151
|
Guo H, Rischer M, Sperfeld M, Weigel C, Menzel KD, Clardy J, Beemelmanns C. Natural products and morphogenic activity of γ-Proteobacteria associated with the marine hydroid polyp Hydractinia echinata. Bioorg Med Chem 2017; 25:6088-6097. [PMID: 28893599 PMCID: PMC5675742 DOI: 10.1016/j.bmc.2017.06.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023]
Abstract
Illumina 16S rRNA gene sequencing was used to profile the associated bacterial community of the marine hydroid Hydractinia echinata, a long-standing model system in developmental biology. 56 associated bacteria were isolated and evaluated for their antimicrobial activity. Three strains were selected for further in-depth chemical analysis leading to the identification of 17 natural products. Several γ-Proteobacteria were found to induce settlement of the motile larvae, but only six isolates induced the metamorphosis to the primary polyp stage within 24h. Our study paves the way to better understand how bacterial partners contribute to protection, homeostasis and propagation of the hydroid polyp.
Collapse
Affiliation(s)
- Huijuan Guo
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraβe 11a, D-07745 Jena, Germany
| | - Maja Rischer
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraβe 11a, D-07745 Jena, Germany
| | - Martin Sperfeld
- Department of Applied and Ecological Microbiology, Institute for Microbiology, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - Christiane Weigel
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraβe 11a, D-07745 Jena, Germany
| | - Klaus Dieter Menzel
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraβe 11a, D-07745 Jena, Germany
| | - Jon Clardy
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Harvard University, 240 Longwood Ave., Boston, MA 02115, USA
| | - Christine Beemelmanns
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraβe 11a, D-07745 Jena, Germany.
| |
Collapse
|
152
|
Fadl AEA, Mahfouz ME, El-Gamal MMT, Heyland A. New biomarkers of post-settlement growth in the sea urchin Strongylocentrotus purpuratus. Heliyon 2017; 3:e00412. [PMID: 29034337 PMCID: PMC5635345 DOI: 10.1016/j.heliyon.2017.e00412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/24/2017] [Accepted: 09/15/2017] [Indexed: 11/29/2022] Open
Abstract
Some sea urchins, including the purple sea urchin Strongylocentrotus purpuratus, have been successfully used in aquaculture, but their slow growth and late reproduction are challenging to overcome when developing efficient aquaculture production techniques. S. purpuratus develops via an indirect life history that is characterized by a drastic settlement process at the end of a larval period that lasts for several weeks. During this transition, the bilateral larva is transformed into a pentaradial juvenile, which will start feeding and growing in the benthic habitat. Due to predation and other ecological factors, settlement is typically associated with high mortality rates in juvenile populations. Additionally, juveniles require several days to develop a functional mouth and digestive system. During this perimetamorphic period, juveniles use up larval resources until they are capable to digest adult food. Mechanisms underlying the onset of juvenile feeding and metabolism have implications for the recruitment of natural populations as well as aquaculture and are relatively poorly understood in S. purpuratus. The insulin/insulin-like growth factor signalling (IIS)/Target of Rapamycin (TOR) pathway (IIS/TOR) is well conserved among animal phyla and regulates physiological and developmental functions, such as growth, reproduction, aging and nutritional status. We analyzed the expression of FoxO, TOR, and ILPs in post-settlement juveniles in conjunction with their early growth trajectories. We also tested how pre-settlement starvation affected post-settlement expression of IIS. We found that FoxO provides a useful molecular marker in early juveniles as its expression is strongly correlated with juvenile growth. We also found that pre-settlement starvation affects juvenile growth trajectories as well as IIS. Our findings provide preliminary insights into the mechanisms underlying post-settlement growth and metabolism in S. purpuratus. They also have important implications for sea urchin aquaculture, as they show that pre-settlement nutrient environment significantly affects both early growth trajectories and gene expression. This information can be used to develop new biomarkers for juvenile health in sea urchin population ecology and aquaculture aquaculture.
Collapse
Affiliation(s)
- Alyaa Elsaid Abdelaziz Fadl
- Department of Integrative Biology, Faculty of Biological Science, University of Guelph, Guelph, Ontario, Canada.,Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | - Magdy Elsayed Mahfouz
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | | | - Andreas Heyland
- Department of Integrative Biology, Faculty of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
153
|
Briand JF, Barani A, Garnier C, Réhel K, Urvois F, LePoupon C, Bouchez A, Debroas D, Bressy C. Spatio-Temporal Variations of Marine Biofilm Communities Colonizing Artificial Substrata Including Antifouling Coatings in Contrasted French Coastal Environments. MICROBIAL ECOLOGY 2017; 74:585-598. [PMID: 28374061 DOI: 10.1007/s00248-017-0966-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Surface colonization in seawater first corresponds to the selection of specific microbial biofilm communities. By coupling flow cytometry, microscopy and high throughput sequencing (HTS, 454 pyrosequencing) with artificial surfaces and environmental analyses, we intend to identify the contribution of biofilm community drivers at two contrasted French sites, one temperate and eutrophic (Lorient, Atlantic coast) and the other at a mesotrophic but highly contaminated bay (Toulon, North-Western Mediterranean Sea). Microbial communities were shaped by high temperatures, salinity and lead at Toulon by but nutrients and DOC at Lorient. Coatings including pyrithione exhibited a significant decrease of their microbial densities except for nanoeukaryotes. Clustering of communities was mainly based on the surface type and secondly the site, whereas seasons appeared of less importance. The in-depth HTS revealed that γ- and α-proteobacteria, but also Bacteroidetes, dominated highly diversified bacterial communities with a relative low β-diversity. Sensitivity to biocides released by the tested antifouling coatings could be noticed at different taxonomic levels: the percentage of Bacteroidetes overall decreased with the presence of pyrithione, whereas the α/γ-proteobacteria ratio decreased at Toulon when increased at Lorient. Small diatom cells (Amphora and Navicula spp.) dominated on all surfaces, whereas site-specific sub-dominant taxa appeared clearly more sensitive to biocides. This overall approach exhibited the critical significance of surface characteristics in biofilm community shaping.
