151
|
Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9040166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated.
Collapse
|
152
|
Bak EN, Larsen MG, Jensen SK, Nørnberg P, Moeller R, Finster K. Wind-Driven Saltation: An Overlooked Challenge for Life on Mars. ASTROBIOLOGY 2019; 19:497-505. [PMID: 30407074 DOI: 10.1089/ast.2018.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Numerous studies have demonstrated that the martian surface environment is hostile to life because of its rough radiation climate and the reactive chemistry of the regolith. Physical processes such as erosion and transport of mineral particles by wind-driven saltation have hitherto not been considered as a life hazard. We report a series of experiments where bacterial endospores (spores of Bacillus subtilis) were exposed to a simulated saltating martian environment. We observed that 50% of the spores that are known to be highly resistant to radiation and oxidizing chemicals were destroyed by saltation-mediated abrasion within one minute. Scanning electron micrographs show that the spores were not only damaged by abrasion but were eradicated during the saltation process. We suggest that abrasion mediated by wind-driven saltation should be included as a factor that defines the habitability of the martian surface environment. The process may efficiently protect the martian surface from forward contamination with terrestrial microbial life-forms. Abrasion mediated by wind-driven saltation should also be considered as a major challenge to indigenous martian surface life if it exists/existed.
Collapse
Affiliation(s)
- E N Bak
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - M G Larsen
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - S K Jensen
- 2 Department of Chemistry, Aarhus University , Aarhus, Denmark
| | - P Nørnberg
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
| | - R Moeller
- 3 Institute of Aerospace Medicine , Radiation Biology Department, Space Microbiology Research Group, German Aerospace Center (DLR e.V.), Cologne (Köln), Germany
| | - K Finster
- 1 Department of Bioscience, Aarhus University , Aarhus, Denmark
- 4 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University , Aarhus, Denmark
| |
Collapse
|
153
|
Zhang B, Bai P, Zhao X, Yu Y, Zhang X, Li D, Liu C. Increased growth rate and amikacin resistance of Salmonella enteritidis after one-month spaceflight on China's Shenzhou-11 spacecraft. Microbiologyopen 2019; 8:e00833. [PMID: 30912318 PMCID: PMC6741137 DOI: 10.1002/mbo3.833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
China launched the Tiangong-2 space laboratory in 2016 and will eventually build a basic space station by the early 2020s. These spaceflight missions require astronauts to stay on the space station for more than 6 months, and they inevitably carry microbes into the space environment. It is known that the space environment affects microbial behavior, including growth rate, biofilm formation, virulence, drug resistance, and metabolism. However, the mechanisms of these alternations have not been fully elucidated. Therefore, it is beneficial to monitor microorganisms for preventing infections among astronauts in a space environment. Salmonella enteritidis is a Gram-negative bacterial pathogen that commonly causes acute gastroenteritis in humans. In this study, to better understand the effects of the space environment on S. enteritidis, a S. enteritidis strain was taken into space by the Shenzhou-11 spacecraft from 17 October 2016 to 18 November 2016, and a ground simulation with similar temperature conditions was simultaneously performed as a control. It was found that the flight strain displayed an increased growth rate, enhanced amikacin resistance, and some metabolism alterations compared with the ground strain. Enrichment analysis of proteome revealed that the increased growth rate might be associated with differentially expressed proteins involved in transmembrane transport and energy production and conversion assembly. A combined transcriptome and proteome analysis showed that the amikacin resistance was due to the downregulation of the oppA gene and oligopeptide transporter protein OppA. In conclusion, this study is the first systematic analysis of the phenotypic, genomic, transcriptomic, and proteomic variations in S. enteritidis during spaceflight and will provide beneficial insights for future studies on space microbiology.
Collapse
Affiliation(s)
- Bin Zhang
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China.,Respiratory Diseases Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xian Zhao
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nankai University School of Medicine, Tianjin, China.,Respiratory Diseases Department, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
154
|
Sobisch LY, Rogowski KM, Fuchs J, Schmieder W, Vaishampayan A, Oles P, Novikova N, Grohmann E. Biofilm Forming Antibiotic Resistant Gram-Positive Pathogens Isolated From Surfaces on the International Space Station. Front Microbiol 2019; 10:543. [PMID: 30941112 PMCID: PMC6433718 DOI: 10.3389/fmicb.2019.00543] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
The International Space Station (ISS) is a closed habitat in a uniquely extreme and hostile environment. Due to these special conditions, the human microflora can undergo unusual changes and may represent health risks for the crew. To address this problem, we investigated the antimicrobial activity of AGXX®, a novel surface coating consisting of micro-galvanic elements of silver and ruthenium along with examining the activity of a conventional silver coating. The antimicrobial materials were exposed on the ISS for 6, 12, and 19 months each at a place frequently visited by the crew. Bacteria that survived on the antimicrobial coatings [AGXX® and silver (Ag)] or the uncoated stainless steel carrier (V2A, control material) were recovered, phylogenetically affiliated and characterized in terms of antibiotic resistance (phenotype and genotype), plasmid content, biofilm formation capacity and antibiotic resistance transferability. On all three materials, surviving bacteria were dominated by Gram-positive bacteria and among those by Staphylococcus, Bacillus and Enterococcus spp. The novel antimicrobial surface coating proved to be highly effective. The conventional Ag coating showed only little antimicrobial activity. Microbial diversity increased with increasing exposure time on all three materials. The number of recovered bacteria decreased significantly from V2A to V2A-Ag to AGXX®. After 6 months exposure on the ISS no bacteria were recovered from AGXX®, after 12 months nine and after 19 months three isolates were obtained. Most Gram-positive pathogenic isolates were multidrug resistant (resistant to more than three antibiotics). Sulfamethoxazole, erythromycin and ampicillin resistance were most prevalent. An Enterococcus faecalis strain recovered from V2A steel after 12 months exposure exhibited the highest number of resistances (n = 9). The most prevalent resistance genes were ermC (erythromycin resistance) and tetK (tetracycline resistance). Average transfer frequency of erythromycin, tetracycline and gentamicin resistance from selected ISS isolates was 10−5 transconjugants/recipient. Most importantly, no serious human pathogens such as methicillin resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococci (VRE) were found on any surface. Thus, the infection risk for the crew is low, especially when antimicrobial surfaces such as AGXX® are applied to surfaces prone to microbial contamination.
Collapse
Affiliation(s)
- Lydia-Yasmin Sobisch
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Katja Marie Rogowski
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Jonathan Fuchs
- Institute of Biology, University Freiburg, Freiburg, Germany
| | | | - Ankita Vaishampayan
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Patricia Oles
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | | | - Elisabeth Grohmann
- Life Sciences and Technology, Microbiology, Beuth University of Applied Sciences, Berlin, Germany.,Institute of Biology, University Freiburg, Freiburg, Germany
| |
Collapse
|
155
|
Cortesão M, Fuchs FM, Commichau FM, Eichenberger P, Schuerger AC, Nicholson WL, Setlow P, Moeller R. Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions. Front Microbiol 2019; 10:333. [PMID: 30863384 PMCID: PMC6399134 DOI: 10.3389/fmicb.2019.00333] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
In a Mars exploration scenario, knowing if and how highly resistant Bacillus subtilis spores would survive on the Martian surface is crucial to design planetary protection measures and avoid false positives in life-detection experiments. Therefore, in this study a systematic screening was performed to determine whether B. subtilis spores could survive an average day on Mars. For that, spores from two comprehensive sets of isogenic B. subtilis mutant strains, defective in DNA protection or repair genes, were exposed to 24 h of simulated Martian atmospheric environment with or without 8 h of Martian UV radiation [M(+)UV and M(-)UV, respectively]. When exposed to M(+)UV, spore survival was dependent on: (1) core dehydration maintenance, (2) protection of DNA by α/β-type small acid soluble proteins (SASP), and (3) removal and repair of the major UV photoproduct (SP) in spore DNA. In turn, when exposed to M(-)UV, spore survival was mainly dependent on protection by the multilayered spore coat, and DNA double-strand breaks represent the main lesion accumulated. Bacillus subtilis spores were able to survive for at least a limited time in a simulated Martian environment, both with or without solar UV radiation. Moreover, M(-)UV-treated spores exhibited survival rates significantly higher than the M(+)UV-treated spores. This suggests that on a real Martian surface, radiation shielding of spores (e.g., by dust, rocks, or spacecraft surface irregularities) might significantly extend survival rates. Mutagenesis were strongly dependent on the functionality of all structural components with small acid-soluble spore proteins, coat layers and dipicolinic acid as key protectants and efficiency DNA damage removal by AP endonucleases (ExoA and Nfo), non-homologous end joining (NHEJ), mismatch repair (MMR) and error-prone translesion synthesis (TLS). Thus, future efforts should focus on: (1) determining the DNA damage in wild-type spores exposed to M(+/-)UV and (2) assessing spore survival and viability with shielding of spores via Mars regolith and other relevant materials.
Collapse
Affiliation(s)
- Marta Cortesão
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Felix M Fuchs
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Patrick Eichenberger
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
| | - Andrew C Schuerger
- Department of Plant Pathology, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL, United States
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL, United States
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
156
|
Billi D, Verseux C, Fagliarone C, Napoli A, Baqué M, de Vera JP. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. ASTROBIOLOGY 2019; 19:158-169. [PMID: 30742497 DOI: 10.1089/ast.2017.1807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the ESA space experiment BIOMEX (BIOlogy and Mars EXperiment), dried Chroococcidiopsis cells were exposed to Mars-like conditions during the EXPOSE-R2 mission on the International Space Station. The samples were exposed to UV radiation for 469 days and to a Mars-like atmosphere for 722 days, approaching the conditions that could be faced on the surface of Mars. Once back on Earth, cell survival was tested by growth-dependent assays, while confocal laser scanning microscopy and PCR-based assay were used to analyze the accumulated damage in photosynthetic pigments (chlorophyll a and phycobiliproteins) and genomic DNA, respectively. Survival occurred only for dried cells (4-5 cell layers thick) mixed with the martian soil simulants P-MRS (phyllosilicatic martian regolith simulant) and S-MRS (sulfatic martian regolith simulant), and viability was only maintained for a few hours after space exposure to a total UV (wavelength from 200 to 400 nm) radiation dose of 492 MJ/m2 (attenuated by 0.1% neutral density filters) and 0.5 Gy of ionizing radiation. These results have implications for the hypothesis that, during Mars's climatic history, desiccation- and radiation-tolerant life-forms could have survived in habitable niches and protected niches while transported.
