151
|
Deb B, Uddin A, Chakraborty S. Codon usage pattern and its influencing factors in different genomes of hepadnaviruses. Arch Virol 2020; 165:557-570. [PMID: 32036428 PMCID: PMC7086886 DOI: 10.1007/s00705-020-04533-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Abstract
Codon usage bias (CUB) arises from the preference for a codon over codons for the same amino acid. The major factors contributing to CUB are evolutionary forces, compositional properties, gene expression, and protein properties. The present analysis was performed to investigate the compositional properties and the extent of CUB across the genomes of members of the family Hepadnaviridae, as previously no work using bioinformatic tools has been reported. The viral genes were found to be AT rich with low CUB. Analysis of relative synonymous codon usage (RSCU) was used to identify overrepresented and underrepresented codons for each amino acid. Correlation analysis of overall nucleotide composition and its composition at the third codon position suggested that mutation pressure might influence the CUB. A highly significant correlation was observed between GC12 and GC3 (r = 0.910, p < 0.01), indicating that directional mutation affected all three codon positions across the genome. Translational selection (P2) and mutational responsive index (MRI) values of genes suggested that mutation plays a more important role than translational selection in members of the family Hepadnaviridae.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India.
| |
Collapse
|
152
|
Structural features in common of HBV and HIV-1 resistance against chirally-distinct nucleoside analogues entecavir and lamivudine. Sci Rep 2020; 10:3021. [PMID: 32080249 PMCID: PMC7033138 DOI: 10.1038/s41598-020-59775-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major public health problem that affects millions of people worldwide. Nucleoside analogue reverse transcriptase (RT) inhibitors, such as entecavir (ETV) and lamivudine (3TC), serve as crucial anti-HBV drugs. However, structural studies of HBV RT have been hampered due to its unexpectedly poor solubility. Here, we show that human immunodeficiency virus type-1 (HIV-1) with HBV-associated amino acid substitutions Y115F/F116Y/Q151M in its RT (HIVY115F/F116Y/Q151M) is highly susceptible to ETV and 3TC. Additionally, we experimentally simulated previously reported ETV/3TC resistance for HBV using HIVY115F/F116Y/Q151M with F160M/M184V (L180M/M204V in HBV RT) substituted. We determined crystal structures for HIV-1 RTY115F/F116Y/Q151M:DNA complexed with 3TC-triphosphate (3TC-TP)/ETV-triphosphate (ETV-TP)/dCTP/dGTP. These structures revealed an atypically tight binding conformation of 3TC-TP, where the Met184 side-chain is pushed away by the oxathiolane of 3TC-TP and exocyclic methylene of ETV-TP. Structural analysis of RTY115F/F116Y/Q151M/F160M/M184V:DNA:3TC-TP also demonstrated that the loosely bound 3TC-TP is misaligned at the active site to prevent a steric clash with the side chain γ-methyl of Val184. These findings shed light on the common structural mechanism of HBV and HIV-1 resistance to 3TC and ETV and should aid in the design of new agents to overcome drug resistance to 3TC and ETV.
Collapse
|
153
|
Park S, Ha YN, Dezhbord M, Lee AR, Park ES, Park YK, Won J, Kim NY, Choo SY, Shin JJ, Ahn CH, Kim KH. Suppression of Hepatocyte Nuclear Factor 4 α by Long-term Infection of Hepatitis B Virus Contributes to Tumor Cell Proliferation. Int J Mol Sci 2020; 21:ijms21030948. [PMID: 32023898 PMCID: PMC7037729 DOI: 10.3390/ijms21030948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major factor in the development of various liver diseases such as hepatocellular carcinoma (HCC). Among HBV encoded proteins, HBV X protein (HBx) is known to play a key role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor which is critical for hepatocyte differentiation. However, the expression level as well as its regulatory mechanism in HBV infection have yet to be clarified. Here, we observed the suppression of HNF4α in cells which stably express HBV whole genome or HBx protein alone, while transient transfection of HBV replicon or HBx plasmid had no effect on the HNF4α level. Importantly, in the stable HBV- or HBx-expressing hepatocytes, the downregulated level of HNF4α was restored by inhibiting the ERK signaling pathway. Our data show that HNF4α was suppressed during long-term HBV infection in cultured HepG2-NTCP cells as well as in a mouse model following hydrodynamic injection of pAAV-HBV or in mice intravenously infected with rAAV-HBV. Importantly, HNF4α downregulation increased cell proliferation, which contributed to the formation and development of tumor in xenograft nude mice. The data presented here provide proof of the effect of HBV infection in manipulating the HNF4α regulatory pathway in HCC development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kyun-Hwan Kim
- Correspondence: ; Tel.: +82-2-2030-7833; Fax: +82-2-2049-6192
| |
Collapse
|
154
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
155
|
Regulation of Molecular Chaperone GRP78 by Hepatitis B Virus: Control of Viral Replication and Cell Survival. Mol Cell Biol 2020; 40:MCB.00475-19. [PMID: 31712392 DOI: 10.1128/mcb.00475-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B (CHB) remains a global health problem, carrying a high risk for progression into cirrhosis and liver failure. Molecular chaperones are involved in diverse pathophysiological processes including viral infection. However, the role of molecular chaperones in hepatitis B virus (HBV) infection and its underlying mechanisms remain unclear. Here, we identified GRP78 as one of the molecular chaperones most strongly induced by HBV in human hepatocytes. Gain- and loss-of-function analyses demonstrated that GRP78 exerted an inhibitory effect on HBV transcription and replication. Further study showed that GRP78 was involved in the activation of AKT/mTOR signaling in hepatocytes, which contributed to GRP78-mediated inhibition of HBV. Of note, HBV-upregulated GRP78 was found to play a crucial role in maintaining the survival of hepatocytes via facilitating a mild endoplasmic reticulum (ER) stress. Together, our findings suggest that HBV may sacrifice part of its replication for establishing a persistent infection through induction of GRP78, a master ER stress regulator. Targeting GRP78 may help develop to design novel therapeutic strategies against chronic HBV infection and the associated hepatocellular carcinoma.
Collapse
|
156
|
Fu B, Ji Y, Hu S, Ren T, Bhuva MS, Li G, Yang H. Efficacy and safety of anti-viral therapy for Hepatitis B virus-associated glomerulonephritis: A meta-analysis. PLoS One 2020; 15:e0227532. [PMID: 31940324 PMCID: PMC6961902 DOI: 10.1371/journal.pone.0227532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives To assess the potency of anti-viral treatment for hepatitis B virus-associated glomerulonephritis (HBV-GN). Method: We searched for controlled clinical trials on anti-viral therapy for HBV-GN in MEDLINE, Embase, the Cochrane Library, and PubMed from inception to March 11th 2019. Seven trials, including 182 patients met the criteria for evaluating. The primary outcome measures were proteinuria and changes in the estimated glomerular filtration rate, and the secondary outcome measure was hepatitis B e-antigen clearance. A fixed or random effect model was established to analyze the data. Subgroup analyses were performed to explore the effects of clinical trial type, anti-viral drug type, age, and follow-up duration. Results The total remission rate of proteinuria (OR = 10.48, 95% CI: 4.60−23.89, I2 = 0%), complete remission rate of proteinuria (OR = 11.64, 95% CI: 5.17−26.21, I2 = 23%) and clearance rate of Hepatitis Be Antigen (HBeAg) were significantly higher in the anti-viral treatment group than in the control group (OR = 27.08, 95% CI: 3.71−197.88, I2 = 63%). However, antiviral therapy was not as effective regarding the eGFR (MD = 5.74, 95% CI: -4.24−15.73). In the subgroup analysis, age and drug type had significant impacts on proteinuria remission, and study type and follow-up duration only slightly affected the heterogeneity. Conclusion Antiviral therapy induced remission of proteinuria and increased HBeAg clearance but failed to improve the eGFR. Pediatric patients were more sensitive to antiviral therapy than adults. IFNs seem more effective but are accompanied by more adverse reactions than NAs.
Collapse
Affiliation(s)
- Baohui Fu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Ji
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shouci Hu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Tong Ren
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maheshkumar Satishkumar Bhuva
- International Department, Tongji University School of Medicine Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Ge Li
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- * E-mail: (HY); (GL)
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- * E-mail: (HY); (GL)
| |
Collapse
|
157
|
Jo E, Ryu DK, König A, Park S, Cho Y, Park SH, Kim TH, Yoon SK, Ryu WS, Cechetto J, Windisch MP. Identification and characterization of a novel hepatitis B virus pregenomic RNA encapsidation inhibitor. Antiviral Res 2020; 175:104709. [PMID: 31940474 DOI: 10.1016/j.antiviral.2020.104709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 01/28/2023]
Abstract
Currently, therapies to treat chronic hepatitis B (CHB) infection are based on the use of interferon-α or nucleos(t)ide analogs (NAs) to prevent viral DNA synthesis by inhibiting the reverse transcriptase activity of the hepatitis B virus (HBV) polymerase (Pol). However, these therapies are not curative; thus, the development of novel anti-HBV agents is needed. In accordance with this unmet medical need, we devised a new target- and cell-based, high-throughput screening assay to identify novel small molecules that block the initial interaction of the HBV Pol with its replication template the viral pregenomic RNA (pgRNA). We screened approximately 110,000 small molecules for the ability to prevent HBV Pol recognition of the pgRNA 5' epsilon (ε) stem-loop structure, identifying (Z)-2-(allylamino)-4-amino-N'-cyanothiazole-5-carboximidamide (AACC). Viral nucleocapsid-captured quantitative RT-PCR and Western blot results revealed that AACC significantly decreased encapsidated pgRNA levels and blocked capsid assembly without affecting core protein expression in stable HBV-replicating cells. As a result, both intra- and extracellular accumulation of viral DNA was strongly reduced. AACC treatment of HepG2-sodium taurocholate transporting polypeptide (NTCP) cells and primary human hepatocytes infected with cell culture- or patient-derived HBV isolates showed both time- and dose-dependent inhibition of infectious viral progeny and rcDNA production. Furthermore, AACC showed cross-genotypic activity against genotypes B, C, and D. Of note, AACC inhibited the viral replication of lamivudine and a capsid inhibitor-resistant HBV, and showed synergistic effects with NAs and a capsid inhibitor. In conclusion, we identified a novel class of compounds specifically targeting the ε-Pol interaction and thereby preventing the encapsidation of pgRNAs into viral capsids. This promising new HBV inhibitor class potently inhibits HBV amplification with distinct characteristics from existing NAs and other drugs currently under development, promising to add value to existing therapies for CHB.
