151
|
Hessen M, Akpek EK. Dry eye: an inflammatory ocular disease. J Ophthalmic Vis Res 2014; 9:240-50. [PMID: 25279127 PMCID: PMC4181208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/13/2014] [Indexed: 11/25/2022] Open
Abstract
Keratoconjunctivitis sicca, or dry eye, is a common ocular disease prompting millions of individuals to seek ophthalmological care. Regardless of the underlying etiology, dry eye has been shown to be associated with abnormalities in the pre-corneal tear film and subsequent inflammatory changes in the entire ocular surface including the adnexa, conjunctiva and cornea. Since the recognition of the role of inflammation in dry eye, a number of novel treatments have been investigated designed to inhibit various inflammatory pathways. Current medications that are used, including cyclosporine A, corticosteroids, tacrolimus, tetracycline derivatives and autologous serum, have been effective for management of dry eye and lead to measurable clinical improvement.
Collapse
|
152
|
Le Coz GM, Anton F, Hanesch U. Glucocorticoid-mediated enhancement of glutamatergic transmission may outweigh anti-inflammatory effects under conditions of neuropathic pain. PLoS One 2014; 9:e91393. [PMID: 24618816 PMCID: PMC3950185 DOI: 10.1371/journal.pone.0091393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/12/2014] [Indexed: 12/30/2022] Open
Abstract
At the clinical level comorbidity between chronic pain and dysfunctional hypothalamus-pituitary-adrenal (HPA) axis is well established. We aimed to identify causal relationships in a model of neuropathic pain (chronic constriction injury, CCI) by studying the effects of glucocorticoid receptor agonist (dexamethasone) and antagonist (RU-486) administration on pain behavior and spinal biochemical mediators. Daily injections were performed in Sprague Dawley rats. Weight, plasma corticosterone levels and mechanical pain thresholds were assessed before and during 21 days post-CCI. At days four and 21 we investigated the mRNA expression of spinal mediators. In the dexamethasone-injected group, we observed a diminution of body weight and plasma corticosterone levels during the 21 days post surgery period and a more pronounced pain sensitivity until day 7 post-CCI. This enhanced pain sensitivity in the early period following nerve injury was accompanied by a transient increase of the glutamate receptors mGluR5 and NMDA at day 4. However, at this time point we did not observe any effect of the agonist/antagonist injections on the mRNA expression of pro-inflammatory cytokines. The RU-486-injected rats showed a slight mechanical hypoalgesia until 7 days post-CCI, but without any significant correlation with the expression of the measured markers. Our results indicate that glucocorticoid-related modulations of neuropathic pain processing may rather depend on a modification of glutamatergic transmission than on a change in pro-inflammatory cytokine expression.
Collapse
Affiliation(s)
- Glenn-Marie Le Coz
- Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, Luxembourg, Luxembourg
| | - Fernand Anton
- Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, Luxembourg, Luxembourg
| | - Ulrike Hanesch
- Laboratory of Neurophysiology & Psychobiology, University of Luxembourg, Luxembourg, Luxembourg
- * E-mail:
| |
Collapse
|
153
|
Han DH, Lee YJ, Kim K, Kim CJ, Cho S. Modulation of glucocorticoid receptor induction properties by core circadian clock proteins. Mol Cell Endocrinol 2014; 383:170-80. [PMID: 24378737 DOI: 10.1016/j.mce.2013.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 11/28/2022]
Abstract
Glucocorticoid (GC) plays important roles in diverse physiological processes including metabolism and immune functions. While circadian control of GC synthesis and secretion is relatively well appreciated, circadian control of GC action within target tissues remains poorly understood. Here, we demonstrate that CLOCK/BMAL1, the core circadian clock components, reduces maximal GR transactivation (A(max)) as well as efficacy (EC₅₀) by a novel mechanism that requires binding to DNA and transactivation of target genes. Accordingly, we observe that PER1 and CRY1, the primary targets of CLOCK/BMAL1 action, reduce maximal GR transactivation while not affecting the efficacy. Moreover, we observe hyper-activations of GRE-dependent transcription in BMAL1- or PERs-deficient MEFs. In addition, endogenous GC target genes expression negatively correlates with the CLOCK/BMAL1 activity. Considering that GC sensitivity is widely implicated in human health and diseases, these results provide valuable insights into plethora of GC-related physiology and pathology.
Collapse
Affiliation(s)
- Dong-Hee Han
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Ju Lee
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Kyungjin Kim
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sehyung Cho
- Department of Neuroscience & Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Republic of Korea; Department of Physiology, Kyung Hee University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
154
|
Giembycz MA, Newton R. How Phosphodiesterase 4 Inhibitors Work in Patients with Chronic Obstructive Pulmonary Disease of the Severe, Bronchitic, Frequent Exacerbator Phenotype. Clin Chest Med 2014; 35:203-17. [DOI: 10.1016/j.ccm.2013.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
155
|
Harvey B, Sia T, Wattchow D, Smid S. Interleukin 17A evoked mucosal damage is attenuated by cannabidiol and anandamide in a human colonic explant model. Cytokine 2014; 65:236-44. [DOI: 10.1016/j.cyto.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/13/2013] [Accepted: 10/19/2013] [Indexed: 12/29/2022]
|
156
|
Palejwala NV, Yeh S, Angeles-Han ST. Current perspectives on ophthalmic manifestations of childhood rheumatic diseases. Curr Rheumatol Rep 2013; 15:341. [PMID: 23686303 DOI: 10.1007/s11926-013-0341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory eye diseases are an important manifestation of many pediatric rheumatologic conditions. Early screening and diagnosis are imperative as these illnesses can not only result in significant visual morbidity but are also an indicator of systemic inflammation. Time to presentation of ocular inflammation varies significantly and can range from many years prior to the onset of systemic symptoms to well after the diagnosis of the rheumatologic disorder. Due to this variability in presentation, careful monitoring by an ophthalmologist is vital to preventing ocular complications and preserving vision. Both local and systemic immunosuppressive medications have been effective in the management of ocular disease. In this review, we will focus on the known ophthalmologic manifestations of common pediatric rheumatologic diseases and discuss recent advances in therapeutic considerations for these conditions.
Collapse
Affiliation(s)
- Neal V Palejwala
- Section of Vitreoretinal Surgery, Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd. NE, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
157
|
|
158
|
Chu CC, Hsing CH, Shieh JP, Chien CC, Ho CM, Wang JJ. The cellular mechanisms of the antiemetic action of dexamethasone and related glucocorticoids against vomiting. Eur J Pharmacol 2013; 722:48-54. [PMID: 24184695 DOI: 10.1016/j.ejphar.2013.10.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022]
Abstract
Glucocorticoids, used primarily as anti-allergic and anti-inflammatory drugs, are also effective, alone or combined with other antiemetics, for preventing nausea and vomiting. Dexamethasone, one of the glucocorticoids, has been suggested as a first-line drug for preventing low-level emetogenic chemotherapy- and radiotherapy-induced nausea and vomiting, and in patients with only one or two risks for postoperative nausea and vomiting (PONV). Dexamethasone combined with 5-HT3 or tachykinin NK1 antagonists is also suggested for higher-level emetogenic chemotherapy and radiotherapy and for patients at high risk for PONV. Glucocorticoids may act via the following mechanisms: (1) anti-inflammatory effect; (2) direct central action at the solitary tract nucleus, (3) interaction with the neurotransmitter serotonin, and receptor proteins tachykinin NK1 and NK2, alpha-adrenaline, etc.; (4) maintaining the normal physiological functions of organs and systems; (5) regulation of the hypothalamic-pituitary-adrenal axis; and (6) reducing pain and the concomitant use of opioids, which in turn reduces opioid-related nausea and vomiting.
Collapse
Affiliation(s)
- Chin-Chen Chu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan; Department of Recreation and Health-Care Management, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan; Department of Anesthesiology, Taipei Medical University, Taipei, Taiwan
| | - Ja-Ping Shieh
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Chiang Chien
- Department of Nephrology, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chiu-Ming Ho
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Jhi-Joung Wang
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
159
|
Chafin CB, Regna NL, Hammond SE, Reilly CM. Cellular and urinary microRNA alterations in NZB/W mice with hydroxychloroquine or prednisone treatment. Int Immunopharmacol 2013; 17:894-906. [PMID: 24121037 DOI: 10.1016/j.intimp.2013.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Determining alterations to disease-associated miRNAs induced by specific therapeutics may allow the use of tailored therapy in lupus. We determined miRNA alterations in female NZB/W lupus mice treated with hydroxychloroquine (HCQ) or prednisone (PRED) for 12 weeks beginning at 24 weeks-of-age. B cell, PBMC, and urinary miR-let-7a expression were decreased with HCQ or PRED treatment. HCQ or PRED treatment reduced miR-21 expression in mesangial cells, T cells, pDCs, PBMCs, and the urine. MiR-146a expression was reduced in mesangial cells with HCQ treatment and in pDCs with HCQ or PRED treatment. PRED treatment increased miR-155 expression in mesangial, B, and T cells and PBMCs yet decreased miR-155 expression in pDCs and the urine. In vitro studies confirmed that HCQ or PRED's anti-inflammatory actions are dependent on their ability to inhibit miRNA expression. Our studies indicate that lupus therapeutics may work, in part, by altering the expression of disease-associated miRNAs.
