexed: 11/12/2022] Open
Abstract
We report the characterization of a novel factor, Rsa4p (Ycr072cp), which is essential for the synthesis of 60S ribosomal subunits. Rsa4p is a conserved WD-repeat protein that seems to localize in the nucleolus. In vivo depletion of Rsa4p results in a deficit of 60S ribosomal subunits and the appearance of half-mer polysomes. Northern hybridization and primer extension analyses of pre-rRNA and mature rRNAs show that depletion of Rsa4p leads to the accumulation of the 27S, 25.5S and 7S pre-rRNAs, resulting in a reduction of the mature 25S and 5.8S rRNAs. Pulse-chase analyses of pre-rRNA processing reveal that, at least, this is due to a strong delay in the maturation of 27S pre-rRNA intermediates to mature 25S rRNA. Furthermore, depletion of Rsa4p inhibited the release of the pre-60S ribosomal particles from the nucleolus to the nucleoplasm, as judged by the predominantly nucleolar accumulation of the large subunit Rpl25-eGFP reporter construct. We propose that Rsa4p associates early with pre-60S ribosomal particles and provides a platform of interaction for correct processing of rRNA precursors and nucleolar release of 60S ribosomal subunits.
Collapse
Affiliation(s)
- Jesús de la Cruz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6 Apartado 1095, E-41012 Sevilla, Spain.
| | | | | |
Collapse
|
184
|
Zaros C, Thuriaux P. Rpc25, a conserved RNA polymerase III subunit, is critical for transcription initiation. Mol Microbiol 2005; 55:104-14. [PMID: 15612920 DOI: 10.1111/j.1365-2958.2004.04375.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rpc25 is a strongly conserved subunit of RNA polymerase III with homology to Rpa43 in RNA polymerase I, Rpb7 in RNA polymerase II and the archaeal RpoE subunit. A central domain of Rpc25 can replaced the corresponding region of Rpb7 with little or no growth defect, underscoring the functional relatedness of these proteins. Rpc25 forms a heterodimer with Rpc17, another conserved component of RNA polymerase III. A conditional mutant (rpc25-S100P) impairs this interaction. rpc25-S100P and another conditional mutant obtained by complementation with the Schizosaccharomyces pombe subunit (rpc25-Sp) were investigated for the properties of their purified RNA polymerase III. The mutant enzymes were defective in the specific synthesis of pre-tRNA transcripts but acted at a wild-type level on poly[d(A-T)] templates. They were also indistinguishable from wild type in transcript elongation, cleavage and termination. These data indicate that Rpc25 is needed for transcription initiation but is not critical for the elongating properties of RNA polymerase III.
Collapse
Affiliation(s)
- Cécile Zaros
- Service de Biochimie & Génétique Moléculaire, Bâtiment 144, CEA-Saclay, F-91191, Gif sur Yvette, CEDEX, France
| | | |
Collapse
|
185
|
Thomson E, Tollervey D. Nop53p is required for late 60S ribosome subunit maturation and nuclear export in yeast. RNA (NEW YORK, N.Y.) 2005; 11:1215-24. [PMID: 16043506 PMCID: PMC1370805 DOI: 10.1261/rna.2720205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 05/02/2005] [Indexed: 05/03/2023]
Abstract
We report that Ypl146cp/Nop53p is associated with pre-60S ribosomal complexes and localized to the nucleolus and nucleoplasm. In cells depleted of Nop53p synthesis of the rRNA components of the 60S ribosomal subunit is severely inhibited, with strikingly strong accumulation of the 7S pre-rRNA and a 5' extended form of the 25S rRNA. In cells depleted of Nop53p pre-60S subunits accumulate in the nucleus. However, a heterokaryon assay demonstrated that Nop53p is not transferred between nuclei, indicating that it is not released into the cytoplasm. We conclude that Nop53p is a late-acting factor in the nuclear maturation of 60S ribosomal subunits, which is required for normal acquisition of export competence. The strong accumulation of preribosomes in the Nop53p-depleted strain further suggests that it may participate in targeting aberrant preribosomes to surveillance and degradation pathways.