Collapse
Affiliation(s)
- Eunji Jo
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Dong-Kyun Ryu
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Alexander König
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Soonju Park
- Screening Discovery Platform, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Yoojin Cho
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Sang-Hyun Park
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Tae-Hee Kim
- Screening Discovery Platform, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Seung Kew Yoon
- Catholic University Liver Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Wang-Shick Ryu
- Department of Biochemistry, Yonsei University, Seoul, South Korea
| | - Jonathan Cechetto
- Screening Discovery Platform, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Marc P Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, 696 Sampyung-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea; Division of Bio-Medical Science and Technology, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
158
|
Jagadeesh A, Prathyusha AMVN, Sheela GM, Bramhachari PV. T Cells in Viral Infections: The Myriad Flavours of Antiviral Immunity. DYNAMICS OF IMMUNE ACTIVATION IN VIRAL DISEASES 2020. [PMCID: PMC7122319 DOI: 10.1007/978-981-15-1045-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viral diseases are a major cause of morbidity and mortality and result in a significant public health burden. T lymphocytes first identified in the chordate lineage and constitute a highly sophisticated branch of adaptive immune system. Apart from B cells, it is the only cell type that exhibits antigenic specificities; achieved by gene rearrangement. T cells are unique with respect to diversity of their subsets, which have distinct effector specificities, proliferative abilities, memory generation, and life span. T cells are impactful in viral infections by virtue of their capability to combat intracellular pathogens. The effector functions of T cells are mediated through cytokines/chemokines and by direct cytotoxicity of infected cells. T cell response can be beneficial or detrimental to host; prognosis depending on qualitative and quantitative differences in the response. Persistent viral infections are associated with functionally suboptimal, exhausted T cell responses, which are unable to clear virus. Specific subsets such as regulatory T cells (Tregs) dampen antiviral responses; thereby favouring viral persistence. However, Tregs protect the host from immunopathology by limiting perpetual inflammation. Certain other subsets such as Th17 cells may contribute to autoimmune component of viral infections. The importance of T cells is highlighted by the fact that modern vaccination and therapeutic approaches focus on modulating T cell frequencies and effector functions. This chapter emphasises the understanding how T cells influence outcomes of viral infections, modern vaccination and therapeutic strategies with thrust on T cell biology.
Collapse
|
159
|
Li J, Li A. Role of microRNA 4717, its effects on programmed cell death protein-1 in hepatitis B infection, and interaction between PDCD1 and miR-4717. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is suggested that programmed cell death protein-1 (PD-1) is involved in hepatitis B virus (HBV) infection, the leading cause of hepatocellular carcinoma globally. This study was multi-aimed, that is, to investigate the role of microRNA (miR) 4717 and its target, PD-1 and to determine how the rs10204525 polymorphism in the 3′ untranslated region (3′UTR) of PD-1 affects its interaction with miR-4717. The expression levels of miR-4717 with various single-nucleotide polymorphisms were measured by reverse transcription–quantitative polymerase chain reaction (RT-qPCR). A total of 54 tissue samples from HBV-infected individuals were collected, genotyped, and categorized into three groups; AA (n = 32), AG (n = 18), and GG (n = 4). The expression levels of gene PDCD1 and its corresponding PD-1 protein were significantly declined in the AA group as compared to AG and GG groups. There was a negative linear association between PDCD1 and miR-4717 in the tissue samples. HEPG2 cells transfected with an miR-4717 mimic or PD-1 small interfering (si)RNA exhibited significantly reduced expression levels of PDCD1 and PD-1, whereas cells transfected with an inhibitor of miR-4717 demonstrated greater expression levels of PDCD1 and PD-1 compared with the scramble control. In addition, cell viability and apoptosis were assessed in cells transfected with an miR-4717 mimic, PD-1 siRNA, or an miR-4717 inhibitor. Results revealed that treatment with the miR-4717 mimic or PD-1 siRNA enhanced viability of cells and reduced apoptosis. The results of this study suggest that rs10204525 polymorphism interferes with the interaction between PD-1 and miR-4717 and therefore induces apoptosis in liver cancer cells.
Collapse
Affiliation(s)
- Junhua Li
- Department of Laboratory, Kuling District People’s Hospital, Dezhou, China
| | - Andong Li
- Department of Laboratory, Dezhou City Hospital, Dezhou, China
| |
Collapse
|
160
|
Gu Y, Chen L, Lian Y, Gu L, Chen Y, Bi Y, Huang Z, Huang Y, Hu B, Huang Y. Serum HBV pregenomic RNA is correlated with Th1/Th2 immunity in treatment-naïve chronic hepatitis B patients. J Med Virol 2019; 92:317-328. [PMID: 31642539 PMCID: PMC7004183 DOI: 10.1002/jmv.25612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Hepatitis B virus (HBV) load and antigens are related to the innate and adaptive immunity of chronic hepatitis B (CHB) patients. As a new HBV biomarker, the role of pregenomic RNA (pgRNA) in host immunity is not known. This study aimed to identify the relationship between serum HBV pgRNA and host immunity in CHB patients. METHODS Two hundred twenty-five treatment-naïve CHB patients were enrolled. Serum cytokines were measured by cytokine antibody array (Luminex multiplex platform). Th1 (T-helper cell, Th) and Th2 cells were tested by flow cytometry. Serum HBV pgRNA was detected by a reverse transcription-polymerase chain reaction. RESULTS Serum HBV pgRNA was significantly different among patients in different disease phases and significantly associated with both HBV antigens and antibodies. Serum HBV pgRNA was positively correlated with the HBsAg level (P < .001) and the presence of HBeAg (P < .001). Patients with higher HBcAb levels showed lower serum HBV pgRNA levels (P = .003). Notably, HBsAb positivity was associated with higher levels of serum HBV pgRNA in HBeAg(-) patients (P = .049). Serum HBV pgRNA was positively associated with ALT level, Th2 cell frequency, and related cytokine sCD30 (P < .001, P < .001, and P = .003, respectively), but negatively associated with Th1-related cytokine interleukin (IL)-12P70 and cytotoxic lymphocytes (CTLs) (P = .017 and P < .001, respectively). CONCLUSION Our study confirmed the relationship between serum HBV pgRNA and host immunity. The results demonstrated that serum HBV pgRNA is positively correlated with Th2 immunity but negatively correlated with Th1 immunity, indicating that it might have a relationship with HBV antigen conversion and CTL immunodeficiency in CHB patients.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqiong Chen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanlin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
161
|
Zhao Q, Ren X, Chen M, Yue SJ, Zhang MQ, Chen KX, Guo YW, Shao CL, Wang CY. Effects of traditional Chinese medicine formula Le-Cao-Shi on hepatitis B: In vivo and in vitro studies. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112132. [PMID: 31381954 DOI: 10.1016/j.jep.2019.112132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Formula Le-Cao-Shi (LCS) is a traditional Chinese medicine (TCM), which has long been used as a folk remedy against hepatitis B in China. The present study was conducted to evaluate the anti-hepatitis B effects of aqueous extract of LCS in vivo and in vitro. MATERIALS AND METHOD we investigated the anti-HBV effects of LCS in vivo and in vitro with duck hepatitis B model and HepG2.2.15 cell line model, respectively. The serologic and cellular biomarkers and the histopathological changes were examined. RESULTS By a duck hepatitis B model, the extract of LCS was found to restrain the expressions of duck hepatitis B surface antigen (DHBsAg), hepatitis B e antigen (DHBeAg), and HBV-DNA (DHBV-DNA). Moreover, LCS could decrease the levels of aspartate and alanine aminotransferases (AST and ALT) and ameliorate duck liver histological lesions. Correspondingly, in a HepG2.2.15 cellular model, LCS could also significantly inhibit the secretions of HBsAg and HBeAg. CONCLUSION LCS exerted potent anti-hepatitis effects against the infection of HBV. The above results demonstrated the first-hand experimental evidences for the anti-hepatitis B efficiency of LCS. Our study provides a basis for further exploration and development of this promising compound prescription to treat hepatitis B disease.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA, Viral
- Drugs, Chinese Herbal/therapeutic use
- Ducks
- Hepatitis B/drug therapy
- Hepatitis B/immunology
- Hepatitis B/pathology
- Hepatitis B/virology
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Virus, Duck/drug effects
- Hepatitis B Virus, Duck/genetics
- Hepatitis B Virus, Duck/immunology
- Hepatitis B e Antigens/immunology
- Hepatitis, Viral, Animal/drug therapy
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Hepatitis, Viral, Animal/virology
- Humans
- Liver/drug effects
- Liver/pathology
- Medicine, Chinese Traditional
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Min Chen
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Marine Science & Technology Institute, College of Environmental Science & Engineering, Yangzhou University, Yangzhou, 225127, PR China
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|
162
|
Xiao Y, Liu C, Tang W, Zhang H, Chen X. Evans Blue Inhibits HBV Replication Through a Dual Antiviral Mechanism by Targeting Virus Binding and Capsid Assembly. Front Microbiol 2019; 10:2638. [PMID: 31798562 PMCID: PMC6868041 DOI: 10.3389/fmicb.2019.02638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic hepatitis B (CHB) is a global health problem caused by human hepatitis B virus (HBV). Current treatment with interferons and nucleos(t)ide analogs (NAs) can cause population tolerance and drug resistance. Therefore, new antiviral drugs, especially those targeting host factors, are urgently needed. Here, we identified Evans blue as a new HBV inhibitor by screening an FDA drug library using Huh7DhNTCP cells and confirmed the antiviral activity in primary human hepatocytes and human sodium taurocholate cotransporting polypeptide (hNTCP)-transfected porcine primary hepatocytes. Our efficacy study showed that Evans blue has an IC50 of 2 μM against HBV infection in Huh7DhNTCP cells, and no apparent toxicity at up to 1000 μM. The IC50 of Evans blue against HBV in primary human hepatocytes was approximately 5 μM. Mechanism studies revealed that Evans blue has a dual anti-HBV effect. It inhibits both the binding of viral preS1 to host cells through the host factor NTCP and the virus capsid assembly by targeting the host factor BK channel. The KD of the direct interaction between Evans blue and NTCP is 8.82E-8 M. Evans blue can suppress capsid assembly at micromolar concentrations by reducing the cytosolic calcium ion concentration. Since the antiviral effects on HBV binding and assembly are both achieved through targeting host factors, Evans blue inhibits the infection of nucleos(t)ide analog drug-resistant HBV strains in Huh7DhNTCP cells. Taken together, our results suggest that Evans blue may be a promising anti-HBV drug candidate in the classes of both entry and assembly inhibitors.