Collapse
Affiliation(s)
- Cristen B Chafin
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| | | | | | | |
Collapse
|
160
|
Noncanonical Nuclear Factor Kappa B (NF-κB) Signaling and Potential for Therapeutics in Sepsis. Curr Infect Dis Rep 2013; 15:364-71. [PMID: 23975688 DOI: 10.1007/s11908-013-0362-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
NF-κB signaling plays a central role in the pathophysiology of severe sepsis and septic shock. Despite tremendous and missed efforts, novel therapeutics for severe sepsis and septic shock are still needed. Many drugs have been designed to target the canonical NF-κB signaling pathway with limited success, potentially due to the nonspecificity of the drugs for other kinases and the interaction of canonical signaling with other pathways. Here, we review the canonical and noncanonical signaling pathways of NF-κB, the cross talk and negative regulation of the two pathways, and the potential for therapeutics arising from the noncanonical NF-κB pathway in relation to the pathophysiology of septic shock.
Collapse
|
161
|
Yates CJ, Fourlanos S, Colman PG, Cohney SJ. Divided dosing reduces prednisolone-induced hyperglycaemia and glycaemic variability: a randomized trial after kidney transplantation. Nephrol Dial Transplant 2013; 29:698-705. [PMID: 24009292 DOI: 10.1093/ndt/gft377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prednisolone is a major risk factor for hyperglycaemia and new-onset diabetes after transplantation. Uncontrolled observational data suggest that divided dosing may reduce requirements for hypoglycaemic agents. This study aims to compare the glycaemic effects of divided twice daily (BD) and once daily (QD) prednisolone. METHODS Twenty-two kidney transplant recipients without diabetes were randomized to BD or QD prednisolone. Three weeks post-transplant, a continuous glucose monitor (iPro2(®) Medtronic) was applied for 5 days with subjects continuing their initial prednisolone regimen (Days 1-2) before crossover to the alternative regimen. Mean glucose, peak glucose, nadir glucose, exposure to hyperglycaemia (glucose ≥7.8 mmol/L) and glycaemic variability were assessed. RESULTS The mean ± standard deviation (SD) age of subjects was 50 ± 10 years and 77% were male. Median (interquartile range) daily prednisolone dose was 25 (20, 25) mg. BD prednisolone was associated with decreased mean glucose (mean 7.9 ± 1.7 versus 8.1 ± 2.3 mmol/L, P < 0.001), peak glucose [median 10.4 (9.5, 11.4) versus 11.4 (10.3, 13.4) mmol/L, P< 0.001] and exposure to hyperglycaemia [median 25.5 (14.6, 30.3) versus 40.4 (33.2, 51.2) mmol/L/h, P = 0.003]. Median glucose peaked between 14:55-15.05 h with BD and 15:25-15:30 h with QD. Median glycaemic variability scores were decreased with BD: SD (1.1 versus 1.9, P < 0.001), mean amplitude of glycaemic excursion (1.5 versus 2.2, P = 0.001), continuous overlapping net glycaemic action-1 (CONGA-1; 1.0 versus 1.2, P = 0.039), CONGA-2 (1.2 versus 1.4, P = 0.008) and J-index (25 versus 31, P = 0.003). CONCLUSIONS Split prednisolone dosing reduces glycaemic variability and hyperglycaemia early post-kidney transplant.
Collapse
Affiliation(s)
- Christopher J Yates
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
162
|
ROSSELAND LA, ROMUNDSTAD L. Multimodal pain management with glucocorticoids: killing two birds with one stone or shooting sparrows with cannons? Acta Anaesthesiol Scand 2013; 57:819-22. [PMID: 23822161 DOI: 10.1111/aas.12139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - L. ROMUNDSTAD
- Department of Anesthesiology; Division of Emergencies and Critical Care; Oslo University Hospital; Oslo; Norway
| |
Collapse
|
163
|
Shao J, Katika MR, Schmeits PCJ, Hendriksen PJM, van Loveren H, Peijnenburg AACM, Volger OL. Toxicogenomics-based identification of mechanisms for direct immunotoxicity. Toxicol Sci 2013; 135:328-46. [PMID: 23824090 DOI: 10.1093/toxsci/kft151] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Compounds with direct immunotoxic properties, including metals, mycotoxins, agricultural pesticides, and industrial chemicals, form potential human health risks due to exposure through food, drinking water, and the environment. Insights into the mechanisms of action are currently lacking for the majority of these direct immunotoxicants. Therefore, the present work aimed to gain insights into the molecular mechanisms underlying direct immunotoxicity. To this end, we assessed in vitro the effects of 31 test compounds on the transcriptome of the human Jurkat T-cell line. These compounds included direct immunotoxicants, immunosuppressive drugs with different mode of actions, and nonimmunotoxic control chemicals. Pathway analysis of the microarray data allowed us to identify canonical pathways and Gene Ontology processes that were transcriptionally regulated in common by immunotoxicants (1) with structural similarities, such as tributyltin chloride and tributyltin oxide that activated the retinoic acid/X receptor signaling pathway and (2) without structural similarities, such as As2O3, dibutyltin chloride, diazinon, MeHg, ochratoxin A (OTA), S9-treated OTA, S9-treated cyclophosphamide, and S9-treated benzo[a]pyrene, which activated unfolded protein response, and FTY720, lindane, and propanil, which activated the cholesterol biosynthesis pathway. In addition, processes uniquely affected by individual immunotoxicants were identified, such as the induction of Notch receptor signaling and the downregulation of acute-phase response genes by OTA. These findings were validated by quantitative real-time PCR analysis of genes involved in these processes. Our study indicated that diverse modes of action are involved in direct immunotoxicity and that a set of pathways or genes, rather than one single gene, can be used to screen compounds for direct immunotoxicity.
Collapse
Affiliation(s)
- Jia Shao
- * RIKILT-Institute of Food Safety, Wageningen University and Research Centre, 6700 AE Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
164
|
Athanasiadis Y, Tsatsos M, Sharma A, Hossain P. Subconjunctival Triamcinolone Acetonide in the Management of Ocular Inflammatory Disease. J Ocul Pharmacol Ther 2013; 29:516-22. [DOI: 10.1089/jop.2012.0208] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Michael Tsatsos
- NHS Foundation Trust Eye Unit, University Hospital Southampton, Southampton, United Kingdom
| | - Anant Sharma
- Moorfields Eye Hospital NHS Foundation Trust, Bedford, United Kingdom
| | - Parwez Hossain
- NHS Foundation Trust Eye Unit, University Hospital Southampton, Southampton, United Kingdom
| |
Collapse
|
165
|
Baty F, Rüdiger J, Miglino N, Kern L, Borger P, Brutsche M. Exploring the transcription factor activity in high-throughput gene expression data using RLQ analysis. BMC Bioinformatics 2013; 14:178. [PMID: 23742070 PMCID: PMC3686578 DOI: 10.1186/1471-2105-14-178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/30/2013] [Indexed: 12/14/2022] Open
Abstract
Background Interpretation of gene expression microarray data in the light of external information on both columns and rows (experimental variables and gene annotations) facilitates the extraction of pertinent information hidden in these complex data. Biologists classically interpret genes of interest after retrieving functional information from a subset of genes of interest. Transcription factors play an important role in orchestrating the regulation of gene expression. Their activity can be deduced by examining the presence of putative transcription factors binding sites in the gene promoter regions. Results In this paper we present the multivariate statistical method RLQ which aims to analyze microarray data where additional information is available on both genes and samples. As an illustrative example, we applied RLQ methodology to analyze transcription factor activity associated with the time-course effect of steroids on the growth of primary human lung fibroblasts. RLQ could successfully predict transcription factor activity, and could integrate various other sources of external information in the main frame of the analysis. The approach was validated by means of alternative statistical methods and biological validation. Conclusions RLQ provides an efficient way of extracting and visualizing structures present in a gene expression dataset by directly modeling the link between experimental variables and gene annotations.