Collapse
Affiliation(s)
- Emma Thomson
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, Scotland
| | | |
Collapse
|
186
|
Abstract
Ribosomal proteins hold a unique position in biology because their function is so closely tied to the large rRNAs of the ribosomes in all kingdoms of life. Following the determination of the complete crystal structures of both the large and small ribosomal subunits from bacteria, the functional role of the proteins has often been overlooked when focusing on rRNAs as the catalysts of translation. In this review we highlight some of the many known and important functions of ribosomal proteins, both during translation on the ribosome and in a wider context.
Collapse
Affiliation(s)
- Ditlev E Brodersen
- Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Denmark.
| | | |
Collapse
|
187
|
West M, Hedges JB, Chen A, Johnson AW. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol Cell Biol 2005; 25:3802-13. [PMID: 15831484 PMCID: PMC1084314 DOI: 10.1128/mcb.25.9.3802-3813.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 01/20/2005] [Accepted: 01/28/2005] [Indexed: 11/20/2022] Open
Abstract
The large ribosomal subunit protein Rpl10p is required for subunit joining and 60S export in yeast. We have recently shown that Rpl10p as well as the cytoplasmic GTPase Lsg1p are required for releasing the 60S nuclear export adapter Nmd3p from subunits in the cytoplasm. Here, we more directly address the order of Nmd3p and Rpl10p recruitment to the subunit. We show that Nmd3p can bind subunits in the absence of Rpl10p. In addition, we examined the basis of the previously reported dominant negative growth phenotype caused by overexpression of C-terminally truncated Rpl10p and found that these Rpl10p fragments are not incorporated into subunits in the nucleus but instead sequester the WD-repeat protein Sqt1p. Sqt1p is an Rpl10p binding protein that is proposed to facilitate loading of Rpl10p into the 60S subunit. Although Sqt1p normally only transiently binds 60S subunits, the levels of Sqt1p that can be coimmunoprecipitated by the 60S-associated GTPase Lsg1p are significantly increased by a dominant mutation in the Walker A motif of Lsg1p. This mutant Lsg1 protein also leads to increased levels of Sqt1p in complexes that are coimmunoprecipitated with Nmd3p. Furthermore, the dominant LSG1 mutant also traps a mutant Rpl10 protein that does not normally bind stably to the subunit. These results support the idea that Sqt1p loads Rpl10p onto the Nmd3p-bound subunit after export to the cytoplasm and that Rpl10p loading involves the GTPase Lsg1p.
Collapse
Affiliation(s)
- Matthew West
- Section of Molecular Genetics and Microbiology, ESB 325, The University of Texas at Austin, Austin, TX 78712-1095, USA
| | | | | | | |
Collapse
|
188
|
Brune C, Munchel SE, Fischer N, Podtelejnikov AV, Weis K. Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export. RNA (NEW YORK, N.Y.) 2005; 11:517-31. [PMID: 15769879 PMCID: PMC1370741 DOI: 10.1261/rna.7291205] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/08/2005] [Indexed: 05/22/2023]
Abstract
Pab1 is the major poly(A)-binding protein in yeast. It is a multifunctional protein that mediates many cellular functions associated with the 3'-poly(A)-tail of messenger RNAs. Here, we characterize Pab1 as an export cargo of the protein export factor Xpo1/Crm1. Pab1 is a major Xpo1/Crm1-interacting protein in yeast extracts and binds directly to Xpo1/Crm1 in a RanGTP-dependent manner. Pab1 shuttles rapidly between the nucleus and the cytoplasm and partially accumulates in the nucleus when the function of Xpo1/Crm1 is inhibited. However, Pab1 can also be exported by an alternative pathway, which is dependent on the MEX67-mRNA export pathway. Import of Pab1 is mediated by the import receptor Kap108/Sxm1 through a nuclear localization signal in its fourth RNA-binding domain. Interestingly, inhibition of Pab1's nuclear import causes a kinetic delay in the export of mRNA. Furthermore, the inviability of a pab1 deletion strain is suppressed by a mutation in the 5'-3' exoribonuclease RRP6, a component of the nuclear exosome. Therefore, nuclear Pab1 may be required for efficient mRNA export and may function in the quality control of mRNA in the nucleus.