Collapse
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
163
|
Goyal A, Liao LE, Perelson AS. Within-host mathematical models of hepatitis B virus infection: Past, present, and future. ACTA ACUST UNITED AC 2019; 18:27-35. [PMID: 31930181 DOI: 10.1016/j.coisb.2019.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mathematical modeling has been instrumental in enhancing our understanding of the viral dynamics of hepatitis B virus (HBV) infection. We give a primer on HBV infection in humans and a brief overview of the development of within-host mathematical models of HBV infection. In the last decade, models have advanced from considering chronic HBV infections under therapy to the pathogenesis of infection. We also summarize estimates of key viral dynamic parameters that have varied greatly among studies, and show that they impact model predictions. Future directions for mathematical modeling of HBV infection are proposed to better understand emerging therapies, the HBV life cycle, predicting cure, and the mechanisms involved in the immune response to HBV infection.
Collapse
Affiliation(s)
- Ashish Goyal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Laura E Liao
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| |
Collapse
|
164
|
Jin J, Xu H, Wu R, Gao N, Wu N, Li S, Niu J. Identification of key genes and pathways associated with different immune statuses of hepatitis B virus infection. J Cell Mol Med 2019; 23:7474-7489. [PMID: 31565863 PMCID: PMC6815815 DOI: 10.1111/jcmm.14616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
We aimed to identify key genes and pathways associated with different immune statuses of hepatitis B virus (HBV) infection. The gene expression and DNA methylation profiles were analysed in different immune statuses of HBV infection. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified, followed by their functional and integrative analyses. The differential expression of IgG Fc receptors (FcγRs) in chronic HBV-infected patients and immune cells during different stages of HBV infection was investigated. Toll-like receptor (TLR) signalling pathway (including TLR6) and leucocyte transendothelial migration pathway (including integrin subunit beta 1) were enriched during acute infection. Key DEGs, such as FcγR Ib and FcγR Ia, and interferon-alpha inducible protein 27 showed correlation with alanine aminotransferase levels, and they were differentially expressed between acute and immune-tolerant phases and between immune-tolerant and immune-clearance phases. The integrative analysis of DNA methylation profile showed that lowly methylated and highly expressed genes, including cytotoxic T lymphocyte-associated protein 4 and mitogen-activated protein kinase 3 were enriched in T cell receptor signalling pathway during acute infection. Highly methylated and lowly expressed genes, such as Ras association domain family member 1 and cyclin-dependent kinase inhibitor 2A were identified in chronic infection. Furthermore, differentially expressed FcγR Ia, FcγR IIa and FcγR IIb, CD3- CD56+ CD16+ natural killer cells and CD14high CD16+ monocytes were identified between immune-tolerant and immune-clearance phases by experimental validation. The above genes and pathways may be used to distinguish different immune statuses of HBV infection.
Collapse
MESH Headings
- DNA Methylation/genetics
- DNA Methylation/immunology
- Female
- Gene Expression/genetics
- Hepatitis B/genetics
- Hepatitis B/immunology
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Humans
- Killer Cells, Natural/immunology
- Male
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Signal Transduction/genetics
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Jinglan Jin
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Hongqin Xu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| | - Ruihong Wu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| | - Na Gao
- Department of Infectious DiseaseThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Na Wu
- Lanshan People’s HospitalLinyiChina
| | - Shibo Li
- Department of Pediatrics, Genetics LaboratoryUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin UniversityJilin UniversityChangchunChina
- Jilin Province Key Laboratory of Infectious DiseasesLaboratory of Molecular VirologyChangchunChina
| |
Collapse
|
165
|
Ren F, Yang X, Hu ZW, Wong VKW, Xu HY, Ren JH, Zhong S, Jia XJ, Jiang H, Hu JL, Cai XF, Zhang WL, Yao FL, Yu HB, Cheng ST, Zhou HZ, Huang AL, Law BYK, Chen J. Niacin analogue, 6-Aminonicotinamide, a novel inhibitor of hepatitis B virus replication and HBsAg production. EBioMedicine 2019; 49:232-246. [PMID: 31680002 PMCID: PMC6945246 DOI: 10.1016/j.ebiom.2019.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/28/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Hepatitis B surface antigen (HBsAg) is one of the important clinical indexes for hepatitis B virus (HBV) infection diagnosis and sustained seroconversion of HBsAg is an indicator for functional cure. However, the level of HBsAg could not be reduced by interferons and nucleoside analogs effectively. Therefore, identification of a new drug targeting HBsAg is urgently needed. Methods: In this study, 6-AN was screened out from 1500 compounds due to its low cytotoxicity and high antiviral activity. The effect of 6-AN on HBV was examined in HepAD38, HepG2-NTCP and PHHs cells. In addition, the antivirus effect of 6-AN was also identified in mouse model. Findings: 6-AN treatment resulted in a significant decrease of HBsAg and other viral markers both in vitro and in vivo. Furthermore, we found that 6-AN inhibited the activities of HBV SpI, SpII and core promoter by decreasing transcription factor PPARα, subsequently reduced HBV RNAs transcription and HBsAg production. Interpretation: We have identified a novel small molecule to inhibit HBV core DNA, HBV RNAs, HBsAg production, as well as cccDNA to a minor degree both in vitro and in vivo. This study may shed light on the development of a novel class of anti-HBV agent.
Collapse
Affiliation(s)
- Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Xiao Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Zhong-Wen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room 704a-02, Block H, Macau, China
| | - Hong-Yan Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Shan Zhong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Xiao-Jiong Jia
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Hui Jiang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Jie-Li Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Xue-Fei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Wen-Lu Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Fang-Long Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Ai-Long Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Room 704a-02, Block H, Macau, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Room 617, College of Life Sciences Building, 1 YiXueYuan Road, YuZhong District, Chongqing 400016, China.
| |
Collapse
|
166
|
Manda EC, Chirove F. Acute hepatitis B virus infection model within the host incorporating immune cells and cytokine responses. Theory Biosci 2019; 139:153-169. [PMID: 31650408 DOI: 10.1007/s12064-019-00305-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
We formulate and analyze a within-host hepatitis B viral mathematical model for hepatitis B in the acute phase of infection. The model incorporates hepatocytes, hepatitis B virus, immune system cells and cytokine dynamics using a system of ordinary differential equations. We use the model to demonstrate the trends of the hepatitis B infection qualitatively without the effects of immune cells and cytokines. Using these trends, we tested the effects of incorporating the immune cells only and immune cells with cytokine responses at low and high inhibitions on the hepatitis B virus infection. Our results showed that it is impossible to have the immune cells work independently from cytokines when there is an acute hepatitis B virus infection. Therefore, our results suggest that incorporating immune cells and cytokine dynamics in the acute hepatitis B virus infection stage delays infection in the hepatocytes and excluding such dynamics speeds up infection during this phase. Results from this study are useful in developing strategies for control of hepatocellular carcinoma which is caused by hepatitis B virus infection.
Collapse
Affiliation(s)
| | - Faraimunashe Chirove
- University of KwaZulu-Natal, Pietermaritzburg, South Africa.,University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
167
|
Sa-Ngiamsuntorn K, Thongsri P, Pewkliang Y, Wongkajornsilp A, Kongsomboonchoke P, Suthivanich P, Borwornpinyo S, Hongeng S. An Immortalized Hepatocyte-like Cell Line (imHC) Accommodated Complete Viral Lifecycle, Viral Persistence Form, cccDNA and Eventual Spreading of a Clinically-Isolated HBV. Viruses 2019; 11:E952. [PMID: 31623162 PMCID: PMC6832882 DOI: 10.3390/v11100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
More than 350 million people worldwide have been persistently infected with the hepatitis B virus (HBV). Chronic HBV infection could advance toward liver cirrhosis and hepatocellular carcinoma. The intervention with prophylactic vaccine and conventional treatment could suppress HBV, but could not completely eradicate it. The major obstacle for investigating curative antiviral drugs are the incompetence of hepatocyte models that should have closely imitated natural human infection. Here, we demonstrated that an immortalized hepatocyte-like cell line (imHC) could accommodate for over 30 days the entire life cycle of HBV prepared from either established cultured cells or clinically-derived fresh isolates. Normally, imHCs had intact interferon signaling with anti-viral action. Infected imHCs responded to treatments with direct-acting antiviral drugs (DAAs) and interferons (IFNs) by diminishing HBV DNA, the covalently closed circular DNA (cccDNA) surface antigen of HBV (HBsAg, aka the Australia antigen) and the hepatitis B viral protein (HBeAg). Notably, we could observe and quantify HBV spreading from infected cells to naïve cells using an imHC co-culture model. In summary, this study constructed a convenient HBV culture model that allows the screening for novel anti-HBV agents with versatile targets, either HBV entry, replication or cccDNA formation. Combinations of agents aiming at different targets should achieve a complete HBV eradication.
Collapse
Affiliation(s)
- Khanit Sa-Ngiamsuntorn
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Piyanoot Thongsri
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.
| | - Yongyut Pewkliang
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | | - Phichaya Suthivanich
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
168
|
Li L, Li Y, Xiong Z, Shu W, Yang Y, Guo Z, Gao B. FoxO4 inhibits HBV core promoter activity through ERK-mediated downregulation of HNF4α. Antiviral Res 2019; 170:104568. [DOI: 10.1016/j.antiviral.2019.104568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 01/12/2023]
|
169
|
Zhu A, Liao X, Li S, Zhao H, Chen L, Xu M, Duan X. HBV cccDNA and Its Potential as a Therapeutic Target. J Clin Transl Hepatol 2019; 7:258-262. [PMID: 31608218 PMCID: PMC6783673 DOI: 10.14218/jcth.2018.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/02/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis B virus infection continues to be a major health burden worldwide. It can cause various degrees of liver damage and is strongly associated with the development of liver cirrhosis and hepatocellular carcinoma. Covalently closed circular DNA in the nucleus of infected cells cannot be disabled by present therapies which may lead to HBV persistence and relapse. In this review, we summarized the current knowledge on hepatitis B virus covalently closed circular DNA and its potential role as a therapeutic target.
Collapse
Affiliation(s)
- Anjing Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xinzhong Liao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shuang Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Hang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|
170
|
Ye Y, Yang J, Hu Q, Mao J, Yang Q, Chen H, Li D, Li P, Duan L, Wang B, Chen J, Chen W. SIP1 serves a role in HBx‑induced liver cancer growth and metastasis. Int J Oncol 2019; 55:1019-1032. [PMID: 31793654 PMCID: PMC6776188 DOI: 10.3892/ijo.2019.4884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/30/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV) has been revealed to be involved in the development of hepatocellular carcinoma. However, the mechanism remains to be fully elucidated. Smad‑interacting protein 1 (SIP1) is a transcriptional repressor, which serves a pivotal role in cell metastasis. In the present study, the role of SIP1 in HBx‑induced hepatocyte EMT and cancer aggressiveness was examined. It was found that HBV X protein (HBx) increased the expression of SIP1 and recruited it to the promoter of E‑cadherin, resulting in depression of the transcription of E‑cadherin. Histone deacetylase 1 was also found to be involved in the repressive complex formation. Furthermore, in an orthotopic tumor transplantation model in vivo, HBx promoted tumor growth and metastasis, whereas the knockdown of SIP1 attenuated the effect of HBx. These results indicate a novel mechanism for the development of HBV‑related liver cancer.