Collapse
Affiliation(s)
| | - Aude Barani
- CNRS/INSU, IRD, Institut Méditerranéen d'Océanologie (MIO), Université d'Aix-Marseille, Université de Toulon, Marseille, France
| | | | - Karine Réhel
- LBCM -EA 3883, IUEM, Université de Bretagne Sud, Lorient, France
| | - Félix Urvois
- MAPIEM-EA 4323, Université de Toulon, La Garde, France
| | | | - Agnès Bouchez
- UMR CARRTEL, INRA, Université Savoie Mont Blanc, Thonon-Les-Bains, France
| | - Didier Debroas
- Laboratoire "Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, BP 10448, F-63000, Clermont-Ferrand, France
- UMR 6023, LMGE, CNRS, F-63171, Aubiere, France
| | | |
Collapse
|
154
|
Ochi Agostini V, Ritter MDN, José Macedo A, Muxagata E, Erthal F. What determines sclerobiont colonization on marine mollusk shells? PLoS One 2017; 12:e0184745. [PMID: 28902894 PMCID: PMC5597280 DOI: 10.1371/journal.pone.0184745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 08/30/2017] [Indexed: 12/11/2022] Open
Abstract
Empty mollusk shells may act as colonization surfaces for sclerobionts depending on the physical, chemical, and biological attributes of the shells. However, the main factors that can affect the establishment of an organism on hard substrates and the colonization patterns on modern and time-averaged shells remain unclear. Using experimental and field approaches, we compared sclerobiont (i.e., bacteria and invertebrate) colonization patterns on the exposed shells (internal and external sides) of three bivalve species (Anadara brasiliana, Mactra isabelleana, and Amarilladesma mactroides) with different external shell textures. In addition, we evaluated the influence of the host characteristics (mode of life, body size, color alteration, external and internal ornamentation and mineralogy) of sclerobionts on dead mollusk shells (bivalve and gastropod) collected from the Southern Brazilian coast. Finally, we compared field observations with experiments to evaluate how the biological signs of the present-day invertebrate settlements are preserved in molluscan death assemblages (incipient fossil record) in a subtropical shallow coastal setting. The results enhance our understanding of sclerobiont colonization over modern and paleoecology perspectives. The data suggest that sclerobiont settlement is enhanced by (i) high(er) biofilm bacteria density, which is more attracted to surfaces with high ornamentation; (ii) heterogeneous internal and external shell surface; (iii) shallow infaunal or attached epifaunal life modes; (iv) colorful or post-mortem oxidized shell surfaces; (v) shell size (<50 mm2 or >1,351 mm2); and (vi) calcitic mineralogy. Although the biofilm bacteria density, shell size, and texture are considered the most important factors, the effects of other covarying attributes should also be considered. We observed a similar pattern of sclerobiont colonization frequency over modern and paleoecology perspectives, with an increase of invertebrates occurring on textured bivalve shells. This study demonstrates how bacterial biofilms may influence sclerobiont colonization on biological hosts (mollusks), and shows how ecological relationships in marine organisms may be relevant for interpreting the fossil record of sclerobionts.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Laboratório de Zooplâncton, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Matias do Nascimento Ritter
- Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| | - Alexandre José Macedo
- Faculdade de Farmácia and Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Fernando Erthal
- Departamento de Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
155
|
Temereva EN. Ground plan of the larval nervous system in phoronids: Evidence from larvae of viviparous phoronid. Evol Dev 2017; 19:171-189. [DOI: 10.1111/ede.12231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Elena N. Temereva
- Department of Invertebrate Zoology; Biological Faculty; Moscow State University; Moscow Russia
| |
Collapse
|
156
|
Lawes JC, Dafforn KA, Clark GF, Brown MV, Johnston EL. Multiple stressors in sediments impact adjacent hard substrate habitats and across biological domains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:295-305. [PMID: 28319716 DOI: 10.1016/j.scitotenv.2017.03.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Coastal systems are increasingly impacted by human activities. While the direct effects of individual contaminants have been investigated, the potential for multiple contaminants to impact adjacent hard substrate habitats is poorly understood. Sediment-bound contaminants pose a risk to water column organisms through resuspension and the fluxing of dissolved nutrients and metals. This study experimentally manipulated contaminated coastal sediments in mesocosms with additions of a common fertiliser to investigate the impact on both bacterial biofilms and macrofouling communities on nearby hard substrates. Field mesocosms were deployed sub-tidally for two weeks in a fully crossed design with two levels of metal contamination (ambient or high) and three levels of organic enrichment (ambient, low and high). Developing biofilm and macrofaunal communities were collected on acetate settlement sheets above the mesocosm sediments and censused with a combination of high-throughput sequencing (biofilm) and microscopy (macrofauna). Organic enrichment of sediments induced compositional shifts in biofilm communities, reducing their diversity, evenness and richness. Furthermore, co-occurrence networks built from microbial assemblages exposed to contaminated sediments displayed reduced connectivity compared to controls, suggesting a more stochastic assembly dynamic, where microbial interactions are reduced. Macrofouling community composition shifted in response to increased enrichment with separate and interactive effects of metals also observed for individual taxa. Specifically, antagonistic stressor interactions were observed for colonial ascidians and arborescent bryozoans; metal contamination decreased abundances of these taxa, except under high enrichment conditions. Together these micro- and macrofaunal responses indicate selection for depauperate, but contaminant-tolerant, communities and a potential breakdown in biotic connectivity through multiple stressor impacts across habitat boundaries.
Collapse
Affiliation(s)
- Jasmin C Lawes
- School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales, Australia; Sydney Institute of Marine Science, New South Wales, Australia.
| | - Katherine A Dafforn
- School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales, Australia; Sydney Institute of Marine Science, New South Wales, Australia.
| | - Graeme F Clark
- School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales, Australia; Sydney Institute of Marine Science, New South Wales, Australia.
| | - Mark V Brown
- School of Biotechnology and Biomedical Sciences, University of New South Wales, New South Wales, Australia.
| | - Emma L Johnston
- School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales, Australia; Sydney Institute of Marine Science, New South Wales, Australia.
| |
Collapse
|
157
|
Spheres of Hope, Packets of Doom: the Good and Bad of Outer Membrane Vesicles in Interspecies and Ecological Dynamics. J Bacteriol 2017; 199:JB.00012-17. [PMID: 28416709 DOI: 10.1128/jb.00012-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Outer membrane vesicles (OMVs) are proteoliposome nanoparticles ubiquitously produced by Gram-negative bacteria. Typically bearing a composition similar to those of the outer membrane and periplasm of the cells from which they are derived, OMVs package an array of proteins, lipids, and nucleic acids. Once considered inconsequential by-products of bacterial growth, OMVs have since been demonstrated to mediate cellular stress relief, promote horizontal gene transfer and antimicrobial activity, and elicit metazoan inflammation. Recently, OMVs have gained appreciation as critical moderators of interorganismal dynamics. In this review, we focus on recent progress toward understanding the functions of OMVs with regard to symbiosis and ecological contexts, and we propose potential avenues for future OMV studies.
Collapse
|
158
|
Rittschof D. Off the Shelf Fouling Management. Mar Drugs 2017; 15:md15060176. [PMID: 28613232 PMCID: PMC5484126 DOI: 10.3390/md15060176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/31/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022] Open
Abstract
This chapter tells the story of a research thread that identified and modified a pharmaceutical that could be a component of environmentally benign fouling management coatings. First, I present the background context of biofouling and how fouling is managed. The major target of the research is disrupting transduction of a complex process in all macrofouling organisms: metamorphosis. Using a bioassay directed approach we first identified a pharmaceutical candidate. Then, based on structure function studies coupled with laboratory and field bioassays, we simplified the molecule, eliminating halogens and aromatic rings to a pharmacophore that could be readily broken down by bacteria. Next, we did further structure function studies coupled to lab and field bioassays of modifications that enabled delivery of the molecule in a variety of coatings. The outcome is a different way of thinking about managing fouling and concepts in which molecules are designed to perform a function and then degrade. This work is discussed in the context of existing fouling management approaches and business models which use long-lived broad-spectrum biocides which have consequences for human, environmental health, and food security.
Collapse
Affiliation(s)
- Daniel Rittschof
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
159
|
Burns R, Pechenik J. Transcriptomic Basis of Metamorphic Competence in the Salt-Marsh-Dwelling Polychaete Capitella teleta. THE BIOLOGICAL BULLETIN 2017; 232:158-170. [PMID: 28898599 DOI: 10.1086/692829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Marine invertebrate larvae typically take hours to weeks after being released into the plankton before becoming "competent" to metamorphose. The mechanisms that govern this transition between the precompetent and metamorphically competent states are unknown. We studied gene expression patterns in precompetent and competent larvae of the salt-marsh-dwelling polychaete worm Capitella teleta (Blake, Grassle & Eckelbarger, 2009)-a species in which precompetent larvae are unusually easy to distinguish from competent larvae-to determine differences in gene expression associated with the onset of metamorphic competence. More than 1530 genes were more highly expressed in precompetent larvae, while more than 1060 genes were more highly expressed in competent larvae. Competent larvae downregulated the expression of genes belonging to gene ontologies relating to growth and development and upregulated those associated with ligand-binding transmembrane channels with possible chemo- and mechanosensory functions. Most of these channels were annotated as being from the degenerin/epithelial sodium channel family or the G-protein-coupled receptor family; proteins from these families can have chemosensory functions. Serotonin and GABA (γ-aminobutyric acid) receptors are among the genes that were upregulated in competent larvae; both have been shown to induce larvae of C. teleta and other marine invertebrates to metamorphose and are thought to be components of the signal transduction pathway that leads to metamorphosis. Overall, it appears that once larvae of C. teleta have completed development of the internal structures and physiology required for juvenile life during the precompetent period, they then upregulate the expression of chemosensory proteins and neurotransmitter receptors that will enable them to detect and transduce a settlement cue signal.