Collapse
Affiliation(s)
- Christiane Brune
- Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
189
|
Kispal G, Sipos K, Lange H, Fekete Z, Bedekovics T, Janáky T, Bassler J, Aguilar Netz DJ, Balk J, Rotte C, Lill R. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J 2005; 24:589-98. [PMID: 15660134 PMCID: PMC548650 DOI: 10.1038/sj.emboj.7600541] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 12/08/2004] [Indexed: 11/09/2022] Open
Abstract
Mitochondria perform a central function in the biogenesis of cellular iron-sulphur (Fe/S) proteins. It is unknown to date why this biosynthetic pathway is indispensable for life, the more so as no essential mitochondrial Fe/S proteins are known. Here, we show that the soluble ATP-binding cassette (ABC) protein Rli1p carries N-terminal Fe/S clusters that require the mitochondrial and cytosolic Fe/S protein biogenesis machineries for assembly. Mutations in critical cysteine residues of Rli1p abolish association with Fe/S clusters and lead to loss of cell viability. Hence, the essential character of Fe/S clusters in Rli1p explains the indispensable character of mitochondria in eukaryotes. We further report that Rli1p is associated with ribosomes and with Hcr1p, a protein involved in rRNA processing and translation initiation. Depletion of Rli1p causes a nuclear export defect of the small and large ribosomal subunits and subsequently a translational arrest. Thus, ribosome biogenesis and function are intimately linked to the crucial role of mitochondria in the maturation of the essential Fe/S protein Rli1p.
Collapse
Affiliation(s)
- Gyula Kispal
- Institute of Biochemistry, University Medical School of Pecs, Hungary
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Marburg, Germany
| | - Katalin Sipos
- Institute of Biochemistry, University Medical School of Pecs, Hungary
| | - Heike Lange
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Marburg, Germany
| | - Zsuzsanna Fekete
- Institute of Biochemistry, University Medical School of Pecs, Hungary
| | - Tibor Bedekovics
- Institute of Biochemistry, University Medical School of Pecs, Hungary
| | - Tamás Janáky
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | | | - Daili J Aguilar Netz
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Marburg, Germany
| | - Janneke Balk
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Marburg, Germany
| | - Carmen Rotte
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
190
|
Hedges J, West M, Johnson AW. Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J 2005; 24:567-79. [PMID: 15660131 PMCID: PMC548654 DOI: 10.1038/sj.emboj.7600547] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 12/15/2004] [Indexed: 11/08/2022] Open
Abstract
In eukaryotes, nuclear export of the large (60S) ribosomal subunit requires the adapter protein Nmd3p to provide the nuclear export signal. Here, we show that in yeast release of Nmd3p from 60S subunits in the cytoplasm requires the ribosomal protein Rpl10p and the G-protein, Lsg1p. Mutations in LSG1 or RPL10 blocked Nmd3-GFP shuttling into the nucleus and export of pre-60S subunits from the nucleus. Overexpression of NMD3 alleviated the export defect, indicating that the block in 60S export in lsg1 and rpl10 mutants results indirectly from failing to recycle Nmd3p. The defect in Nmd3p recycling and the block in 60S export in both lsg1 and rpl10 mutants was also suppressed by mutant Nmd3 proteins that showed reduced binding to 60S subunits in vitro. We propose that the correct loading of Rpl10p into 60S subunits is required for the release of Nmd3p from subunits by Lsg1p. These results suggest a coupling between recycling the 60S export adapter and activation of 60S subunits for translation.
Collapse
Affiliation(s)
- John Hedges
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Matthew West
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Arlen W Johnson
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
191
|
Yarunin A, Panse VG, Petfalski E, Dez C, Tollervey D, Hurt E. Functional link between ribosome formation and biogenesis of iron-sulfur proteins. EMBO J 2005; 24:580-8. [PMID: 15660135 PMCID: PMC548649 DOI: 10.1038/sj.emboj.7600540] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 12/08/2004] [Indexed: 11/09/2022] Open
Abstract
In genetic screens for ribosomal export mutants, we identified CFD1, NBP35 and NAR1 as factors involved in ribosome biogenesis. Notably, these components were recently reported to function in extramitochondrial iron-sulfur (Fe-S) cluster biosynthesis. In particular, Nar1 was implicated to generate the Fe-S clusters within Rli1, a potential substrate protein of unknown function. We tested whether the Fe-S protein Rli1 functions in ribosome formation. We report that rli1 mutants are impaired in pre-rRNA processing and defective in the export of both ribosomal subunits. In addition, Rli1p is associated with both pre-40S particles and mature 40S subunits, and with the eIF3 translation initiation factor complex. Our data reveal an unexpected link between ribosome biogenesis and the biosynthetic pathway of cytoplasmic Fe-S proteins.