Collapse
Affiliation(s)
- Yuanyuan Ye
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jun Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jinju Mao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Qianfan Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Juan Chen
- Key Laboratory of Molecular Biology of Infectious Diseases Designated by The Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
171
|
Ribeiro YC, Robe LJ, Veluza DS, Dos Santos CMB, Lopes ALK, Krieger MA, Ludwig A. Study of VIPER and TATE in kinetoplastids and the evolution of tyrosine recombinase retrotransposons. Mob DNA 2019; 10:34. [PMID: 31391870 PMCID: PMC6681497 DOI: 10.1186/s13100-019-0175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Background Kinetoplastids are a flagellated group of protists, including some parasites, such as Trypanosoma and Leishmania species, that can cause diseases in humans and other animals. The genomes of these species enclose a fraction of retrotransposons including VIPER and TATE, two poorly studied transposable elements that encode a tyrosine recombinase (YR) and were previously classified as DIRS elements. This study investigated the distribution and evolution of VIPER and TATE in kinetoplastids to understand the relationships of these elements with other retrotransposons. Results We observed that VIPER and TATE have a discontinuous distribution among Trypanosomatidae, with several events of loss and degeneration occurring during a vertical transfer evolution. We were able to identify the terminal repeats of these elements for the first time, and we showed that these elements are potentially active in some species, including T. cruzi copies of VIPER. We found that VIPER and TATE are strictly related elements, which were named in this study as VIPER-like. The reverse transcriptase (RT) tree presented a low resolution, and the origin and relationships among YR groups remain uncertain. Conversely, for RH, VIPER-like grouped with Hepadnavirus, whereas for YR, VIPER-like sequences constituted two different clades that are closely allied to Crypton. Distinct topologies among RT, RH and YR trees suggest ancient rearrangements/exchanges in domains and a modular pattern of evolution with putative independent origins for each ORF. Conclusions Due to the presence of both elements in Bodo saltans, a nontrypanosomatid species, we suggested that VIPER and TATE have survived and remained active for more than 400 million years or were reactivated during the evolution of the host species. We did not find clear evidence of independent origins of VIPER-like from the other YR retroelements, supporting the maintenance of the DIRS group of retrotransposons. Nevertheless, according to phylogenetic findings and sequence structure obtained by this study and other works, we proposed separating DIRS elements into four subgroups: DIRS-like, PAT-like, Ngaro-like, and VIPER-like. Electronic supplementary material The online version of this article (10.1186/s13100-019-0175-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasmin Carla Ribeiro
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Lizandra Jaqueline Robe
- 2Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | | | | | - Ana Luisa Kalb Lopes
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | | | - Adriana Ludwig
- 4Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR Brazil
| |
Collapse
|
172
|
Wen B, Zhang J, Liu W, Tang P, Xie T, Huang L, Hu Y, Jin K, Zhang P, Liu Z, Niu L, Qu X. HBV coinfection with HCV alters circulating Tfh cell distribution and impairs HCV neutralizing antibody responses. J Viral Hepat 2019; 26:1002-1010. [PMID: 30972873 DOI: 10.1111/jvh.13106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus (HCV) and hepatitis B virus (HBV) coinfection reciprocally influences viral replication and host defence responses. This study aimed to investigate the impact of HBV coinfection on circulating T follicular helper cell (cTfh) distribution and the HCV neutralizing antibody (nAb) response. HCV neutralizing antibody responses were measured in individuals with HCV monoinfection (n = 83) and HBV/HCV coinfection (n = 78) using the HCV pseudoparticle neutralization assay. The frequencies of cTfh cells and their subsets in HCV monoinfection (n = 34) and HBV/HCV coinfection (n = 30) were analysed by flow cytometry. The correlations of clinical parameters, cTfh cells and neutralizing antibody responses were analysed. Compared with HCV monoinfection, the HBV coinfection group showed significantly lower HCV neutralizing antibody responses (P < 0.001) and a decreased frequency of circulating Th1-like Tfh cells (Tfh1) (P = 0.004). In HCV monoinfection, the frequency of the Tfh1 subset was positively correlated with HCV neutralizing antibody responses (R = 0.378, P = 0.03), but this correlation was lost under HBV/HCV coinfection (R = 0.115, P = 0.551). In contrast, the frequency of circulating Th2-like Tfh cells (Tfh2) was negatively correlated with the HCV neutralizing antibody responses (R = 0.404, P = 0.003). Further analysis showed that HBV coinfection enhanced the Tfh2 subset composition within cTfh cells (P < 0.001), which was associated with serum HBsAg in HBV/HCV coinfection (R = 0.521, P = 0.003). As expected, HBsAg also exhibited an inverse association with HCV neutralizing antibody responses in HBV/HCV coinfection (R = 0.59, P < 0.001). In contrast to HCV monoinfection, HBV/HCV coinfection leads to altered cTfh cell distribution and impaired HCV neutralizing antibody responses, which are associated with HBsAg. These findings will be helpful for better understanding the immunopathogenesis of HBV/HCV coinfection.
Collapse
Affiliation(s)
- Bo Wen
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Jian Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Wenpei Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China.,Affiliated The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, China
| | - Ping Tang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Ting Xie
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Liyan Huang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Yabin Hu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Kun Jin
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Ping Zhang
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Ziyan Liu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Ling Niu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Xiaowang Qu
- Translational Medicine Institute, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China.,Affiliated The First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, Hunan, China
| |
Collapse
|
173
|
Puray-Chavez MN, Farghali MH, Yapo V, Huber AD, Liu D, Ndongwe TP, Casey MC, Laughlin TG, Hannink M, Tedbury PR, Sarafianos SG. Effects of Moloney Leukemia Virus 10 Protein on Hepatitis B Virus Infection and Viral Replication. Viruses 2019; 11:v11070651. [PMID: 31319455 PMCID: PMC6669478 DOI: 10.3390/v11070651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Moloney leukemia virus 10 (MOV10) is an RNA helicase that has been shown to affect the replication of several viruses. The effect of MOV10 on Hepatitis B virus (HBV) infection is not known and its role on the replication of this virus is poorly understood. We investigated the effect of MOV10 down-regulation and MOV10 over-expression on HBV in a variety of cell lines, as well as in an infection system using a replication competent virus. We report that MOV10 down-regulation, using siRNA, shRNA, and CRISPR/Cas9 gene editing technology, resulted in increased levels of HBV DNA, HBV pre-genomic RNA, and HBV core protein. In contrast, MOV10 over-expression reduced HBV DNA, HBV pre-genomic RNA, and HBV core protein. These effects were consistent in all tested cell lines, providing strong evidence for the involvement of MOV10 in the HBV life cycle. We demonstrated that MOV10 does not interact with HBV-core. However, MOV10 binds HBV pgRNA and this interaction does not affect HBV pgRNA decay rate. We conclude that the restriction of HBV by MOV10 is mediated through effects at the level of viral RNA.
Collapse
Affiliation(s)
- Maritza N Puray-Chavez
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mahmoud H Farghali
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta QXXV+C5, Egypt
| | - Vincent Yapo
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Andrew D Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dandan Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Tanyaradzwa P Ndongwe
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mary C Casey
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Thomas G Laughlin
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Philip R Tedbury
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Stefan G Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
174
|
Lawandi A, Cheng MP, Lee TC. Hepatitis B testing practices at a tertiary care centre and their associated costs: A retrospective analysis. PLoS One 2019; 14:e0219347. [PMID: 31283801 PMCID: PMC6613690 DOI: 10.1371/journal.pone.0219347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background Hepatitis B is a viral infection requiring specific serologic testing to diagnose the stage of the disease. There are many tests which can be ordered in a variety of combinations. This study aimed to assess routine Hepatitis B screening practices in a tertiary care centre and determine the diagnostic and economic benefits of protocolized ordering. Methods We evaluated all measurements of Hepatitis B total core antibodies, core IgM antibodies, surface antibodies and surface antigens performed at our institution between January 1, 2015 and December 31, 2015. We also recorded secondary testing (envelope antigens and antibodies, and viral DNA). Costs were estimated using provincial insurance reimbursement values. Using the subset of patients who received complete testing, we developed a reflexive screening protocol to minimize costs while simultaneously improving diagnostic utility. Results 30,335 hepatitis B tests were performed at an estimated total cost of $584,683. 53.9% of patients were screened with a single test. 29% of patients who received secondary testing had no evidence of exposure on primary testing. Using the protocol of initial testing of total core antibody and surface antibody with reflexive testing, we would save an estimated $181,632 (95% CI $154,201.90 –$208,910.50) per year while providing more complete information. Interpretation Screening practices for Hepatitis B are frequently inadequate to diagnose and stage the infection and often included unnecessary testing. Protocolization of Hepatitis B testing could limit this practice while resulting in significantly lower costs.
Collapse
Affiliation(s)
- Alexander Lawandi
- Division of Infectious Diseases, Department of Medicine, McGill University, Montréal, Québec, Canada
- * E-mail:
| | - Matthew P. Cheng
- Division of Infectious Diseases, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Todd C. Lee
- Division of Infectious Diseases, Department of Medicine, McGill University, Montréal, Québec, Canada
- Clinical Practice Assessment Unit, Department of Medicine, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
175
|
Martinez MG, Testoni B, Zoulim F. Biological basis for functional cure of chronic hepatitis B. J Viral Hepat 2019; 26:786-794. [PMID: 30803126 DOI: 10.1111/jvh.13090] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B (CHB) infection affects over 250 millon people worldwide and 800000 are expected to die yearly due to the development of hepatocellular carcinoma (HCC). Current antiviral therapies include nucleoside analogs (NAs) that target the viral retrotranscriptase inhibiting de novo viral production. Pegylated interferon (Peg-IFN) is also effective in reducing the viral DNA load in serum. However, both treatments remain limited to control the infection, aiming for viral suppression and improving the quality of life of the infected patients. Complete cure is not possible due to the presence of the stable DNA intermediate covalently closed circular DNA (cccDNA). Attempts to achieve a functional cure are thus ongoing and novel targets and molecules, together with different combination therapies are currently in the pipeline for early clinical trials. In this review we discuss novel treatments both targeting directly and indirectly cccDNA. As we gain knowledge in the Hepatitis B virus (HBV) transcriptional control, and newer technologies emerge that could potentially allow the destruction of cccDNA, exciting new possibilities for curative therapies are discussed.