Collapse
Affiliation(s)
- Florent Baty
- Division of Pulmonary Medicine, Cantonal Hospital St, Gallen, Rorschacherstrasse 95, CH-9007 St, Gallen, Switzerland.
| | | | | | | | | | | |
Collapse
|
166
|
Jiang L, Yang S, Yin H, Fan X, Wang S, Yao B, Pozzi A, Chen X, Harris RC, Zhang MZ. Epithelial-specific deletion of 11β-HSD2 hinders Apcmin/+ mouse tumorigenesis. Mol Cancer Res 2013; 11:1040-50. [PMID: 23741059 DOI: 10.1158/1541-7786.mcr-13-0084-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) promotes colorectal tumorigenesis. Glucocorticoids are endogenous and potent COX-2 inhibitors, and their local actions are downregulated by 11β-hydroxysteroid dehydrogenase type II (11β-HSD2)-mediated metabolism. Previously, it was reported that 11β-HSD2 is increased in human colonic and Apc(min/+) mouse intestinal adenomas and correlated with increased COX-2, and 11β-HSD2 inhibition suppressed the COX-2 pathway and decreased tumorigenesis. Because 11β-HSD2 is expressed in Apc(min/+) mouse intestinal adenoma stromal and epithelial cells, Apc(min/+) mice were generated with selective deletion of 11β-HSD2 in intestinal epithelial cells (Vil-Cre-HSD2(-/-) Apc(min/+)). Deletion of 11β-HSD2 in intestinal epithelia led to marked inhibition of Apc(min/+) mouse intestinal tumorigenesis. Immunostaining indicated decreased 11β-HSD2 and COX-2 expression in adenoma epithelia, whereas stromal COX-2 expression was intact in Vil-Cre-HSD2(-/-) Apc(min/+) mice. In Vil-Cre-HSD2(-/-) Apc(min/+) mouse intestinal adenomas, both p53 and p21 mRNA and protein were increased, with a concomitant decrease in pRb, indicating glucocorticoid-mediated G1-arrest. Further study revealed that REDD1 (regulated in development and DNA damage responses 1), a novel stress-induced gene that inhibits mTOR signaling, was increased, whereas the mTOR signaling pathway was inhibited. Therefore, in Vil-Cre-HSD2(-/-) Apc(min/+) mice, epithelial cell 11β-HSD2 deficiency leads to inhibition of adenoma initiation and growth by attenuation of COX-2 expression, increased cell-cycle arrest, and inhibition of mTOR signaling as a result of increased tumor intracellular active glucocorticoids. IMPLICATIONS Inhibition of 11β-HSD2 may represent a novel approach for colorectal cancer chemoprevention by increasing tumor glucocorticoid activity, which in turn inhibits tumor growth by multiple pathways.
Collapse
Affiliation(s)
- Li Jiang
- Departments of Medicine and Cancer Biology, S-3206, MCN, Vanderbilt University Medical Center, Nashville, TN 37232.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Zakkar M, Kanagasabay R. Glucocorticoids in adult cardiac surgery; old drugs revisited. Perfusion 2013; 28:395-402. [DOI: 10.1177/0267659113488433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Glucocorticoids can play a pivotal role in modulating different immune responses. The role of glucocorticoids in cardiac surgery is still controversial as many surgeons are concerned about the potential side effects. In this review, we looked at the role of glucocorticoid administration in modulating postoperative inflammatory responses, atrial fibrillation (AF) and intimal hyperplasia and whether glucocorticoid use is associated with a significant increase in undesirable postoperative complication.
Collapse
Affiliation(s)
- M Zakkar
- Department of Cardiothoracic Surgery, St. George’s Hospital, London, UK
| | - R Kanagasabay
- Department of Cardiothoracic Surgery, St. George’s Hospital, London, UK
| |
Collapse
|
168
|
Hough D, Swart P, Cloete S. Exploration of the Hypothalamic-Pituitary-Adrenal Axis to Improve Animal Welfare by Means of Genetic Selection: Lessons from the South African Merino. Animals (Basel) 2013; 3:442-74. [PMID: 26487412 PMCID: PMC4494397 DOI: 10.3390/ani3020442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 11/25/2022] Open
Abstract
It is a difficult task to improve animal production by means of genetic selection, if the environment does not allow full expression of the animal's genetic potential. This concept may well be the future for animal welfare, because it highlights the need to incorporate traits related to production and robustness, simultaneously, to reach sustainable breeding goals. This review explores the identification of potential genetic markers for robustness within the hypothalamic-pituitary-adrenal axis (HPAA), since this axis plays a vital role in the stress response. If genetic selection for superior HPAA responses to stress is possible, then it ought to be possible to breed robust and easily managed genotypes that might be able to adapt to a wide range of environmental conditions whilst expressing a high production potential. This approach is explored in this review by means of lessons learnt from research on Merino sheep, which were divergently selected for their multiple rearing ability. These two selection lines have shown marked differences in reproduction, production and welfare, which makes this breeding programme ideal to investigate potential genetic markers of robustness. The HPAA function is explored in detail to elucidate where such genetic markers are likely to be found.
Collapse
Affiliation(s)
- Denise Hough
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa.
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa.
| | - Schalk Cloete
- Department of Animal Sciences, Stellenbosch University, Stellenbosch 7602, South Africa.
- Institute for Animal Production, Elsenburg, Private Bag X1, Elsenburg 7607, South Africa.
| |
Collapse
|
169
|
Zhang Y, Leung DYM, Goleva E. Vitamin D enhances glucocorticoid action in human monocytes: involvement of granulocyte-macrophage colony-stimulating factor and mediator complex subunit 14. J Biol Chem 2013; 288:14544-14553. [PMID: 23572530 DOI: 10.1074/jbc.m112.427054] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vitamin D (VitD) is now recognized for its pleiotrophic roles in regulating immune function. VitD interaction with other steroid receptor superfamily receptors in peripheral blood mononuclear cells is poorly understood. In the current study, we demonstrate that VitD enhanced glucocorticoid (GC) responses in human peripheral blood mononuclear cells because it stimulated GC induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) and enhanced GC inhibition of LPS-induced IL-6. These VitD effects were abolished in purified CD14(+) and CD14(-) cells but were recovered in CD14(+) cells co-cultured with CD14(-) cells separated by tissue culture inserts. GM-CSF, found in culture supernatants from CD14(-) cells, was shown to mediate VitD enhancement of GC-induced MKP-1 production in monocytes via increased production of mediator complex subunit 14 (MED14). Recruitment of VitD receptor and MED14, 4.7 kbp upstream of the human MKP-1 gene transcription start site, enhanced binding of glucocorticoid receptor and histone H4 acetylation at the 4.6-kbp glucocorticoid response element of the MKP-1 promoter in the presence of GM-CSF in U937 cells. Knockdown of MED14 abolished VitD-mediated enhancement of GC-induced MKP-1 production. These data demonstrate VitD-mediated stimulation of GC anti-inflammatory effects in human monocytes and identify a role for GM-CSF and MED14 as mediators of this process.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206; Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206.
| |
Collapse
|
170
|
Bangasser DA. Sex differences in stress-related receptors: ″micro″ differences with ″macro″ implications for mood and anxiety disorders. Biol Sex Differ 2013; 4:2. [PMID: 23336736 PMCID: PMC3556142 DOI: 10.1186/2042-6410-4-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/27/2012] [Indexed: 11/10/2022] Open
Abstract
Stress-related psychiatric disorders, such as unipolar depression and post-traumatic stress disorder (PTSD), occur more frequently in women than in men. Emerging research suggests that sex differences in receptors for the stress hormones, corticotropin releasing factor (CRF) and glucocorticoids, contribute to this disparity. For example, sex differences in CRF receptor binding in the amygdala of rats may predispose females to greater anxiety following stressful events. Additionally, sex differences in CRF receptor signaling and trafficking in the locus coeruleus arousal center combine to make females more sensitive to low levels of CRF, and less adaptable to high levels. These receptor differences in females could lead to hyperarousal, a dysregulated state associated with symptoms of depression and PTSD. Similar to the sex differences observed in CRF receptors, sex differences in glucocorticoid receptor (GR) function also appear to make females more susceptible to dysregulation after a stressful event. Following hypothalamic pituitary adrenal axis activation, GRs are critical to the negative feedback process that inhibits additional glucocorticoid release. Compared to males, female rats have fewer GRs and impaired GR translocation following chronic adolescent stress, effects linked to slower glucocorticoid negative feedback. Thus, under conditions of chronic stress, attenuated negative feedback in females would result in hypercortisolemia, an endocrine state thought to cause depression. Together, these studies suggest that sex differences in stress-related receptors shift females more easily into a dysregulated state of stress reactivity, linked to the development of mood and anxiety disorders. The implications of these receptor sex differences for the development of novel pharmacotherapies are also discussed.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, 19122, PA.
| |
Collapse
|
171
|
Glucocorticoid repression of inflammatory gene expression shows differential responsiveness by transactivation- and transrepression-dependent mechanisms. PLoS One 2013; 8:e53936. [PMID: 23349769 PMCID: PMC3545719 DOI: 10.1371/journal.pone.0053936] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/04/2012] [Indexed: 12/25/2022] Open
Abstract
Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent repression by dexamethasone. In conclusion, our data indicate roles for both transrepression and transactivation in the glucocorticoid-dependent repression of inflammatory gene expression. However, transactivation appears to account for the more potent and efficacious mechanism of repression by glucocorticoids on these IL-1β-induced genes.