Collapse
Affiliation(s)
- Daniela Billi
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Cyprien Verseux
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Alessandro Napoli
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mickael Baqué
- 2 German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Berlin, Germany
| | - Jean-Pierre de Vera
- 2 German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Berlin, Germany
| |
Collapse
|
157
|
Onofri S, Selbmann L, Pacelli C, Zucconi L, Rabbow E, de Vera JP. Survival, DNA, and Ultrastructural Integrity of a Cryptoendolithic Antarctic Fungus in Mars and Lunar Rock Analogs Exposed Outside the International Space Station. ASTROBIOLOGY 2019; 19:170-182. [PMID: 30376361 DOI: 10.1089/ast.2017.1728] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The search for life beyond Earth involves investigation into the responses of model organisms to the deleterious effects of space. In the frame of the BIOlogy and Mars Experiment, as part of the European Space Agency (ESA) space mission EXPOSE-R2 in low Earth orbit (LEO), dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 were grown on martian and lunar analog regolith pellets, and exposed for 16 months to LEO space and simulated Mars-like conditions on the International Space Station. The results demonstrate that C. antarcticus was able to tolerate the combined stress of different extraterrestrial substrates, space, and simulated Mars-like conditions in terms of survival, DNA, and ultrastructural stability. Results offer insights into the habitability of Mars for future exploration missions on Mars. Implications for the detection of biosignatures in extraterrestrial conditions and planetary protection are discussed.
Collapse
Affiliation(s)
- Silvano Onofri
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- 2 Section of Mycology, Italian National Antarctic Museum, Viterbo, Italy
| | - Claudia Pacelli
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Zucconi
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Elke Rabbow
- 3 Institute of Aerospace Medicine, German Aerospace Centre, Köln, Germany
| | - Jean-Pierre de Vera
- 4 Astrobiological Laboratories, Institute of Planetary Research, Management and Infrastructure, German Aerospace Center (DLR) Berlin, Berlin, Germany
| |
Collapse
|
158
|
Huwe B, Fiedler A, Moritz S, Rabbow E, de Vera JP, Joshi J. Mosses in Low Earth Orbit: Implications for the Limits of Life and the Habitability of Mars. ASTROBIOLOGY 2019; 19:221-232. [PMID: 30742499 DOI: 10.1089/ast.2018.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a part of the European Space Agency mission "EXPOSE-R2" on the International Space Station (ISS), the BIOMEX (Biology and Mars Experiment) experiment investigates the habitability of Mars and the limits of life. In preparation for the mission, experimental verification tests and scientific verification tests simulating different combinations of abiotic space- and Mars-like conditions were performed to analyze the resistance of a range of model organisms. The simulated abiotic space- and Mars-stressors were extreme temperatures, vacuum, and Mars-like surface ultraviolet (UV) irradiation in different atmospheres. We present for the first time simulated space exposure data of mosses using plantlets of the bryophyte genus Grimmia, which is adapted to high altitudinal extreme abiotic conditions at the Swiss Alps. Our preflight tests showed that severe UVR200-400nm irradiation with the maximal dose of 5 and 6.8 × 105 kJ·m-2, respectively, was the only stressor with a negative impact on the vitality with a 37% (terrestrial atmosphere) or 36% reduction (space- and Mars-like atmospheres) in photosynthetic activity. With every exposure to UVR200-400nm 105 kJ·m-2, the vitality of the bryophytes dropped by 6%. No effect was found, however, by any other stressor. As the mosses were still vital after doses of ultraviolet radiation (UVR) expected during the EXPOSE-R2 mission on ISS, we show that this earliest extant lineage of land plants is highly resistant to extreme abiotic conditions.
Collapse
Affiliation(s)
- Björn Huwe
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Annelie Fiedler
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Sophie Moritz
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
| | - Elke Rabbow
- 2 Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jean Pierre de Vera
- 3 Astrobiological Laboratories, Management and Infrastructure, Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - Jasmin Joshi
- 1 Biodiversity Research/Systematic Botany, University of Potsdam, Potsdam, Germany
- 4 Institute for Landscape and Open Space, Hochschule für Technik HSR Rapperswil, Rapperswil, Switzerland
| |
Collapse
|
159
|
Podolich O, Kukharenko O, Haidak A, Zaets I, Zaika L, Storozhuk O, Palchikovska L, Orlovska I, Reva O, Borisova T, Khirunenko L, Sosnin M, Rabbow E, Kravchenko V, Skoryk M, Kremenskoy M, Demets R, Olsson-Francis K, Kozyrovska N, de Vera JPP. Multimicrobial Kombucha Culture Tolerates Mars-Like Conditions Simulated on Low-Earth Orbit. ASTROBIOLOGY 2019; 19:183-196. [PMID: 30484685 DOI: 10.1089/ast.2017.1746] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A kombucha multimicrobial culture (KMC) was exposed to simulated Mars-like conditions in low-Earth orbit (LEO). The study was part of the Biology and Mars Experiment (BIOMEX), which was accommodated in the European Space Agency's EXPOSE-R2 facility, outside the International Space Station. The aim of the study was to investigate the capability of a KMC microecosystem to survive simulated Mars-like conditions in LEO. During the 18-month exposure period, desiccated KMC samples, represented by living cellulose-based films, were subjected to simulated anoxic Mars-like conditions and ultraviolet (UV) radiation, as prevalent at the surface of present-day Mars. Postexposure analysis demonstrated that growth of both the bacterial and yeast members of the KMC community was observed after 60 days of incubation; whereas growth was detected after 2 days in the initial KMC. The KMC that was exposed to extraterrestrial UV radiation showed degradation of DNA, alteration in the composition and structure of the cellular membranes, and an inhibition of cellulose synthesis. In the "space dark control" (exposed to LEO conditions without the UV radiation), the diversity of the microorganisms that survived in the biofilm was reduced compared with the ground-based controls. This was accompanied by structural dissimilarities in the extracellular membrane vesicles. After a series of subculturing, the revived communities restored partially their structure and associated activities.
Collapse
Affiliation(s)
- Olga Podolich
- 1 Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olga Kukharenko
- 1 Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Andriy Haidak
- 1 Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Iryna Zaets
- 1 Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Leonid Zaika
- 1 Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Olha Storozhuk
- 1 Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Iryna Orlovska
- 1 Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | - Oleg Reva
- 2 Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | | | | | - Elke Rabbow
- 5 German Aerospace Center (DLR) Cologne, Institute of Aerospace Medicine, Radiation Biology, Berlin, Germany
| | | | | | | | | | - Karen Olsson-Francis
- 8 School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
| | | | - Jean-Pierre Paul de Vera
- 9 Astrobiological Laboratories, German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Management and Infrastructure, Berlin, Germany
| |
Collapse
|
160
|
Morrison MD, Fajardo-Cavazos P, Nicholson WL. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. NPJ Microgravity 2019; 5:1. [PMID: 30623021 PMCID: PMC6323116 DOI: 10.1038/s41526-018-0061-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
The human spaceflight environment is notable for the unique factor of microgravity, which exerts numerous physiologic effects on macroscopic organisms, but how this environment may affect single-celled microbes is less clear. In an effort to understand how the microbial transcriptome responds to the unique environment of spaceflight, the model Gram-positive bacterium Bacillus subtilis was flown on two separate missions to the International Space Station in experiments dubbed BRIC-21 and BRIC-23. Cells were grown to late-exponential/early stationary phase, frozen, then returned to Earth for RNA-seq analysis in parallel with matched ground control samples. A total of 91 genes were significantly differentially expressed in both experiments; 55 exhibiting higher transcript levels in flight samples and 36 showing higher transcript levels in ground control samples. Genes upregulated in flight samples notably included those involved in biofilm formation, biotin and arginine biosynthesis, siderophores, manganese transport, toxin production and resistance, and sporulation inhibition. Genes preferentially upregulated in ground control samples notably included those responding to oxygen limitation, e.g., fermentation, anaerobic respiration, subtilosin biosynthesis, and anaerobic regulatory genes. The results indicated differences in oxygen availability between flight and ground control samples, likely due to differences in cell sedimentation and the toroidal shape assumed by the liquid cultures in microgravity.
Collapse
Affiliation(s)
- Michael D. Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| | | | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| |
Collapse
|
161
|
International Space Station conditions alter genomics, proteomics, and metabolomics in Aspergillus nidulans. Appl Microbiol Biotechnol 2018; 103:1363-1377. [PMID: 30539259 DOI: 10.1007/s00253-018-9525-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/30/2022]
Abstract
The first global genomic, proteomic, and secondary metabolomic characterization of the filamentous fungus Aspergillus nidulans following growth onboard the International Space Station (ISS) is reported. The investigation included the A. nidulans wild-type and three mutant strains, two of which were genetically engineered to enhance secondary metabolite production. Whole genome sequencing revealed that ISS conditions altered the A. nidulans genome in specific regions. In strain CW12001, which features overexpression of the secondary metabolite global regulator laeA, ISS conditions induced the loss of the laeA stop codon. Differential expression of proteins involved in stress response, carbohydrate metabolic processes, and secondary metabolite biosynthesis was also observed. ISS conditions significantly decreased prenyl xanthone production in the wild-type strain and increased asperthecin production in LO1362 and CW12001, which are deficient in a major DNA repair mechanism. These data provide valuable insights into the adaptation mechanism of A. nidulans to spacecraft environments.