Collapse
Key Words
- 5-HT6, 5-hydroxytryptamine 6
- ASW, artificial seawater
- DEG/ENaC, degenerin/epithelial sodium channel
- FDR, false discovery rate
- GABA, γ-aminobutyric acid
- GPCR, G-protein-coupled receptor
- HSP, heat-shock protein
- NCBI, National Center for Biotechnology Information
- NOS, nitric oxide synthase
- PKD, polycystic kidney disease
- UTR, untranslated region
Collapse
|
160
|
Brzozowska AM, Maassen S, Goh Zhi Rong R, Benke PI, Lim CS, Marzinelli EM, Jańczewski D, Teo SLM, Vancso GJ. Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17508-17516. [PMID: 28481498 PMCID: PMC5445506 DOI: 10.1021/acsami.6b14262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report on the marine fouling and fouling release effects caused by variations of surface mechanical properties and microtopography of engineering polymers. Polymeric materials were covered with hierarchical micromolded topographical patterns inspired by the shell of the marine decapod crab Myomenippe hardwickii. These micropatterned surfaces were deployed in field static immersion tests. PDMS, polyurethane, and PMMA surfaces with higher elastic modulus and hardness were found to accumulate more fouling and exhibited poor fouling release properties. The results indicate interplay between surface mechanical properties and microtopography on antifouling performance.
Collapse
Affiliation(s)
- Agata Maria Brzozowska
- Institute of Materials
Research and Engineering, Agency for Science,
Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| | - Stan Maassen
- Institute of Materials
Research and Engineering, Agency for Science,
Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
- Faculty of Science
and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Rubayn Goh Zhi Rong
- Institute of Materials
Research and Engineering, Agency for Science,
Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Peter Imre Benke
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 60 Nanyang Drive, 637551 Singapore
- Environmental
Research Institute, National University
of Singapore, 21 Lower
Kent Ridge Road, 119077 Singapore
| | - Chin-Sing Lim
- St
John’s Island National Marine Laboratory, Tropical Marine Science
Institute, National University of Singapore, 18 Kent Ridge Road, 119227 Singapore
| | - Ezequiel M. Marzinelli
- Centre for Marine Bio-Innovation, School
of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW 2088, Australia
| | - Dominik Jańczewski
- Institute of Materials
Research and Engineering, Agency for Science,
Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
- Laboratory of Technological
Processes, Faculty of Chemistry, Warsaw
University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- E-mail: . Tel: +48 22 234 5583. Fax: +48 22 234 5504
| | - Serena Lay-Ming Teo
- St
John’s Island National Marine Laboratory, Tropical Marine Science
Institute, National University of Singapore, 18 Kent Ridge Road, 119227 Singapore
- E-mail: . Tel: +65 6774 9887. Fax: +65 6776 1455
| | - G. Julius Vancso
- Institute of Chemical
and Engineering Sciences, Agency for Science,
Technology and Research, 1 Pesek Road, 627833 Singapore
- MESA+ Institute for Nanotechnology, Materials Science
and Technology of Polymers, University of
Twente, 7500 AE Enschede, The Netherlands
- E-mail: . Tel.: +31 53 489 2974. Fax: +31 53 489 3823
| |
Collapse
|
161
|
Gajigan AP, Diaz LA, Conaco C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiologyopen 2017; 6. [PMID: 28425179 PMCID: PMC5552946 DOI: 10.1002/mbo3.478] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 12/22/2022] Open
Abstract
The coral is a holobiont formed by the close interaction between the coral animal and a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness but are also highly sensitive to changes in the environment. In this study, we used 16S ribosomal RNA (rRNA) sequencing to examine the response of the microbial community associated with the coral, Acropora digitifera, to elevated temperature. The A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic community in the coral tissue is distinct from that of the mucus and the surrounding seawater. Remarkably, the overall microbial community structure of A. digitifera remained stable for 10 days of continuous exptosure at 32°C compared to corals maintained at 27°C. However, the elevated temperature regime resulted in a decrease in the abundance of OTUs affiliated with certain groups of bacteria, such as order Rhodobacterales. On the other hand, some OTUs affiliated with the orders Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with diseased and stressed corals, increased in abundance. Thus, while the A. digitifera bacterial community structure appears resilient to higher temperature, prolonged exposure and intensified stress results in changes in the abundance of specific microbial community members that may affect the overall metabolic state and health of the coral holobiont.
Collapse
Affiliation(s)
- Andrian P Gajigan
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Leomir A Diaz
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
162
|
Peixoto RS, Rosado PM, Leite DCDA, Rosado AS, Bourne DG. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front Microbiol 2017; 8:341. [PMID: 28326066 PMCID: PMC5339234 DOI: 10.3389/fmicb.2017.00341] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium. Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting strategies for the use of this knowledge to manipulate the microbiome, reversing dysbiosis to restore and protect coral reefs. This may include developing and using BMC consortia as environmental "probiotics" to improve coral resistance after bleaching events and/or the use of BMC with other strategies such as human-assisted acclimation/adaption to shifting environmental conditions.
Collapse
Affiliation(s)
- Raquel S. Peixoto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - Phillipe M. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | | | - Alexandre S. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - David G. Bourne
- College of Science and Engineering, James Cook University, TownsvilleQLD, Australia
- Australian Institute of Marine Science, TownsvilleQLD, Australia
| |
Collapse
|
163
|
Induction of Invertebrate Larval Settlement; Different Bacteria, Different Mechanisms? Sci Rep 2017; 7:42557. [PMID: 28195220 PMCID: PMC5307369 DOI: 10.1038/srep42557] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022] Open
Abstract
Recruitment via settlement of pelagic larvae is critical for the persistence of benthic marine populations. For many benthic invertebrates, larval settlement occurs in response to surface microbial films. Larvae of the serpulid polychaete Hydroides elegans can be induced to settle by single bacterial species. Until now, only Pseudoalteromonas luteoviolacea had been subjected to detailed genetic and mechanistic studies. To determine if the complex structures, termed tailocins, derived from phage-tail gene assemblies and hypothesized to be the settlement cue in P. luteoviolacea were present in all inductive bacteria, genomic comparisons with inductive strains of Cellulophaga lytica, Bacillus aquimaris and Staphylococcus warneri were undertaken. They revealed that the gene assemblies for tailocins are lacking in these other bacteria. Negatively stained TEM images confirmed the absence of tailocins and revealed instead large numbers of extracellular vesicles in settlement-inductive fractions from all three bacteria. TEM imaging confirmed for C. lytica that the vesicles are budded from cell surfaces in a manner consistent with the production of outer membrane vesicles. Finding multiple bacteria settlement cues highlights the importance of further studies into the role of bacterial extracellular vesicles in eliciting settlement and metamorphosis of benthic marine larvae.
Collapse
|
164
|
Antifouling potential of Nature-inspired sulfated compounds. Sci Rep 2017; 7:42424. [PMID: 28205590 PMCID: PMC5304334 DOI: 10.1038/srep42424] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/10/2017] [Indexed: 02/01/2023] Open
Abstract
Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL−1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL−1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina (<10% mortality at 250 μM) and Vibrio fischeri (LC50 > 1000 μg.mL−1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.