Collapse
Affiliation(s)
- Maria G Martinez
- Cancer Research Center of Lyon (CRCL), Lyon, France.,INSERM U1052, Lyon, France
| | - Barbara Testoni
- Cancer Research Center of Lyon (CRCL), Lyon, France.,INSERM U1052, Lyon, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon (CRCL), Lyon, France.,INSERM U1052, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France.,University of Lyon, UMR_S1052, UCBL, Lyon, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
176
|
Mitra B, Wang J, Kim ES, Mao R, Dong M, Liu Y, Zhang J, Guo H. Hepatitis B Virus Precore Protein p22 Inhibits Alpha Interferon Signaling by Blocking STAT Nuclear Translocation. J Virol 2019; 93:e00196-19. [PMID: 31019054 PMCID: PMC6580977 DOI: 10.1128/jvi.00196-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Antagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg+) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg-) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg+ patients exhibit weaker induction of ISGs in their livers than do HBeAg- patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy.IMPORTANCE Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jinyu Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Elena S Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
177
|
Abstract
Hepatocytes operate in highly structured repeating anatomical units termed liver lobules. Blood flow along the lobule radial axis creates gradients of oxygen, nutrients and hormones, which, together with morphogenetic fields, give rise to a highly variable microenvironment. In line with this spatial variability, key liver functions are expressed non-uniformly across the lobules, a phenomenon termed zonation. Technologies based on single-cell transcriptomics have constructed a global spatial map of hepatocyte gene expression in mice revealing that ~50% of hepatocyte genes are expressed in a zonated manner. This broad spatial heterogeneity suggests that hepatocytes in different lobule zones might have not only different gene expression profiles but also distinct epigenetic features, regenerative capacities, susceptibilities to damage and other functional aspects. Here, we present genomic approaches for studying liver zonation, describe the principles of liver zonation and discuss the intrinsic and extrinsic factors that dictate zonation patterns. We also explore the challenges and solutions for obtaining zonation maps of liver non-parenchymal cells. These approaches facilitate global characterization of liver function with high spatial resolution along physiological and pathological timescales.
Collapse
Affiliation(s)
- Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
178
|
Song C, Lv J, Liu Y, Chen JG, Ge Z, Zhu J, Dai J, Du LB, Yu C, Guo Y, Bian Z, Yang L, Chen Y, Chen Z, Liu J, Jiang J, Zhu L, Zhai X, Jiang Y, Ma H, Jin G, Shen H, Li L, Hu Z. Associations Between Hepatitis B Virus Infection and Risk of All Cancer Types. JAMA Netw Open 2019; 2:e195718. [PMID: 31199446 PMCID: PMC6575146 DOI: 10.1001/jamanetworkopen.2019.5718] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IMPORTANCE Hepatitis B virus (HBV) has been identified as a major risk factor for hepatocellular carcinoma. However, the associations between HBV infection and other cancer types are not well understood. OBJECTIVE To assess the associations between chronic HBV infection and risk of all cancer types. DESIGN, SETTING, AND PARTICIPANTS This population-based study involved 3 cohorts in China. The China Kadoorie Biobank (CKB) prospective cohort study, conducted between June 2004 and July 2008, used a dipstick assay for detection of serum hepatitis B surface antigen (HBsAg) among 496 732 participants to determine the association between HBV infection and risk of all cancer types. Two cohort studies were used to validate the associations by applying more precise serum HBsAg detection assays: the Qidong cohort (37 336 participants enrolled from November 2007 to April 2011) and the Changzhou nested case-control study (17 723 participants enrolled from June 2004 to September 2005). A total of 97 samples of stomach cancer tissues, 10 samples of pancreatic cancer tissues, and 9 samples of lung cancer tissues were included to assess the presence of HBV replication and expression. Statistical analysis was performed from December 2016 to October 2018. EXPOSURES Serum HBsAg status in the population-based stage and HBV DNA status, the expression of hepatitis B X protein, and hepatitis B core antibody (anti-HBc) in the tissue-based stage. MAIN OUTCOMES AND MEASURES Incidence of all cancer types during follow-up. RESULTS In the CKB cohort, the mean (SD) age of the 496 732 participants was 51.5 (10.7) years; 59.0% of the participants were women. After 4.4 million person-years of follow-up, participants who were HBsAg seropositive (n = 15 355) had a higher risk of hepatocellular carcinoma (hazard ratio [HR], 15.77; 95% CI, 14.15-17.57), stomach cancer (HR, 1.41; 95% CI, 1.11-1.80), colorectal cancer (HR, 1.42; 95% CI, 1.12-1.81), oral cancer (HR, 1.58; 95% CI, 1.01-2.49), pancreatic cancer (HR, 1.65; 95% CI, 1.03-2.65), and lymphoma (HR, 2.10; 95% CI, 1.34-3.31) when compared with participants who were HBsAg seronegative (n = 481 377). Because of the limitation of sample size, only associations of HBV infection with hepatocellular carcinoma and stomach cancer were validated in the Qidong cohort (hepatocellular carcinoma: HR, 17.51; 95% CI, 13.86-22.11; stomach cancer: HR, 2.02; 95% CI, 1.24-3.29); the Changzhou nested case-control study validated only an association between HBV infection and stomach cancer (odds ratio, 1.76; 95% CI, 1.04-2.98). Moreover, among 22 participants with stomach cancer from the Qidong cohort who were anti-HBc seropositive, 12 samples (54.5%) of cancer tissues were HBV DNA positive, while among 25 participants with stomach cancer who were anti-HBc seronegative, no HBV DNA was detected. The same negative and positive rate was observed in the validation set from Zhejiang Tumor Hospital (19 of 35 samples [54.3%] were HBV DNA positive). Moreover, among the 8 patients with stomach cancer from the Qidong cohort who were anti-HBc seropositive, anti-HBc and hepatitis B X protein were expressed in all of their stomach cancer tissue samples. The same phenomenon was observed in the patients with pancreatic cancer but not in the patients with lung cancer, which was consistent with the population-based results of the CKB cohort. CONCLUSIONS AND RELEVANCE This study found that HBV infection was also associated with the risk of nonliver cancer, especially digestive system cancers among adults in China.
Collapse
Affiliation(s)
- Ci Song
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yao Liu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jian Guo Chen
- Qidong Liver Cancer Institute, The First People’s Hospital of Qidong, Qidong, China
| | - Zijun Ge
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jian Zhu
- Qidong Liver Cancer Institute, The First People’s Hospital of Qidong, Qidong, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ling-Bin Du
- Zhejiang Cancer Center, Zhejiang Cancer Hospital, Hangzhou, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Yang
- Chinese Academy of Medical Sciences, Beijing, China
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Yiping Chen
- Chinese Academy of Medical Sciences, Beijing, China
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Zhengming Chen
- Chinese Academy of Medical Sciences, Beijing, China
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Jibin Liu
- Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| | - Jie Jiang
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Liguo Zhu
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Xiangjun Zhai
- Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
179
|
Kong F, You H, Kong D, Zheng K, Tang R. The interaction of hepatitis B virus with the ubiquitin proteasome system in viral replication and associated pathogenesis. Virol J 2019; 16:73. [PMID: 31146743 PMCID: PMC6543661 DOI: 10.1186/s12985-019-1183-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background The ubiquitin proteasome system (UPS) regulates the expression levels of cellular proteins by ubiquitination of protein substrates followed by their degradation via the proteasome. As a highly conserved cellular degradation mechanism, the UPS affects a variety of biological processes and participates in viral propagation. Main body During hepatitis B virus (HBV) infection, the UPS is shown to act as a double-edged sword in viral pathogenesis. On the one hand, the UPS acts as a host defense mechanism to selectively recognize HBV proteins as well as special cellular proteins that favor the viral life cycle and induces their ubiquitin-dependent proteasomal degradation to limit HBV infection. On the other hand, the HBV has evolved to subvert the UPS function for its own advantage. Moreover, in the infected hepatocytes, certain cellular proteins that are dependent on the UPS are involved in abnormal biological processes which are mediated by HBV. Conclusion The molecular interaction of HBV with the UPS to modulate viral propagation and pathogenesis is summarized in the review. Considering the important role of the UPS in HBV infection, a better understanding of the HBV-UPS interaction could provide novel insight into the mechanisms that are involved in viral replication and pathogenesis and help to develop potential treatment strategies targeting the UPS.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China. .,National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
180
|
Vaillant A. REP 2139: Antiviral Mechanisms and Applications in Achieving Functional Control of HBV and HDV Infection. ACS Infect Dis 2019; 5:675-687. [PMID: 30199230 DOI: 10.1021/acsinfecdis.8b00156] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid polymers (NAPs) are broad spectrum antiviral agents whose antiviral activity in hepatitis B virus (HBV) infection is derived from their ability to block the release of the hepatitis B virus surface antigen (HBsAg). This pharmacological activity blocks replenishment of HBsAg in the circulation, allowing host mediated clearance. This effect has important clinical significance as the clearance of circulating HBsAg dramatically potentiates the ability of immunotherapies to restore functional control of HBV infection which persists after antiviral therapy is removed. These effects are reproducible in preclinical evaluations and in several clinical trials that have evaluated the activity of the lead NAP, REP 2139, in monotherapy and in combination with immunotherapy in hepatitis B e antigen (HBeAg) negative and HBeAg positive HBV infection and also in HBeAg negative HBV/hepatitis D virus (HDV) coinfection. These antiviral effects of REP 2139 are achieved in the absence of any direct immunostimulatory effect in the liver and also without any discernible direct interaction with viral components. The search for the host protein interaction with NAPs that drives their antiviral effects is ongoing, and the interaction targeted by REP 2139 within infected cells has not yet been elucidated. This article provides an updated review of available data on the effects of REP 2139 in HBV and HDV infection and the ability of REP 2139-based combination therapy to achieve functional control of HBV and HDV infection in patients.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
181
|
Huber AD, Pineda DL, Liu D, Boschert KN, Gres AT, Wolf JJ, Coonrod EM, Tang J, Laughlin TG, Yang Q, Puray-Chavez MN, Ji J, Singh K, Kirby KA, Wang Z, Sarafianos SG. Novel Hepatitis B Virus Capsid-Targeting Antiviral That Aggregates Core Particles and Inhibits Nuclear Entry of Viral Cores. ACS Infect Dis 2019; 5:750-758. [PMID: 30582687 DOI: 10.1021/acsinfecdis.8b00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An estimated 240 million are chronically infected with hepatitis B virus (HBV), which can lead to liver disease, cirrhosis, and hepatocellular carcinoma. Currently, HBV treatment options include only nucleoside reverse transcriptase inhibitors and the immunomodulatory agent interferon alpha, and these treatments are generally not curative. New treatments with novel mechanisms of action, therefore, are highly desired for HBV therapy. The viral core protein (Cp) has gained attention as a possible therapeutic target because of its vital roles in the HBV life cycle. Several classes of capsid assembly effectors (CAEs) have been described in detail, and these compounds all increase capsid assembly rate but inhibit HBV replication by different mechanisms. In this study, we have developed a thermal shift-based screening method for CAE discovery and characterization, filling a much-needed gap in high-throughput screening methods for capsid-targeting molecules. Using this approach followed by cell-based screening, we identified the compound HF9C6 as a CAE with low micromolar potency against HBV replication. HF9C6 caused large multicapsid aggregates when capsids were assembled in vitro and analyzed by transmission electron microscopy. Interestingly, when HBV-expressing cells were treated with HF9C6, Cp was excluded from cell nuclei, suggesting that this compound may inhibit nuclear entry of Cp and capsids. Furthermore, mutational scanning of Cp suggested that HF9C6 binds the known CAE binding pocket, indicating that key Cp-compound interactions within this pocket have a role in determining the CAE mechanism of action.