Collapse
|
172
|
Simic I, Maric NP, Mitic M, Soldatovic I, Pavlovic Z, Mihaljevic M, Andric S, Radojcic MB, Adzic M. Phosphorylation of leukocyte glucocorticoid receptor in patients with current episode of major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:281-5. [PMID: 23123359 DOI: 10.1016/j.pnpbp.2012.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/11/2012] [Accepted: 10/26/2012] [Indexed: 01/01/2023]
Abstract
The impaired glucocorticoid receptor (GR) signaling has long been considered one of the cornerstones in understanding the pathophysiology of depression. Since the phosphorylation of GR is very important for GR function, in this study we investigated whether GR phosphorylation at serine 211 (pGR-S211) and serine 226 (pGR-S226) is altered in patients with current episode of major depressive disorder (MDD). Particularly, in 30 MDD patients and 35 controls we assessed the levels of nuclear total GR (tGR), pGR-S211 and pGR-S226 in peripheral blood mononuclear cells (PBMC) using Western blot technique, along with plasma cortisol concentrations from the same blood samples. Our results demonstrated increased phosphorylation of GR at S226 (p<0.001) and, to a less extent, at S211 (p<0.05) in MDD patients compared to controls. Consequently, the pGR-S211/pGR-S226 ratio was decreased (p<0.05) implying reduced transcriptional activity of GR in MDD patients. MDD subjects had higher cortisol levels than controls and cortisol concentrations were positively correlated with PBMC pGR-S226 levels from the same blood samples. There was no difference in the levels of tGR between MDD and control subjects. The study showed that altered phosphorylation of GR could contribute to impaired GR function related to the pathophysiology of depression.
Collapse
Affiliation(s)
- Iva Simic
- Laboratory of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, P.O. Box-522-MBE090, 11001 Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Yang S, Jiang L, Zhang MZ. 11β-Hydroxysteroid Dehydrogenase Type II is a Potential Target for Prevention of Colorectal Tumorigenesis. ACTA ACUST UNITED AC 2013; 1. [PMID: 23936870 DOI: 10.13188/2325-2340.1000002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death, yet primary prevention remains the best approach to reducing overall morbidity and mortality. There is a clear molecular link between cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) production and CRC progression. Although selective COX-2 inhibitors as well as non-steroidal anti-inflammatory drugs (NSAIDs) reduce the number and sizes of colonic adenomas, increased cardiovascular risks of selective COX-2 inhibitors and increased gastrointestinal side-effects of NSAIDs limit their use in chemoprevention of CRC. Glucocorticoids induce apoptosis and are endogenous, potent COX-2 inhibitors. Glucocorticoids have been used for the treatment of hematologic malignancies, but not for solid tumors due to adverse side-effects such as immunosuppression and osteoporosis. In tissues, glucocorticoid actions are down-regulated by t y p e 2 1 1 β-hydroxysteroid dehydrogenase (11βHSD2), and inhibition of 11βHSD2 activity will elevate intracellular active glucocorticoid to levels that effectively suppress COX-2 expression. Both COX-2 and 11βHSD2 increase in Apc+/min mouse intestinal adenomas and human colonic adenomas and either pharmacologic or genetic 11βHSD2 inhibition leads to decreases in COX-2-mediated PGE2 production in tumors and prevents adenoma formation, tumor growth, and metastasis. 11βHSD2 inhibition may represent a novel approach for CRC chemoprevention by increasing tumor cell intracellular glucocorticoid activity, which in turn inhibits tumor growth by suppressing the COX-2-derived PGE2 pathway, as well as other pathways, without potential side-effects relating to chronic application of COX-2 inhibitors, NSAIDs and glucocorticoids.
Collapse
Affiliation(s)
- Shilin Yang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
174
|
Manetsch M, Ramsay EE, King EM, Seidel P, Che W, Ge Q, Hibbs DE, Newton R, Ammit AJ. Corticosteroids and β₂-agonists upregulate mitogen-activated protein kinase phosphatase 1: in vitro mechanisms. Br J Pharmacol 2012; 166:2049-59. [PMID: 22372570 DOI: 10.1111/j.1476-5381.2012.01923.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway remodelling is a consequence of long-term inflammation and MAPKs are key signalling molecules that drive pro-inflammatory pathways. The endogenous MAPK deactivator--MAPK phosphatase 1 (MKP-1)--is a critical negative regulator of the myriad pro-inflammatory pathways activated by MAPKs in the airway. EXPERIMENTAL APPROACH Herein we investigated the molecular mechanisms responsible for the upregulation of MKP-1 in airway smooth muscle (ASM) by the corticosteroid dexamethasone and the β₂-agonist formoterol, added alone and in combination. KEY RESULTS MKP-1 is a corticosteroid-inducible gene whose expression is enhanced by long-acting β₂-agonists in an additive manner. Formoterol induced MKP-1 expression via the β₂-adrenoceptor and we provide the first direct evidence (utilizing overexpression of PKIα, a highly selective PKA inhibitor) to show that PKA mediates β₂-agonist-induced MKP-1 upregulation. Dexamethasone activated MKP-1 transcription in ASM cells via a cis-acting corticosteroid-responsive region located between -1380 and -1266 bp of the MKP-1 promoter. While the 3'-untranslated region of MKP-1 contains adenylate + uridylate elements responsible for regulation at the post-transcriptional level, actinomycin D chase experiments revealed that there was no increase in MKP-1 mRNA stability in the presence of dexamethasone, formoterol, alone or in combination. Rather, there was an additive effect of the asthma therapeutics on MKP-1 transcription. CONCLUSIONS AND IMPLICATIONS Taken together, these studies allow us a greater understanding of the molecular basis of MKP-1 regulation by corticosteroids and β₂-agonists and this new knowledge may lead to elucidation of optimized corticosteroid-sparing therapies in the future.
Collapse
Affiliation(s)
- M Manetsch
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. Infect Immun 2012; 81:329-39. [PMID: 23132492 DOI: 10.1128/iai.00856-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Urinary catheterization elicits major histological and immunological changes that render the bladder susceptible to microbial invasion, colonization, and dissemination. However, it is not understood how catheters induce these changes, how these changes act to promote infection, or whether they may have any protective benefit. In the present study, we examined how catheter-associated inflammation impacts infection by Enterococcus faecalis, a leading cause of catheter-associated urinary tract infection (CAUTI), a source of significant societal and clinical challenges. Using a recently optimized murine model of foreign body-associated UTI, we found that the implanted catheter itself was the primary inducer of inflammation. In the absence of the silicone tubing implant, E. faecalis induced only minimal inflammation and was rapidly cleared from the bladder. The catheter-induced inflammation was only minimally altered by subsequent enterococcal infection and was not suppressed by inhibitors of the neurogenic pathway and only partially by dexamethasone. Despite the robust inflammatory response induced by urinary implantation, E. faecalis produced biofilm and high bladder titers in these animals. Induction of inflammation in the absence of an implanted catheter failed to promote infection, suggesting that the presence of the catheter itself is essential for E. faecalis persistence in the bladder. Immunosuppression prior to urinary catheterization enhanced E. faecalis colonization, suggesting that implant-mediated inflammation contributes to the control of enterococcal infection. Thus, this study underscores the need for novel strategies against CAUTIs that seek to reduce the deleterious effects of implant-mediated inflammation on bladder homeostasis while maintaining an active immune response that effectively limits bacterial invaders.
Collapse
|
176
|
Lai S, Piras F, Spiga S, Perra MT, Minerba L, Piga M, Mura E, Murtas D, Demurtas P, Corrias M, Maxia C, Ferreli C, Sirigu P. Nestin and vimentin colocalization affects the subcellular location of glucocorticoid receptor in cutaneous melanoma. Histopathology 2012; 62:487-98. [PMID: 23072594 DOI: 10.1111/his.12018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Nestin (a neuronal stem cell/progenitor cell marker of central nervous system development), vimentin (which is ubiquitously expressed in mesenchymal cells), and the glucocorticoid receptor (GR, which is involved in the immune response, cell proliferation, and apoptosis) have been shown to interact in embryonic and undifferentiated tissues in modulating cell proliferation. The aim of this study was to analyse nestin, vimentin and GR expression in tumour tissue (melanoma), and their association with clinicopathological variables, to evaluate any effect on tumour progression. METHODS AND RESULTS Immunohistochemistry, double-label immunofluorescence and confocal laser scanning microscopy were performed on biopsy specimens of cutaneous melanoma from 81 patients. Fisher's and Pearson's tests showed a correlation between nestin, vimentin and subcellular GR location (P = 0.008). Their concomitant expression also correlated with Clark level and thickness (P = 0.02 and P = 0.029, respectively). Kaplan-Meier analysis revealed a poorer outcome for stage III and IV patients with associated expression of nestin, vimentin and cytoplasmic GR in tumour tissue (P = 0.02). CONCLUSIONS These results suggest the presence in melanoma of growth mechanisms involving nestin, vimentin, and GR, similarly to that occurring in embryonic and undifferentiated cells, and may help in understanding tumour biology to provide a molecular basis for clinical therapies.