Collapse
|
165
|
|
166
|
Ritson-Williams R, Ross C, Paul VJ. Elevated Temperature and Allelopathy Impact Coral Recruitment. PLoS One 2016; 11:e0166581. [PMID: 27926916 PMCID: PMC5142781 DOI: 10.1371/journal.pone.0166581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
As climate change continues to alter seawater temperature and chemistry on a global scale, coral reefs show multiple signs of degradation. One natural process that could facilitate the recovery of reef ecosystems is coral recruitment, which can be influenced by the benthic organisms in a local habitat. We experimentally tested both a global stressor (increased seawater temperature) and a local stressor (exposure to microcolin A, a natural product from a common marine benthic cyanobacterium) to determine how these stressors impacted coral larval sublethal stress, survival and settlement. Larvae of Porites astreoides had the same survival and settlement as the controls after exposure to increased temperature alone, but elevated temperature did cause oxidative stress. When exposed to natural concentrations of microcolin A, larval survival and settlement were significantly reduced. When larvae were exposed to these two stressors sequentially there was no interactive effect; but when exposed to both stressors simultaneously, there was a synergistic reduction in larval survival and an increase in oxidative stress more than in either stressor treatment alone. Increased seawater temperatures made larvae more susceptible to a concurrent local stressor disrupting a key process of coral reef recovery and resilience. These results highlight the importance of understanding how interactive stressors of varying spatial scales can impact coral demographics.
Collapse
Affiliation(s)
- Raphael Ritson-Williams
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL, United States of America
- Department of Biology, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Cliff Ross
- Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL, United States of America
| | - Valerie J. Paul
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL, United States of America
| |
Collapse
|
167
|
Yang JL, Li YF, Liang X, Guo XP, Ding DW, Zhang D, Zhou S, Bao WY, Bellou N, Dobretsov S. Silver Nanoparticles Impact Biofilm Communities and Mussel Settlement. Sci Rep 2016; 6:37406. [PMID: 27869180 PMCID: PMC5116650 DOI: 10.1038/srep37406] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/28/2016] [Indexed: 02/07/2023] Open
Abstract
Silver nanoparticles (AgNPs) demonstrating good antimicrobial activity are widely used in many fields. However, the impact of AgNPs on the community structures of marine biofilms that drive biogeochemical cycling processes and the recruitment of marine invertebrate larvae remains unknown. Here, we employed MiSeq sequencing technology to evaluate the bacterial communities of 28-day-old marine biofilms formed on glass, polydimethylsiloxane (PDMS), and PDMS filled with AgNPs and subsequently tested the influence of these marine biofilms on plantigrade settlement by the mussel Mytilus coruscus. AgNP-filled PDMS significantly reduced the dry weight and bacterial density of biofilms compared with the glass and PDMS controls. AgNP incorporation impacted bacterial communities by reducing the relative abundance of Flavobacteriaceae (phylum: Bacteroidetes) and increasing the relative abundance of Vibrionaceae (phylum: Proteobacteria) in 28-day-old biofilms compared to PDMS. The settlement rate of M. coruscus on 28-day-old biofilms developed on AgNPs was lower by >30% compared to settlement on control biofilms. Thus, the incorporation of AgNPs influences biofilm bacterial communities in the marine environment and subsequently inhibits mussel settlement.
Collapse
Affiliation(s)
- Jin-Long Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China.,Marine Ecology Research Center, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Yi-Feng Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China
| | - Xiao Liang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China
| | - Xing-Pan Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, China
| | - De-Wen Ding
- Marine Ecology Research Center, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Demin Zhang
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Shuxue Zhou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, China
| | - Wei-Yang Bao
- Institute of Marine Science and Technology, Yangzhou University, Yangzhou, China
| | - Nikoleta Bellou
- Hellenic Centre for Marine Research, Institute of Oceanography, Athens, Greece
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman.,Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
168
|
Roik A, Röthig T, Roder C, Ziegler M, Kremb SG, Voolstra CR. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea. PLoS One 2016; 11:e0163939. [PMID: 27828965 PMCID: PMC5102394 DOI: 10.1371/journal.pone.0163939] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/16/2016] [Indexed: 11/26/2022] Open
Abstract
Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
Collapse
Affiliation(s)
- Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Till Röthig
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Cornelia Roder
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Stephan G. Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
| | - Christian R. Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955–6900, Saudi Arabia
- * E-mail:
| |
Collapse
|
169
|
Schwab DB, Riggs HE, Newton ILG, Moczek AP. Developmental and Ecological Benefits of the Maternally Transmitted Microbiota in a Dung Beetle. Am Nat 2016; 188:679-692. [PMID: 27860508 DOI: 10.1086/688926] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To complete their development, diverse animal species rely on the presence of communities of symbiotic microbiota that are vertically transmitted from mother to offspring. In the dung beetle genus Onthophagus, newly hatched larvae acquire maternal gut symbionts by the consumption of a maternal fecal secretion known as the pedestal. Here, we investigate the role of pedestal symbionts in mediating the normal development of Onthophagus gazella. Through the stepwise removal of environmental and maternal sources of microbial inoculation, we find that pedestal microbiota can enhance both overall growth and developmental rate in O. gazella. Further, we find that the beneficial effects of symbionts on developmental outcomes are amplified in the presence of ecologically relevant temperature and desiccation stressors. Collectively, our results suggest that the pedestal may provide an adaptive function by transmitting beneficial microbiota to developing dung beetle larvae and that the importance of microbiota for developmental and fitness outcomes may be context dependent.
Collapse
|
170
|
Validation of trophic and anthropic underwater noise as settlement trigger in blue mussels. Sci Rep 2016; 6:33829. [PMID: 27644947 PMCID: PMC5028714 DOI: 10.1038/srep33829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 08/31/2016] [Indexed: 11/08/2022] Open
Abstract
Like the majority of benthic invertebrates, the blue mussel Mytilus edulis has a bentho-pelagic cycle with its larval settlement being a complex phenomenon involving numerous factors. Among these factors, underwater noise and pelagic trophic conditions have been weakly studied in previous researches. Under laboratory conditions, we tested the hypothesis that picoplankton assimilation by the pediveliger blue mussel larvae acts as a food cue that interacts with anthropic underwater sound to stimulate settlement. We used 13C-labeling microalgae to validate the assimilation of different picoplankton species in the tissues of pediveliger larvae. Our results clearly confirm our hypothesis with a significant synergic effect of these two factors. However, only the picoeukaryotes strains assimilated by larvae stimulated the settlement, whereas the non-ingested picocyanobacteria did not. Similar positive responses were observed with underwater sound characterized by low frequency vessel noises. The combination of both factors (trophic and vessel noise) drastically increased the mussel settlement by an order of 4 compared to the control (without picoplankton and noise). Settlement levels ranged from 16.5 to 67% in 67 h.
Collapse
|
171
|
Eisthen HL, Theis KR. Animal-microbe interactions and the evolution of nervous systems. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150052. [PMID: 26598731 DOI: 10.1098/rstb.2015.0052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Animals ubiquitously interact with environmental and symbiotic microbes, and the effects of these interactions on animal physiology are currently the subject of intense interest. Nevertheless, the influence of microbes on nervous system evolution has been largely ignored. We illustrate here how taking microbes into account might enrich our ideas about the evolution of nervous systems. For example, microbes are involved in animals' communicative, defensive, predatory and dispersal behaviours, and have likely influenced the evolution of chemo- and photosensory systems. In addition, we speculate that the need to regulate interactions with microbes at the epithelial surface may have contributed to the evolutionary internalization of the nervous system.
