151
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [PMID: 36483296 PMCID: PMC9723259 DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 03/01/2025] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhe Deng
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yating Chen
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dimin Ning
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yinmei Guo
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Ruoyu Wang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuelin Meng
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuefei Tian
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
152
|
Schmidt TSB, Bork P. Dissecting the intracellular pancreatic tumor microbiome at single-cell level. Cancer Cell 2022; 40:1083-1085. [PMID: 36179685 DOI: 10.1016/j.ccell.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microorganisms play a role in the progression of various cancers. In this issue of Cancer Cell, Ghaddar et al. traced bacteria in pancreatic tumors at single-cell resolution and associated their intracellular presence with cell-type-specific transcriptional shifts, with links to clinical prognosis.
Collapse
Affiliation(s)
- Thomas S B Schmidt
- Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Peer Bork
- Structural & Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Yonsei Frontier Lab (YFL), Yonsei University, Seoul 03722, South Korea; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
153
|
Jacks BE, Ekpemiro CU, Adeosun AA, Ogbonna UO, Ogundiran FT, Babalola F, Onyechi NP, Ajayi OO, Boms MG, Nwanguma AN, Udo UA, Okobi OE, Ohikhuai EE, Evbayekha EO. Molecular Markers of Pancreatic Cancer: A 10-Year Retrospective Review of Molecular Advances. Cureus 2022; 14:e29485. [DOI: 10.7759/cureus.29485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/05/2022] Open
|
154
|
The Role of the Microbiome in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14184479. [PMID: 36139638 PMCID: PMC9496841 DOI: 10.3390/cancers14184479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pancreatic cancer is deadly cancer characterized by dense stroma creating an immunosuppressive tumor microenvironment. Accumulating evidences indicate that the microbiome plays an important role in pancreatic cancer development and progression via the local and systemic inflammation and immune responses. The alteration of the microbiome modulates the tumor microenvironment and immune system in pancreatic cancer, which affects the efficacy of chemotherapies including immune-targeted therapies. Understanding the role of microbiome and underlying mechanisms may lead to novel biomarkers and therapeutic strategies for pancreatic cancer. This review summarizes the current evidence on the role of the microbiome in pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with little improvement in outcomes in recent decades, although the molecular and phenotypic characterization of PDAC has contributed to advances in tailored therapies. PDAC is characterized by dense stroma surrounding tumor cells, which limits the efficacy of treatment due to the creation of a physical barrier and immunosuppressive environment. Emerging evidence regarding the microbiome in PDAC implies its potential role in the initiation and progression of PDAC. However, the underlying mechanisms of how the microbiome affects the local tumor microenvironment (TME) as well as the systemic immune system have not been elucidated in PDAC. In addition, therapeutic strategies based on the microbiome have not been established. In this review, we summarize the current evidence regarding the role of the microbiome in the development of PDAC and discuss a possible role for the microbiome in the early detection of PDAC in relation to premalignant pancreatic diseases, such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). In addition, we discuss the potential role of the microbiome in the treatment of PDAC, especially in immunotherapy, although the biomarkers used to predict the efficacy of immunotherapy in PDAC are still unknown. A comprehensive understanding of tumor-associated immune responses, including those involving the microbiome, holds promise for new treatments in PDAC.