Collapse
Affiliation(s)
- Simone Lai
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Clinical Pharmacokinetics and Pharmacodynamics of Prednisolone and Prednisone in Solid Organ Transplantation. Clin Pharmacokinet 2012; 51:711-41. [DOI: 10.1007/s40262-012-0007-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
178
|
Jia Y, Cong R, Li R, Yang X, Sun Q, Parvizi N, Zhao R. Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. J Nutr 2012; 142:1659-65. [PMID: 22833655 DOI: 10.3945/jn.112.160341] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glucose-6-phosphatase (G6PC) plays an important role in glucose homeostasis because it catalyzes the final steps of gluconeogenesis and glycogenolysis. Maternal malnutrition during pregnancy affects G6PC activity, yet it is unknown whether epigenetic regulations of the G6PC gene are also affected. In this study, we fed primiparous, purebred Meishan sows either standard-protein (SP; 12% crude protein) or low-protein (LP; 6% crude protein) diets throughout gestation and analyzed hepatic G6PC expression in both male and female newborn piglets. The epigenetic regulation of G6PC, including DNA methylation, histone modifications, and micro RNA (miRNA), was determined to reveal potential mechanisms. Male, but not female, LP piglets had a significantly lower serum glucose concentration and greater hepatic G6PC mRNA expression and enzyme activity. Also, in LP males, glucocorticoid receptor binding to the G6PC promoter was lower compared with SP males, which was accompanied by hypomethylation of the G6PC promoter. Modifications in histones also were gender dependent; LP males had less histone H3 and histone H3 lysine 9 trimethylation and more histone H3 acetylation and histone H3 lysine 4 trimethylation on the G6PC promoter compared with the SP males, whereas LP females had more H3 and greater H3 methylation compared with their SP counterparts. Moreover, two miRNA, ssc-miR-339-5p and ssc-miR-532-3p, targeting the G6PC 3' untranslated region were significantly upregulated by the LP diet only in females. These results suggest that a maternal LP diet during pregnancy causes hepatic activation of G6PC gene expression in male piglets, which possibly contributes to adult-onset hyperglycemia.
Collapse
Affiliation(s)
- Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
179
|
Lee LW, Hsiao SH, Chen LK. Clinical treatment outcomes for 40 patients with bisphosphonates-related osteonecrosis of the jaws. J Formos Med Assoc 2012; 113:166-72. [PMID: 24630034 DOI: 10.1016/j.jfma.2012.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 04/25/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND/PURPOSE Bisphosphonates (BPs) are used to treat osteoporosis and bone metastases from malignancy. They may result in BPs-related osteonecrosis of the jaws (BRONJ) in a subset of patients receiving BPs. This study examined whether conservative or aggressive surgical approach could result in successful treatment of BRONJ lesions and assessed whether concomitant steroid administration or tobacco smoking habit might hinder the remission of BRONJ lesions. METHODS The 40 BRONJ patients were evenly divided into four different groups. Group 1 contained 10 patients with concomitant corticosteroid medication but without smoking habit. Group 2 contained 10 patients with smoking habit but without concomitant corticosteroid medication. Groups 3 and 4 each consisted of 10 patients without concomitant corticosteroid medication and smoking habit. To avoid bias, each group contained equal number of patients with different stages of BRONJ. Patients in Groups 1, 2, and 3 received conservative treatment, including antibiotic coverage, antibacterial solution irrigation, and minor surgical debridement. Patients in Group 4 were treated with aggressive surgical excision of necrotic bone segment. RESULTS The mean duration to achieve complete remission of BRONJ lesion was 19.7±0.6, 18.2±0.5, 13.0±1.0, and 7.6±1.1 months for patients in Groups 1, 2, 3 and 4, respectively. Student's t-test showed significant differences in the mean duration to achieve complete remission of BRONJ lesion between Groups 1 and 3, between Groups 2 and 3, between Groups 3 and 4, between Groups 1 and 4, and between Groups 2 and 4 (all p values < 0.001). CONCLUSION Although both conservative and aggressive surgical approaches can result in successful treatment of BRONJ lesions, aggressive surgical treatment needs a shorter mean duration to achieve complete remission of BRONJ lesion than conservative treatment. Concomitant corticosteroid administration or tobacco smoking may prolong the duration for complete remission of BRONJ lesion.
Collapse
Affiliation(s)
- Li-Wan Lee
- Department of Dentistry, Taipei City Hospital, Renai Branch, Taipei, Taiwan.
| | - Sheng-Huang Hsiao
- Department of Neurosurgery, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Li-Kai Chen
- Department of Dentistry, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| |
Collapse
|
180
|
Areskog M, von Samson-Himmelstjerna G, Alvinerie M, Sutra JF, Höglund J. Dexamethasone treatment interferes with the pharmacokinetics of ivermectin in young cattle. Vet Parasitol 2012; 190:482-8. [PMID: 22959189 DOI: 10.1016/j.vetpar.2012.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 12/29/2022]
Abstract
An experiment was carried out to study the possible interaction between dexamethasone (DXM) treatment and the efficacy of ivermectin (IVM) treatment in young cattle. Two groups, each of seven calves, were experimentally inoculated with an equal mixture containing 15,000 third stage larvae of Cooperia oncophora and Ostertagia ostertagi each, and with no history of being resistant to any anthelmintics. However, in this study C. oncophora was unexpectedly classified as IVM-resistant according to the outcome from the faecal egg count reduction test (FECRT). Blood parameters and faecal egg counts (FEC) were monitored from 0 to 35 days post infection (d.p.i.). The calves in one group received intramuscular injections of short and long-term acting DXM at 22 and 24 d.p.i., respectively. The other group remained as a control. Three days post patency (24 d.p.i.) both groups were injected subcutaneously with IVM (Merial) at the recommended dose (0.2mg/kg). A significant difference (p<0.001) in FEC patterns was observed between groups. Although both groups still excreted eggs (100-200 eggs per gram faeces) 11 days post anthelmintic treatment, the control group had a significantly higher reduction between 23 and 35 d.p.i. (p=0.025). After 35 days, four animals per group were euthanized, and worms in the gastrointestinal tract were counted. No O. ostertagi were found in the abomasums, but low to high numbers (800-6200) of C. oncophora remained in the small intestines in both groups. Overall, these findings indicated that there was an interaction between the efficacy of IVM and DXM treatment. As significantly lower plasma levels of IVM were observed in the DXM group, we conclude that the impaired efficacy of ivermectin was most likely due to the altered pharmacokinetics.
Collapse
Affiliation(s)
- Marlene Areskog
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, SE-751 89 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
181
|
Y-box binding protein 1 and RNase UK114 mediate monocyte chemoattractant protein 1 mRNA stability in vascular smooth muscle cells. Mol Cell Biol 2012; 32:3768-75. [PMID: 22801372 DOI: 10.1128/mcb.00846-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Monocyte chemoattractant protein 1 (MCP-1) plays a pivotal role in many inflammatory processes, including the progression of atherosclerosis and the response of the arterial wall to injury. We previously demonstrated that dexamethasone (Dex) inhibits MCP-1 mRNA accumulation in smooth muscle cells by decreasing its half-life. The effect of Dex was dependent upon the glucocorticoid receptor (GR) and independent of new transcription. Using RNA affinity and column chromatography, we have identified two proteins involved in regulating MCP-1 mRNA stability: Y-box binding protein 1 (YB-1), a multifunctional DNA/RNA-binding protein, and endoribonuclease UK114 (UK). By immunoprecipitation, YB and GR formed a complex present in equal amounts in extracts from untreated and Dex-treated cells. YB-1, UK, and GR small interfering RNA (siRNA) substantially inhibited the effect of Dex on MCP-1 mRNA accumulation. In addition, YB-1 antibody blocked the degradation of MCP-1 mRNA by cytoplasmic extracts from the Dex-treated cells. The degradative activity of extracts immunoprecipitated with antibodies to either YB-1 or GR was blocked with UK antibody. UK did not degrade MCP-1 mRNA; however, upon addition to nondegrading control extracts, it rapidly degraded MCP-1 mRNA. These studies define new roles for GR, YB-1, and UK in the formation of a molecular complex that degrades MCP-1 mRNA.