Collapse
|
162
|
Amalfitano S, Levantesi C, Garrelly L, Giacosa D, Bersani F, Rossetti S. Water Quality and Total Microbial Load: A Double-Threshold Identification Procedure Intended for Space Applications. Front Microbiol 2018; 9:2903. [PMID: 30574126 PMCID: PMC6291452 DOI: 10.3389/fmicb.2018.02903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
During longer-lasting future space missions, water renewal by ground-loaded supplies will become increasingly expensive and unmanageable for months. Space exploration by self-sufficient spacecrafts is thus demanding the development of culture-independent microbiological methods for in-flight water monitoring to counteract possible contamination risks. In this study, we aimed at evaluating total microbial load data assessed by selected early-warning techniques with current or promising perspectives for space applications (i.e., HPC, ATP-metry, qPCR, flow cytometry), through the analysis of water sources with constitutively different contamination levels (i.e., chlorinated and unchlorinated tap waters, groundwaters, river waters, wastewaters). Using a data-driven double-threshold identification procedure, we presented new reference values of water quality based on the assessment of the total microbial load. Our approach is suitable to provide an immediate alert of microbial load peaks, thus enhancing the crew responsiveness in case of unexpected events due to water contamination and treatment failure. Finally, the backbone dataset could help in managing water quality and monitoring issues for both space and Earth-based applications.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute – National Research Council of Italy, Monterotondo, Italy
| | - Caterina Levantesi
- Water Research Institute – National Research Council of Italy, Monterotondo, Italy
| | | | - Donatella Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., Turin, Italy
| | - Francesca Bersani
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., Turin, Italy
| | - Simona Rossetti
- Water Research Institute – National Research Council of Italy, Monterotondo, Italy
| |
Collapse
|
163
|
Single-cell analysis reveals individual spore responses to simulated space vacuum. NPJ Microgravity 2018; 4:26. [PMID: 30534587 PMCID: PMC6279783 DOI: 10.1038/s41526-018-0059-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Outer space is a challenging environment for all forms of life, and dormant spores of bacteria have been frequently used to study the survival of terrestrial life in a space journey. Previous work showed that outer space vacuum alone can kill bacterial spores. However, the responses and mechanisms of resistance of individual spores to space vacuum are unclear. Here, we examined spores’ molecular changes under simulated space vacuum (~10−5 Pa) using micro-Raman spectroscopy and found that this vacuum did not cause significant denaturation of spore protein. Then, live-cell microscopy was developed to investigate the temporal events during germination, outgrowth, and growth of individual Bacillus spores. The results showed that after exposure to simulated space vacuum for 10 days, viability of spores of two Bacillus species was reduced up to 35%, but all spores retained their large Ca2+-dipicolinic acid depot. Some of the killed spores did not germinate, and the remaining germinated but did not proceed to vegetative growth. The vacuum treatment slowed spore germination, and changed average times of all major germination events. In addition, viable vacuum-treated spores exhibited much greater sensitivity than untreated spores to dry heat and hyperosmotic stress. Among spores’ resistance mechanisms to high vacuum, DNA-protective α/β−type small acid-soluble proteins, and non-homologous end joining and base excision repair of DNA played the most important roles, especially against multiple cycles of vacuum treatment. Overall, these results give new insight into individual spore’s responses to space vacuum and provide new techniques for microorganism analysis at the single-cell level.
Collapse
|
164
|
Parasyri A, Papazi A, Stamatis N, Zerveas S, Avramidou EV, Doulis AG, Pirintsos S, Kotzabasis K. Lichen as Micro-Ecosystem: Extremophilic Behavior with Astrobiotechnological Applications. ASTROBIOLOGY 2018; 18:1528-1542. [PMID: 30383392 DOI: 10.1089/ast.2017.1789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work demonstrates the tolerance of lichen Pleurosticta acetabulum under extreme conditions similar to those encountered in extraterrestrial environments. Specifically, the impact of three extreme Mars-like conditions-complete dehydration, extremely low temperature (-196°C/77K), and oxygen depletion-on lichens was investigated. The symbiosis of mycobiont and photobiont partners creates a micro-ecosystem that ensures viability of both symbiotic partners under prolonged desiccation and extremely low temperatures without any cultivation care. Changes in the molecular structure and function of the photosynthetic apparatus, in the level of chlorophylls, polyamines, fatty acids, carbohydrates, ergosterol, efflux of K+, and DNA methylation ensure the ecological integrity of the system and offer resistance of lichens to above-mentioned extreme environmental conditions. For the first time, we also demonstrate that the unprecedented polyextremophilic characteristic of lichens could be linked to biotechnological applications, following exposure to these extreme conditions, such that their ability to produce a high yield of hydrogen was unchanged. All these support that lichens are (a) ideal model systems for a space mission to inhabit other planets, supporting also the aspect that the panspermia theory could be extended to incorporate in the traveling entities not only single organisms but micro-ecosystems like lichens, and (b) ideal model systems for astrobiotechnological applications (hydrogen production), such as in the development of bioregeneration systems for extraterrestrial environments.
Collapse
Affiliation(s)
- Athina Parasyri
- 1 Department of Biology, University of Crete, Voutes University Campus , Heraklion, Greece
| | - Aikaterini Papazi
- 1 Department of Biology, University of Crete, Voutes University Campus , Heraklion, Greece
| | | | - Sotirios Zerveas
- 1 Department of Biology, University of Crete, Voutes University Campus , Heraklion, Greece
| | | | | | - Stergios Pirintsos
- 1 Department of Biology, University of Crete, Voutes University Campus , Heraklion, Greece
- 3 Botanical Garden, University of Crete , Gallos Campus, Rethymnon, Greece
| | - Kiriakos Kotzabasis
- 1 Department of Biology, University of Crete, Voutes University Campus , Heraklion, Greece
| |
Collapse
|
165
|
|
166
|
Zhao X, Yu Y, Zhang X, Huang B, Bai P, Xu C, Li D, Zhang B, Liu C. Decreased biofilm formation ability of Acinetobacter baumannii after spaceflight on China's Shenzhou 11 spacecraft. Microbiologyopen 2018; 8:e00763. [PMID: 30379419 PMCID: PMC6562233 DOI: 10.1002/mbo3.763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
China has prepared for construction of a space station by the early 2020s. The mission will require astronauts to stay on the space station for at least 180 days. Microbes isolated from the International Space Station (ISS) have shown profound resistance to clinical antibiotics and environmental stresses. Previous studies have demonstrated that the space environment could affect microbial survival, growth, virulence, biofilms, metabolism, as well as their antibiotic‐resistant phenotypes. Furthermore, several studies have reported that astronauts experience a decline in their immunity during long‐duration spaceflights. Monitoring microbiomes in the ISS or the spacecraft will be beneficial for the prevention of infection among the astronauts during spaceflight. The development of a manned space program worldwide not only provides an opportunity to investigate the impact of this extreme environment on opportunistic pathogenic microbes, but also offers a unique platform to detect mutations in pathogenic bacteria. Various microorganisms have been carried on a spacecraft for academic purposes. Acinetobacter baumannii is a common multidrug‐resistant bacterium often prevalent in hospitals. Variations in the ability to cope with environmental hazards increase the chances of microbial survival. Our study aimed to compare phenotypic variations and analyze genomic and transcriptomic variations in A. baumannii among three different groups: SS1 (33 days on the Shenzhou 11 spacecraft), GS1 (ground control), and Aba (reference strain). Consequently, the biofilm formation ability of the SS1 strain decreased after 33 days of spaceflight. Furthermore, high‐throughput sequencing revealed that some differentially expressed genes were downregulated in the SS1 strain compared with those in the GS1 strain. In conclusion, this present study provides insights into the environmental adaptation of A. baumannii and might be useful for understanding changes in the opportunistic pathogenic microbes on our spacecraft and on China's future ISS.
Collapse
Affiliation(s)
- Xian Zhao
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Bing Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Chou Xu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Bin Zhang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
167
|
Zammuto V, Fuchs FM, Fiebrandt M, Stapelmann K, Ulrich NJ, Maugeri TL, Pukall R, Gugliandolo C, Moeller R. Comparing Spore Resistance of Bacillus Strains Isolated from Hydrothermal Vents and Spacecraft Assembly Facilities to Environmental Stressors and Decontamination Treatments. ASTROBIOLOGY 2018; 18:1425-1434. [PMID: 30289268 DOI: 10.1089/ast.2017.1715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Submarine hydrothermal vents are inhabited by a variety of microorganisms capable of tolerating environmental extremes, making them ideal candidates to further expand our knowledge of the limitations for terrestrial life, including their ability to survive the exposure of spaceflight-relevant conditions. The spore resistance of two Bacillus spp. strains, APA and SBP3, isolated from two shallow vents off Panarea Island (Aeolian Islands, Italy), to artificial and environmental stressors (i.e., UVC radiation, X-rays, heat, space vacuum, hydrogen peroxide [H2O2], and low-pressure plasma), was compared with that of two close phylogenetic relatives (Bacillus horneckiae and Bacillus oceanisediminis). Additional comparisons were made with Bacillus sp. isolated from spacecraft assembly facilities (B. horneckiae, Bacillus pumilus SAFR-032, and Bacillus nealsonii) and the biodosimetry strain and space microbiology model organism Bacillus subtilis. Overall, a high degree of spore resistance to stressors was observed for the strains isolated from spacecraft assembly facilities, with an exceptional level of resistance seen by B. pumilus SAFR-032. The environmental isolate SBP3 showed a more robust spore resistance to UVC, X-rays, H2O2, dry heat, and space vacuum than the closely related B. horneckiae. Both strains (SBP3 and APA) were more thermotolerant than their relatives, B. horneckiae and B. oceanisediminis, respectively. SBP3 may have a novel use as a bacterial model organism for future interrogations into the potential of forward contamination in extraterrestrial environments (e.g., icy moons of Jupiter or Saturn), spacecraft sterilization and, broadly, microbial responses to spaceflight-relevant environmental stressors.