Collapse
|
155
|
Mathers JC, Elliott F, Macrae F, Mecklin JP, Möslein G, McRonald FE, Bertario L, Evans DG, Gerdes AM, Ho JW, Lindblom A, Morrison PJ, Rashbass J, Ramesar RS, Seppälä TT, Thomas HJ, Sheth HJ, Pylvänäinen K, Reed L, Borthwick GM, Bishop DT, Burn J, on behalf of the CAPP2 Investigators. Cancer Prevention with Resistant Starch in Lynch Syndrome Patients in the CAPP2-Randomized Placebo Controlled Trial: Planned 10-Year Follow-up. Cancer Prev Res (Phila) 2022; 15:623-634. [PMID: 35878732 PMCID: PMC9433960 DOI: 10.1158/1940-6207.capr-22-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT The CAPP2 trial investigated the long-term effects of aspirin and resistant starch on cancer incidence in patients with Lynch syndrome (LS). Participants with LS were randomized double-blind to 30 g resistant starch (RS) daily or placebo for up to 4 years. We present long-term cancer outcomes based on the planned 10-year follow-up from recruitment, supplemented by National Cancer Registry data to 20 years in England, Wales, and Finland. Overall, 463 participants received RS and 455 participants received placebo. After up to 20 years follow-up, there was no difference in colorectal cancer incidence (n = 52 diagnosed with colorectal cancer among those randomized to RS against n = 53 on placebo) but fewer participants had non-colorectal LS cancers in those randomized to RS (n = 27) compared with placebo (n = 48); intention-to-treat (ITT) analysis [HR, 0.54; 95% confidence interval (CI), 0.33-0.86; P = 0.010]. In ITT analysis, allowing for multiple primary cancer diagnoses among participants by calculating incidence rate ratios (IRR) confirmed the protective effect of RS against non-colorectal cancer LS cancers (IRR, 0.52; 95% CI, 0.32-0.84; P = 0.0075). These effects are particularly pronounced for cancers of the upper GI tract; 5 diagnoses in those on RS versus 21 diagnoses on placebo. The reduction in non-colorectal cancer LS cancers was detectable in the first 10 years and continued in the next decade. For colorectal cancer, ITT analysis showed no effect of RS on colorectal cancer risk (HR, 0.92; 95% CI, 0.62-1.34; P = 0.63). There was no interaction between aspirin and RS treatments. In conclusion, 30 g daily RS appears to have a substantial protective effect against non-colorectal cancer cancers for patients with LS. PREVENTION RELEVANCE Regular bowel screening and aspirin reduce colorectal cancer among patients with LS but extracolonic cancers are difficult to detect and manage. This study suggests that RS reduces morbidity associated with extracolonic cancers. See related Spotlight, p. 557.
Collapse
Affiliation(s)
- John C. Mathers
- Human Nutrition Research Centre, Population Heath Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Faye Elliott
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - Finlay Macrae
- Division Colorectal Medicine and Genetics, Royal Melbourne Hospital, Melbourne, Australia
| | - Jukka-Pekka Mecklin
- Department of Education & Research, Jyväskylä Central Hospital, Jyväskylä, Finland
- Sport & Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Gabriela Möslein
- Center for Hereditary Tumors, Ev. BEHESDA Khs. zu Duisburg GmbH, Germany
| | - Fiona E. McRonald
- National Cancer Registration and Analysis Service, Public Health England
| | - Lucio Bertario
- Instituto Nazionale per lo Studio e, la Cura dei Tumori, Milan, Italy
| | - D. Gareth Evans
- Division of Evolution and Genomic Medicine, University of Manchester, St Mary's Hospital, Manchester Universities Foundation Trust, Manchester, United Kingdom
| | - Anne-Marie Gerdes
- Medical Genetics Clinic, ICMM; Clinical Genetics, Rigshospital, Copenhagen, Denmark
| | - Judy W.C. Ho
- Hereditary GI Cancer Registry, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Annika Lindblom
- Department of Molecular Medicine & Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Patrick J. Morrison
- The Department of Medical Genetics, Queens University Belfast, Belfast City Hospital HSC Trust, Belfast, United Kingdom
| | - Jem Rashbass
- National Cancer Registration and Analysis Service, Public Health England
| | - Raj S. Ramesar
- MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Toni T. Seppälä
- Department of Gastrointestinal Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Huw J.W. Thomas
- St Mark's Hospital, London & Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Harsh J. Sheth
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Kirsi Pylvänäinen
- Department of Education & Research, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Lynn Reed
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Gillian M. Borthwick
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - D. Timothy Bishop
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
