151
|
Lange CA, Gioeli D, Hammes SR, Marker PC. Integration of Rapid Signaling Events with Steroid Hormone Receptor Action in Breast and Prostate Cancer. Annu Rev Physiol 2007; 69:171-99. [PMID: 17037979 DOI: 10.1146/annurev.physiol.69.031905.160319] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steroid hormone receptors (SRs) are ligand-activated transcription factors and sensors for growth factor-initiated signaling pathways in hormonally regulated tissues, such as the breast or prostate. Recent discoveries suggest that several protein kinases are rapidly activated in response to steroid hormone binding to cytoplasmic SRs. Induction of rapid signaling upon SR ligand binding ensures that receptors and coregulators are appropriately phosphorylated as part of optimal transcription complexes. Alternatively, SR-activated kinase cascades provide additional avenues for SR-regulated gene expression independent of SR nuclear action. We provide an overview of SR and signaling cross talk in breast and prostate cancers, using the human progesterone receptor (PR) and androgen receptor (AR) as models. Kinases are emerging as key mediators of SR action. Cross talk between SR and membrane-initiated signaling events suggests a mechanism for coordinate regulation of gene subsets by mitogenic stimuli in hormonally responsive normal tissues; such cross talk is suspected to contribute to cancer biology.
Collapse
Affiliation(s)
- Carol A Lange
- Department of Medicine (Division of Hematology, Oncology, and Transplant), USA.
| | | | | | | |
Collapse
|
152
|
Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S. Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 2007; 19:166-75. [PMID: 17317139 DOI: 10.1016/j.ceb.2007.02.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 02/09/2007] [Indexed: 12/31/2022]
Abstract
The development of complex and diverse metazoan morphologies is coordinated by a surprisingly small number of evolutionarily conserved signaling mechanisms. These signals can act in parallel but often appear to function as an integrated hyper-network. The nodes defining this complex molecular circuitry are poorly understood, but the biological significance of pathway cross-talk is profound. The importance of such large-scale signal integration is exemplified by Notch and its ability to cross-talk with all the major pathways to influence cell differentiation, proliferation, survival and migration. The Notch pathway is, thus, a useful paradigm to illustrate the complexity of pathway cross-talk: its pervasiveness, context dependency, and importance in development and disease.
Collapse
Affiliation(s)
- Gregory D Hurlbut
- Department of Cell Biology, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
| | | | | | | |
Collapse
|
153
|
Johnson AB, Barton MC. Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res 2007; 618:149-62. [PMID: 17292925 PMCID: PMC1924842 DOI: 10.1016/j.mrfmmm.2006.10.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Accepted: 10/27/2006] [Indexed: 11/16/2022]
Abstract
Cellular adaptation to stress relies on specific, regulated responses to evoke changes in gene expression. Stresses such as hypoxia, heat shock, oxidative stress and DNA-damage activate signaling cascades that ultimately lead to either induction or repression of stress-responsive genes. In this review, we concentrate on the mechanisms by which stress-induced signaling promotes alterations in chromatin structure, whether the read-out is activation or repression of transcription. Specific alterations in chromatin are highly regulated and dictated by the type of imposed stress. Our primary focus is on the types of chromatin alterations that occur under hypoxic conditions, which exist within a majority of tumors, and to compare these to changes in chromatin structure that occur in response to a wide variety of cellular stresses.
Collapse
Affiliation(s)
| | - Michelle Craig Barton
- *Address correspondence to: Michelle Craig Barton, Dept. of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 1000, Houston, TX 77030. Phone: 713-834-6268, Fax: 713-834-6271,
| |
Collapse
|
154
|
Rundquist I, Lindner HH. Analyses of linker histone--chromatin interactions in situ. Biochem Cell Biol 2007; 84:427-36. [PMID: 16936816 DOI: 10.1139/o06-071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies, using cytometric techniques based on fluorescence microscopy, have provided new information on how linker histones interact with chromatin in vivo or in situ. In particular, the use of green fluorescent proteins (GFPs) has enabled detailed studies of how individual H1 subtypes, and specific motifs in them, interact with chromatin in vivo. Furthermore, the development of cytochemical methods to study the interaction between linker histones and chromatin using DNA-binding fluorochromes as indirect probes for linker histone affinity in situ, in combination with highly sensitive and specific analytical methods, has provided additional information on the interactions between linker histones and chromatin in several cell systems. Such results verified that linker histones have a substantially higher affinity for chromatin in mature chicken erythrocytes than in frog erythrocytes, and they also indicated that the affinity decreased during differentiation of the frog erythrocytes. Furthermore, in cultured human fibroblasts, the linker histones showed a relatively high affinity for chromatin in interphase, whereas it showed a significantly lower affinity in highly condensed metaphase chromosomes. This method also enables the analysis of linker histone affinity for chromatin in H1-depleted fibroblasts reconstituted with purified linker histones. No consistent correlation between linker histone affinity and chromatin condensation has so far been detected.