Collapse
Affiliation(s)
- Alexander Yarunin
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| | | | - Elisabeth Petfalski
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christophe Dez
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
| |
Collapse
|
192
|
de la Cruz J, Lacombe T, Deloche O, Linder P, Kressler D. The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae. Genetics 2005; 166:1687-99. [PMID: 15126390 PMCID: PMC1470830 DOI: 10.1534/genetics.166.4.1687] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele.
Collapse
Affiliation(s)
- Jesús de la Cruz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
193
|
Dunn EF, Hammell CM, Hodge CA, Cole CN. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev 2005; 19:90-103. [PMID: 15630021 PMCID: PMC540228 DOI: 10.1101/gad.1267005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/02/2004] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, pre-mRNAs undergo extensive processing in the nucleus prior to export. Processing is subject to a quality-control mechanism that retains improperly processed transcripts at or near sites of transcription. A poly(A) tail added by the normal 3'-processing machinery is necessary but not sufficient for export. Retention depends on the exosome. In this study, we identify the poly(A)-binding protein, Pab1, and the poly(A) nuclease, PAN, as important factors that couple 3' processing to export. Pab1 contains a nonessential leucine-rich nuclear export signal and shuttles between the nucleus and the cytoplasm. It can exit the nucleus either as cargo of exportin 1 or bound to mRNA. Pab1 is essential but several bypass suppressors have been identified. Deletion of PAB1 from these bypass suppressor strains results in exosome-dependent retention at sites of transcription. Retention is also seen in cells lacking PAN, which Pab1 is thought to recruit and which may be responsible for the final step of mRNA biogenesis, trimming of the poly(A) tail to the length found on newly exported mRNAs. The studies presented here suggest that proper loading of Pab1 onto mRNAs and final trimming of the tail allows release from transcription sites and couples pre-mRNA processing to export.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Biochemistry, the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
194
|
Pachler K, Karl T, Kolmann K, Mehlmer N, Eder M, Loeffler M, Oender K, Hochleitner EO, Lottspeich F, Bresgen N, Richter K, Breitenbach M, Koller L. Functional interaction in establishment of ribosomal integrity between small subunit protein rpS6 and translational regulator rpL10/Grc5p. FEMS Yeast Res 2004; 5:271-80. [PMID: 15556089 DOI: 10.1016/j.femsyr.2004.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/18/2004] [Accepted: 07/24/2004] [Indexed: 10/26/2022] Open
Abstract
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.
Collapse
Affiliation(s)
- Karin Pachler
- Department of Cell Biology, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Galani K, Nissan TA, Petfalski E, Tollervey D, Hurt E. Rea1, a dynein-related nuclear AAA-ATPase, is involved in late rRNA processing and nuclear export of 60 S subunits. J Biol Chem 2004; 279:55411-8. [PMID: 15528184 DOI: 10.1074/jbc.m406876200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rea1, the largest predicted protein in the yeast genome, is a member of the AAA(+) family of ATPases and is associated with pre-60 S ribosomes. Here we report that Rea1 is required for maturation and nuclear export of the pre-60 S subunit. Rea1 exhibits a predominantly nucleoplasmic localization and is present in a late pre-60 S particle together with members of the Rix1 complex. To study the role of Rea1 in ribosome biogenesis, we generated a repressible GAL::REA1 strain and temperature-sensitive rea1 alleles. In vivo depletion of Rea1 results in the significant reduction of mature 60 S subunits concomitant with defects in pre-rRNA processing and late pre-60 S ribosome stability following ITS2 cleavage and prior to the generation of mature 5.8 S rRNA. Strains depleted of the components of the Rix1 complex (Rix1, Ipi1, and Ipi3) showed similar defects. Using an in vivo 60 S subunit export assay, a strong accumulation of the large subunit reporter Rpl25-GFP (green fluorescent protein) in the nucleus and at the nuclear periphery was seen in rea1 mutants at restrictive conditions.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/chemistry