| | - John Burn
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
156
|
Yu Q, Newsome RC, Beveridge M, Hernandez MC, Gharaibeh RZ, Jobin C, Thomas RM. Intestinal microbiota modulates pancreatic carcinogenesis through intratumoral natural killer cells. Gut Microbes 2022; 14:2112881. [PMID: 35980869 PMCID: PMC9397420 DOI: 10.1080/19490976.2022.2112881] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Preclinical data demonstrate that the gut microbiota can promote pancreatic ductal adenocarcinoma (PDAC), but mechanisms remain unclear. We hypothesized that intestinal microbiota alters anti-tumor innate immunity response to facilitate PDAC progression. Human PDAC L3.6pl cells were heterotopically implanted into Rag1-/- mice after microbiota depletion with antibiotics, while syngeneic murine PDAC Pan02 cells were implanted intrapancreatic into germ-free (GF) C57BL/6 J mice. Natural killer (NK) cells and their IFNγ expression were quantitated by flow cytometry. NK cells were depleted in vivo using anti-Asialo GM1 antibody to confirm the role of NK cells. Bacteria-free supernatant from SPF and GF mice feces was used to test its effect on NK-92MI cell anti-tumor response in vitro. SPF and ex-GF mice (reconstituted with SPF microbiota) developed larger PDAC tumors with decreased NK cell tumor infiltration and IFNγ expression versus GF-Rag1-/-. Microbiota-induced PDAC tumorigenesis was attenuated by antibiotic exposure, a process reversed following NK cell depletion in both Rag1-/- and C57BL/6 J mice. Compared to GF, SPF-Rag1-/- abiotic stool culture supernatant inhibited NK-92MI cytotoxicity, migration, and anti-cancer related gene expression. Gut microbiota promotes PDAC tumor progression through modulation of the intratumoral infiltration and activity of NK cells.
Collapse
Affiliation(s)
- Qin Yu
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rachel C. Newsome
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mark Beveridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maria C. Hernandez
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA,Christian Jobin Department of Medicine, University of Florida, 2033 Mowry Rd, 461, Gainesville, Florida32610, USA
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA,CONTACT Ryan M. Thomas Department of Surgery, University of Florida, PO Box 100109, Gainesville, Florida32610, USA
| |
Collapse
|
157
|
Li L, Yang K, Li C, Zhang H, Yu H, Chen K, Yang X, Liu L. Metagenomic shotgun sequencing and metabolomic profiling identify specific human gut microbiota associated with diabetic retinopathy in patients with type 2 diabetes. Front Immunol 2022; 13:943325. [PMID: 36059453 PMCID: PMC9434375 DOI: 10.3389/fimmu.2022.943325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDiabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM) and is one of the leading causes of blindness among DM patients. However, the molecular mechanism involving DR remains unclear.MethodsA case–control study with age-, sex-, and duration-matched diabetic patients and controls was conducted, which included 15 type 2 DM (T2DM) patients with DR and 15 T2DM patients without DR. Shotgun sequencing and non-targeted metabolomic profiling analyses of fecal samples were performed, and comprehensive bioinformatics analyses were conducted.ResultsUsing metagenomic analyses, we identified 293,460 unique genes in the non-DR group, while that in the DR group was 283,235, and the number of overlapping genes was 1,237,914. Regarding phylum levels, Actinobacteria decreased but Bacteroidetes increased in the DR group when compared with those in the control group. Regarding genus levels, Bifidobacterium and Lactobacillus decreased. Cellular processes, environmental information processes, and metabolism-related pathways were found at higher levels in the gut microbiome of DR patients. Using metabolomic analyses, we found 116 differentially expressed metabolites with a positive ion model and 168 differentially expressed metabolites with a negative ion model between the two groups. Kyoto Encyclopedia of Genes and Genomes annotation revealed six pathways with different levels between DR and diabetic controls, namely, cellular processes, environmental information processing, genetic information processing, human diseases, organismal systems and metabolism. Moreover, lysine biosynthesis and lysine degradation were enriched using a positive model, but histidine metabolism and β-alanine metabolism were enriched using a negative model.ConclusionsTogether, the metagenomic profiles of DR patients indicated different gut microbiota compositions and characteristic fecal metabolic phenotypes in DR patients. Our findings of microbial pathways therefore provided potential etiological and therapeutic targets for DR patients.