Collapse
Affiliation(s)
- Vincenzo Zammuto
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Research Center for Extreme Environments and Extremophiles, University of Messina , Messina, Italy
| | - Felix M Fuchs
- 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Marcel Fiebrandt
- 3 Biomedical Applications of Plasma Technology, Institute for Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Ruhr University Bochum , Bochum, Germany
| | - Katharina Stapelmann
- 3 Biomedical Applications of Plasma Technology, Institute for Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology, Ruhr University Bochum , Bochum, Germany
| | - Nikea J Ulrich
- 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR e.V.), Cologne, Germany
| | - Teresa L Maugeri
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Research Center for Extreme Environments and Extremophiles, University of Messina , Messina, Italy
| | - Rüdiger Pukall
- 4 Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig, Germany
| | - Concetta Gugliandolo
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Research Center for Extreme Environments and Extremophiles, University of Messina , Messina, Italy
| | - Ralf Moeller
- 2 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR e.V.), Cologne, Germany
| |
Collapse
|
168
|
"The Smartphone's Guide to the Galaxy": In Situ Analysis in Space. BIOSENSORS-BASEL 2018; 8:bios8040096. [PMID: 30347742 PMCID: PMC6316803 DOI: 10.3390/bios8040096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/13/2018] [Indexed: 01/02/2023]
Abstract
A human mission to Mars can be viewed as the apex of human technological achievement. However, to make this dream a reality several obstacles need to be overcome. One is devising practical ways to safeguard the crew health during the mission through the development of easy operable and compact sensors. Lately, several smartphone-based sensing devices (SBDs) with the purpose to enable the immediate sensitive detection of chemicals, proteins or pathogens in remote settings have emerged. In this critical review, the potential to piggyback these systems for in situ analysis in space has been investigated on application of a systematic keyword search whereby the most relevant articles were examined comprehensively and existing SBDs were divided into 4 relevant groups for the monitoring of crew health during space missions. Recently developed recognition elements (REs), which could offer the enhanced ability to tolerate those harsh conditions in space, have been reviewed with recommendations offered. In addition, the potential use of cell free synthetic biology to obtain long-term shelf-stable reagents was reviewed. Finally, a synopsis of the possibilities of combining novel SBD, RE and nanomaterials to create a compact sensor-platform ensuring adequate crew health monitoring has been provided.
Collapse
|
169
|
Morrison MD, Nicholson WL. Meta-analysis of data from spaceflight transcriptome experiments does not support the idea of a common bacterial "spaceflight response". Sci Rep 2018; 8:14403. [PMID: 30258082 PMCID: PMC6158273 DOI: 10.1038/s41598-018-32818-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/13/2018] [Indexed: 01/23/2023] Open
Abstract
Several studies have been undertaken with the goal of understanding how bacterial transcriptomes respond to the human spaceflight environment. However, these experiments have been conducted using a variety of organisms, media, culture conditions, and spaceflight hardware, and to date no cross-experiment analyses have been performed to uncover possible commonalities in their responses. In this study, eight bacterial transcriptome datasets deposited in NASA's GeneLab Data System were standardized through a common bioinformatics pipeline then subjected to meta-analysis to identify among the datasets (i) individual genes which might be significantly differentially expressed, or (ii) gene sets which might be significantly enriched. Neither analysis resulted in identification of responses shared among all datasets. Principal Component Analysis of the data revealed that most of the variation in the datasets derived from differences in the experiments themselves.
Collapse
Affiliation(s)
- Michael D Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL, USA.
| |
Collapse
|
170
|
Characterization of Aspergillus niger Isolated from the International Space Station. mSystems 2018; 3:mSystems00112-18. [PMID: 30246146 PMCID: PMC6143729 DOI: 10.1128/msystems.00112-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 11/20/2022] Open
Abstract
The initial characterization of the Aspergillus niger isolate JSC-093350089, collected from U.S. segment surfaces of the International Space Station (ISS), is reported, along with a comparison to the extensively studied strain ATCC 1015. Whole-genome sequencing of the ISS isolate enabled its phylogenetic placement within the A. niger/welwitschiae/lacticoffeatus clade and revealed that the genome of JSC-093350089 is within the observed genetic variance of other sequenced A. niger strains. The ISS isolate exhibited an increased rate of growth and pigment distribution compared to a terrestrial strain. Analysis of the isolate's proteome revealed significant differences in the molecular phenotype of JSC-093350089, including increased abundance of proteins involved in the A. niger starvation response, oxidative stress resistance, cell wall modulation, and nutrient acquisition. Together, these data reveal the existence of a distinct strain of A. niger on board the ISS and provide insight into the characteristics of melanized fungal species inhabiting spacecraft environments. IMPORTANCE A thorough understanding of how fungi respond and adapt to the various stimuli encountered during spaceflight presents many economic benefits and is imperative for the health of crew. As A. niger is a predominant ISS isolate frequently detected in built environments, studies of A. niger strains inhabiting closed systems may reveal information fundamental to the success of long-duration space missions. This investigation provides valuable insights into the adaptive mechanisms of fungi in extreme environments as well as countermeasures to eradicate unfavorable microbes. Further, it enhances understanding of host-microbe interactions in closed systems, which can help NASA's Human Research Program maintain a habitat healthy for crew during long-term manned space missions.
Collapse
|
171
|
Lindeboom REF, Ilgrande C, Carvajal-Arroyo JM, Coninx I, Van Hoey O, Roume H, Morozova J, Udert KM, Sas B, Paille C, Lasseur C, Ilyin V, Clauwaert P, Leys N, Vlaeminck SE. Nitrogen cycle microorganisms can be reactivated after Space exposure. Sci Rep 2018; 8:13783. [PMID: 30214003 PMCID: PMC6137101 DOI: 10.1038/s41598-018-32055-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/28/2018] [Indexed: 11/09/2022] Open
Abstract
Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation. In this study, microorganisms capable of essential nitrogen cycle conversions were sent on a 44-days FOTON-M4 flight to Low Earth Orbit (LEO) and exposed to 10-3-10-4 g (gravitational constant) and 687 ± 170 µGy (Gray) d-1 (20 ± 4 °C), about the double of the radiation prevailing in the International Space Station (ISS). After return to Earth, axenic cultures, defined and reactor communities of ureolytic bacteria, ammonia oxidizing archaea and bacteria, nitrite oxidizing bacteria, denitrifiers and anammox bacteria could all be reactivated. Space exposure generally yielded similar or even higher nitrogen conversion rates as terrestrial preservation at a similar temperature, while terrestrial storage at 4 °C mostly resulted in the highest rates. Refrigerated Space exposure is proposed as a strategy to maximize the reactivation potential. For the first time, the combined potential of ureolysis, nitritation, nitratation, denitrification (nitrate reducing activity) and anammox is demonstrated as key enabler for resource recovery in human Space exploration.
Collapse
Affiliation(s)
- Ralph E F Lindeboom
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium.,Section Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN, Delft, The Netherlands
| | - Chiara Ilgrande
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - José M Carvajal-Arroyo
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Ilse Coninx
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400, Mol, Belgium
| | - Olivier Van Hoey
- Unit of Research in Dosimetric Applications, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400, Mol, Belgium
| | - Hugo Roume
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium.,MetaGenoPolis, INRA, Université Paris-Saclay Domaine de Vilvert, Bat. 325 78352, Jouy-en-Josas, France
| | - Julia Morozova
- Institute of Biomedical Problems (IMBP), State Research Center of The Russian Federation, Khoroshevskoye Shosse, 76a, 123007, Moscow, Russia
| | - Kai M Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Benedikt Sas
- Laboratory of Food Microbiology and Food Preservation, Ghent University, Coupure links 653, 9000, Gent, Belgium
| | | | | | - Vyacheslav Ilyin
- Institute of Biomedical Problems (IMBP), State Research Center of The Russian Federation, Khoroshevskoye Shosse, 76a, 123007, Moscow, Russia
| | - Peter Clauwaert
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, 2400, Mol, Belgium
| | - Siegfried E Vlaeminck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium. .,Research of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| |
Collapse
|
172
|
Veras D, Armstrong DJ, Blake JA, Gutiérrez-Marcos JF, Jackson AP, Schäefer H. Dynamical and Biological Panspermia Constraints Within Multi-planet Exosystems. ASTROBIOLOGY 2018; 18:1106-1122. [PMID: 30095987 DOI: 10.1089/ast.2017.1786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As discoveries of multiple planets in the habitable zone of their parent star mount, developing analytical techniques to quantify extrasolar intra-system panspermia will become increasingly important. Here, we provide user-friendly prescriptions that describe the asteroid impact characteristics which would be necessary to transport life both inwards and outwards within these systems within a single framework. Our focus is on projectile generation and delivery and our expressions are algebraic, eliminating the need for the solution of differential equations. We derive a probability distribution function for life-bearing debris to reach a planetary orbit, and describe the survival of micro-organisms during planetary ejection, their journey through interplanetary space, and atmospheric entry.