Collapse
Affiliation(s)
- Ingemar Rundquist
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, Linköpings universitet, SE-58185 Linköping, Sweden.
| | | |
Collapse
|
155
|
Blasius R, Dicato M, Diederich M. Effect of Curcumin Treatment on Protein Phosphorylation in K562 Cells. Ann N Y Acad Sci 2007; 1095:377-87. [PMID: 17404050 DOI: 10.1196/annals.1397.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deregulation of signaling pathways is a common feature observed in human cancers and other diseases. Therefore, there is a strong need for compounds that are able to modulate or inactivate upregulated signaling events. Natural compounds extracted from plants have long been used and still present a dynamic domain in the research of new therapeutic tools. Among those molecules, curcumin was already described for its antioxidative, anti-inflammatory, and antiseptic properties. Many actions of curcumin target proteins and kinases implicated in the signaling pathways. However, the effects described depend on the treatment conditions used, as well as the cell line studied, and these features vary strongly from one study to the other. During this work, we evaluated the effect of one curcumin treatment (20 muM, 48 h) on the phosphorylation of a number of proteins and kinases in the human chronic myelogenous leukemia cell line K562. These results allow to compare the results obtained in one condition on various proteins.
Collapse
Affiliation(s)
- Romain Blasius
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, Rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | | | | |
Collapse
|
156
|
Huang P, Qi Z, Bu X, Zhang N, Han S, Fang L, Li J. Neuron-specific phosphorylation of mitogen- and stress-activated protein kinase-1 involved in cerebral hypoxic preconditioning of mice. J Neurosci Res 2007; 85:1279-87. [PMID: 17330274 DOI: 10.1002/jnr.21242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies have demonstrated the involvement of mitogen-activated protein kinase (MAPK) cascade pathways in the development of cerebral ischemic/hypoxic preconditioning (I/HPC). However, the role of mitogen- and stress-activated protein kinase 1 (MSK1), an important downstream kinase of MAPK signaling pathways, in cerebral I/HPC is unclear. By using Western blot and immunostaining methods, we applied our unique "autohypoxia"-induced I/HPC mouse model to investigate the effects of repetitive hypoxic exposure (H0-H6, n=6 for each group) on phosphorylation and protein expression levels of MSK1 in the brain of mice. We found that the levels of phosphorylation on threonine 645 (Thr645) and serine 375 (Ser375) of MSK1, but not the protein expression, increased significantly both in hippocampus and in cortex of mice from H1-H6 groups (P<0.05) over that of the normoxic group (H0, n=6). Similarly, enhanced phosphorylations on Thr645 and Ser375 of MSK1 were also observed by immunostaining in both the cortex and the hippocampus of mice following three series of hypoxic exposures (H3). In addition, we found by using double-immunofluorescence labeling that phosphorylated Thr645-MSK1 colocalized with a neuron-specific protein, neurogranin, in both cortex and hippocampus of I/HPC mice (H3). These results suggest that the increased neuron-specific phosphorylation of MSK1 on Thr645 and Ser375, not protein expression, might be involved in the development of cerebral I/HPC in mice.
Collapse
Affiliation(s)
- Ping Huang
- Institute for Biomedical Science of Pain, Beijing Key Laboratory for Neural Regeneration and Repairing, Department of Neurobiology, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
157
|
Mitra AP, Datar RH, Cote RJ. Molecular Pathways in Invasive Bladder Cancer: New Insights Into Mechanisms, Progression, and Target Identification. J Clin Oncol 2006; 24:5552-64. [PMID: 17158541 DOI: 10.1200/jco.2006.08.2073] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Papillary and invasive cancers of the urinary bladder appear to evolve and progress through distinct molecular pathways. Invasion in bladder cancer forebodes a graver prognosis, and these tumors are generally characterized by alterations in the p53 and retinoblastoma (RB) pathways that normally regulate the cell cycle by interacting with the Ras–mitogen activated protein kinase signal transduction pathway. Tumor angiogenesis further contributes to the neoplastic growth by providing a constant supply of oxygen and nutrients. Distinct epigenetic and genetic events characterize the interplay between the molecules involved in these pathways, thus affording their use as indicators of prognosis. Efforts are now underway to construct molecular panels comprising multiple markers that can serve as more robust predictors of outcome. While clinical trials for targeted chemotherapy for bladder cancer have commenced, novel genetic and pharmacologic agents that can target pathway-specific molecules are currently under development. The next generation of clinical management for urothelial carcinoma will witness the use of multimarker panels for prognostic prediction and combination therapy directed at novel molecular targets for treatment.