- ATPases Associated with Diverse Cellular Activities
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/physiology
- Alleles
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DNA, Ribosomal Spacer
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Magnesium Chloride/pharmacology
- Membrane Proteins/chemistry
- Models, Biological
- Mutation
- Oligonucleotides/chemistry
- Plasmids/metabolism
- Protein Structure, Tertiary
- RNA/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 5.8S/chemistry
- Receptors, Steroid
- Ribosomes/chemistry
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/physiology
- Salts/pharmacology
- Sodium Dodecyl Sulfate/chemistry
Collapse
Affiliation(s)
- Kyriaki Galani
- Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
196
|
Fatica A, Tollervey D, Dlakić M. PIN domain of Nob1p is required for D-site cleavage in 20S pre-rRNA. RNA (NEW YORK, N.Y.) 2004; 10:1698-701. [PMID: 15388878 PMCID: PMC1370656 DOI: 10.1261/rna.7123504] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 08/18/2004] [Indexed: 05/18/2023]
Abstract
Nob1p (Yor056c) is essential for processing of the 20S pre-rRNA to the mature 18S rRNA. It is part of a pre-40S ribosomal particle that is transported to the cytoplasm and subsequently cleaved at the 3' end of mature 18S rRNA (D-site). Nob1p is also reported to participate in proteasome biogenesis, and it was therefore unclear whether its primary activity is in ribosome synthesis. In this work, we describe a homology model of the PIN domain of Nob1p, which structurally mimics Mg(2+)-dependent exonucleases despite negligible similarity in primary sequence. Insights gained from this model were used to design a point mutation that was predicted to abolish the postulated enzymatic activity. Cells expressing Nob1p with this mutation failed to cleave the 20S pre-rRNA. This supports both the significance of the structural model and the idea that Nob1p is the long-sought D-site endonuclease.
Collapse
Affiliation(s)
- Alessandro Fatica
- Department of Genetics and Molecular Biology, University of Rome "La Sapienza", Rome, Italy
| | | | | |
Collapse
|
197
|
Nissan TA, Galani K, Maco B, Tollervey D, Aebi U, Hurt E. A pre-ribosome with a tadpole-like structure functions in ATP-dependent maturation of 60S subunits. Mol Cell 2004; 15:295-301. [PMID: 15260980 DOI: 10.1016/j.molcel.2004.06.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/17/2004] [Accepted: 05/24/2004] [Indexed: 11/25/2022]
Abstract
Analyses of isolated pre-ribosomes yielded biochemical "snapshots" of the dynamic, nascent 60S and 40S subunits during their path from the nucleolus to the cytoplasm. Here, we present the structure of a pre-60S ribosomal intermediate located in the nucleoplasm. A huge dynein-related AAA-type ATPase (Rea1) and the Rix1 complex (Rix1-Ipi1-Ipi3) are components of an extended (approximately 45 nm long) pre-60S particle. Antibody crosslinking in combination with electron microscopy revealed that the Rea1 localizes to the "tail" region and ribosomal proteins to the "head" region of the elongated "tadpole-like" structure. Furthermore, in vitro treatment with ATP induces dissociation of Rea1 from the pre-60S subunits. Rea1 and the Rix1 complex could mediate ATP-dependent remodeling of 60S subunits and subsequent export from the nucleoplasm to the cytoplasm.