Collapse
Affiliation(s)
- Dimitri Veras
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - David J Armstrong
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - James A Blake
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 2 Department of Physics, University of Warwick , Coventry, United Kingdom
| | - Jose F Gutiérrez-Marcos
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 3 School of Life Sciences, University of Warwick , Coventry, United Kingdom
| | - Alan P Jackson
- 4 Centre for Planetary Sciences, University of Toronto at Scarborough , Toronto, Canada
- 5 School of Earth and Space Exploration, Arizona State University , Tempe, Arizona
| | - Hendrik Schäefer
- 1 Centre for Exoplanets and Habitability, University of Warwick , Coventry, United Kingdom
- 3 School of Life Sciences, University of Warwick , Coventry, United Kingdom
| |
Collapse
|
173
|
Onofri S, Selbmann L, Pacelli C, de Vera JP, Horneck G, Hallsworth JE, Zucconi L. Integrity of the DNA and Cellular Ultrastructure of Cryptoendolithic Fungi in Space or Mars Conditions: A 1.5-Year Study at the International Space Station. Life (Basel) 2018; 8:E23. [PMID: 29921763 PMCID: PMC6027225 DOI: 10.3390/life8020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
The black fungi Cryomyces antarcticus and Cryomyces minteri are highly melanized and are resilient to cold, ultra-violet, ionizing radiation and other extreme conditions. These microorganisms were isolated from cryptoendolithic microbial communities in the McMurdo Dry Valleys (Antarctica) and studied in Low Earth Orbit (LEO), using the EXPOSE-E facility on the International Space Station (ISS). Previously, it was demonstrated that C. antarcticus and C. minteri survive the hostile conditions of space (vacuum, temperature fluctuations, and the full spectrum of extraterrestrial solar electromagnetic radiation), as well as Mars conditions that were simulated in space for a 1.5-year period. Here, we qualitatively and quantitatively characterize damage to DNA and cellular ultrastructure in desiccated cells of these two species, within the frame of the same experiment. The DNA and cells of C. antarcticus exhibited a higher resistance than those of C. minteri. This is presumably attributable to the thicker (melanized) cell wall of the former. Generally, DNA was readily detected (by PCR) regardless of exposure conditions or fungal species, but the C. minteri DNA had been more-extensively mutated. We discuss the implications for using DNA, when properly shielded, as a biosignature of recently extinct or extant life.
Collapse
Affiliation(s)
- Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
- Italian National Antarctic Museum (MNA), Mycological Section, 16166 Genoa, Italy.
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Jean Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Rutherfordstreet 2, 12489 Berlin, Germany.
| | - Gerda Horneck
- German Aerospace Centre, Institute of Aerospace Medicine, Linder Hoehe, D 51170 Köln, Germany.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
174
|
Jin M, Zhang H, Zhao K, Xu C, Shao D, Huang Q, Shi J, Yang H. Responses of Intestinal Mucosal Barrier Functions of Rats to Simulated Weightlessness. Front Physiol 2018; 9:729. [PMID: 29962963 PMCID: PMC6011188 DOI: 10.3389/fphys.2018.00729] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Exposure to microgravity or weightlessness leads to various adaptive and pathophysiological alterations in digestive structures and physiology. The current study was carried out to investigate responses of intestinal mucosal barrier functions to simulated weightlessness, by using the hindlimb unloading rats model. Compared with normal controls, simulated weightlessness damaged the intestinal villi and structural integrity of tight junctions, up-regulated the expression of pro-apoptotic protein Bax while down-regulated the expression of anti-apoptotic protein Bcl-2, thus improved the intestinal permeability. It could also influence intestinal microbiota composition with the expansion of Bacteroidetes and decrease of Firmicutes. The predicted metagenomic analysis emphasized significant dysbiosis associated differences in genes involved in membrane transport, cofactors and vitamins metabolism, energy metabolism, and genetic information processing. Moreover, simulated weightlessness could modify the intestinal immune status characterized by the increase of proinflammatory cytokines, decrease of secretory immunoglobulin A, and activation of TLR4/MyD88/NF-κB signaling pathway in ileum. These results indicate the simulated weightlessness disrupts intestinal mucosal barrier functions in animal model. The data also emphasize the necessity of monitoring and regulating astronauts’ intestinal health during real space flights to prevent breakdowns in intestinal homeostasis of crewmembers.
Collapse
Affiliation(s)
- Mingliang Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Chunlan Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
175
|
Pacelli C, Bryan RA, Onofri S, Selbmann L, Zucconi L, Shuryak I, Dadachova E. The effect of protracted X-ray exposure on cell survival and metabolic activity of fast and slow growing fungi capable of melanogenesis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:255-263. [PMID: 29473314 DOI: 10.1111/1758-2229.12632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to analyse how protracted exposure to X-rays delivered at low dose rates of 0.0032-0.052 kGy h-1 affects the survival and metabolic activity of two microfungi capable of melanogenesis: fast-growing Cryptococcus neoformans (CN) and slow-growing Cryomyces antarcticus (CA). Melanized CN and CA cells survived the protracted exposure better than non-melanized ones, which was consistent with previous reports on the radioprotective role of melanin in these fungi after high dose rate exposures. The survival data were described by the linear quadratic dose response model. The XTT metabolic profiles were practically identical for melanized CN and CA with activity dose-dependent increasing: no changes in the activity of the non-melanized CN and CA were recorded by this assay. In contrast, the MTT assay, which measures the intracellular energy-related processes, recorded an increase in activity of non-melanized CN and CA cells, but not in their melanized counterparts. This could reflect intensive repair processes initiated by the non-melanized cells post exposure. This study suggests that differences in radiation responses between melanized and non-melanized fungal cells occur over a wide range of radiation dose rates.
Collapse
Affiliation(s)
- Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Ruth A Bryan
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
176
|
Huang B, Li DG, Huang Y, Liu CT. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil Med Res 2018; 5:18. [PMID: 29807538 PMCID: PMC5971428 DOI: 10.1186/s40779-018-0162-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.
Collapse
Affiliation(s)
- Bing Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Dian-Geng Li
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chang-Ting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China.
| |
Collapse
|
177
|
Senatore G, Mastroleo F, Leys N, Mauriello G. Effect of microgravity & space radiation on microbes. Future Microbiol 2018; 13:831-847. [PMID: 29745771 DOI: 10.2217/fmb-2017-0251] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the new challenges facing humanity is to reach increasingly further distant space targets. It is therefore of upmost importance to understand the behavior of microorganisms that will unavoidably reach the space environment together with the human body and equipment. Indeed, microorganisms could activate their stress defense mechanisms, modifying properties related to human pathogenesis. The host-microbe interactions, in fact, could be substantially affected under spaceflight conditions and the study of microorganisms' growth and activity is necessary for predicting these behaviors and assessing precautionary measures during spaceflight. This review gives an overview of the effects of microgravity and space radiation on microorganisms both in real and simulated conditions.
Collapse
Affiliation(s)
- Giuliana Senatore
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Felice Mastroleo
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| |
Collapse
|
178
|
The DNA of Bacteria of the World Ocean and the Earth in Cosmic Dust at the International Space Station. ScientificWorldJournal 2018; 2018:7360147. [PMID: 29849510 PMCID: PMC5932454 DOI: 10.1155/2018/7360147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 11/24/2022] Open
Abstract
Cosmic dust samples from the surface of the illuminator of the International Space Station (ISS) were collected by a crew member during his spacewalk. The sampler with tampon in a vacuum container was delivered to the Earth. Washouts from the tampon's material and the tampon itself were analyzed for the presence of bacterial DNA by the method of nested PCR with primers specific to DNA of the genus Mycobacteria, DNA of the strains of capsular bacteria Bacillus, and DNA encoding 16S ribosomal RNA. The results of amplification followed by sequencing and phylogenetic analysis indicated the presence of the bacteria of the genus Mycobacteria and the extreme bacterium of the genus Delftia in the samples of cosmic dust. It was shown that the DNA sequence of one of the bacteria of the genus Mycobacteria was genetically similar to that previously observed in superficial micro layer at the Barents and Kara seas' coastal zones. The presence of the wild land and marine bacteria DNA on the ISS suggests their possible transfer from the stratosphere into the ionosphere with the ascending branch of the global electric circuit. Alternatively, the wild land and marine bacteria as well as the ISS bacteria may all have an ultimate space origin.
Collapse
|
179
|
Germination, Outgrowth, and Vegetative-Growth Kinetics of Dry-Heat-Treated Individual Spores of Bacillus Species. Appl Environ Microbiol 2018; 84:AEM.02618-17. [PMID: 29330188 DOI: 10.1128/aem.02618-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
DNA damage kills dry-heated spores of Bacillus subtilis, but dry-heat-treatment effects on spore germination and outgrowth have not been studied. This is important, since if dry-heat-killed spores germinate and undergo outgrowth, toxic proteins could be synthesized. Here, Raman spectroscopy and differential interference contrast microscopy were used to study germination and outgrowth of individual dry-heat-treated B. subtilis and Bacillus megaterium spores. The major findings in this work were as follows: (i) spores dry-heat-treated at 140°C for 20 min lost nearly all viability but retained their Ca2+-dipicolinic acid (CaDPA) depot; (ii) in most cases, dry-heat treatment increased the average times and variability of all major germination events in B. subtilis spore germination with nutrient germinants or CaDPA, and in one nutrient germination event with B. megaterium spores; (iii) B. subtilis spore germination with dodecylamine, which activates the spore CaDPA release channel, was unaffected by dry-heat treatment; (iv) these results indicate that dry-heat treatment likely damages spore proteins important in nutrient germinant recognition and cortex peptidoglycan hydrolysis, but not CaDPA release itself; and (v) analysis of single spores incubated on nutrient-rich agar showed that while dry-heat-treated spores that are dead can complete germination, they cannot proceed into outgrowth and thus not to vegetative growth. The results of this study provide new information on the effects of dry heat on bacterial spores and indicate that dry-heat sterilization regimens should produce spores that cannot outgrow and thus cannot synthesize potentially dangerous proteins.IMPORTANCE Much research has shown that high-temperature dry heat is a promising means for the inactivation of spores on medical devices and spacecraft decontamination. Dry heat is known to kill Bacillus subtilis spores by DNA damage. However, knowledge about the effects of dry-heat treatment on spore germination and outgrowth is limited, especially at the single spore level. In the current work, Raman spectroscopy and differential interference contrast microscopy were used to analyze CaDPA levels in and kinetics of nutrient- and non-nutrient germination of multiple individual dry-heat-treated B. subtilis and Bacillus megaterium spores that were largely dead. The outgrowth and subsequent cell division of these germinated but dead dry-heat-treated spores were also examined. The knowledge obtained in this study will help understand the effects of dry heat on spores both on Earth and in space, and indicates that dry heat can be safely used for sterilization purposes.