Collapse
Affiliation(s)
- Heather L Eisthen
- Department of Integrative Biology, Michigan State University, 288 Farm Lane Rm 203, East Lansing, MI 48824, USA BEACON Center for the Study of Evolution in Action, 567 Wilson Road Rm 1441, East Lansing, MI 48824, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, 567 Wilson Road Rm 1441, East Lansing, MI 48824, USA Department of Internal Medicine, University of Michigan Medical School, 1150 West Medical Center Drive, MSRB I Rm 1510A, Ann Arbor, MI 48109, USA
| |
Collapse
|
172
|
Implications of Extracellular Polymeric Substance Matrices of Microbial Habitats Associated with Coastal Aquaculture Systems. WATER 2016. [DOI: 10.3390/w8090369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
173
|
Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci U S A 2016; 113:10097-102. [PMID: 27551098 DOI: 10.1073/pnas.1603142113] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diverse animal taxa metamorphose between larval and juvenile phases in response to bacteria. Although bacteria-induced metamorphosis is widespread among metazoans, little is known about the molecular changes that occur in the animal upon stimulation by bacteria. Larvae of the tubeworm Hydroides elegans metamorphose in response to surface-bound Pseudoalteromonas luteoviolacea bacteria, producing ordered arrays of phage tail-like metamorphosis-associated contractile structures (MACs). Sequencing the Hydroides genome and transcripts during five developmental stages revealed that MACs induce the regulation of groups of genes important for tissue remodeling, innate immunity, and mitogen-activated protein kinase (MAPK) signaling. Using two MAC mutations that block P. luteoviolacea from inducing settlement or metamorphosis and three MAPK inhibitors, we established a sequence of bacteria-induced metamorphic events: MACs induce larval settlement; then, particular properties of MACs encoded by a specific locus in P. luteoviolacea initiate cilia loss and activate metamorphosis-associated transcription; finally, signaling through p38 and c-Jun N-terminal kinase (JNK) MAPK pathways alters gene expression and leads to morphological changes upon initiation of metamorphosis. Our results reveal that the intricate interaction between Hydroides and P. luteoviolacea can be dissected using genomic, genetic, and pharmacological tools. Hydroides' dependency on bacteria for metamorphosis highlights the importance of external stimuli to orchestrate animal development. The conservation of Hydroides genome content with distantly related deuterostomes (urchins, sea squirts, and humans) suggests that mechanisms of bacteria-induced metamorphosis in Hydroides may have conserved features in diverse animals. As a major biofouling agent, insight into the triggers of Hydroides metamorphosis might lead to practical strategies for fouling control.
Collapse
|
174
|
Yang JL, Li YF, Guo XP, Liang X, Xu YF, Ding DW, Bao WY, Dobretsov S. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement. BIOFOULING 2016; 32:763-777. [PMID: 27348759 DOI: 10.1080/08927014.2016.1197210] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement.
Collapse
Affiliation(s)
- Jin-Long Yang
- a Marine Ecology Research Center , The First Institute of Oceanography, State Oceanic Administration , Qingdao , PR China
- b Department of Biology, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources , Shanghai Ocean University, Ministry of Education , Shanghai , PR China
- c Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture , Ningbo , PR China
| | - Yi-Feng Li
- b Department of Biology, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources , Shanghai Ocean University, Ministry of Education , Shanghai , PR China
| | - Xing-Pan Guo
- b Department of Biology, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources , Shanghai Ocean University, Ministry of Education , Shanghai , PR China
| | - Xiao Liang
- b Department of Biology, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources , Shanghai Ocean University, Ministry of Education , Shanghai , PR China
| | - Yue-Feng Xu
- b Department of Biology, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources , Shanghai Ocean University, Ministry of Education , Shanghai , PR China
| | - De-Wen Ding
- a Marine Ecology Research Center , The First Institute of Oceanography, State Oceanic Administration , Qingdao , PR China
| | - Wei-Yang Bao
- d Institute of Marine Science and Technology , Yangzhou University , Yangzhou , PR China
| | - Sergey Dobretsov
- e Department of Marine Science and Fisheries , College of Agricultural and Marine Sciences, Sultan Qaboos University , Muscat , Oman
- f Center of Excellence in Marine Biotechnology , Sultan Qaboos University , Muscat , Oman
| |
Collapse
|
175
|
Yandi W, Mieszkin S, di Fino A, Martin-Tanchereau P, Callow ME, Callow JA, Tyson L, Clare AS, Ederth T. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling. BIOFOULING 2016; 32:609-25. [PMID: 27125564 DOI: 10.1080/08927014.2016.1170816] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/22/2016] [Indexed: 05/28/2023]
Abstract
The resistance of charged polymers to biofouling was investigated by subjecting cationic (PDMAEMA), anionic (PSPMA), neutral (PHEMA-co-PEG10MA), and zwitterionic (PSBMA) brushes to assays testing protein adsorption; attachment of the marine bacterium Cobetia marina; settlement and adhesion strength of zoospores of the green alga Ulva linza; settlement of barnacle (Balanus amphitrite and B. improvisus) cypris larvae; and field immersion tests. Several results go beyond the expected dependence on direct electrostatic attraction; PSPMA showed good resistance towards attachment of C. marina, low settlement and adhesion of U. linza zoospores, and significantly lower biofouling than on PHEMA-co-PEG10MA or PSBMA after a field test for one week. PDMAEMA showed potential as a contact-active anti-algal coating due to its capacity to damage attached spores. However, after field testing for eight weeks, there were no significant differences in biofouling coverage among the surfaces. While charged polymers are unsuitable as antifouling coatings in the natural environment, they provide valuable insights into fouling processes, and are relevant for studies due to charging of nominally neutral surfaces.
Collapse
Affiliation(s)
- Wetra Yandi
- a Division of Molecular Physics , IFM, Linköping University , Linköping , Sweden
| | - Sophie Mieszkin
- b School of Biosciences , University of Birmingham , Birmingham , UK
| | - Alessio di Fino
- d School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Pierre Martin-Tanchereau
- c International Paint Ltd 1 , Gateshead , UK
- e Department of Applied Sciences , Northumbria University , Newcastle-upon-Tyne , UK
| | - Maureen E Callow
- b School of Biosciences , University of Birmingham , Birmingham , UK
| | - James A Callow
- b School of Biosciences , University of Birmingham , Birmingham , UK
| | | | - Anthony S Clare
- d School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Thomas Ederth
- a Division of Molecular Physics , IFM, Linköping University , Linköping , Sweden
| |
Collapse
|
176
|
Lagos ME, White CR, Marshall DJ. Biofilm history and oxygen availability interact to affect habitat selection in a marine invertebrate. BIOFOULING 2016; 32:645-655. [PMID: 27169475 DOI: 10.1080/08927014.2016.1178725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
In marine systems, oxygen availability varies at small temporal and spatial scales, such that current oxygen levels may not reflect conditions of the past. Different studies have shown that marine invertebrate larvae can select settlement sites based on local oxygen levels and oxygenation history of the biofilm, but no study has examined the interaction of both. The influence of normoxic and hypoxic water and oxygenation history of biofilms on pre-settlement behavior and settlement of the bryozoan Bugula neritina was tested. Larvae used cues in a hierarchical way: the oxygen levels in the water prime larvae to respond, the response to different biofilms is contingent on oxygen levels in the water. When oxygen levels varied throughout biofilm formation, larvae responded differently depending on the history of the biofilm. It appears that B. neritina larvae integrate cues about current and historical oxygen levels to select the appropriate microhabitat and maximize their fitness.
Collapse
Affiliation(s)
- Marcelo E Lagos
- a School of Biological Sciences , The University of Queensland , St Lucia , Australia
- b School of Biological Sciences/Centre for Geometric Biology , Monash University , Clayton , Australia
| | - Craig R White
- a School of Biological Sciences , The University of Queensland , St Lucia , Australia
- b School of Biological Sciences/Centre for Geometric Biology , Monash University , Clayton , Australia
| | - Dustin J Marshall
- b School of Biological Sciences/Centre for Geometric Biology , Monash University , Clayton , Australia
| |
Collapse
|
177
|
Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc Natl Acad Sci U S A 2016; 113:7894-9. [PMID: 27354530 DOI: 10.1073/pnas.1605015113] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In choanoflagellates, the closest living relatives of animals, multicellular rosette development is regulated by environmental bacteria. The simplicity of this evolutionarily relevant interaction provides an opportunity to identify the molecules and regulatory logic underpinning bacterial regulation of development. We find that the rosette-inducing bacterium Algoriphagus machipongonensis produces three structurally divergent classes of bioactive lipids that, together, activate, enhance, and inhibit rosette development in the choanoflagellate Salpingoeca rosetta. One class of molecules, the lysophosphatidylethanolamines (LPEs), elicits no response on its own but synergizes with activating sulfonolipid rosette-inducing factors (RIFs) to recapitulate the full bioactivity of live Algoriphagus. LPEs, although ubiquitous in bacteria and eukaryotes, have not previously been implicated in the regulation of a host-microbe interaction. This study reveals that multiple bacterially produced lipids converge to activate, enhance, and inhibit multicellular development in a choanoflagellate.