Collapse
Affiliation(s)
- Andrew D. Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
| | - Dallas L. Pineda
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Dandan Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Kelsey N. Boschert
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, Missouri 65211, United States
| | - Anna T. Gres
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Jennifer J. Wolf
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Emily M. Coonrod
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, Missouri 65211, United States
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota, 312 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - Thomas G. Laughlin
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Qiongying Yang
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Maritza N. Puray-Chavez
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Juan Ji
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Karen A. Kirby
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, 312 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - Stefan G. Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| |
Collapse
|
182
|
Inoue T, Tanaka Y. The Role of Hepatitis B Core-Related Antigen. Genes (Basel) 2019; 10:genes10050357. [PMID: 31075974 PMCID: PMC6562807 DOI: 10.3390/genes10050357] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) cannot be completely eliminated from infected hepatocytes due to the existence of intrahepatic covalently closed circular DNA (cccDNA). Serological biomarkers reflect intrahepatic viral replicative activity as non-invasive alternatives to liver biopsy. Hepatitis B core-related antigen (HBcrAg) is a novel biomarker that has an important role in chronic hepatitis B (CHB), because it correlates with serum HBV DNA and intrahepatic cccDNA. In clinical cases with undetectable serum HBV DNA or loss of HBsAg, HBcrAg still can be detected and the decrease in HBcrAg levels is significantly associated with promising outcomes for CHB patients. HBcrAg can predict spontaneous or treatment-induced hepatitis B envelope antigen (HBeAg) seroconversion, persistent responses before and after cessation of nucleos(t)ide analogues, potential HBV reactivation, HBV reinfection after liver transplantation, and risk of hepatocellular carcinoma progression or recurrence. In this review, the clinical applications of HBcrAg in CHB patients based on its virological features are described. Furthermore, new potential therapeutic anti-HBV agents that affect intrahepatic cccDNA are under development, and the monitoring of HBcrAg might be useful to judge therapeutic effects. In conclusion, HBcrAg might be a suitable surrogate marker beyond other HBV markers to predict the disease progression and treatment responses of CHB patients.
Collapse
Affiliation(s)
- Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan.
| | - Yasuhito Tanaka
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan.
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
183
|
Lei XY, Chen XX, Sun YH, Gao MD, Hu XX, Suo YH. Hepatitis B virus X protein decreases nephrin expression and induces podocyte apoptosis via activating STAT3. Exp Ther Med 2019; 17:4223-4229. [PMID: 31007753 DOI: 10.3892/etm.2019.7453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
The gene for hepatitis B virus X protein (HBx) comprises the smallest open reading frame in the HBV genome, and the protein product can activate various cell signaling pathways and regulate apoptosis, among other effects. However, in different cell types and under different external conditions, its mechanism of action differs. In the present study, the effect of HBx on the viability and apoptosis of mouse podocyte clone 5 (MPC5) cells was investigated. The cells were transfected with the HBx gene using pEX plasmid, and real-time quantitative PCR and western blot analysis were used to test the transfection efficiency and assess related protein expression. The highest expression of HBx occurred at 48 h after MPC5 cells were transfected with HBx. The expression of nephrin protein in the HBx transfection group was lower than that in blank and negative control groups. Following transfection of the HBx gene, podocyte viability was suppressed, while the rate of cell apoptosis was increased; moreover, the expression of signal transducer and activator of transcription 3 (STAT3) and phospho-STAT3 was increased compared with in the control groups. The present study suggests that STAT3 activation may be involved in the pathogenic mechanism of renal injuries caused by HBV injection. Thus STAT3 is a potential molecular target in the treatment of HBV-GN.
Collapse
Affiliation(s)
- Xiao-Yan Lei
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xing-Xing Chen
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yong-Hong Sun
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Ming-Dong Gao
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Xia Hu
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yan-Hong Suo
- Department of Pediatrics, Gansu Province People's Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
184
|
Seo HW, Seo JP, Cho Y, Ko E, Kim YJ, Jung G. Cetylpyridinium chloride interaction with the hepatitis B virus core protein inhibits capsid assembly. Virus Res 2019; 263:102-111. [DOI: 10.1016/j.virusres.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/11/2023]
|
185
|
Ge L, Zhang X, Hu S, Song Y, Kong J, Zhang B, Yang X. H19 suppresses the growth of hepatoblastoma cells by promoting their apoptosis via the signaling pathways of miR-675/FADD and miR-138/PTK2. J Cell Biochem 2019; 120:5218-5231. [PMID: 30367502 DOI: 10.1002/jcb.27797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this study was to clarify the molecular pathways involved in hepatitis B virus (HBV)-induced hepatoblastoma. METHOD The expression of factors in different signaling pathways (H19, miR-675, miR-138, protein tyrosine kinase 2 [PTK2], fas-associated death domain [FADD], hypoxia-inducible factor 1-alpha [HIFIA], focal adhesion kinase [FAK], caspase-8, and caspase-3) was compared between HBV (+) and HBV (-) groups using quantitative real-time polymerase chain reaction and Western blot analysis. Subsequently, immunohistochemistry (IHC) and TdT-mediated dUTP Nick-End Labeling (TUNEL) assays were used to verify the expression of above proteins in HBV (+) and HBV (-) groups. Computational analysis was conducted to predict the target genes of miR-675 and miR-138, whose regulatory relationships were then clarified using luciferase assays and cell transfection studies. RESULT The expression of H19, miR-675, PTK2, HIFIA, and FAK was increased in the HBV (+) group, while the expression of miR-138, FADD, caspase-8, and caspase-3 was decreased in the HBV (+) group. FADD and PTK2 were identified as target genes of miR-675 and miR-138, respectively. In addition, miR-675 was upregulated while miR-138 was downregulated by X protein (HBx). CONCLUSION In summary, the results of this study revealed the molecular pathways involved in HBV-induced hepatoblastoma. In the presence of HBV, HBX upregulated the expression of H19 through HIFIA. Consecutively, overexpressed H19 upregulated the expression of PTK2 via targeting miR-138 and downregulated the expression of FADD via targeting miR-675. Finally, increased expression of PTK2 and reduced expression of FADD both led to the inhibition of cell apoptosis, thus promoting the tumorigenesis of hepatoblastoma.
Collapse
Affiliation(s)
- Lili Ge
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Xianwei Zhang
- Department of Pediatric Oncologic Surgery, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Shengnan Hu
- Department of Liver Disease, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yinsen Song
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Jinghui Kong
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Bo Zhang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital, Zhengzhou Children's Hospital), Zhengzhou, Henan, China
| | - Xiaoang Yang
- Department of Liver Disease, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
186
|
Guo J, Zhou A, Sun X, Sha W, Ai K, Pan G, Zhou C, Zhou H, Cong H, He S. Immunogenicity of a Virus-Like-Particle Vaccine Containing Multiple Antigenic Epitopes of Toxoplasma gondii Against Acute and Chronic Toxoplasmosis in Mice. Front Immunol 2019; 10:592. [PMID: 30984177 PMCID: PMC6449433 DOI: 10.3389/fimmu.2019.00592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
There is no effective protective vaccine against human toxoplasmosis, which is a potential threat to nearly a third of the world population. Vaccines based on virus-like particles (VLPs) have been highly successful in humans for many years, but have rarely been applied against Toxoplasma gondii infection. In this study, we inserted a B cell epitope (SAG182−102 or SAG1301−320), a CD8+ cell epitope (HF10 or ROP7), and a CD4+ cell epitope (AS15) of T. gondii into a truncated HBcΔ(amino acids1–149) particle to construct four chimeric VLP vaccine formulations, i.e., HBcΔH82, HBcΔH301, HBcΔ R82, and HBcΔ R301. When these chimeric HBc particles were expressed in Escherichia coli, they showed icosahedral morphology similar to that of the original VLPs and were evaluated as vaccine formulations against acute and chronic toxoplasmosis in a mouse model (BALB/c mice (H-2d). All these chimeric HBc VLPs induced strong humoral and cellular immune responses with high IgG antibody titers and interferon(IFN)-γ production. Only the mice immunized with HBcΔH82 showed prolonged survival time (15.6 ± 3.8 vs. 5.6 ± 0.8 days) against acute infection with RH tachyzoites and decrease in brain parasite load (1,454 ± 239 vs. 2,091 ± 263) against chronic infection with Prugniuad cysts, as compared to the findings for the control group. These findings suggest that HBc VLPs would act as an effective carrier for delivering effective multiple antigenic epitopes and would be beneficial for developing a safe and long-acting vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Jingjing Guo
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Aihua Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, School of Medicine, Shandong University, Jinan, China
| | - Xiahui Sun
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wenchao Sha
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Kang Ai
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ge Pan
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chunxue Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huaiyu Zhou
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hua Cong
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shenyi He
- Department of Parasitology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
187
|
Down-regulation of hepatitis delta virus super-infection in the woodchuck model. Virology 2019; 531:100-113. [PMID: 30856482 DOI: 10.1016/j.virol.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms mediating clearance of hepatitis delta virus (HDV) are poorly understood. This study analyzed in detail profound down-regulation of HDV infection in the woodchuck model. Super-infection with HDV of woodchucks chronically infected with HBV-related woodchuck hepatitis virus produced two patterns. In the first, HDV viremia had a sharp peak followed by a considerable decline, and initial rise of HDV virions' infectivity followed by abrupt infectivity loss. In the second, HDV titer rose and later displayed plateau-like profile with high HDV levels; and HDV infectivity became persistently high when HDV titer reached the plateau. The infectivity loss was not due to defects in the virions' envelope, binding to anti-envelope antibodies, or mutations in HDV genome, but it correlated with profound reduction of the replication capacity of virion-associated HDV genomes. Subsequent finding that in virions with reduced infectivity most HDV RNAs were not full-length genomes suggests possible HDV clearance via RNA fragmentation.