Collapse
|
180
|
Fajardo-Cavazos P, Leehan JD, Nicholson WL. Alterations in the Spectrum of Spontaneous Rifampicin-Resistance Mutations in the Bacillus subtilis rpoB Gene after Cultivation in the Human Spaceflight Environment. Front Microbiol 2018; 9:192. [PMID: 29491852 PMCID: PMC5817088 DOI: 10.3389/fmicb.2018.00192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/29/2018] [Indexed: 01/20/2023] Open
Abstract
The effect of Bacillus subtilis exposure to the human spaceflight environment on growth, mutagenic frequency, and spectrum of mutations to rifampicin resistance (RifR) was investigated. B. subtilis cells were cultivated in Biological Research in Canister-Petri Dish Fixation Units (BRIC-PDFUs) on two separate missions to the International Space Station (ISS), dubbed BRIC-18 and BRIC-21, with matching asynchronous ground controls. No statistically significant difference in either growth or in the frequency of mutation to RifR was found in either experiment. However, nucleotide sequencing of the RifR regions of the rpoB gene from RifR mutants revealed dramatic differences in the spectrum of mutations between flight (FL) and ground control (GC) samples, including two newly discovered rpoB alleles in the FL samples (Q137R and L489S). The results strengthen the idea that exposure to the human spaceflight environment causes unique stresses on bacteria, leading to alterations in their mutagenic potential.
Collapse
Affiliation(s)
| | | | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
181
|
|
182
|
An MJ, Kim CH, Nam GY, Kim DH, Rhee S, Cho SJ, Kim JW. Transcriptome analysis for UVB-induced phototoxicity in mouse retina. ENVIRONMENTAL TOXICOLOGY 2018; 33:52-62. [PMID: 29044990 DOI: 10.1002/tox.22494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Throughout life, the human eye is continuously exposed to sunlight and artificial lighting. Ambient light exposure can lead to visual impairment and transient or permanent blindness. To mimic benign light stress conditions, Mus musculus eyes were exposed to low-energy UVB radiation, ensuring no severe morphological changes in the retinal structure post-exposure. We performed RNA-seq analysis to reveal the early transcriptional changes and key molecular pathways involved before the activation of the canonical cell death pathway. RNA-seq analysis identified 537 genes that were differentially modulated, out of which 126 were clearly up regulated (>2-fold, P < .01) and 51 were significantly down regulated (<2-fold, P < .01) in response to UVB irradiation in the mouse retina. Gene ontology analysis revealed that UVB exposure affected pathways for cellular stress and signaling (eg, Creb3, Ddrgk1, Grin1, Map7, Uqcc2, Uqcrb), regulation of chromatin and gene expression (eg, Chd5, Jarid2, Kat6a, Smarcc2, Sumo1, Zfp84), transcription factors (eg, Asxl2, Atf7, Per1, Phox2a, Rxra), RNA processing, and neuronal genes (eg, B4gal2, Drd1, Grm5, Rnf40, Rnps1, Usp39, Wbp4). The differentially expressed genes from the RNA-seq analysis were validated by quantitative PCR. Both analyses yielded similar gene expression patterns. The genes and pathways identified here improve the understanding of early transcriptional responses to UVB irradiation. They may also help in elucidating the genes responsible for the inherent susceptibility of humans to UVB-induced retinal diseases.
Collapse
Affiliation(s)
- Mi-Jin An
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chul-Hong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Gyu-You Nam
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dae-Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung-Jin Cho
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jung-Woong Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
183
|
Ott E, Kawaguchi Y, Kölbl D, Chaturvedi P, Nakagawa K, Yamagishi A, Weckwerth W, Milojevic T. Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission. PLoS One 2017; 12:e0189381. [PMID: 29244852 PMCID: PMC5731708 DOI: 10.1371/journal.pone.0189381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022] Open
Abstract
The multiple extremes resistant bacterium Deinococcus radiodurans is able to withstand harsh conditions of simulated outer space environment. The Tanpopo orbital mission performs a long-term space exposure of D. radiodurans aiming to investigate the possibility of interplanetary transfer of life. The revealing of molecular machinery responsible for survivability of D. radiodurans in the outer space environment can improve our understanding of underlying stress response mechanisms. In this paper, we have evaluated the molecular response of D. radiodurans after the exposure to space-related conditions of UVC irradiation and vacuum. Notably, scanning electron microscopy investigations showed that neither morphology nor cellular integrity of irradiated cells was affected, while integrated proteomic and metabolomic analysis revealed numerous molecular alterations in metabolic and stress response pathways. Several molecular key mechanisms of D. radiodurans, including the tricarboxylic acid cycle, the DNA damage response systems, ROS scavenging systems and transcriptional regulators responded in order to cope with the stressful situation caused by UVC irradiation under vacuum conditions. These results reveal the effectiveness of the integrative proteometabolomic approach as a tool in molecular analysis of microbial stress response caused by space-related factors.
Collapse
Affiliation(s)
- Emanuel Ott
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Yuko Kawaguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Denise Kölbl
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Kazumichi Nakagawa
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
- * E-mail: (TM); (WW)
| | - Tetyana Milojevic
- Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
- * E-mail: (TM); (WW)
| |
Collapse
|
184
|
Hahn C, Hans M, Hein C, Mancinelli RL, Mücklich F, Wirth R, Rettberg P, Hellweg CE, Moeller R. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities. ASTROBIOLOGY 2017; 17:1183-1191. [PMID: 29116818 DOI: 10.1089/ast.2016.1620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity. Key Words: Contact killing-E. coli-S. cohnii-Antimicrobial copper surfaces-Copper oxide layers-Human health-Planetary protection. Astrobiology 17, 1183-1191.
Collapse
Affiliation(s)
- C Hahn
- 1 German Aerospace Center (DLR), Institute of Aerospace Medicine , Radiation Biology Department, Cologne (Köln), Germany
| | - M Hans
- 2 Functional Materials, Saarland University , Saarbrücken, Germany
| | - C Hein
- 3 Inorganic Solid State Chemistry, Saarland University , Saarbrücken, Germany
| | - R L Mancinelli
- 4 Bay Area Environmental Research Institute, NASA Ames Research Center , Moffett Field, California, USA
| | - F Mücklich
- 2 Functional Materials, Saarland University , Saarbrücken, Germany
| | - R Wirth
- 5 Microbiology, University of Regensburg , Regensburg, Germany
| | - P Rettberg
- 1 German Aerospace Center (DLR), Institute of Aerospace Medicine , Radiation Biology Department, Cologne (Köln), Germany
| | - C E Hellweg
- 1 German Aerospace Center (DLR), Institute of Aerospace Medicine , Radiation Biology Department, Cologne (Köln), Germany
| | - R Moeller
- 1 German Aerospace Center (DLR), Institute of Aerospace Medicine , Radiation Biology Department, Cologne (Köln), Germany
| |
Collapse
|
185
|
DasSarma P, DasSarma S. Survival of microbes in Earth's stratosphere. Curr Opin Microbiol 2017; 43:24-30. [PMID: 29156444 DOI: 10.1016/j.mib.2017.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022]
Abstract
The remarkable survival of microorganisms high above the surface of the Earth is of increasing interest. At stratospheric levels, multiple stressors including ultraviolet and ionizing radiation, low temperatures, hypobaric conditions, extreme desiccation, and nutrient scarcity are all significant challenges. Our understanding of which microorganisms are capable of tolerating such stressful conditions has been addressed by stratospheric sample collection and survival assays, through launching and recovery, and exposure to simulated conditions in the laboratory. Here, we review stratospheric microbiology studies providing our current perspective on microbial life at extremely high altitudes and discuss implications for health and agriculture, climate change, planetary protection, and astrobiology.
Collapse
Affiliation(s)
- Priya DasSarma
- University of Maryland School of Medicine and Institute of Marine and Environmental Technology, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Shiladitya DasSarma
- University of Maryland School of Medicine and Institute of Marine and Environmental Technology, 701 East Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
186
|
Selbmann L, Pacelli C, Zucconi L, Dadachova E, Moeller R, de Vera JP, Onofri S. Resistance of an Antarctic cryptoendolithic black fungus to radiation gives new insights of astrobiological relevance. Fungal Biol 2017; 122:546-554. [PMID: 29801799 DOI: 10.1016/j.funbio.2017.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022]
Abstract
The Antarctic black meristematic fungus Cryomyces antarcticus CCFEE 515 occurs endolithically in the McMurdo Dry Valleys of Antarctica, one of the best analogue for Mars environment on Earth. To date, this fungus is considered one of the best eukaryotic models for astrobiological studies and has been repeatedly selected for space experiments in the last decade. The obtained results are reviewed here, with special focus on responses to space relevant irradiation, UV radiation, and both sparsely and densely ionizing radiation, which represent the major injuries for a putative space-traveller. The remarkable resistance of this model organism to space stress, its radioresistance in particular, and mechanisms involved, significantly contributed to expanding our concept of limits for life and provided new insights on the origin and evolution of life in planetary systems, habitability, and biosignatures for life detection as well as on human protection during space missions.
Collapse
Affiliation(s)
- Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Cologne (Köln), Germany.
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Rutherfordstr. 2, 12489 Berlin, Germany.
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
187
|
Pacelli C, Selbmann L, Moeller R, Zucconi L, Fujimori A, Onofri S. Cryptoendolithic Antarctic Black Fungus Cryomyces antarcticus Irradiated with Accelerated Helium Ions: Survival and Metabolic Activity, DNA and Ultrastructural Damage. Front Microbiol 2017; 8:2002. [PMID: 29089932 PMCID: PMC5650992 DOI: 10.3389/fmicb.2017.02002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022] Open
Abstract
Space represents an extremely harmful environment for life and survival of terrestrial organisms. In the last decades, a considerable deal of attention was paid to characterize the effects of spaceflight relevant radiation on various model organisms. The aim of this study was to test the survival capacity of the cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 to space relevant radiation, to outline its endurance to space conditions. In the frame of an international radiation campaign, dried fungal colonies were irradiated with accelerated Helium ion (150 MeV/n, LET 2.2 keV/μm), up to a final dose of 1,000 Gy, as one of the space-relevant ionizing radiation. Results showed that the fungus maintained high survival and metabolic activity with no detectable DNA and ultrastructural damage, even after the highest dose irradiation. These data give clues on the resistance of life toward space ionizing radiation in general and on the resistance and responses of eukaryotic cells in particular.