Collapse
Affiliation(s)
- Anirban P Mitra
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
158
|
Chen ZB, Liu C, Chen FQ, Li SY, Liang Q, Liu LY. Effects of tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on the activation of ERK1/2 MAP kinases and the proliferation of human mammary epithelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 22:283-291. [PMID: 21783722 DOI: 10.1016/j.etap.2006.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/16/2006] [Accepted: 04/24/2006] [Indexed: 05/31/2023]
Abstract
Cigarette smoking is a risk factor in the developing of various cancers including breast tumors. There are more than 60 chemical carcinogens in the cigarette smoke; 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) being one of the strongest tobacco-specific carcinogens. In this study, we demonstrated that NNK rapidly activated ERK1 and ERK2 MAP kinases and stimulated proliferation in human normal mammary epithelial cells. MEK1/2 specific inhibitor UO126 completely blocked NNK-induced ERK1/2 activation and cell proliferation, whereas nicotinic receptor nAchR antagonist mecamylamine partially and the selective α(7)-nAchR antagonist α-bungarotoxin essentially inhibited the NNK-induced ERK1/2 activation and cell proliferation. Surprisingly, receptor tyrosine kinase inhibitor genistein, the selective β(1)-adrenergic antagonist atenolol, and the selective β(2)-adrenergic antagonist ICI118.551 had a strong inhibitory effect on ERK1/2 activation and cell proliferation induced by NNK. These results suggest that there are at least two different routes in activating ERK1/2 by NNK. One is through nicotinic receptor α(7)-nAchR to MEK1/2; the other is from β(1)/β(2)-adrenergic transactivation of tyrosine kinase containing receptor(s) to MEK1/2. In human cancer mammary epithelial cell lines, we found that ERK MAPK signaling pathway was deregulated: (1) ERK1/2 was constitutively activated at various levels; (2) ERK1/2 was further significantly activated in response to NNK induction; (3) UO126 partially or totally failed to inhibit ERK1/2 activation induced by NNK; (4) The expression levels of ERK1/2 in the cancer cell lines were much higher than those in the normal mammary epithelial cells. The tobacco-specific carcinogen NNK showed a strong proliferative effect on human normal and cancer mammary epithelial cells; the proliferation multitudes of these cells are well correlated with the activation levels of ERK1/2 MAP kinases.
Collapse
Affiliation(s)
- Zhi-Bo Chen
- College of Life Science, Jilin Univercity, Chang Chun 130023, PR China; College of Life Science and Engineering, Qiqihar Univercity, Qiqihar 161000, PR China
| | | | | | | | | | | |
Collapse
|
159
|
Hilakivi-Clarke L, de Assis S. Fetal origins of breast cancer. Trends Endocrinol Metab 2006; 17:340-8. [PMID: 16997567 DOI: 10.1016/j.tem.2006.09.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/24/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
Susceptibility to breast cancer might be pre-determined in utero. Alterations in the fetal hormonal environment, caused by either maternal diet or exposure to environmental factors with endocrine activities, can modify the epigenome, and these modifications are inherited in somatic daughter cells and maintained throughout life. These epigenetic modifications might lead to changes in mammary gland development, such as increased vulnerability of epithelial targets for malignant transformation. According to this hypothesis, on post-pubertal exposure to an initiating factor, such as a carcinogen, high levels of hormones and radiation, the mammary epithelial targets, perhaps stem cells, in terminal end buds/terminal ductal lobular units would be at an increased risk of malignant transformation. The increased susceptibility for cancer initiation might result from high levels of cell proliferation, reduced apoptosis and/or altered stromal regulation. Thus, maternal diet and environmental exposure might increase the risk of breast cancer by inducing permanent epigenetic changes in the fetus that alter the susceptibility to factors that can initiate breast cancer. Identifying the epigenetically altered target genes and their ligands might lead to strategies to prevent this disease in some women.