Collapse
|
178
|
Abstract
Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.
Collapse
Affiliation(s)
- Alessandro Minelli
- Department of Biology, University of Padova, Via Ugo Bassi 58 B, Padova, 35131, Italy.
| |
Collapse
|
179
|
Bauer S, Finlay JA, Thomé I, Nolte K, Franco SC, Ralston E, Swain GE, Clare AS, Rosenhahn A. Attachment of Algal Cells to Zwitterionic Self-Assembled Monolayers Comprised of Different Anionic Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5663-5671. [PMID: 27182766 DOI: 10.1021/acs.langmuir.6b00839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The influence of zwitterionic self-assembled monolayers on settlement and removal of algae was studied. The monolayers were constructed either from zwitterionic thiols or from solutions of positively and negatively charged thiols. The cationic component was composed of quaternary ammonium terminated thiols and the anionic component contained sulfate or carboxylate termination. During assembly, all surfaces showed a strong tendency for equilibration of the surface charge. Settlement and adhesion assays with zoospores of Ulva linza and the diatom Navicula incerta, and field tests of the initial surface colonization revealed the relevance of charge equilibration for the biological inertness of the prepared surfaces.
Collapse
Affiliation(s)
- S Bauer
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum , 44780 Bochum, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
- Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg , 69120 Heidelberg, Germany
| | - J A Finlay
- School of Marine Science and Technology, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - I Thomé
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum , 44780 Bochum, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
- Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg , 69120 Heidelberg, Germany
| | - K Nolte
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum , 44780 Bochum, Germany
| | - S C Franco
- School of Marine Science and Technology, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - E Ralston
- Center of Corrosion and Biofouling Control, Florida Institute of Technology , Melbourne, Florida 32901, United States
| | - G E Swain
- Center of Corrosion and Biofouling Control, Florida Institute of Technology , Melbourne, Florida 32901, United States
| | - A S Clare
- School of Marine Science and Technology, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - A Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum , 44780 Bochum, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology , 76021 Karlsruhe, Germany
- Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg , 69120 Heidelberg, Germany
| |
Collapse
|
180
|
Draft Genome Sequence of Shewanella sp. Strain P1-14-1, a Bacterial Inducer of Settlement and Morphogenesis in Larvae of the Marine Hydroid Hydractinia echinata. GENOME ANNOUNCEMENTS 2016; 4:4/1/e00003-16. [PMID: 26893410 PMCID: PMC4759057 DOI: 10.1128/genomea.00003-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The assembly and annotation of the draft genome sequence of Shewanella sp. strain P1-14-1 are reported here to investigate the genes responsible for interkingdom interactions, secondary metabolite production, and microbial electrogenesis.
Collapse
|
181
|
Bauer S, Alles M, Arpa-Sancet MP, Ralston E, Swain GW, Aldred N, Clare AS, Finlay JA, Callow ME, Callow JA, Rosenhahn A. Resistance of Amphiphilic Polysaccharides against Marine Fouling Organisms. Biomacromolecules 2016; 17:897-904. [DOI: 10.1021/acs.biomac.5b01590] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Bauer
- Analytical
Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
- Institute
of Functional Interfaces, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Applied
Physical Chemistry, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - M. Alles
- Institute
of Functional Interfaces, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Applied
Physical Chemistry, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - M. P. Arpa-Sancet
- Institute
of Functional Interfaces, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Applied
Physical Chemistry, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - E. Ralston
- Center
for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida, United States
| | - G. W. Swain
- Center
for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida, United States
| | - N. Aldred
- School
of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - A. S. Clare
- School
of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - J. A. Finlay
- School
of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- School
of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - M. E. Callow
- School
of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - J. A. Callow
- School
of
Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - A. Rosenhahn
- Analytical
Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
- Institute
of Functional Interfaces, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
- Applied
Physical Chemistry, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
182
|
Bosch TCG, Miller DJ. Major Events in the Evolution of Planet Earth: Some Origin Stories. THE HOLOBIONT IMPERATIVE 2016. [PMCID: PMC7121852 DOI: 10.1007/978-3-7091-1896-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With billions of years of evolution before the appearance of animals, prokaryotes shaped and continue to shape both the Earth’s biogeochemical landscape and the setting for animal existence (Fig. 2.1) (Knoll 2003).
Collapse
|
183
|
Essock-Burns T, Gohad NV, Orihuela B, Mount AS, Spillmann CM, Wahl KJ, Rittschof D. Barnacle biology before, during and after settlement and metamorphosis: a study of the interface. J Exp Biol 2016; 220:194-207. [DOI: 10.1242/jeb.145094] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/18/2016] [Indexed: 12/24/2022]
Abstract
Mobile barnacle cypris larvae settle and metamorphose, transitioning to sessile juveniles with morphology and growth similar to adults. Because biofilms exist on immersed surfaces on which they attach, barnacles must interact with bacteria during initial attachment and subsequent growth. The objective of this study was to characterize the developing interface of the barnacle and substratum during this key developmental transition to inform potential mechanisms that promote attachment. The interface was characterized using confocal microscopy and fluorescent dyes to identify morphological and chemical changes in the interface and the status of bacteria present as a function of barnacle developmental stage. Staining revealed patchy material containing proteins and nucleic acids, reactive oxygen species amidst developing cuticle, and changes in bacteria viability at the developing interface. We found that as barnacles metamorphose from the cyprid to juvenile stage, proteinaceous materials with the appearance of coagulated liquid were released into and remained at the interface. The patchy material was associated with cuticle expansion and separation during later stages of metamorphosis, and spanned the entire vertical interface in the gap between the juvenile base and the substratum. It stained positive for proteins, including phosphoprotein, as well as nucleic acids. Regions of the developing cuticle and the patchy material itself stained for reactive oxygen species. Bacteria were absent until the cyprid was firmly attached, but populations died as barnacle development progressed. The oxidative environment may contribute to the cytotoxicity observed for bacteria and has potential for oxidative crosslinking of cuticle and proteinaceous materials at the interface.
Collapse
Affiliation(s)
- Tara Essock-Burns
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui St Honolulu, Hawaii 96813, USA
| | - Neeraj V. Gohad
- Okeanos Research Group, Department of Biological Sciences, 132 Long Hall, Clemson University, Clemson, South Carolina 29634, USA
| | - Beatriz Orihuela
- Duke University Marine Laboratory, Marine Science and Conservation, 135 Duke Marine Lab Road Beaufort, North Carolina 28516, USA
| | - Andrew S. Mount
- Duke University Marine Laboratory, Marine Science and Conservation, 135 Duke Marine Lab Road Beaufort, North Carolina 28516, USA
| | - Christopher M. Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA
| | - Kathryn J. Wahl
- Chemistry Division, Naval Research Laboratory, Washington, DC 20375, USA
| | - Daniel Rittschof
- Duke University Marine Laboratory, Marine Science and Conservation, 135 Duke Marine Lab Road Beaufort, North Carolina 28516, USA
| |
Collapse
|
184
|
Gambino M, Cappitelli F. Mini-review: Biofilm responses to oxidative stress. BIOFOULING 2016; 32:167-178. [PMID: 26901587 DOI: 10.1080/08927014.2015.1134515] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.