Collapse
Affiliation(s)
- Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Ralf Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Cologne, Germany
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Akira Fujimori
- National Institute of Radiological Sciences, Research Center for Charged Particle Therapy, Chiba, Japan
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
188
|
Zea L, Larsen M, Estante F, Qvortrup K, Moeller R, Dias de Oliveira S, Stodieck L, Klaus D. Phenotypic Changes Exhibited by E. coli Cultured in Space. Front Microbiol 2017; 8:1598. [PMID: 28894439 PMCID: PMC5581483 DOI: 10.3389/fmicb.2017.01598] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Bacteria will accompany humans in our exploration of space, making it of importance to study their adaptation to the microgravity environment. To investigate potential phenotypic changes for bacteria grown in space, Escherichia coli was cultured onboard the International Space Station with matched controls on Earth. Samples were challenged with different concentrations of gentamicin sulfate to study the role of drug concentration on the dependent variables in the space environment. Analyses included assessments of final cell count, cell size, cell envelope thickness, cell ultrastructure, and culture morphology. A 13-fold increase in final cell count was observed in space with respect to the ground controls and the space flight cells were able to grow in the presence of normally inhibitory levels of gentamicin sulfate. Contrast light microscopy and focused ion beam/scanning electron microscopy showed that, on average, cells in space were 37% of the volume of their matched controls, which may alter the rate of molecule–cell interactions in a diffusion-limited mass transport regime as is expected to occur in microgravity. TEM imagery showed an increase in cell envelope thickness of between 25 and 43% in space with respect to the Earth control group. Outer membrane vesicles were observed on the spaceflight samples, but not on the Earth cultures. While E. coli suspension cultures on Earth were homogenously distributed throughout the liquid medium, in space they tended to form a cluster, leaving the surrounding medium visibly clear of cells. This cell aggregation behavior may be associated with enhanced biofilm formation observed in other spaceflight experiments.
Collapse
Affiliation(s)
- Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, BoulderCO, United States
| | - Michael Larsen
- Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Frederico Estante
- Department of Aerospace Engineering Sciences, University of Colorado Boulder, BoulderCO, United States
| | - Klaus Qvortrup
- Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Ralf Moeller
- Space Microbiology Research Group, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace CenterCologne, Germany
| | - Sílvia Dias de Oliveira
- Immunology and Microbiology Laboratory, The Pontifical Catholic University of Rio Grande do SulPorto Alegre, Brazil
| | - Louis Stodieck
- BioServe Space Technologies, University of Colorado Boulder, BoulderCO, United States
| | - David Klaus
- Department of Aerospace Engineering Sciences, University of Colorado Boulder, BoulderCO, United States
| |
Collapse
|
189
|
Rabbow E, Rettberg P, Parpart A, Panitz C, Schulte W, Molter F, Jaramillo E, Demets R, Weiß P, Willnecker R. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station. Front Microbiol 2017; 8:1533. [PMID: 28861052 PMCID: PMC5560112 DOI: 10.3389/fmicb.2017.01533] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/28/2017] [Indexed: 11/13/2022] Open
Abstract
On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS), carrying EXPOSE-R2, the third ESA (European Space Agency) EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form), lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR) experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center) in Cologne by MUSC (Microgravity User Support Center), according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status) or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data). In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.
Collapse
Affiliation(s)
- Elke Rabbow
- Institute of Aerospace Medicine, Radiation Biology, German Aerospace CenterCologne, Germany
| | - Petra Rettberg
- Institute of Aerospace Medicine, Radiation Biology, German Aerospace CenterCologne, Germany
| | - Andre Parpart
- Institute of Aerospace Medicine, Radiation Biology, German Aerospace CenterCologne, Germany
| | - Corinna Panitz
- Institute of Pharmacology and Toxicology, Uniklinik RWTH AachenAachen, Germany
| | | | | | | | - René Demets
- European Space Research and Technology Centre, European Space AgencyNoordwijk, Netherlands
| | - Peter Weiß
- Microgravity User Support Center, German Aerospace CenterCologne, Germany
| | - Rainer Willnecker
- Microgravity User Support Center, German Aerospace CenterCologne, Germany
| |
Collapse
|
190
|
Kobayashi K, Geppert WD, Carrasco N, Holm NG, Mousis O, Palumbo ME, Waite JH, Watanabe N, Ziurys LM. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry. ASTROBIOLOGY 2017; 17:786-812. [PMID: 28727932 DOI: 10.1089/ast.2016.1492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.
Collapse
Affiliation(s)
- Kensei Kobayashi
- 1 Department of Chemistry, Yokohama National University , Yokohama, Japan
| | - Wolf D Geppert
- 2 Department of Geological Sciences, Stockholm University , Stockholm, Sweden
| | - Nathalie Carrasco
- 3 LATMOS, Université Versailles St-Quentin , UPMC, CNRS, Guyancourt, France
| | - Nils G Holm
- 2 Department of Geological Sciences, Stockholm University , Stockholm, Sweden
| | - Olivier Mousis
- 4 Aix Marseille Université , CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Marseille, France
| | | | - J Hunter Waite
- 6 Southwest Research Institute , San Antonio, Texas, USA
| | - Naoki Watanabe
- 7 Institute of Low Temperature Science, Hokkaido University , Sapporo, Japan
| | - Lucy M Ziurys
- 8 Department of Astronomy, Department of Chemistry and Biochemistry, and Steward Observatory, University of Arizona , Tucson, Arizona, USA
| |
Collapse
|
191
|
Morokuma J, Durant F, Williams KB, Finkelstein JM, Blackiston DJ, Clements T, Reed DW, Roberts M, Jain M, Kimel K, Trauger SA, Wolfe BE, Levin M. Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel. ACTA ACUST UNITED AC 2017; 4:85-102. [PMID: 28616247 PMCID: PMC5469732 DOI: 10.1002/reg2.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
Regeneration is regulated not only by chemical signals but also by physical processes, such as bioelectric gradients. How these may change in the absence of the normal gravitational and geomagnetic fields is largely unknown. Planarian flatworms were moved to the International Space Station for 5 weeks, immediately after removing their heads and tails. A control group in spring water remained on Earth. No manipulation of the planaria occurred while they were in orbit, and space‐exposed worms were returned to our laboratory for analysis. One animal out of 15 regenerated into a double‐headed phenotype—normally an extremely rare event. Remarkably, amputating this double‐headed worm again, in plain water, resulted again in the double‐headed phenotype. Moreover, even when tested 20 months after return to Earth, the space‐exposed worms displayed significant quantitative differences in behavior and microbiome composition. These observations may have implications for human and animal space travelers, but could also elucidate how microgravity and hypomagnetic environments could be used to trigger desired morphological, neurological, physiological, and bacteriomic changes for various regenerative and bioengineering applications.
Collapse
Affiliation(s)
- Junji Morokuma
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Fallon Durant
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Katherine B Williams
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Joshua M Finkelstein
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Douglas J Blackiston
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Twyman Clements
- Kentucky Space LLC, 200 West Vine St., Suite 420 Lexington KY 40507 USA
| | - David W Reed
- NASA Kennedy Space Center Space Station Processing Facility Building M7-0360, Kennedy Space Center FL 32899 USA
| | - Michael Roberts
- Center for the Advancement of Science in Space (CASIS) 6905 N. Wickham Rd., Suite 500 Melbourne FL 32940 USA
| | - Mahendra Jain
- Kentucky Space LLC, 200 West Vine St., Suite 420 Lexington KY 40507 USA
| | - Kris Kimel
- Exomedicine Institute 200 West Vine St. Lexington KY 40507 USA
| | - Sunia A Trauger
- Harvard University Small Molecule Mass Spectrometry Facility 52 Oxford St. Cambridge MA 02138 USA
| | - Benjamin E Wolfe
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| | - Michael Levin
- Allen Discovery Center at Tufts University Biology Department Tufts University 200 Boston Ave., Suite 4600 Medford MA 02155-4243 USA
| |
Collapse
|
192
|
Abstract
We present a simple model for estimating the probability of interplanetary panspermia in the recently discovered system of seven planets orbiting the ultracool dwarf star TRAPPIST-1 and find that panspermia is potentially orders of magnitude more likely to occur in the TRAPPIST-1 system compared with the Earth-to-Mars case. As a consequence, we argue that the probability of abiogenesis is enhanced on the TRAPPIST-1 planets compared with the solar system. By adopting models from theoretical ecology, we show that the number of species transferred and the number of life-bearing planets are also likely to be higher because of the increased rates of immigration. We propose observational metrics for evaluating whether life was initiated by panspermia on multiple planets in the TRAPPIST-1 system. These results are also applicable to habitable exoplanets and exomoons in other planetary systems.
Collapse
|
193
|
Di Donato P, Romano I, Mastascusa V, Poli A, Orlando P, Pugliese M, Nicolaus B. Survival and Adaptation of the Thermophilic Species Geobacillus thermantarcticus in Simulated Spatial Conditions. ORIGINS LIFE EVOL B 2017; 48:141-158. [PMID: 28593333 DOI: 10.1007/s11084-017-9540-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/16/2017] [Indexed: 01/24/2023]
Abstract
Astrobiology studies the origin and evolution of life on Earth and in the universe. According to the panspermia theory, life on Earth could have emerged from bacterial species transported by meteorites, that were able to adapt and proliferate on our planet. Therefore, the study of extremophiles, i.e. bacterial species able to live in extreme terrestrial environments, can be relevant to Astrobiology studies. In this work we described the ability of the thermophilic species Geobacillus thermantarcticus to survive after exposition to simulated spatial conditions including temperature's variation, desiccation, X-rays and UVC irradiation. The response to the exposition to the space conditions was assessed at a molecular level by studying the changes in the morphology, the lipid and protein patterns, the nucleic acids. G. thermantarcticus survived to the exposition to all the stressing conditions examined, since it was able to restart cellular growth in comparable levels to control experiments carried out in the optimal growth conditions. Survival was elicited by changing proteins and lipids distribution, and by protecting the DNA's integrity.