Collapse
|
160
|
Vanden Berghe W, Ndlovu MN, Hoya-Arias R, Dijsselbloem N, Gerlo S, Haegeman G. Keeping up NF-κB appearances: Epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol 2006; 72:1114-31. [PMID: 16934762 DOI: 10.1016/j.bcp.2006.07.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 02/06/2023]
Abstract
Controlled expression of cytokine genes is an essential component of an immune response and is crucial for homeostasis. In order to generate an appropriate response to an infectious condition, the type of cytokine, as well as the cell type, dose range and the kinetics of its expression are of critical importance. The nuclear factor-kappaB (NF-kappaB) family of transcription factors has a crucial role in rapid responses to stress and pathogens (innate immunity), as well as in development and differentiation of immune cells (acquired immunity). Although quite a number of genes contain NF-kappaB-responsive elements in their regulatory regions, their expression pattern can significantly vary from both a kinetic and quantitative point of view, reflecting the impact of environmental and differentiative cues. At the transcription level, selectivity is conferred by the expression of specific NF-kappaB subunits and their respective posttranslational modifications, and by combinatorial interactions between NF-kappaB and other transcription factors and coactivators, that form specific enhanceosome complexes in association with particular promoters. These enhanceosome complexes represent another level of signaling integration, whereby the activities of multiple upstream pathways converge to impress a distinct pattern of gene expression upon the NF-kappaB-dependent transcriptional network. Today, several pieces of evidence suggest that the chromatin structure and epigenetic settings are the ultimate integration sites of both environmental and differentiative inputs, determining proper expression of each NF-kappaB-dependent gene. We will therefore discuss in this review the multilayered interplay of NF-kappaB signaling and epigenome dynamics, in achieving appropriate gene expression responses and transcriptional activity.
Collapse
Affiliation(s)
- Wim Vanden Berghe
- Laboratory for Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Molecular Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
161
|
Marchand C, Favier J, Sirois MG. Role of MSK1 in the signaling pathway leading to VEGF-mediated PAF synthesis in endothelial cells. J Cell Biochem 2006; 98:1095-105. [PMID: 16479592 DOI: 10.1002/jcb.20840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vascular endothelial growth factor (VEGF) inflammatory effects require acute platelet-activating factor (PAF) synthesis by endothelial cells (EC). We previously reported that VEGF-mediated PAF synthesis involves the activation of VEGF receptor-2/Neuropilin-1 complex, which is leading to the activation of p38 and p42/44 mitogen-activated protein kinases (MAPKs) and group V secretory phospholipase A(2) (sPLA(2)-V). As the mechanisms regulating sPLA(2)-V remain unknown, we addressed the role of the mitogen- and stress-activated protein kinase-1 (MSK1), which can be rapidly and transiently activated by p38 or p42/44 MAPKs. In native bovine aortic endothelial cells (BAEC), we observed a constitutive protein interaction of MSK1 with p38, p42/44 MAPKs, and sPLA(2)-V. These protein interactions were maintained in BAEC transfected either with the empty vector pCDNA3.1, wild-type MSK1 (MSK1-WT) or N-terminal dead kinase MSK1 mutant (MSK1-D195A). However, in BAEC expressing C-terminal dead kinase MSK1 mutant (MSK1-D565A), the interaction between MSK1 and sPLA(2)-V was reduced by 82% and 90% under basal and VEGF-treated conditions as compared to native BAEC. Treatment with VEGF for 15 min increased basal PAF synthesis in native BAEC, pCDNA3.1, MSK1-WT, and MSK1-D195A by 166%, 139%, 125%, and 82%, respectively. In contrast, PAF synthesis was prevented in cells expressing MSK1-D565A mutant. These results demonstrate the essential role of the C-terminal domain of MSK1 for its constitutive interaction with sPLA(2)-V, which appears essential to support VEGF-mediated PAF synthesis.
Collapse
Affiliation(s)
- Catherine Marchand
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec, Canada
| | | | | |
Collapse
|
162
|
Chwang WB, O'Riordan KJ, Levenson JM, Sweatt JD. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 2006; 13:322-8. [PMID: 16741283 PMCID: PMC1475813 DOI: 10.1101/lm.152906] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Long-term memory formation is regulated by many distinct molecular mechanisms that control gene expression. An emerging model for effecting a stable, coordinated pattern of gene transcription involves epigenetic tagging through modifications of histones or DNA. In this study, we investigated the regulation of histone phosphorylation in the hippocampus by the ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase) pathway. We found that activation of ERK/MAPK in vitro significantly increased histone H3 phosphorylation in hippocampal area CA1. Furthermore, we found that contextual fear conditioning in vivo leads to a rapid time-dependent increase in histone H3 phosphorylation in area CA1. This increase paralleled the time course of contextual fear-dependent activation of ERK, and was inhibited in vivo by a latent inhibition paradigm as well as by injection of an N-methyl-d-aspartic acid receptor (NMDA-R) antagonist. Finally, injection of an inhibitor of MEK (MAP kinase/ERK kinase), the unique dual-specificity kinase upstream of ERK, blocked the increase in histone H3 phosphorylation seen after contextual fear conditioning. These results demonstrate that changes in histone phosphorylation in the hippocampus are regulated by ERK/MAPK following a behavioral fear conditioning paradigm.