Collapse
Affiliation(s)
- Lihua Li
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kaibo Yang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Cong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Han Zhang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kang Chen
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Kang Chen, ; Xiaohong Yang, ; Lei Liu,
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Kang Chen, ; Xiaohong Yang, ; Lei Liu,
| | - Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Kang Chen, ; Xiaohong Yang, ; Lei Liu,
| |
Collapse
|
158
|
Abstract
Cancer has become a leading cause of death among patients with metabolic syndrome (MetS). The more components of MetS a patient has, the higher his risk of cancer. MetS is causally associated with colorectal, pancreatic, gallbladder, biliary, hepatocellular, gastric, esophageal, thyroid, breast, endometrial and renal cell cancers. MetS increases cancer mortality up to 2,4-fold. Intentional long-term weight loss reduces the excess cancer risk of obese MetS-patients. Both a low-risk lifestyle and cancer screening are effective and decrease the burden of cancer.
Collapse
|
159
|
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut 2022; 71:gutjnl-2022-327209. [PMID: 35820782 PMCID: PMC9834441 DOI: 10.1136/gutjnl-2022-327209] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Cancer is generally regarded as a localised disease, with the well-established role of the tumour microenvironment. However, the realm of cancer goes beyond the tumour microenvironment, and cancer should also be regarded as a systemic and environmental disease. The exposome (ie, the totality of exposures), which encompasses diets, supplements, smoking, alcohol, other lifestyle factors, medications, etc, likely alters the microbiome (inclusive of bacteria, viruses, archaea, fungi, parasites, etc) and immune system in various body sites and influences tumour phenotypes. The systemic metabolic/inflammatory status, which is likely influenced by exposures and intestinal physiological changes, may affect tissue microenvironment of colorectum and any other organs. Germline genomic factors can modify disease phenotypes via gene-by-environment interactions. Although challenges exist, it is crucial to advance not only basic experimental research that can analyse the effects of exposures, microorganisms and microenvironmental components on tumour evolution but also interdisciplinary human population research that can dissect the complex pathogenic roles of the exposome, microbiome and immunome. Metagenomic, metatranscriptomic and metabolomic analyses should be integrated into well-designed population research combined with advanced methodologies of artificial intelligence and molecular pathological epidemiology. Ideally, a prospective cohort study design that enables biospecimen (such as stool) collection before disease detection should be considered to address reverse causation and recall biases. Robust experimental and observational research together can provide insights into dynamic interactions between environmental exposures, microbiota, tumour and immunity during carcinogenesis processes, thereby helping us develop precision prevention and therapeutic strategies to ultimately reduce the cancer burden.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Medicine, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Shuji Ogino
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
160
|
Newsome R, Jobin C. Finding clues in unexpected places: detection of pancreatic cancer through the faecal microbiome. Gut 2022; 71:1247-1248. [PMID: 35260443 PMCID: PMC9177648 DOI: 10.1136/gutjnl-2021-326710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Rachel Newsome
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
161
|
Nagata N, Nishijima S, Kojima Y, Hisada Y, Imbe K, Miyoshi-Akiyama T, Suda W, Kimura M, Aoki R, Sekine K, Ohsugi M, Miki K, Osawa T, Ueki K, Oka S, Mizokami M, Kartal E, Schmidt TSB, Molina-Montes E, Estudillo L, Malats N, Trebicka J, Kersting S, Langheinrich M, Bork P, Uemura N, Itoi T, Kawai T. Metagenomic Identification of Microbial Signatures Predicting Pancreatic Cancer From a Multinational Study. Gastroenterology 2022; 163:222-238. [PMID: 35398347 DOI: 10.1053/j.gastro.2022.03.054] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/23/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS To identify gut and oral metagenomic signatures that accurately predict pancreatic ductal carcinoma (PDAC) and to validate these signatures in independent cohorts. METHODS We conducted a multinational study and performed shotgun metagenomic analysis of fecal and salivary samples collected from patients with treatment-naïve PDAC and non-PDAC controls in Japan, Spain, and Germany. Taxonomic and functional profiles of the microbiomes were characterized, and metagenomic classifiers to predict PDAC were constructed and validated in external datasets. RESULTS Comparative metagenomics revealed dysbiosis of both the gut and