Collapse
Affiliation(s)
- Tracy A Nissan
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, 69120, Germany
| | | | | | | | | | | |
Collapse
|
198
|
Pertschy B, Zisser G, Schein H, Köffel R, Rauch G, Grillitsch K, Morgenstern C, Durchschlag M, Högenauer G, Bergler H. Diazaborine treatment of yeast cells inhibits maturation of the 60S ribosomal subunit. Mol Cell Biol 2004; 24:6476-87. [PMID: 15226447 PMCID: PMC434233 DOI: 10.1128/mcb.24.14.6476-6487.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 03/08/2004] [Accepted: 04/19/2004] [Indexed: 11/20/2022] Open
Abstract
Diazaborine treatment of yeast cells was shown previously to cause accumulation of aberrant, 3'-elongated mRNAs. Here we demonstrate that the drug inhibits maturation of rRNAs for the large ribosomal subunit. Pulse-chase analyses showed that the processing of the 27S pre-rRNA to consecutive species was blocked in the drug-treated wild-type strain. The steady-state level of the 7S pre-rRNA was clearly reduced after short-term treatment with the inhibitor. At the same time an increase of the 35S pre-rRNA was observed. Longer incubation with the inhibitor resulted in a decrease of the 27S precursor. Primer extension assays showed that an early step in 27S pre-rRNA processing is inhibited, which results in an accumulation of the 27SA2 pre-rRNA and a strong decrease of the 27SA3, 27SB1L, and 27SB1S precursors. The rRNA processing pattern observed after diazaborine treatment resembles that reported after depletion of the RNA binding protein Nop4p/Nop77p. This protein is essential for correct pre-27S rRNA processing. Using a green fluorescent protein-Nop4 fusion, we found that diazaborine treatment causes, within minutes, a rapid redistribution of the protein from the nucleolus to the periphery of the nucleus, which provides a possible explanation for the effect of diazaborine on rRNA processing.
Collapse
Affiliation(s)
- Brigitte Pertschy
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens-Universität Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Dez C, Froment C, Noaillac-Depeyre J, Monsarrat B, Caizergues-Ferrer M, Henry Y. Npa1p, a component of very early pre-60S ribosomal particles, associates with a subset of small nucleolar RNPs required for peptidyl transferase center modification. Mol Cell Biol 2004; 24:6324-37. [PMID: 15226434 PMCID: PMC434229 DOI: 10.1128/mcb.24.14.6324-6337.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 02/08/2004] [Accepted: 04/09/2004] [Indexed: 11/20/2022] Open
Abstract
We have identified a novel essential nucleolar factor required for the synthesis of 5.8S and 25S rRNAs termed Npa1p. In the absence of Npa1p, the pre-rRNA processing pathway leading to 5.8S and 25S rRNA production is perturbed such that the C2 cleavage within internal transcribed spacer 2 occurs prematurely. Npa1p accumulates in the immediate vicinity of the dense fibrillar component of the nucleolus and is predominantly associated with the 27SA2 pre-rRNA, the RNA component of the earliest pre-60S ribosomal particles. By mass spectrometry, we have identified the protein partners of Npa1p, which include eight putative helicases as well as the novel Npa2p factor. Strikingly, we also show that Npa1p can associate with a subset of H/ACA and C/D small nucleolar RNPs (snoRNPs) involved in the chemical modification of residues in the vicinity of the peptidyl transferase center. Our results suggest that 27SA2-containing pre-60S ribosomal particles are located at the interface between the dense fibrillar and the granular components of the nucleolus and that these particles can contain a subset of snoRNPs.
Collapse
Affiliation(s)
- Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 CNRS-Université Paul Sabatier, IFR 109, Toulouse, France
| | | | | | | | | | | |
Collapse
|
200
|
Miyoshi K, Shirai C, Horigome C, Takenami K, Kawasaki J, Mizuta K. Rrs1p, a ribosomal protein L11-binding protein, is required for nuclear export of the 60S pre-ribosomal subunit in Saccharomyces cerevisiae. FEBS Lett 2004; 565:106-10. [PMID: 15135061 DOI: 10.1016/j.febslet.2004.03.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 03/18/2004] [Indexed: 10/26/2022]
Abstract
Rrs1p is a ribosomal protein L11-binding protein in Saccharomyces cerevisiae. We have obtained temperature-sensitive rrs1 mutants by random PCR mutagenesis. [(3)H]Methionine pulse-chase analysis reveals that the rrs1 mutations cause a defect in maturation of 25S rRNA. Ribosomal protein L25-enhanced green fluorescent protein, a reporter of the 60S ribosomal subunit, concentrates in the nucleus with enrichment in the nucleolus when the rrs1 mutants are shifted to the restrictive temperature. These results suggest that Rrs1p stays on the pre-60S particle from the early stage to very late stage of the large-subunit maturation and is required for export of 60S subunits from the nucleolus to the cytoplasm.
Collapse
Affiliation(s)
- Keita Miyoshi
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | |
Collapse
|