Collapse
Affiliation(s)
- Wilson B Chwang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
163
|
Abstract
The epigenetic phospho-serine 10 modification of histone H3 has been a puzzle due to its association with two apparently opposed chromatin states. It is found at elevated levels on the highly condensed, transcriptionally inactive mitotic chromosomes yet is also correlated with the more extended chromatin configuration of active genes, euchromatic interband regions, and activated heat shock puffs of Drosophila polytene chromosomes. In addition, phosphorylation of histone H3S10 is up-regulated on the hypertranscribed male X chromosome. Here we review the cellular effects of histone H3S10 phosphorylation and discuss a model for its involvement in regulating chromatin organization and heterochromatization that would be applicable to both interphase and mitotic chromosomes.
Collapse
Affiliation(s)
- Kristen M Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 3154 Molecular Biology Building, Ames, Iowa 50011, USA.
| | | |
Collapse
|
164
|
Kannan-Thulasiraman P, Katsoulidis E, Tallman MS, Arthur JSC, Platanias LC. Activation of the mitogen- and stress-activated kinase 1 by arsenic trioxide. J Biol Chem 2006; 281:22446-52. [PMID: 16762916 DOI: 10.1074/jbc.m603111200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arsenic trioxide (As2O3) is a potent inducer of apoptosis of leukemic cells in vitro and in vivo, but the precise mechanisms by which it mediates such effects are not well defined. We provide evidence that As2O3 induces activation of the mitogen- and stress-activated kinase 1 (MSK1) and downstream phosphorylation of its substrate, histone H3, in leukemia cell lines. Such activation requires upstream engagement of p38 MAPK, as demonstrated by experiments using pharmacological inhibitors of p38 or p38alpha knock-out cells. Arsenic-induced apoptosis was enhanced in cells in which MSK1 expression was decreased using small interfering RNA and in Msk1 knock-out mouse embryonic fibroblasts, suggesting that this kinase is activated in a negative feedback regulatory manner to regulate As2O3 responses. Consistent with this, pharmacological inhibition of MSK1 enhanced the suppressive effects of As2O3 on the growth of primary leukemic progenitors from chronic myelogenous leukemia patients. Altogether, these findings indicate an important role for MSK1 downstream of p38 in the regulation of As2O3 responses.
Collapse
Affiliation(s)
- Padma Kannan-Thulasiraman
- Robert H. Lurie Comprehensive Cancer Center and the Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, and Lakeside VA Hospital Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
165
|
Chen Y, Feldman DE, Deng C, Brown JA, De Giacomo AF, Gaw AF, Shi G, Le QT, Brown JM, Koong AC. Identification of mitogen-activated protein kinase signaling pathways that confer resistance to endoplasmic reticulum stress in Saccharomyces cerevisiae. Mol Cancer Res 2006; 3:669-77. [PMID: 16380504 DOI: 10.1158/1541-7786.mcr-05-0181] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia activates all components of the unfolded protein response (UPR), a stress response initiated by the accumulation of unfolded proteins within the endoplasmic reticulum (ER). Our group and others have shown previously that the UPR, a hypoxia-inducible factor-independent signaling pathway, mediates cell survival during hypoxia and is required for tumor growth. Identifying new genes and pathways that are important for survival during ER stress may lead to the discovery of new targets in cancer therapy. Using the set of 4,728 homozygous diploid deletion mutants in budding yeast, Saccharomyces cerevisiae, we did a functional screen for genes that conferred resistance to ER stress-inducing agents. Deletion mutants in 56 genes showed increased sensitivity under ER stress conditions. Besides the classic UPR pathway and genes related to calcium homeostasis, we report that two additional pathways, including the SLT2 mitogen-activated protein kinase (MAPK) pathway and the osmosensing MAPK pathway, were also required for survival during ER stress. We further show that the SLT2 MAPK pathway was activated during ER stress, was responsible for increased resistance to ER stress, and functioned independently of the classic IRE1/HAC1 pathway. We propose that the SLT2 MAPK pathway is an important cell survival signaling pathway during ER stress. This study shows the feasibility of using the yeast deletion pool to identify relevant mammalian orthologues of the UPR.