Collapse
Affiliation(s)
- Paola Di Donato
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy. .,Department of Science and Technology, University of Naples "Parthenope", Centro Direzionale, Isola C4, 80143, Naples, Italy.
| | - Ida Romano
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Vincenza Mastascusa
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Annarita Poli
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Pierangelo Orlando
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Applied Sciences and Intelligent Systems ISASI-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Mariagabriella Pugliese
- Department of Physics "Ettore Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Barbara Nicolaus
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry ICB-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| |
Collapse
|
194
|
Pacelli C, Selbmann L, Zucconi L, De Vera JP, Rabbow E, Horneck G, de la Torre R, Onofri S. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests. ORIGINS LIFE EVOL B 2017; 47:187-202. [PMID: 27033201 DOI: 10.1007/s11084-016-9485-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.
Collapse
Affiliation(s)
- Claudia Pacelli
- Department of Ecological and Biological Science (DEB), University of Tuscia, L.go dell'Università snc, 01100, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Science (DEB), University of Tuscia, L.go dell'Università snc, 01100, Viterbo, Italy.
| | - Laura Zucconi
- Department of Ecological and Biological Science (DEB), University of Tuscia, L.go dell'Università snc, 01100, Viterbo, Italy
| | - Jean-Pierre De Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Rutherfordstr. 2, 12489, Berlin, Germany
| | - Elke Rabbow
- German Aerospace Centre, Institute of Aerospace Medicine, Linder Hoehe, D 51170, Köln, Germany
| | - Gerda Horneck
- German Aerospace Centre, Institute of Aerospace Medicine, Linder Hoehe, D 51170, Köln, Germany
| | - Rosa de la Torre
- Department of Earth Observation, INTA - National Institute of Aerospace Technique, Madrid, Spain
| | - Silvano Onofri
- Department of Ecological and Biological Science (DEB), University of Tuscia, L.go dell'Università snc, 01100, Viterbo, Italy
| |
Collapse
|
195
|
Frösler J, Panitz C, Wingender J, Flemming HC, Rettberg P. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions. ASTROBIOLOGY 2017; 17:431-447. [PMID: 28520474 DOI: 10.1089/ast.2015.1431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions. Key Words: Biofilms-Desiccation-UV radiation-Mars-Lithopanspermia. Astrobiology 17, 431-447.
Collapse
Affiliation(s)
- Jan Frösler
- 1 Biofilm Centre, University of Duisburg-Essen , Essen, Germany
| | - Corinna Panitz
- 2 Uniklinik/RWTH Aachen, Institute of Pharmacology and Toxicology , Aachen, Germany
| | - Jost Wingender
- 1 Biofilm Centre, University of Duisburg-Essen , Essen, Germany
| | | | - Petra Rettberg
- 3 DLR (Deutsches Zentrum für Luft- und Raumfahrt e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Research Group Astrobiology, Cologne, Germany
| |
Collapse
|
196
|
Byloos B, Coninx I, Van Hoey O, Cockell C, Nicholson N, Ilyin V, Van Houdt R, Boon N, Leys N. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock. Front Microbiol 2017; 8:671. [PMID: 28503167 PMCID: PMC5408026 DOI: 10.3389/fmicb.2017.00671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.
Collapse
Affiliation(s)
- Bo Byloos
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium.,Center for Microbial Ecology and Technology, Ghent UniversityGhent, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Olivier Van Hoey
- Research in Dosimetric Applications, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of EdinburghEdinburgh, UK
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of EdinburghEdinburgh, UK
| | - Vyacheslav Ilyin
- Institute of Medical and Biological Problems of Russian Academy of SciencesMoscow, Russia
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent UniversityGhent, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| |
Collapse
|
197
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
198
|
Khodadad CL, Wong GM, James LM, Thakrar PJ, Lane MA, Catechis JA, Smith DJ. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility. ASTROBIOLOGY 2017; 17:337-350. [PMID: 28323456 PMCID: PMC5399745 DOI: 10.1089/ast.2016.1549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Every spacecraft sent to Mars is allowed to land viable microbial bioburden, including hardy endospore-forming bacteria resistant to environmental extremes. Earth's stratosphere is severely cold, dry, irradiated, and oligotrophic; it can be used as a stand-in location for predicting how stowaway microbes might respond to the martian surface. We launched E-MIST, a high-altitude NASA balloon payload on 10 October 2015 carrying known quantities of viable Bacillus pumilus SAFR-032 (4.07 × 107 spores per sample), a radiation-tolerant strain collected from a spacecraft assembly facility. The payload spent 8 h at ∼31 km above sea level, exposing bacterial spores to the stratosphere. We found that within 120 and 240 min, spore viability was significantly reduced by 2 and 4 orders of magnitude, respectively. By 480 min, <0.001% of spores carried to the stratosphere remained viable. Our balloon flight results predict that most terrestrial bacteria would be inactivated within the first sol on Mars if contaminated spacecraft surfaces receive direct sunlight. Unfortunately, an instrument malfunction prevented the acquisition of UV light measurements during our balloon mission. To make up for the absence of radiometer data, we calculated a stratosphere UV model and conducted ground tests with a 271.1 nm UVC light source (0.5 W/m2), observing a similarly rapid inactivation rate when using a lower number of contaminants (640 spores per sample). The starting concentration of spores and microconfiguration on hardware surfaces appeared to influence survivability outcomes in both experiments. With the relatively few spores that survived the stratosphere, we performed a resequencing analysis and identified three single nucleotide polymorphisms compared to unexposed controls. It is therefore plausible that bacteria enduring radiation-rich environments (e.g., Earth's upper atmosphere, interplanetary space, or the surface of Mars) may be pushed in evolutionarily consequential directions. Key Words: Planetary protection-Stratosphere-Balloon-Mars analog environment-E-MIST payload-Bacillus pumilus SAFR-032. Astrobiology 17, 337-350.
Collapse
Affiliation(s)
| | - Gregory M. Wong
- Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania
| | | | | | - Michael A. Lane
- NASA, Engineering Directorate, Kennedy Space Center, Florida
| | | | - David J. Smith
- NASA, Space Biosciences Division, Ames Research Center, Moffett Field, California
| |
Collapse
|
199
|
de la Torre R, Miller AZ, Cubero B, Martín-Cerezo ML, Raguse M, Meeßen J. The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa. ASTROBIOLOGY 2017; 17:145-153. [PMID: 28206822 DOI: 10.1089/ast.2015.1454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays)-the maximum doses applied for those radiation qualities-as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans. Key Words: Simulated space ionizing radiation-Gamma rays-Extremotolerance-Lichens-Circinaria gyrosa-Photosynthetic activity. Astrobiology 17, 145-153.
Collapse
Affiliation(s)
- Rosa de la Torre
- 1 Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA) , Madrid, Spain
| | - Ana Zélia Miller
- 2 Instituto de Recursos Naturales y Agrobiología de Sevilla-CSIC , Sevilla, Spain
| | - Beatriz Cubero
- 2 Instituto de Recursos Naturales y Agrobiología de Sevilla-CSIC , Sevilla, Spain
| | - M Luisa Martín-Cerezo
- 1 Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA) , Madrid, Spain
| | - Marina Raguse
- 3 Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| | - Joachim Meeßen
- 4 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| |
Collapse
|
200
|
Brandt A, Meeßen J, Jänicke RU, Raguse M, Ott S. Simulated Space Radiation: Impact of Four Different Types of High-Dose Ionizing Radiation on the Lichen Xanthoria elegans. ASTROBIOLOGY 2017; 17:136-144. [PMID: 28206821 DOI: 10.1089/ast.2015.1455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study addresses the viability of the lichen Xanthoria elegans after high-dose ionizing irradiation in the frame of the STARLIFE campaign. The first set of experiments was intended to resemble several types of galactic cosmic radiation (GCR) as present beyond the magnetic shield of Earth. In the second set of experiments, γ radiation up to 113 kGy was applied to test the limit of lichen resistance to ionizing radiation. Entire thalli of Xanthoria elegans were irradiated in the anhydrobiotic state. After STARLIFE 1, the metabolic activity of both symbionts was quantified by live/dead staining with confocal laser scanning microscopy. The photosynthetic activity was measured after the respective irradiation to assess the ability of the symbiotic green algae to restore photosynthesis after irradiation. The STARLIFE campaign complements the results of the LIFE experiments at the EXPOSE-E facility on the International Space Station by testing the model organism Xanthoria elegans on its resistance to hazardous radiation that might be accumulated during long-term space exposure. In addition, the photosynthetic activity of metabolically active lichen was investigated after X-ray irradiation up to 100 Gy (3.3 Gy/min). Since previous astrobiological experiments were mostly performed with anhydrobiotic lichen, these experiments will broaden our knowledge on the correlation of physiological state and astrobiological stressors. Key Words: Astrobiology-Extremotolerance-Gamma rays-Ionizing radiation-Lichens-Viability. Astrobiology 17, 136-144.
Collapse
Affiliation(s)
- Annette Brandt
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| | - Joachim Meeßen
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| | - Reiner U Jänicke
- 2 Laboratory of Molecular Radiooncology, University of Düsseldorf , Düsseldorf, Germany
| | - Marina Raguse
- 3 Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| | - Sieglinde Ott
- 1 Institute of Botany, Heinrich-Heine-University (HHU) , Düsseldorf, Germany
| |
Collapse
|