Collapse
|
188
|
Hiller T, Rasche A, Brändel SD, König A, Jeworowski L, Teague O'Mara M, Cottontail V, Page RA, Glebe D, Drexler JF, Tschapka M. Host Biology and Anthropogenic Factors Affect Hepadnavirus Infection in a Neotropical Bat. ECOHEALTH 2019; 16:82-94. [PMID: 30564998 PMCID: PMC7088011 DOI: 10.1007/s10393-018-1387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/07/2023]
Abstract
The tent-making bat hepatitis B virus (TBHBV) is a hepadnavirus closely related to human hepatitis B virus. The ecology of TBHBV is unclear. We show that it is widespread and highly diversified in Peters' tent-making bats (Uroderma bilobatum) within Panama, while local prevalence varied significantly between sample sites, ranging from 0 to 14.3%. Females showed significantly higher prevalence than males, and pregnant females were more often acutely infected than non-reproductive ones. The distribution of TBHBV in bats was significantly affected by forest cover, with higher infection rates in areas with lower forest cover. Our data indicate that loss of natural habitat may lead to positive feedback on the biotic factors driving infection possibility. These results underline the necessity of multidisciplinary studies for a better understanding of mechanisms in pathogen-host relationships and for predictions in disease ecology.
Collapse
Affiliation(s)
- Thomas Hiller
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama.
| | - Andrea Rasche
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Alexander König
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Lara Jeworowski
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - M Teague O'Mara
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Veronika Cottontail
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Dieter Glebe
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
- German Reference Center for Hepatitis B and D Viruses, Justus Liebig University, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jan Felix Drexler
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
189
|
Chen LY, Fan XP, Fan YC, Zhao J, Gao S, Li F, Qi ZX, Wang K. BATF Interference Blocks Th17 Cell Differentiation and Inflammatory Response in Hepatitis B Virus Transgenic Mice. Dig Dis Sci 2019; 64:773-780. [PMID: 30498928 DOI: 10.1007/s10620-018-5392-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/22/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND B cell-activating transcription factor (BATF) contributes to Th17 cell differentiation and pathological inflammatory responses. AIMS This study explored BATF as a regulator of Th17 differentiation in normal and hepatitis B virus (HBV) transgenic mice. METHODS Normal mice were divided into control, short hairpin RNA (shRNA) scramble, and shRNA BATF groups. HBV transgenic mice were divided into control, entecavir, shRNA scramble, entecavir + vector control, entecavir + shRNA scramble, shRNA BATF, and entecavir + shRNA BATF groups. Serum concentrations of AST, ALT, HBV-DNA, BATF, IL-17, and IL-22 and Th17 cell frequencies in the liver were compared among the groups. Correlations of serum HBV surface antigen (HBsAg), e-antigen (HBeAg), and core antigen (HBcAg) concentrations with BATF mRNA expression and the proportion of Th17 cells in the livers of HBV transgenic mice were also analyzed. RESULTS Serum AST, ALT, BATF, IL-17, and IL-22 concentrations and Th17 cell proportions were higher in HBV transgenic mice relative to normal controls. Positive correlations of the HBcAg concentration with BATF mRNA and the proportion of Th17 cells were observed in HBV transgenic mice. BATF interference reduced the proportion of Th17 cells and serum IL-17 and IL-22 concentrations and led to obvious downregulation of AST, ALT, BATF, IL-17, and IL-22 expression and a reduced proportion of Th17 cells when combined with entecavir. CONCLUSION HBV markedly upregulated BATF expression and promoted Th17 cell activation. By contrast, BATF interference significantly impeded the proliferation of Th17 cells and secretion of IL-17 and IL-22 while alleviating hepatic lesions.
Collapse
Affiliation(s)
- Long-Yan Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiao-Peng Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jing Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Feng Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhao-Xia Qi
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China.
| |
Collapse
|
190
|
Yang F, Wu L, Xu W, Liu Y, Zhen L, Ning G, Song J, Jiao Q, Zheng Y, Chen T, Xie C, Peng L. Diverse Effects of the NTCP p.Ser267Phe Variant on Disease Progression During Chronic HBV Infection and on HBV preS1 Variability. Front Cell Infect Microbiol 2019; 9:18. [PMID: 30881922 PMCID: PMC6407604 DOI: 10.3389/fcimb.2019.00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP) acts as a cellular receptor for the hepatitis B virus (HBV) infection on host hepatocytes. We aim to investigate how the NTCP p.Ser267Phe variant affects HBV-related disease progression and analyze viral genomic variability under a host genetic background carrying the p.Ser267Phe variant. A total of 3187 chronic hepatitis B (CHB) patients were enrolled and genotyped for the p.Ser267Phe variant. The variant's association with disease progression was evaluated by logistic regression analysis. We also enrolled 83 treatment-naive CHB patients to analyze the variability of the HBV preS1 region. The frequency of the NTCP p.Ser267Phe variant was significantly lower in patients diagnosed with acute-on-chronic liver failure [OR (95% CI) = 0.33 (0.18-0.58), P = 1.34 × 10-4], cirrhosis [OR (95% CI) = 0.47 (0.31-0.72), P = 4.04 × 10-4], and hepatocellular carcinoma [OR (95% CI) = 0.54 (0.34-0.86), P = 9.83 × 10-3] as compared with CHB controls under the additive model after adjustment. Furthermore, the percentage of amino acid mutations in HBV preS1 region was significantly higher in the NTCP p.Ser267Phe heterozygote group than in the NTCP wild type homozygote group (P < 0.05). We herein demonstrate that the NTCP p.Ser267Phe variant is a protective factor reducing CHB patient risk for liver failure, cirrhosis, and hepatocellular carcinoma. A host genetic background carrying NTCP p.Ser267Phe exerts selective pressure on the virus, leading to more variability.
Collapse
Affiliation(s)
- Fangji Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lina Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Limin Zhen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gang Ning
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Song
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Jiao
- Department of Severe Liver Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongyuan Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongtong Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
191
|
Takeuchi F, Ikeda S, Tsukamoto Y, Iwasawa Y, Qihao C, Otakaki Y, Ryota O, Yao WL, Narita R, Makoto H, Watashi K, Wakita T, Takeuchi K, Chayama K, Kogure A, Kato H, Fujita T. Screening for inhibitor of episomal DNA identified dicumarol as a hepatitis B virus inhibitor. PLoS One 2019; 14:e0212233. [PMID: 30779774 PMCID: PMC6380541 DOI: 10.1371/journal.pone.0212233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, there is no available therapy to eradicate hepatitis B virus (HBV) in chronically infected individuals. This is due to the difficulty in eliminating viral covalently closed circular (ccc) DNA, which is central to the gene expression and replication of HBV. We developed an assay system for nuclear circular DNA using an integration-deficient lentiviral vector. This vector produced non-integrated circular DNA in nuclei of infected cells. We engineered this vector to encode firefly luciferase to monitor the lentiviral episome DNA. We screened 3,840 chemicals by this assay for luciferase-reducing activity and identified dicumarol, which is known to have anticoagulation activity. We confirmed that dicumarol reduced lentiviral episome DNA. Furthermore, dicumarol inhibited HBV replication in cell culture using NTCP-expressing HepG2 and primary human hepatocytes. Dicumarol reduced intracellular HBV RNA, DNA, supernatant HBV antigens and DNA. We also found that dicumarol reduced the cccDNA level in HBV infected cells, but did not affect HBV adsorption/entry. This is a novel assay system for screening inhibitors targeting nuclear cccDNA and is useful for finding new antiviral substances for HBV.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sotaro Ikeda
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuta Tsukamoto
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Institute of Cardiovascular Immunology, University Hospital Bonn, Bonn, Germany
| | - Yoshikazu Iwasawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chen Qihao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yukie Otakaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ouda Ryota
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Immunology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Wan-Ling Yao
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryo Narita
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Centre for Structural Biology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hijikata Makoto
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Kazuaki Chayama
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Amane Kogure
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroki Kato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Institute of Cardiovascular Immunology, University Hospital Bonn, Bonn, Germany
| | - Takashi Fujita
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
192
|
Profiling of LINE-1-Related Genes in Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20030645. [PMID: 30717368 PMCID: PMC6387036 DOI: 10.3390/ijms20030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a prime public health concern that accounts for most of the primary liver malignancies in humans. The most common etiological factor of HCC is hepatitis B virus (HBV). Despite recent advances in treatment strategies, there has been little success in improving the survival of HCC patients. To develop a novel therapeutic approach, evaluation of a working hypothesis based on different viewpoints might be important. Long interspersed element 1 (L1) retrotransposons have been suggested to play a role in HCC. However, the molecular machineries that can modulate L1 biology in HBV-related HCC have not been well-evaluated. Here, we summarize the profiles of expression and/or activation status of L1-related genes in HBV-related HCC, and HBV- and HCC-related genes that may impact L1-mediated tumorigenesis. L1 restriction factors appear to be suppressed by HBV infection. Since some of the L1 restriction factors also limit HBV, these factors may be exhausted in HBV-infected cells, which causes de-suppression of L1. Several HBV- and HCC-related genes that interact with L1 can affect oncogenic processes. Thus, L1 may be a novel prime therapeutic target for HBV-related HCC. Studies in this area will provide insights into HCC and other types of cancers.
Collapse
|
193
|
Cao J, Luo S, Xiong Y. The Variability of Amino Acid Sequences in Hepatitis B Virus. Virol Sin 2019; 34:42-49. [PMID: 30610573 DOI: 10.1007/s12250-018-0070-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/13/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) is an important human pathogen belonging to the Hepadnaviridae family, Orthohepadnavirus genus. Over 240 million people are infected with HBV worldwide. The reverse transcription during its genome replication leads to low fidelity DNA synthesis, which is the source of variability in the viral proteins. To investigate the variability quantitatively, we retrieved amino acid sequences of 5,167 records of all available HBV genotypes (A-J) from the Genbank database. The amino acid sequences encoded by the open reading frames (ORF) S/C/P/X in the HBV genome were extracted and subjected to alignment. We analyzed the variability of the lengths and the sequences of proteins as well as the frequencies of amino acids. It comprehensively characterized the variability and conservation of HBV proteins at the level of amino acids. Especially for the structural proteins, hepatitis B surface antigens (HBsAg), there are potential sites critical for virus assembly and immune recognition. Interestingly, the preS1 domains in HBsAg were variable at some positions of amino acid residues, which provides a potential mechanism of immune-escape for HBV, while the preS2 and S domains were conserved in the lengths of protein sequences. In the S domain, the cysteine residues and the secondary structures of the alpha-helix and beta-sheet were likely critical for the stable folding of all HBsAg components. Also, the preC domain and C-terminal domain of the core protein are highly conserved. However, the polymerases (HBpol) and the HBx were highly variable at the amino acid level. Our research provides a basis for understanding the conserved and important domains of HBV viral proteins, which could be potential targets for anti-virus therapy.