Collapse
Affiliation(s)
- Yijun Chen
- Department of Radiation Oncology, Center for Clinical Sciences Research, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Mishra S, Saleh A, Espino PS, Davie JR, Murphy LJ. Phosphorylation of histones by tissue transglutaminase. J Biol Chem 2006; 281:5532-8. [PMID: 16407273 DOI: 10.1074/jbc.m506864200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue transglutaminase 2 (TG2) has recently been shown to have intrinsic serine/threonine kinase activity. Since histones are known to be cross-linked by TG2, we investigated whether histones are also substrates for TG2 kinase activity. TG2 was able to phosphorylate H1, H2A, H2B, H3, and H4 histones in vitro. Using peptide substrates and phosphospecific antibodies we demonstrated that TG2 phosphorylated Ser(10) in H3 and that this phosphorylation was reduced by acetylation, whereas phosphorylation of Ser(10) by TG2 enhanced acetylation. Furthermore we demonstrated that exogenous TG2 phosphorylated H1 and H3 in nucleosome preparations. We examined the abundance of TG2 in DNA-associated proteins from MCF-7 cells treated with phorbol ester (TPA) and 17beta-estradiol (E2). TG2 abundance was significantly reduced in E2-treated cells and enhanced in TPA-treated cells. In summary we have demonstrated that TG2 is able to phosphorylate purified histone proteins, and H3 and H1 in chromatin preparations, and it is associated with chromatin in breast cancer cells. These studies suggest a novel role for TG2 in the regulation of chromatin structure and function.
Collapse
Affiliation(s)
- Suresh Mishra
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba R3E 0W3, Canada
| | | | | | | | | |
Collapse
|
167
|
van Grunsven LA, Verstappen G, Huylebroeck D, Verschueren K. Smads and chromatin modulation. Cytokine Growth Factor Rev 2005; 16:495-512. [PMID: 15979924 DOI: 10.1016/j.cytogfr.2005.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 05/11/2005] [Indexed: 12/29/2022]
Abstract
Smad proteins are critical intracellular effector proteins and regulators of transforming growth factor type beta (TGFbeta) modulated gene transcription. They directly convey signals that initiate at ligand-bound receptor complexes and end in the nucleus with changes in programs of gene expression. Activated Smad proteins seem to recruit chromatin modifying proteins to target genes besides cooperating with DNA-bound transcription factors. We survey here the current and still emerging knowledge on Smad-binding factors, and their different mechanisms of chromatin modification in particular, in Smad-dependent TGFbeta signaling.
Collapse
Affiliation(s)
- Leo A van Grunsven
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology (VIB) and Laboratory of Molecular Biology (Celgen), University of Leuven, Belgium
| | | | | | | |
Collapse
|
168
|
Wolff EM, Liang G, Jones PA. Mechanisms of Disease: genetic and epigenetic alterations that drive bladder cancer. ACTA ACUST UNITED AC 2005; 2:502-10. [PMID: 16474624 DOI: 10.1038/ncpuro0318] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/23/2005] [Indexed: 12/31/2022]
Abstract
There is substantial evidence for the existence of mutually exclusive molecular pathways to tumorigenesis, in the formation of papillary and invasive carcinomas, respectively. The most common genetic alterations in low grade papillary transitional-cell carcinoma (TCC) are loss of heterozygosity of part or all of chromosome 9 and activating mutations of the fibroblast growth factor receptor 3 (FGFR3). The pathway to development of invasive TCC seems to start with dysplasia, progress to carcinoma in situ, followed by invasion of the lamina propria. The most frequent genetic alteration in dysplasia and carcinoma in situ is mutation of TP53, followed by loss of heterozygosity of chromosome 9. A marker for progression in TCC is loss of chromosome 8p, which occurs in approximately 60% of bladder tumors. Global trends of increased genomic instability and aberrant methylation of cytosine residues in DNA correlate with increased tumor invasion and progression. When researching markers of bladder cancer for clinical use, it is important that biomedical pathways and their alterations are measured in the same tumor populations. This review examines the published data and proposes a model for the mechanisms behind bladder cancer development.
Collapse
Affiliation(s)
- Erika M Wolff
- Department of Biochemistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|