oral microbiomes and identified 30 gut and 18 oral species significantly associated with PDAC in the Japanese cohort. These microbial signatures achieved high area under the curve values of 0.78 to 0.82. The prediction model trained on the Japanese gut microbiome also had high predictive ability in Spanish and German cohorts, with respective area under the curve values of 0.74 and 0.83, validating its high confidence and versatility for PDAC prediction. Significant enrichments of Streptococcus and Veillonella spp and a depletion of Faecalibacterium prausnitzii were common gut signatures for PDAC in all the 3 cohorts. Prospective follow-up data revealed that patients with certain gut and oral microbial species were at higher risk of PDAC-related mortality. Finally, 58 bacteriophages that could infect microbial species consistently enriched in patients with PDAC across the 3 countries were identified. CONCLUSIONS Metagenomics targeting the gut and oral microbiomes can provide a powerful source of biomarkers for identifying individuals with PDAC and their prognoses. The identification of shared gut microbial signatures for PDAC in Asian and European cohorts indicates the presence of robust and global gut microbial biomarkers.
Collapse
Affiliation(s)
- Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan; Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Suguru Nishijima
- Computational Bio-Big Data Open Innovation Lab, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Yasushi Kojima
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuya Hisada
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koh Imbe
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Moto Kimura
- Department of Clinical Research Strategic Planning Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ryo Aoki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka, Japan
| | - Katsunori Sekine
- Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Kohnodai Hospital, Tokyo, Japan
| | - Mitsuru Ohsugi
- Department of Diabetes, Endocrinology, and Metabolism, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan; Diabetes and Metabolism Information Center, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kuniko Miki
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan; Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tsuyoshi Osawa
- Division of Nutriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kohjiro Ueki
- Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Ece Kartal
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Esther Molina-Montes
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, and CIBERONC, Spain
| | - Lidia Estudillo
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, and CIBERONC, Spain
| | - Nuria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, and CIBERONC, Spain
| | - Jonel Trebicka
- Section for Translational Hepatology, Department of Internal Medicine I, Goehte University Frankfurt, Frankfurt, Germany; European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Stephan Kersting
- Department of Surgery, University Hospital of Erlangen, Erlangen, Germany; Department of Surgery, University Clinic Greifswald, Greifswald, Germany
| | - Melanie Langheinrich
- Department of Surgery, University Hospital of Erlangen, Erlangen, Germany; Department of Surgery, University Clinic Greifswald, Greifswald, Germany
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Naomi Uemura
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan; Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Kohnodai Hospital, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
162
|
Amara S, Yang LV, Tiriveedhi V, Muzaffar M. Complex Role of Microbiome in Pancreatic Tumorigenesis: Potential Therapeutic Implications. Cells 2022; 11:1900. [PMID: 35741028 PMCID: PMC9221309 DOI: 10.3390/cells11121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer-related mortality with limited diagnostic and therapeutic options. Although immunotherapy has shown promise in the treatment of several cancers, its role in pancreatic cancer is rather limited. Several studies have focused on determining the role of the tumor microenvironment with cancer-cell-intrinsic events and tumor-infiltrating immune cellular properties. However, in the past decade, there has been emerging research aimed at delineating the role of the host microbiome, including the metabolites from microbes and host responses, on pancreatic tumorigenesis. Importantly, there is emerging evidence suggesting the beneficial role of a gut microbiome transplant to improve immunotherapeutic outcomes in cancer patients. In this review, we summarize the recent understanding of the role of the microbiome in pancreatic cancer progression, along with its clinical diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Suneetha Amara
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Li V. Yang
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| | - Mahvish Muzaffar
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (L.V.Y.); (M.M.)