Collapse
Affiliation(s)
- Michela Gambino
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| | - Francesca Cappitelli
- a Department of Food, Environmental and Nutrition Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
185
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
186
|
Draft Genome Sequences of Six Pseudoalteromonas Strains, P1-7a, P1-9, P1-13-1a, P1-16-1b, P1-25, and P1-26, Which Induce Larval Settlement and Metamorphosis in Hydractinia echinata. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01477-15. [PMID: 26679587 PMCID: PMC4683232 DOI: 10.1128/genomea.01477-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To gain a broader understanding of the importance of a surface-associated lifestyle and morphogenic capability, we have assembled and annotated the genome sequences of Pseudoalteromonas strains P1-7a, P1-9, P1-13-1a, P1-16-1b, P1-25, and P1-26, isolated from Hydractinia echinata. These genomes will allow detailed studies on bacterial factors mediating interkingdom communication.
Collapse
|
187
|
Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 2015; 16:611-22. [PMID: 26370902 DOI: 10.1038/nrg3982] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.
Collapse
|
188
|
Gulmann LK, Beaulieu SE, Shank TM, Ding K, Seyfried WE, Sievert SM. Bacterial diversity and successional patterns during biofilm formation on freshly exposed basalt surfaces at diffuse-flow deep-sea vents. Front Microbiol 2015; 6:901. [PMID: 26441852 PMCID: PMC4564720 DOI: 10.3389/fmicb.2015.00901] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Many deep-sea hydrothermal vent systems are regularly impacted by volcanic eruptions, leaving fresh basalt where abundant animal and microbial communities once thrived. After an eruption, microbial biofilms are often the first visible evidence of biotic re-colonization. The present study is the first to investigate microbial colonization of newly exposed basalt surfaces in the context of vent fluid chemistry over an extended period of time (4-293 days) by deploying basalt blocks within an established diffuse-flow vent at the 9°50' N vent field on the East Pacific Rise. Additionally, samples obtained after a recent eruption at the same vent field allowed for comparison between experimental results and those from natural microbial re-colonization. Over 9 months, the community changed from being composed almost exclusively of Epsilonproteobacteria to a more diverse assemblage, corresponding with a potential expansion of metabolic capabilities. The process of biofilm formation appears to generate similar surface-associated communities within and across sites by selecting for a subset of fluid-associated microbes, via species sorting. Furthermore, the high incidence of shared operational taxonomic units over time and across different vent sites suggests that the microbial communities colonizing new surfaces at diffuse-flow vent sites might follow a predictable successional pattern.
Collapse
Affiliation(s)
- Lara K Gulmann
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Stace E Beaulieu
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Timothy M Shank
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Kang Ding
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - William E Seyfried
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - Stefan M Sievert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| |
Collapse
|
189
|
Zeng Z, Guo XP, Li B, Wang P, Cai X, Tian X, Zhang S, Yang JL, Wang X. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Appl Microbiol Biotechnol 2015; 99:10127-39. [PMID: 26264135 PMCID: PMC4643108 DOI: 10.1007/s00253-015-6865-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 02/04/2023]
Abstract
Pseudoalteromonas is widespread in various marine environments, and most strains can affect invertebrate larval settlement and metamorphosis by forming biofilms. However, the impact and the molecular basis of population diversification occurring in Pseudoalteromonas biofilms are poorly understood. Here, we show that morphological diversification is prevalent in Pseudoalteromonas species during biofilm formation. Two types of genetic variants, wrinkled (frequency of 12 ± 5 %) and translucent (frequency of 5 ± 3 %), were found in Pseudoalteromonas lipolytica biofilms. The inducing activities of biofilms formed by the two variants on larval settlement and metamorphosis of the mussel Mytilus coruscus were significantly decreased, suggesting strong antifouling activities. Using whole-genome re-sequencing combined with genetic manipulation, two genes were identified to be responsible for the morphology alternations. A nonsense mutation in AT00_08765 led to a wrinkled morphology due to the overproduction of cellulose, whereas a point mutation in AT00_17125 led to a translucent morphology via a reduction in capsular polysaccharide production. Taken together, the results suggest that the microbial behavior on larval settlement and metamorphosis in marine environment could be affected by the self-generated variants generated during the formation of marine biofilms, thereby rendering potential application in biocontrol of marine biofouling.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xingsheng Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Si Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | | | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.
| |
Collapse
|
190
|
Mortzfeld BM, Urbanski S, Reitzel AM, Künzel S, Technau U, Fraune S. Response of bacterial colonization inNematostella vectensisto development, environment and biogeography. Environ Microbiol 2015; 18:1764-81. [DOI: 10.1111/1462-2920.12926] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Benedikt M. Mortzfeld
- Zoological Institute; Christian-Albrechts University Kiel; Olshausenstrasse 40 Kiel 24098 Germany
| | - Szymon Urbanski
- Zoological Institute; Christian-Albrechts University Kiel; Olshausenstrasse 40 Kiel 24098 Germany
| | - Adam M. Reitzel
- Department of Biological Sciences; The University of North Carolina at Charlotte; Woodward Hall 245 Charlotte NC 28223 USA
| | - Sven Künzel
- Max-Planck Institute for Evolutionary Biology; Plön 24306 Germany
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Centre for Organismal Systems Biology, Faculty of Life Sciences; University of Vienna; Althanstrasse 14 Wien 1090 Austria
| | - Sebastian Fraune
- Zoological Institute; Christian-Albrechts University Kiel; Olshausenstrasse 40 Kiel 24098 Germany
| |
Collapse
|
191
|
Abstract
This Viewpoint article provides a brief and selective summary of research on the chemical ecology underlying symbioses between bacteria and animals. Animals engage in multiple highly specialized interactions with bacteria that reflect their long coevolutionary history. The article focuses on a few illustrative but hardly exhaustive examples in which bacterially produced small molecules initiate a developmental step with important implications for the evolution of animals, provide signals for the maturation of mammalian immune systems, and furnish chemical defenses against microbial pathogens.
Collapse
Affiliation(s)
- Alexandra M Cantley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
192
|
Draft Genome Sequence of Shewanella sp. ECSMB14102, a Mussel Recruitment-Promoting Bacterium Isolated from the East China Sea. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00670-15. [PMID: 26089429 PMCID: PMC4472906 DOI: 10.1128/genomea.00670-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shewanella sp. ECSMB14102, which promotes recruitment of the mussel Mytilus coruscus, was isolated from natural biofilms formed on glass slides submerged in the East China Sea. Here, we present the draft genome sequence, which comprises 4.41 Mb with a G+C content of 52.2%. The genomic information in this strain will contribute to deepening our understanding of bacteria-animal interaction.
Collapse
|
193
|
Lane A, Campanati C, Dupont S, Thiyagarajan V. Trans-generational responses to low pH depend on parental gender in a calcifying tubeworm. Sci Rep 2015; 5:10847. [PMID: 26039184 PMCID: PMC4454138 DOI: 10.1038/srep10847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/24/2015] [Indexed: 11/25/2022] Open
Abstract
The uptake of anthropogenic CO2 emissions by oceans has started decreasing pH and carbonate ion concentrations of seawater, a process called ocean acidification (OA). Occurring over centuries and many generations, evolutionary adaptation and epigenetic transfer will change species responses to OA over time. Trans-generational responses, via genetic selection or trans-generational phenotypic plasticity, differ depending on species and exposure time as well as differences between individuals such as gender. Males and females differ in reproductive investment and egg producing females may have less energy available for OA stress responses. By crossing eggs and sperm from the calcareous tubeworm Hydroides elegans (Haswell, 1883) raised in ambient (8.1) and low (7.8) pH environments, we observed that paternal and maternal low pH experience had opposite and additive effects on offspring. For example, when compared to offspring with both parents from ambient pH, growth rates of offspring of fathers or mothers raised in low pH were higher or lower respectively, but there was no difference when both parents were from low pH. Gender differences may result in different selection pressures for each gender. This may result in overestimates of species tolerance and missed opportunities of potentially insightful comparisons between individuals of the same species.