Collapse
Affiliation(s)
- Jianhao Cao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanyan Xiong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
194
|
Savoji MA, Haghighat S, Mirzaee M, Golkaran B, Mirzaee R, Esfandiari B, Mahdavi M. Formulation of HBs antigen in Montanide ISA266 shows superiority to commercial HBsAg vaccine in the induction of humoral immune responses. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:292-300. [PMID: 31749917 PMCID: PMC6820835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM In the present study, a new formulation of HBsAg vaccine was developed and compared with a commercial peer. BACKGROUND Vaccination of hepatitis B infection has been an unavoidable affair since the 1980s, though it has numerous limitations such as inefficacy in the induction of cellular immune responses. To address these limitations, research on novel formulations is necessary to develop a superior formulation with the potency of induction of both cellular and humoral immune responses. METHODS HBsAg was formulated in oil-in-water adjuvant Montanide ISA-266 (5 µg/dose) using homogenizer. Balb/C mice were then immunized three times at days 0, 14, and 28 with HBsAg/Montanide ISA-266 or HBsAg/alum with proper control groups. Two weeks after the last immunization, immunological parameters including IL-2, IL-4, TNF-α, IFN-γ, total IgG and IgG1/IgG2a isotypes were assessed by ELISA. RESULTS The results demonstrated that the formulation of HBsAg with Montanide ISA-266 enhanced humoral immune responses versus the commercial vaccine and control groups. No significant difference in terms of Th1 pattern was found between HBsAg/Montanide ISA-266 and the commercial vaccine. CONCLUSION Formulation of HBsAg with an oil-based adjuvant may be useful for the induction of a more potent humoral immune response compared to the commercially available HBV vaccine.
Collapse
Affiliation(s)
- Mohammad Ali Savoji
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Mirzaee
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bahareh Golkaran
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rayhaneh Mirzaee
- Department of Microbiology, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behzad Esfandiari
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran,Department of Laboratory Animal Science, Pasteur Institute of Iran, Karaj, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran ,Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran ,Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
195
|
Fatima I, Kanwal S, Mahmood T. Natural Products Mediated Targeting of Virally Infected Cancer. Dose Response 2019; 17:1559325818813227. [PMID: 30670935 PMCID: PMC6328957 DOI: 10.1177/1559325818813227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
The role of viral infection in developing cancer was determined in the start of 20th century. Until now, 8 different virus-associated cancers have been discovered and most of them progressed in immunosuppressed individuals. The aim of the present study is to look into the benefits of natural products in treating virally infected cancers. The study focuses on bioactive compounds derived from natural sources. Numerous pharmaceutical agents have been identified from plants (vincristine, vinblastine, stilbenes, combretastatin, and silymarin), marine organisms (bryostatins, cephalostatin, ecteinascidins, didemnin, and dolastatin), insects (cantharidin, mastoparan, parectadial, and cecropins), and microorganisms (vancomycin, rhizoxin, ansamitocins, mitomycin, and rapamycin). Beside these, various compounds have been observed from fruits and vegetables which can be utilized in anticancer therapy. These include curcumin in turmeric, resveratrol in red grapes, S-allyl cysteine in allium, allicin in garlic, catechins in green tea, and β-carotene in carrots. The present study addresses various types of virally infected cancers, their mechanism of action, and the role of different cell surface molecules elicited during viral binding and entry into the target cell along with the anticancer drugs derived from natural products by targeting screening of bioactive compounds from natural sources.
Collapse
Affiliation(s)
- Iram Fatima
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sobia Kanwal
- Department of Zoology, University of Gujrat Sub-campus Rawalpindi, Rawalpindi, Pakistan
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
196
|
Abstract
The capsid protein is a promising target for the development of therapeutic anti-virus agents.
Collapse
Affiliation(s)
- Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine
- School of Life Sciences
- Jilin University
- Changchun
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
197
|
Kemp L, Clare KE, Brennan PN, Dillon JF. New horizons in hepatitis B and C in the older adult. Age Ageing 2019; 48:32-37. [PMID: 30379991 DOI: 10.1093/ageing/afy170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C (HCV) and hepatitis B (HBV), are blood-borne viruses that can cause acute hepatitis; but are clinically relevant because chronic infection is associated with development of cirrhosis and hepatocellular carcinoma. Both these viruses are becoming more common in the older population, due to the ageing of generations exposed to the risk factors associated with infection; intravenous drug use, multiple sexual partners and men who have sex with men. This review will cover the natural history and epidemiology of these infections as well as the revolution in drug therapy that now allows cure of HCV infection and complete control of HBV infection.
Collapse
Affiliation(s)
- Linda Kemp
- Gut Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical school, Dundee, UK
| | - Kathleen E Clare
- Gut Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical school, Dundee, UK
| | - Paul N Brennan
- Gut Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical school, Dundee, UK
| | - John F Dillon
- Gut Group, Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical school, Dundee, UK
| |
Collapse
|
198
|
Jia L, Hu F, Li H, Li L, Tang X, Liu Y, Deng H, Han J, Li J, Cai W. Characterization of small genomic regions of the hepatitis B virus should be performed with more caution. Virol J 2018; 15:188. [PMID: 30526629 PMCID: PMC6288937 DOI: 10.1186/s12985-018-1100-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatitis B virus is a hepatotropic DNA virus that reproduces via an RNA intermediate. It can lead to an increased risk of serious liver diseases such as hepatocellular carcinoma and is a serious threat to public health. Currently, the HBV are designated based on greater than 8% nucleotide variation along the whole genome. The recombination of HBV is very common, a large majority of which are recombinants between 2 genotypes. The current work aims to characterize a suspected recombinant involving 3 genotypes. METHODS Fifty-seven HBV full-genome sequences were obtained from 57 patients co-infected with HBV and HIV-1 by amplification coupled with sequencing. JpHMM and RDP4 were used to perform recombination analysis respectively. The recombination results of a suspected 3-genotypic recombinant were further confirmed by both maximum likelihood phylogenetic tree and Mrbayes tree. RESULTS JpHMM recombination analysis clearly indicated one 3-genotypic HBV recombinant composing of B/C/D. The genotype assignments are supported by significant posterior probabilities. The subsequent phylogenetic analysis of sub-regions derived from inferred breakpoints led to a disagreement on the assignment of D segment. Investigating the conflict, further exploration by RDP4 and phylogenies revealed that the jpHMM-derived 3-genotypic recombinant is actually a B/C genotypic recombinant with C fragment spanning 1899 to 2295 (jpHMM) or 1821 to 2199 (RDP4). CONCLUSIONS The whole analysis indicated that (i) determination of small genomic regions should be performed with more caution, (ii) combinations of various recombination detection approaches conduce to obtain impartial results, and (iii) a unified system of nomenclature of HBV genotypes is necessary.
Collapse
Affiliation(s)
- Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Fengyu Hu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, 510060 Guangdong China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Xiaoping Tang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, 510060 Guangdong China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Haohui Deng
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, 510060 Guangdong China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Weiping Cai
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, 510060 Guangdong China
| |
Collapse
|
199
|
Takahashi N, Hayashi K, Nakagawa Y, Furutani Y, Toguchi M, Shiozaki-Sato Y, Sudoh M, Kojima S, Kakeya H. Development of an anti-hepatitis B virus (HBV) agent through the structure-activity relationship of the interferon-like small compound CDM-3008. Bioorg Med Chem 2018; 27:470-478. [PMID: 30552008 DOI: 10.1016/j.bmc.2018.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
Hepatitis B, a viral infectious disease caused by hepatitis B virus (HBV), is a life-threatening disease that leads liver cirrhosis and liver cancer. Because the current treatments for HBV, such as an interferon (IFN) formulation or nucleoside/nucleotide analogues, are not sufficient, the development of a more effective agent for HBV is urgent required. CDM-3008 (1, 2-(2,4-bis(trifluoromethyl)imidazo[1,2-a][1,8]naphthyridin-8-yl)-1,3,4-oxadiazole) (RO8191)) is a small molecule with an imidazo[1,2-a][1,8]naphthyridine scaffold that shows anti-HCV activity with an IFN-like effect. Here, we report that 1 was also effective for HBV, although the solubility and metabolic stability were insufficient for clinical use. Through the structure-activity relationship (SAR), we discovered that CDM-3032 (11, N-(piperidine-4-yl)-2,4-bis(trifluoromethyl)imidazo[1,2-a][1,8]naphthyridine-8-carboxamide hydrochloride) was more soluble than 1 (>30 mg/mL for 11 versus 0.92 mg/mL for 1). In addition, the half-life period of 11 was dramatically improved in both mouse and human hepatic microsomes (T1/2, >120 min versus 58.2 min in mouse, and >120 min versus 34.1 min in human, for 11 and 1, respectively).
Collapse
Affiliation(s)
- Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kyohei Hayashi
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Nakagawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Mariko Toguchi
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yumi Shiozaki-Sato
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Masayuki Sudoh
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Center for Integrative Medical Sciences, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
200
|
Humanized Mouse Models for the Study of Infection and Pathogenesis of Human Viruses. Viruses 2018; 10:v10110643. [PMID: 30453598 PMCID: PMC6266013 DOI: 10.3390/v10110643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
The evolution of infectious pathogens in humans proved to be a global health problem. Technological advancements over the last 50 years have allowed better means of identifying novel therapeutics to either prevent or combat these infectious diseases. The development of humanized mouse models offers a preclinical in vivo platform for further characterization of human viral infections and human immune responses triggered by these virus particles. Multiple strains of immunocompromised mice reconstituted with a human immune system and/or human hepatocytes are susceptible to infectious pathogens as evidenced by establishment of full viral life cycles in hope of investigating viral–host interactions observed in patients and discovering potential immunotherapies. This review highlights recent progress in utilizing humanized mice to decipher human specific immune responses against viral tropism.
Collapse
|