| |
Collapse
|
163
|
Kotsiliti E. Microbial signatures in pancreatic cancer. Nat Rev Gastroenterol Hepatol 2022; 19:350. [PMID: 35505242 DOI: 10.1038/s41575-022-00625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
164
|
Kamal MA, Siddiqui I, Belgiovine C, Barbagallo M, Paleari V, Pistillo D, Chiabrando C, Schiarea S, Bottazzi B, Leone R, Avigni R, Migliore R, Spaggiari P, Gavazzi F, Capretti G, Marchesi F, Mantovani A, Zerbi A, Allavena P. Oncogenic KRAS-Induced Protein Signature in the Tumor Secretome Identifies Laminin-C2 and Pentraxin-3 as Useful Biomarkers for the Early Diagnosis of Pancreatic Cancer. Cancers (Basel) 2022; 14:2653. [PMID: 35681634 PMCID: PMC9179463 DOI: 10.3390/cancers14112653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS mutations characterize pancreatic cell transformation from the earliest stages of carcinogenesis, and are present in >95% of pancreatic ductal adenocarcinoma (PDAC) cases. In search of novel biomarkers for the early diagnosis of PDAC, we identified the proteins secreted by the normal human pancreatic cell line (HPDE) recently transformed by inducing the overexpression of the KRASG12V oncogene. We report a proteomic signature of KRAS-induced secreted proteins, which was confirmed in surgical tumor samples from resected PDAC patients. The putative diagnostic performance of three candidates, Laminin-C2 (LAMC2), Tenascin-C (TNC) and Pentraxin-3 (PTX3), was investigated by ELISA quantification in two cohorts of PDAC patients (n = 200) eligible for surgery. Circulating levels of LAMC2, TNC and PTX3 were significantly higher in PDAC patients compared to the healthy individuals (p < 0.0001). The Receiver Operating Characteristics (ROC) curve showed good sensitivity (1) and specificity (0.63 and 0.85) for LAMC2 and PTX3, respectively, but not for TNC, and patients with high levels of LAMC2 had significantly shorter overall survival (p = 0.0007). High levels of LAMC2 and PTX3 were detected at early stages (I−IIB) and in CA19-9-low PDAC patients. In conclusion, pancreatic tumors release LAMC2 and PTX3, which can be quantified in the systemic circulation, and may be useful in selecting patients for further diagnostic imaging.
Collapse
Affiliation(s)
- Mohammad Azhar Kamal
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Imran Siddiqui
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Cristina Belgiovine
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Marialuisa Barbagallo
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Valentina Paleari
- Biobank, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (V.P.); (D.P.)
| | - Daniela Pistillo
- Biobank, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (V.P.); (D.P.)
| | - Chiara Chiabrando
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.C.); (S.S.)
| | - Silvia Schiarea
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy; (C.C.); (S.S.)
| | - Barbara Bottazzi
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberto Leone
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberta Avigni
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Roberta Migliore
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| | - Paola Spaggiari
- Department of Pathology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy;
| | - Francesca Gavazzi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
| | - Giovanni Capretti
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Federica Marchesi
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Alberto Mantovani
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- The William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Alessandro Zerbi
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (F.G.); (G.C.); (A.Z.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Paola Allavena
- Department of Immunology, Humanitas Clinical and Research Center-IRCCS, 20089 Rozzano, Italy; (M.A.K.); (I.S.); (C.B.); (M.B.); (B.B.); (R.L.); (R.A.); (R.M.); (F.M.); (A.M.)