Collapse
|
182
|
Zou H, Li R, Jia Y, Yang X, Ni Y, Cong R, Soloway PD, Zhao R. Breed-dependent transcriptional regulation of 5'-untranslated GR (NR3C1) exon 1 mRNA variants in the liver of newborn piglets. PLoS One 2012; 7:e40432. [PMID: 22792317 PMCID: PMC3390360 DOI: 10.1371/journal.pone.0040432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids are vital for life and regulate an array of physiological functions by binding to the ubiquitously expressed glucocorticoid receptor (GR, also known as NR3C1). Previous studies demonstrate striking breed differences in plasma cortisol levels in pigs. However, investigation into the breed-dependent GR transcriptional regulation is hampered by lacking porcine GR promoter information. In this study, we sequenced 5.3 kb upstream of the translation start codon of the porcine GR gene, and identified seven alternative 5′-untranslated exons 1–4, 1–5, 1–6, 1–7, 1–8, 1–9,10 and 1–11. Among all these mRNA variants, exons 1–4 and 1–5, as well as the total GR were expressed significantly (P<0.05) higher in the liver of newborn piglets of Large White (LW) compared with Erhualian, a Chinese indigenous breed. Overall level of CpG methylation in the region flanking exons 1–4 and 1–5 did not show breed difference. However, nuclear content of Sp1, p-CREB and GR in the liver was significantly (P<0.05) higher in LW piglets, associated with enhanced binding of p-CREB, and higher level of histone H3 acetylation in 1–4 and 1–5 promoters. In contrast, GR binding to promoters of exons 1–4 and 1–5 was significantly diminished in LW piglets, implicating the presence of negative GREs. These results indicate that the difference in the hepatic expression of GR transcript variants between two breeds of pigs is determined, at least partly, by the disparity in the binding of transcription factors and the enrichment of histone H3 acetylation to the promoters.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Animals, Newborn
- Base Sequence
- Binding Sites
- Body Weight
- Cloning, Molecular
- CpG Islands
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA Methylation
- Epigenesis, Genetic
- Exons
- Hydrocortisone/blood
- Liver/anatomy & histology
- Liver/metabolism
- Male
- Molecular Sequence Data
- Organ Size
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Sequence Analysis, DNA
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sus scrofa/genetics
- Sus scrofa/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Huafeng Zou
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Runsheng Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Rihua Cong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Paul D. Soloway
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
- * E-mail:
| |
Collapse
|
183
|
Ocular manifestations of systemic lupus erythematosus: a review of the literature. Autoimmune Dis 2012; 2012:290898. [PMID: 22811887 PMCID: PMC3395333 DOI: 10.1155/2012/290898] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 05/31/2012] [Indexed: 01/14/2023] Open
Abstract
About one-third of patients suffering from systemic lupus erythematosus have ocular manifestations. The most common manifestation is keratoconjunctivitis sicca. The most vision threatening are retinal vasculitis and optic neuritis/neuropathy. Prompt diagnosis and treatment of eye disease is paramount as they are often associated with high levels of systemic inflammation and end-organ damage. Initial management with high-dose oral or IV corticosteroids is often necessary. Multiple "steroid-sparing" treatment options exist with the most recently studied being biologic agents.
Collapse
|
184
|
Hanaoka BY, Peterson CA, Horbinski C, Crofford LJ. Implications of glucocorticoid therapy in idiopathic inflammatory myopathies. Nat Rev Rheumatol 2012; 8:448-57. [PMID: 22688888 DOI: 10.1038/nrrheum.2012.85] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are the cornerstone of therapy in patients with idiopathic inflammatory myopathies (IIM), despite adverse effects and suboptimal therapy success rates. Glucocorticoids are used in patients with IIM to suppress inflammatory and immune responses implicated in the pathogenesis of these diseases. Nevertheless, potential inhibitory effects of glucocorticoids on skeletal muscle mass, myogenesis and immune responses that promote skeletal muscle regeneration after muscle injury warrant attention. Glucocorticoids lead to skeletal muscle catabolism by modulating major pathways involved in regulating muscle mass. Glucocorticoids also inhibit muscle regeneration by decreasing myogenic cell proliferation and differentiation. Finally, glucocorticoids might have inhibitory effects on immune cells that have been shown to be an important component of the muscle regenerative response. Better understanding of the signalling pathways involved in restorative versus adverse effects of glucocorticoids in IIM could yield additional insight into the aetiopathogenesis of persistent muscle weakness in patients with IIM after glucocorticoid treatment, and help in the development of novel, targeted treatment options with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Y Hanaoka
- Department of Internal Medicine, Division of Rheumatology, University of Kentucky, Room J-509, 740 South Limestone Drive, Lexington, KY 40502, USA
| | | | | | | |
Collapse
|
185
|
Pigozzi F, Di Gianfrancesco A, Zorzoli M, Bachl N, Mc Donagh D, Cummiskey J, Di Luigi L, Pitsiladis Y, Borrione P. Why glucocorticosteroids should remain in the list of prohibited substances: a sports medicine viewpoint. Int J Immunopathol Pharmacol 2012; 25:19-24. [PMID: 22507313 DOI: 10.1177/039463201202500103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In addition to their therapeutic applications, glucocorticosteroids have been widely used and abused in the belief that these substances may enhance athletic performance. Analysis of athlete urine samples by antidoping laboratories around the world support this conclusion. It is commonly accepted in medical practice to use local glucocorticosteroid injections in the treatment of non-infectious local musculotendinous inflammatory conditions conveying symptom relief and often a speedier return to sporting activity. This practice is not to be considered illicit, but sports physicians must accept that such an intervention is not in itself an immediate cure and that an athlete will still require a period of recuperation before continuing sporting activity. How long such a period of recuperation should last is a matter of conjecture and there is little concrete data to support what is, or what is not, an acceptable period of inactivity. In the interest of athlete safety, we would propose to maintain systemic glucocorticosteroids on the World Anti-Doping Agency's (WADA) list of prohibited substances, both in and out-of-competition as well as a mandatory period of 48 hours of rest from play after receiving a local glucocorticosteroid injection.
Collapse
|
186
|
Joanny E, Ding Q, Gong L, Kong P, Saklatvala J, Clark AR. Anti-inflammatory effects of selective glucocorticoid receptor modulators are partially dependent on up-regulation of dual specificity phosphatase 1. Br J Pharmacol 2012; 165:1124-36. [PMID: 21718312 DOI: 10.1111/j.1476-5381.2011.01574.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE It is thought that the anti-inflammatory effects of glucocorticoids (GCs) are largely due to GC receptor (GR)-mediated transrepression of NF-κB and other transcription factors, whereas side effects are caused by activation of gene expression (transactivation). Selective GR modulators (SGRMs) that preferentially promote transrepression should retain anti-inflammatory properties whilst causing fewer side effects. Contradicting this model, we found that anti-inflammatory effects of the classical GC dexamethasone were partly dependent on transactivation of the dual specificity phosphatase 1 (DUSP1) gene. We wished to determine whether anti-inflammatory effects of SGRMs are also mediated by DUSP1. EXPERIMENTAL APPROACH Dissociated properties of two SGRMs were confirmed using GR- and NF-κB-dependent reporters, and capacity to activate GC-responsive elements of the DUSP1 gene was tested. Effects of SGRMs on the expression of DUSP1 and pro-inflammatory gene products were assessed in various cell lines and in primary murine Dusp1(+/+) and Dusp1(-/-) macrophages. KEY RESULTS The SGRMs were able to up-regulate DUSP1 in several cell types, and this response correlated with the ability of the compounds to suppress COX-2 expression. Several anti-inflammatory effects of SGRMs were ablated or significantly impaired in Dusp1(-/-) macrophages. CONCLUSIONS AND IMPLICATIONS Like dexamethasone, SGRMs appear to exert anti-inflammatory effects partly via the up-regulation of DUSP1. This finding has implications for how potentially therapeutic novel GR ligands are identified and assessed.
Collapse
Affiliation(s)
- Eugénie Joanny
- Kennedy Institute of Rheumatology Division, Imperial College London, Hammersmith, London, UK Roche Palo Alto LLC, Palo Alto, CA, USA
| | | | | | | | | | | |
Collapse
|
187
|
Kuo RC, Lin HP, Sun A, Wang YP. Prompt healing of erosive oral lichen planus lesion after combined corticosteroid treatment with locally injected triamcinolone acetonide plus oral prednisolone. J Formos Med Assoc 2012; 112:216-20. [PMID: 23537868 DOI: 10.1016/j.jfma.2012.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/19/2012] [Accepted: 01/29/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/PURPOSE Erosive oral lichen planus (EOLP) is a T-cell-mediated inflammatory disease that is refractory to treat. This study tested whether local injection of triamcinolone acetonide plus oral administration of low- or medium-dose prednisolone could hasten the healing of EOLP lesions. METHODS In this study, 50 EOLP patients were treated with local injection of Kenacort A (40 mg triamcinolone acetonide once weekly for 3 and 2 weeks for 30 major and 20 minor EOLP patients, respectively) plus oral administration of prednisolone (25-30 mg and 15-20mg of prednisolone once daily for 2 weeks for 30 major and 20 minor EOLP patients, respectively). The oral administration of prednisolone was tapered to 5mg per day and stopped in 7 days. Then, the patients were treated with topical Dexaltin (0.1% dexamethasone, once or twice per daily) and oral administration of vitamin Bc (one capsule twice daily) thereafter. RESULTS After 3-week treatments, the 30 major EOLP patients showed complete response (lack of detectable erosive or ulcerative lesion with absence or regression of reticular or papular OLP) in 27 cases (90%) and partial response (reduction of erosive or ulcerative lesion by at least 30% in diameter with regression of reticular or papular OLP) in cases (10%); and 20 minor EOLP patients demonstrated complete response in 18 cases (90%) and partial response in two cases (10%). However, all the 45 complete response major or minor EOLP patients showed recurrence of erosive or ulcerative lesion after 3-24 (mean 12) months of follow-up. CONCLUSION Prompt and complete healing of the EOLP lesions could be achieved in a relative short period of time after treatment with our protocol. Although complete response EOLP lesions recurred after a follow-up period of 3-24 months, patients did have an average remission period of 12 months after treatment with our protocol.