Collapse
Affiliation(s)
- Ackley Lane
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Camilla Campanati
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Sam Dupont
- Department of Biological and Environmental Sciences, The Sven Lovén Centre for Marine Sciences - Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
194
|
McFall-Ngai MJ. Giving microbes their due – animal life in a microbially dominant world. J Exp Biol 2015; 218:1968-73. [DOI: 10.1242/jeb.115121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ABSTRACT
The new technology of next-generation sequencing is changing our perceptions of the form and function of the biological world. The emerging data reveal an array of microbes that is more vast and more central to all biological processes than previously appreciated. Further, evidence is accumulating that the alliances of microbes with one another and with constituents of the macrobiological world are critical for the health of the biosphere. This contribution summarizes the basic arguments as to why, when considering the biochemical adaptations of animals, we should integrate the roles of their microbial partners.
Collapse
|
195
|
Sneed JM, Ritson-Williams R, Paul VJ. Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME JOURNAL 2015; 9:2527-36. [PMID: 25918832 DOI: 10.1038/ismej.2015.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 02/01/2023]
Abstract
Crustose coralline algae (CCA) are important components of many marine ecosystems. They aid in reef accretion and stabilization, create habitat for other organisms, contribute to carbon sequestration and are important settlement substrata for a number of marine invertebrates. Despite their ecological importance, little is known about the bacterial communities associated with CCA or whether differences in bacterial assemblages may have ecological implications. This study examined the bacterial communities on four different species of CCA collected in Belize using bacterial tag-encoded FLX amplicon pyrosequencing of the V1-V3 region of the 16S rDNA. CCA were dominated by Alphaproteobacteria, Gammaproteobacteria and Actinomycetes. At the operational taxonomic unit (OTU) level, each CCA species had a unique bacterial community that was significantly different from all other CCA species. Hydrolithon boergesenii and Titanoderma prototypum, CCA species that facilitate larval settlement in multiple corals, had higher abundances of OTUs related to bacteria that inhibit the growth and/or biofilm formation of coral pathogens. Fewer coral larvae settle on the surfaces of Paragoniolithon solubile and Porolithon pachydermum. These CCA species had higher abundances of OTUs related to known coral pathogens and cyanobacteria. Coral larvae may be able to use the observed differences in bacterial community composition on CCA species to assess the suitability of these substrata for settlement and selectively settle on CCA species that contain beneficial bacteria.
Collapse
Affiliation(s)
| | - Raphael Ritson-Williams
- Smithsonian Marine Station at Fort Pierce, Ft. Pierce, FL, USA.,Biology Department, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, Ft. Pierce, FL, USA
| |
Collapse
|
196
|
Sharp KH, Sneed JM, Ritchie KB, Mcdaniel L, Paul VJ. Induction of Larval Settlement in the Reef Coral Porites astreoides by a Cultivated Marine Roseobacter Strain. THE BIOLOGICAL BULLETIN 2015; 228:98-107. [PMID: 25920713 DOI: 10.1086/bblv228n2p98] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces.
Collapse
Affiliation(s)
- K H Sharp
- Eckerd College, 4200 54th Avenue South, St. Petersburg, Florida 33711;
| | - J M Sneed
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949
| | - K B Ritchie
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, Florida 34236; and
| | - L Mcdaniel
- University of South Florida College of Marine Science, 140 7th Avenue S., St. Petersburg, Florida 33701
| | - V J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949
| |
Collapse
|
197
|
Ditsche P, Wainwright DK, Summers AP. Attachment to challenging substrates--fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). ACTA ACUST UNITED AC 2015; 217:2548-54. [PMID: 25031458 DOI: 10.1242/jeb.100149] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Northern clingfish use a ventral suction disc to stick to rough substrates in the intertidal zone. Bacteria, algae and invertebrates grow on these surfaces (fouling) and change the surface properties of the primary substrate, and therefore the attachment conditions for benthic organisms. In this study, we investigate the influence of fouling and surface roughness on the adhesive strength of northern clingfish, Gobiesox maeandricus. We measured clingfish tenacity on unfouled and fouled substrates over four surface roughnesses. We exposed surfaces for 6 weeks in the Pacific Ocean, until they were covered with periphyton. Clingfish tenacity is equivalent on both fouled and unfouled smooth substrates; however, tenacity on fouled rough surfaces is less compared with tenacity on unfouled ones. We hypothesize that parts of biofilm may act as a lubricant and decrease friction of the disc margin, thereby making disc margins slip inwards and fail at lower tenacities. Nevertheless, even on fouled surfaces the adhesive forces are approximately 150 times the body weight of the fish. To identify the upper threshold of surface roughness the fish can cling to, we tested seven unfouled substrates of increasing surface roughness. The threshold roughness at which northern clingfish failed increased with specimen size. We hypothesize that because of the elastic properties of the disc margin, a larger disc can adapt to larger surface irregularities. The largest specimens (length 10-12 cm) were able to cling to surfaces with 2-4 mm grain size. The fish can attach to surfaces with roughness between 2 and 9% of the suction disc width.
Collapse
Affiliation(s)
- Petra Ditsche
- University of Washington, Friday Harbor Laboratories, WA 98250, USA Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, 24098 Kiel, Germany
| | - Dylan K Wainwright
- University of Washington, Friday Harbor Laboratories, WA 98250, USA Harvard University, Cambridge, MA 02138, USA
| | - Adam P Summers
- University of Washington, Friday Harbor Laboratories, WA 98250, USA
| |
Collapse
|
198
|
Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol Adv 2015; 33:343-57. [PMID: 25749324 DOI: 10.1016/j.biotechadv.2015.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/17/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022]
Abstract
Biofouling represents a major economic issue regarding maritime industries and also raise important environmental concern. International legislation is restricting the use of biocidal-based antifouling (AF) coatings, and increasing efforts have been applied in the search for environmentally friendly AF agents. A wide diversity of natural AF compounds has been described for their ability to inhibit the settlement of macrofouling species. However poor information on the specific AF targets was available before the application of different molecular approaches both on invertebrate settlement strategies and bioadhesive characterization and also on the mechanistic effects of natural AF compounds. This review focuses on the relevant information about the main invertebrate macrofouler species settlement and bioadhesive mechanisms, which might help in the understanding of the reported effects, attributed to effective and non-toxic natural AF compounds towards this macrofouling species. It also aims to contribute to the elucidation of promising biotechnological strategies in the development of natural effective environmentally friendly AF paints.
Collapse
|
199
|
Whalan S, Abdul Wahab MA, Sprungala S, Poole AJ, de Nys R. Larval settlement: the role of surface topography for sessile coral reef invertebrates. PLoS One 2015; 10:e0117675. [PMID: 25671562 PMCID: PMC4324781 DOI: 10.1371/journal.pone.0117675] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 11/16/2014] [Indexed: 01/30/2023] Open
Abstract
For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.
Collapse
Affiliation(s)
- Steve Whalan
- Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, PO Box 157, Lismore, 2480, New South Wales, Australia
| | - Muhammad A. Abdul Wahab
- MACRO—the Centre for Macroalgal Resources and Biotechnology, James Cook University, Townsville, 4811, Queensland, Australia
- Australian Institute of Marine Science, PMB 3 Townsville, Queensland, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, 4811, Queensland, Australia
| | - Susanne Sprungala
- ARC Centre for Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, Department of Molecular Sciences, James Cook University, Townsville, 4811, Queensland, Australia
| | - Andrew J. Poole
- CSIRO Manufacturing Flagship, Pigdons Road, Waurn Ponds, 3216, Victoria, Australia
| | - Rocky de Nys
- MACRO—the Centre for Macroalgal Resources and Biotechnology, James Cook University, Townsville, 4811, Queensland, Australia
| |
Collapse
|
200
|
Microbiology: Here's looking at you, squid. Nature 2015; 517:262-4. [PMID: 25592518 DOI: 10.1038/517262a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|