| |
Collapse
|
165
|
Früher Stuhltest auf Pankreaskarzinom? Dtsch Med Wochenschr 2022. [DOI: 10.1055/a-1743-8529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
166
|
Sammallahti H, Sarhadi VK, Kokkola A, Ghanbari R, Rezasoltani S, Asadzadeh Aghdaei H, Puolakkainen P, Knuutila S. Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool. Biomolecules 2022; 12:652. [PMID: 35625579 PMCID: PMC9171580 DOI: 10.3390/biom12050652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a dismal prognosis. To improve patient survival, the development of screening methods for early diagnosis is pivotal. Oncogenomic alterations present in tumor tissue are a suitable target for non-invasive screening efforts, as they can be detected in tumor-derived cells, cell-free nucleic acids, and extracellular vesicles, which are present in several body fluids. Since stool is an easily accessible source, which enables convenient and cost-effective sampling, it could be utilized for the screening of these traces. Herein, we explore the various oncogenomic changes that have been detected in PC tissue, such as chromosomal aberrations, mutations in driver genes, epigenetic alterations, and differentially expressed non-coding RNA. In addition, we briefly look into the role of altered gut microbiota in PC and their possible associations with oncogenomic changes. We also review the findings of genomic alterations in stool of PC patients, and the potentials and challenges of their future use for the development of stool screening tools, including the possible combination of genomic and microbiota markers.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Arto Kokkola
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1411713135, Iran;
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
167
|
Park DY, Park JY, Lee D, Hwang I, Kim HS. Leaky Gum: The Revisited Origin of Systemic Diseases. Cells 2022; 11:1079. [PMID: 35406643 PMCID: PMC8997512 DOI: 10.3390/cells11071079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/10/2022] Open
Abstract
The oral cavity is the gateway for microorganisms into your body where they disseminate not only to the directly connected respiratory and digestive tracts but also to the many remote organs. Oral microbiota, travelling to the end of the intestine and circulating in our bodies through blood vessels, not only affect a gut microbiome profile but also lead to many systemic diseases. By gathering information accumulated from the era of focal infection theory to the age of revolution in microbiome research, we propose a pivotal role of "leaky gum", as an analogy of "leaky gut", to underscore the importance of the oral cavity in systemic health. The oral cavity has unique structures, the gingival sulcus (GS) and the junctional epithelium (JE) below the GS, which are rarely found anywhere else in our body. The JE is attached to the tooth enamel and cementum by hemidesmosome (HD), which is structurally weaker than desmosome and is, thus, vulnerable to microbial infiltration. In the GS, microbial biofilms can build up for life, unlike the biofilms on the skin and intestinal mucosa that fall off by the natural process. Thus, we emphasize that the GS and the JE are the weakest leaky point for microbes to invade the human body, making the leaky gum just as important as, or even more important than, the leaky gut.
Collapse
Affiliation(s)
- Do-Young Park
- DOCSmedi Co., Ltd., 4F, 143, Gangseong-ro, Ilsanseo-gu, Goyang-si 10387, Korea;
| | - Jin Young Park
- Department of Gastrointestinal Endoscopy, Apple Tree Healthcare Center, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si 10387, Korea;
| | - Dahye Lee
- Department of Orthodontics, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si 10387, Korea;
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si 10387, Korea
| | - Inseong Hwang
- DOCSmedi Co., Ltd., 4F, 143, Gangseong-ro, Ilsanseo-gu, Goyang-si 10387, Korea;
| | - Hye-Sung Kim
- Department of Orthodontics, Apple Tree Dental Hospital, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si 10387, Korea;
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, 1450, Jungang-ro, Ilsanseo-gu, Goyang-si 10387, Korea
| |
Collapse
|