Collapse
Affiliation(s)
- Ru-Cheng Kuo
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
188
|
Advances in corticosteroid therapy for ocular inflammation: loteprednol etabonate. Int J Inflam 2012; 2012:789623. [PMID: 22536546 PMCID: PMC3321285 DOI: 10.1155/2012/789623] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/22/2011] [Indexed: 12/05/2022] Open
Abstract
Topical corticosteroids are effective in reducing anterior segment inflammation but are associated with adverse drug reactions (ADRs) including elevation of intraocular pressure (IOP) and cataract formation. Retrometabolic drug design has advanced the development of new corticosteroids with improved therapeutic indices. Engineered from prednisolone, loteprednol etabonate (LE) has a 17α-chloromethyl ester, in lieu of a ketone group, and a 17β-etabonate group. LE is highly lipophilic and binds with high affinity to the glucocorticoid receptor; any unbound LE is metabolized to inactive metabolites. LE has been studied in several anterior segment inflammatory conditions (giant papillary conjunctivitis, allergic conjunctivitis, anterior uveitis, and keratoconjunctivitis sicca), and in postoperative ocular inflammation and pain. Combined with tobramycin, it is effective in blepharokeratoconjunctivitis. Elevations in IOP are infrequent with LE, and the absence of a C-20 ketone precludes formation of Schiff base intermediates with lens proteins, a common first step implicated in cataract formation with ketone steroids.
Collapse
|
189
|
Sukumaran S, Lepist EI, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling of methylprednisolone effects on iNOS mRNA expression and nitric oxide during LPS-induced inflammation in rats. Pharm Res 2012; 29:2060-9. [PMID: 22422321 DOI: 10.1007/s11095-012-0733-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/05/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE Increased expression of inducible nitric oxide synthase (iNOS) resulting in nitric oxide elevation represents an important component of inflammatory responses. We assess the effects of methylprednisolone (MPL) on these processes during endotoxin-induced acute inflammation and provide a mechanism-based model to quantitatively describe them. METHODS Male Lewis rats were dosed with lipopolysaccharide (50 μg/kg LPS) alone or with methylprednisolone (10 and 50 mg/kg) and sacrificed at different time points. Plasma MPL, lung iNOS mRNA expression, plasma nitric oxide (NO) and other physiological factors were measured. Sodium nitrate (750 μmole/kg) was given to a separate cohort of rats to assess NO disposition kinetics. PK-PD modeling was performed with ADAPT 5. RESULTS Disposition kinetics of plasma MPL and NO showed bi-exponential decline and were described by two-compartment models. LPS increased expression of iNOS mRNA in lung and increased plasma NO, while MPL dosing palliated this increase in a dose-dependent manner. These effects were well captured using tandem indirect response and precursor-pool models. CONCLUSION The model provides a quantitative assessment of the suppression of NO production by MPL and shows that the major effects are at the transcriptional level by reducing expression of iNOS mRNA.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Department of Pharmaceutical Sciences School of Pharmacy & Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
190
|
Olteanu D, Filip A, Mureşan A, Nagy A, Tabaran F, Moldovan R, Decea N, Catoi C, Clichici S. The effects of chitosan and low dose dexamethasone on extrahepatic cholestasis after bile duct ligation in Wistar rats. ACTA ACUST UNITED AC 2012; 99:61-73. [DOI: 10.1556/aphysiol.99.2012.1.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
191
|
He Q, Huang HY, Zhang YY, Li X, Qian SW, Tang QQ. TAZ is downregulated by dexamethasone during the differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2012; 419:573-7. [PMID: 22374070 DOI: 10.1016/j.bbrc.2012.02.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/12/2012] [Indexed: 11/25/2022]
Abstract
TAZ (transcriptional co-activator with PDZ binding motif) is a transcriptional modulator of mesenchymal stem cell differentiation. We have found that TAZ was expressed in postconfluent 3T3-L1 preadipocytes and downregulated during differentiation. Downregulation of TAZ was specifically mediated by dexamethasone (DEX), one component of induction cocktails routinely used in adipocyte differentiation. DEX repressed the transcription of TAZ by direct binding of the glucocorticoid receptor (GR) to the GR binding element in its promoter. More importantly, overexpression of TAZ inhibited adipogenesis and promoted the trans-differentiation of preadipocytes into osteocytes. This establishes a new functional interaction between DEX and TAZ that contributes to the mechanism of adipogenesis.
Collapse
Affiliation(s)
- Qun He
- Key Laboratory of Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, PR China
| | | | | | | | | | | |
Collapse
|
192
|
Janka-Junttila M, Hasala H, Adcock I, Moilanen E, Kankaanranta H. Dexamethasone and RU24858 Induce Survival and Growth Factor Receptor Bound Protein 2, Leukotriene B4 Receptor 1 and Annexin-1 Expression in Primary Human Neutrophils. J Cell Death 2012; 5:21-9. [PMID: 26448690 PMCID: PMC4583096 DOI: 10.4137/jcd.s9097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glucocorticoids are widely used anti-inflammatory medication in diseases like asthma and chronic obstructive pulmonary disease. Glucocorticoids can either activate (transactivation) or inhibit (transrepression) transcription. RU24858 was introduced as a “dissociated” glucocorticoid and it has been reported to transrepress but not to transactivate. The aim of this study was to compare the effects of RU24858 and dexamethasone in human neutrophils. RU24858 delayed spontaneous neutrophil apoptosis and further enhanced GM-CSF- induced neutrophil survival to a similar extent as dexamethasone. Like dexamethasone RU24858 also reduced CXCL8 and MIP-1α. Unexpectedly however, RU24858 increased the expression of the glucocorticoid-inducible genes BLT-1, Annexin-1 and Grb-2 in neutrophils to a similar level as seen with dexamethasone. We have shown here that dexamethasone and RU24858 both increase Grb-2, BLT1 and Annexin-1 expression and inhibit CXCL8 and MIP-1α production. This suggests that RU24858 was not able to dissociate between transactivation and transrepression in human neutrophils but enhanced neutrophil survival.
Collapse
Affiliation(s)
- Mirkka Janka-Junttila
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital Tampere Finland
| | - Hannele Hasala
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital Tampere Finland
| | - Ian Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College, London, UK
| | - Eeva Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital Tampere Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital Tampere Finland. ; Department of Respiratory Medicine, Seinäjoki Central Hospital, Seinäjoki, Finland
| |
Collapse
|
193
|
Lo MS, Tsokos GC. Treatment of systemic lupus erythematosus: new advances in targeted therapy. Ann N Y Acad Sci 2012; 1247:138-52. [PMID: 22236448 DOI: 10.1111/j.1749-6632.2011.06263.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment for systemic lupus erythematosus (SLE) has traditionally been restricted to broad-based immunosuppression, with glucocorticoids being central to care. Recent insights into lupus pathogenesis promise new, selective therapies with more favorable side effect profiles. The best example of this is belimumab, which targets the B cell cytokine BLyS and has now received Food and Drug Administration (FDA) approval for its use in SLE. Strategies targeting other cytokines, such as interleukin 6 (IL-6) and interferon (IFN)-α, are also on the horizon. Blockade of costimulatory interactions between immune cells offers another opportunity for therapeutic intervention, as do small molecule inhibitors that interfere with cell signaling pathways. We review here the current strategies for SLE treatment, with particular focus on therapies now in active pharmaceutical development. We will also discuss new understandings in lupus pathogenesis that may lead to future advances in therapy.
Collapse
Affiliation(s)
- Mindy S Lo
- Division of Immunology, Children's Hospital Boston, Boston, Massachusetts, USA
| | | |
Collapse
|
194
|
Clark AR, Belvisi MG. Maps and legends: the quest for dissociated ligands of the glucocorticoid receptor. Pharmacol Ther 2011; 134:54-67. [PMID: 22212616 DOI: 10.1016/j.pharmthera.2011.12.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 01/19/2023]
Abstract
Glucocorticoids are steroid hormones that have pleiotropic effects on development, metabolism, cognitive function and other aspects of physiology. Since the demonstration more than sixty years ago of their capacity to suppress inflammation, synthetic glucocorticoids have been extremely widely used in the treatment of inflammatory diseases. However, their clinical use is limited by numerous, unpredictable and potentially serious side effects. Glucocorticoids regulate gene expression both positively and negatively. Both of these effects are mediated by the glucocorticoid receptor, a ligand-dependent transcription factor. It has become widely accepted that anti-inflammatory effects of glucocorticoids are mostly due to inhibition of transcription, whereas the activation of transcription by the glucocorticoid receptor accounts for the majority of side effects. This dogma (which we refer to as the "transrepression hypothesis") predicts the possibility of uncoupling therapeutic, anti-inflammatory effects from side effects by identifying novel, selective ligands of the glucocorticoid receptor, which preferentially mediate inhibition rather than activation of transcription. It is argued that such "dissociated" glucocorticoid receptor ligands should retain anti-inflammatory potency but cause fewer side effects. Here we critically re-examine the history and foundations of the transrepression hypothesis. We argue that it is incompatible with the complexity of gene regulation by glucocorticoids and poorly supported by experimental evidence; that it no longer aids clear thinking about the actions of the glucocorticoid receptor; and that it will not prove a fruitful basis for continued refinement and improvement of anti-inflammatory drugs that target the glucocorticoid receptor.
Collapse
Affiliation(s)
- Andrew R Clark
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, 65 Aspenlea Road, Hammersmith, London W6 8LH, United Kingdom.
| | | |
Collapse
|
195
|
Keh D, Feldheiser A, Ahlers O. Current state of corticosteroid therapy in patients with septic shock. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/09563070512331391309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
196
|
Schreiber AM. Visualizing and quantifying the suppressive effects of glucocorticoids on the tadpole immune system in vivo. ADVANCES IN PHYSIOLOGY EDUCATION 2011; 35:445-453. [PMID: 22139784 DOI: 10.1152/advan.00001.2011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A challenging topic in undergraduate physiology courses is the complex interaction between the vertebrate endocrine system and the immune system. There are relatively few established and accessible laboratory exercises available to instructors to help their students gain a working understanding of these interactions. The present laboratory module was developed to show students how glucocorticoid receptor activity can be pharmacologically modulated in Xenopus laevis tadpoles and the resulting effects on thymus gland size visualized and quantified in vivo. After treating young tadpoles with a cortisol receptor agonist (dexamethasone) for 1 wk, students can easily visualize the suppressive effects of glucocorticoids on the intact thymus gland, which shrinks dramatically in size in response to this steroid hormone analog. However, the suppressive effect of dexamethasone is nullified in the presence of the glucocorticoid receptor antagonist RU-486, which powerfully illustrates the specific effects of glucocorticoid receptor inhibition on the immune system. Image analysis and statistics software are used to quantify the effects of glucocorticoid modulation on thymus size.
Collapse
|
197
|
Bebenek IG, Solaimani P, Bui P, Hankinson O. CYP2S1 is negatively regulated by corticosteroids in human cell lines. Toxicol Lett 2011; 209:30-4. [PMID: 22155357 DOI: 10.1016/j.toxlet.2011.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 01/04/2023]
Abstract
Cytochrome P450s are monooxygenase proteins involved in the metabolism of both exogenous and endogenous compounds. CYP2S1 can metabolize eicosanoids in the absence of both NADPH and NADPH cytochrome P450 reductase, and can also activate the anticancer agent 1 AQ4N [1,4-bis{[2-(dimethylamino-N-oxide)ethyl]amino}-5,8-dihydroxy anthracene-9,10-dione]. CYP2S1 is mainly expressed in extrahepatic tissues such as the trachea, lung, stomach, small intestine, spleen, skin, breast, kidney and placenta. Furthermore, increased expression of CYP2S1 occurs in several tumors of epithelial origin, making the characterization of CYP2S1 regulation relevant to the treatment of disease. We report that the synthetic glucocorticoid receptor ligand dexamethasone (DEX) represses CYP2S1 expression. The ED(50) is between 1 nM and 3 nM and maximal repression is reached by 48 h. Other corticosteroids are also effective at repressing CYP2S1. We show that repression by DEX is mediated by the glucocorticoid receptor and requires histone deacetylase activity.
Collapse
Affiliation(s)
- Ilona G Bebenek
- Molecular Toxicology Interdepartmental Program, Department of Pathology and Laboratory Medicine, and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
198
|
Fragala MS, Kraemer WJ, Denegar CR, Maresh CM, Mastro AM, Volek JS. Neuroendocrine-immune interactions and responses to exercise. Sports Med 2011; 41:621-39. [PMID: 21780849 DOI: 10.2165/11590430-000000000-00000] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This article reviews the interaction between the neuroendocrine and immune systems in response to exercise stress, considering gender differences. The body's response to exercise stress is a system-wide effort coordinated by the integration between the immune and the neuroendocrine systems. Although considered distinct systems, increasing evidence supports the close communication between them. Like any stressor, the body's response to exercise triggers a systematic series of neuroendocrine and immune events directed at bringing the system back to a state of homeostasis. Physical exercise presents a unique physiological stress where the neuroendocrine and immune systems contribute to accommodating the increase in physiological demands. These systems of the body also adapt to chronic overload, or exercise training. Such adaptations alleviate the magnitude of subsequent stress or minimize the exercise challenge to within homeostatic limits. This adaptive capacity of collaborating systems resembles the acquired, or adaptive, branch of the immune system, characterized by the memory capacity of the cells involved. Specific to the adaptive immune response, once a specific antigen is encountered, memory cells, or lymphocytes, mount a response that reduces the magnitude of the immune response to subsequent encounters of the same stress. In each case, the endocrine response to physical exercise and the adaptive branch of the immune system share the ability to adapt to a stressful encounter. Moreover, each of these systemic responses to stress is influenced by gender. In both the neuroendocrine responses to exercise and the adaptive (B lymphocyte) immune response, gender differences have been attributed to the 'protective' effects of estrogens. Thus, this review will create a paradigm to explain the neuroendocrine communication with leukocytes during exercise by reviewing (i) endocrine and immune interactions; (ii) endocrine and immune systems response to physiological stress; and (iii) gender differences (and the role of estrogen) in both endocrine response to physiological stress and adaptive immune response.
Collapse
Affiliation(s)
- Maren S Fragala
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, CT 06269-1110, USA
| | | | | | | | | | | |
Collapse
|
199
|
Rosiglitazone regulates c-reactive protein-induced inflammatory responses via glucocorticoid receptor-mediated inhibition of p38 mitogen-activated protein kinase-toll-like receptor 4 signal pathway in vascular smooth muscle cells. J Cardiovasc Pharmacol 2011; 57:348-56. [PMID: 21383592 DOI: 10.1097/fjc.0b013e31820a0e67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
C-reactive protein (CRP) activates toll-like receptor 4 (TLR4) to initiate inflammatory response involved in the pathogenesis of atherosclerosis through mitogen-activated protein kinase (MAPK) signal pathways. Rosiglitazone, a synthetic peroxisome proliferator-activated receptor γ (PPARγ) agonist, is considered to be an important inhibitor of the inflammatory response. The present study was to explore the effect of rosiglitazone on the CRP-induced inflammatory responses and the related signal pathway in vascular smooth muscle cells (VSMCs). The results showed that rosiglitazone reduced the expressions of proinflammatory cytokines, such as vascular endothelial growth factor-A and inducible nitric oxide synthase, and enhanced the expression or activation of anti-inflammatory transcription factors including PPARγ and glucocorticoid receptor (GR) in VSMCs in response to CRP. The further investigations indicated that rosiglitazone inhibited CRP-induced TLR4 expression and p38 MAPK phosphorylation in VSMCs, and TLR4 knockdown potentiated the inhibitory effects of rosiglitazone on vascular endothelial growth factor-A and inducible nitric oxide synthase expressions. In addition, GR antagonist RU486 but not PPARγ inhibitor GW9662 remarkably weakened the inhibitory effects of rosiglitazone on CRP-induced TLR4 expression and p38 phosphorylation in VSMCs. But GW9662 did not affect rosiglitazone-induced GR phosphorylation. These suggest that rosiglitazone exerts its anti-inflammatory effect through activating GR and subsequently inhibiting p38 MAPK-TLR4 signaling pathway in CRP-stimulated VSMCs.
Collapse
|
200
|
Beach JA, Nary LJ, Hirakawa Y, Holland E, Hovanessian R, Medh RD. E4BP4 facilitates glucocorticoid-evoked apoptosis of human leukemic CEM cells via upregulation of Bim. J Mol Signal 2011; 6:13. [PMID: 21975218 PMCID: PMC3197565 DOI: 10.1186/1750-2187-6-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/05/2011] [Indexed: 12/02/2022] Open
Abstract
Background Synthetic GCs serve as therapeutic agents for some lymphoid leukemias because of their ability to induce transcriptional changes via the GC receptor (GR) and trigger apoptosis. Upregulation of the BH3-only member of Bcl-2 family proteins, Bim, has been shown to be essential for GC-evoked apoptosis of leukemic lymphoblasts. Using human T cell leukemic sister clones CEM-C7-14 and CEM-C1-15, we have previously shown that the bZIP transcriptional repressor, E4BP4, is preferentially upregulated by GCs in CEM-C7-14 cells that are susceptible to GC-evoked apoptosis, but not in refractory CEM-C1-15 cells. E4BP4 is an evolutionarily conserved member of the PAR family of bZIP transcription factors related to the C. elegans death specification gene ces2. Results Mouse E4BP4 was ectopically expressed in CEM-C1-15 cells, resulting in sensitization to GC-evoked apoptosis in correlation with restoration of E4BP4 and Bim upregulation. shRNA mediated modest knockdown of E4BP4 in CEM-C7-14 cells resulted in concomitant reduction in Bim expression, although GC-evoked fold-induction and sensitivity to apoptosis was similar to parental cells. Conclusion Data presented here suggest that GC-mediated upregulation of E4BP4 facilitates Bim upregulation and apoptosis of CEM cells. Since the Bim promoter does not contain any consensus GRE or EBPRE sequences, induction of Bim may be a secondary response.
Collapse
Affiliation(s)
- Jessica A Beach
- Department of Biology, California State University Northridge, Northridge, CA 91330-8303, USA.
| | | | | | | | | | | |
Collapse
|