151
|
Xue JH, Chen GD, Hao F, Chen H, Fang Z, Chen FF, Pang B, Yang QL, Wei X, Fan QQ, Xin C, Zhao J, Deng X, Wang BA, Zhang XJ, Chu Y, Tang H, Yin H, Ma W, Chen L, Ding J, Weinhold E, Kohli RM, Liu W, Zhu ZJ, Huang K, Tang H, Xu GL. A vitamin-C-derived DNA modification catalysed by an algal TET homologue. Nature 2019; 569:581-585. [PMID: 31043749 PMCID: PMC6628258 DOI: 10.1038/s41586-019-1160-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 04/02/2019] [Indexed: 12/31/2022]
Abstract
Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.
Collapse
Affiliation(s)
- Jian-Huang Xue
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guo-Dong Chen
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fuhua Hao
- Chinese Academy of Sciences Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hui Chen
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Zhaoyuan Fang
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fang-Fang Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bo Pang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Lin Yang
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinben Wei
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang-Qiang Fan
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Changpeng Xin
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-German Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiaohong Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bang-An Wang
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Jie Zhang
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yueying Chu
- Chinese Academy of Sciences Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hui Tang
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huiru Tang
- Chinese Academy of Sciences Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Centre for Genetics and Development, Fudan University, Shanghai, China.
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
152
|
Abstract
Over the past century, the notion that vitamin C can be used to treat cancer has generated much controversy. However, new knowledge regarding the pharmacokinetic properties of vitamin C and recent high-profile preclinical studies have revived interest in the utilization of high-dose vitamin C for cancer treatment. Studies have shown that pharmacological vitamin C targets many of the mechanisms that cancer cells utilize for their survival and growth. In this Opinion article, we discuss how vitamin C can target three vulnerabilities many cancer cells share: redox imbalance, epigenetic reprogramming and oxygen-sensing regulation. Although the mechanisms and predictive biomarkers that we discuss need to be validated in well-controlled clinical trials, these new discoveries regarding the anticancer properties of vitamin C are promising to help identify patient populations that may benefit the most from high-dose vitamin C therapy, developing effective combination strategies and improving the overall design of future vitamin C clinical trials for various types of cancer.
Collapse
Affiliation(s)
- Bryan Ngo
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin M Van Riper
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jihye Yun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
153
|
The Effect of Vitamin C (Ascorbic Acid) in the Treatment of Patients with Cancer: A Systematic Review. Nutrients 2019; 11:nu11050977. [PMID: 31035414 PMCID: PMC6566697 DOI: 10.3390/nu11050977] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Many cancer patients on intensive chemotherapy lack vitamin C. Vitamin C stimulates the production and activation of immune cells, so perhaps supplementation could be used to improve the immunity in those patients. This review assesses the effectiveness and safety of vitamin C administration in cancer. The PubMed and EMBASE databases were searched and all study designs except for phase I studies, and case reports were included in this review. A total of 19 trials were included. In only 4 trials randomization was used to determine if patients received vitamin C or a placebo. The result of this review does not prove that there is a clinically relevant positive effect of vitamin C supplementation in cancer patients in general on the overall survival, clinical status, quality of life (QOL) and performance status (PS), since the quality of the studies published is low. Interventions and patient groups are very diverse, hence an effect in some patient groups is possible. There seems to be a better effect with intravenous than oral administration. Nevertheless, treatment with vitamin C is safe with minimal side effects. Thereby, we think it is safe to examine the effects of vitamin C on specific groups of patients in a randomized controlled setting.
Collapse
|
154
|
Hemilä H, Chalker E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. Nutrients 2019; 11:E708. [PMID: 30934660 PMCID: PMC6521194 DOI: 10.3390/nu11040708] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
A number of controlled trials have previously found that in some contexts, vitamin C can have beneficial effects on blood pressure, infections, bronchoconstriction, atrial fibrillation, and acute kidney injury. However, the practical significance of these effects is not clear. The purpose of this meta-analysis was to evaluate whether vitamin C has an effect on the practical outcomes: length of stay in the intensive care unit (ICU) and duration of mechanical ventilation. We identified 18 relevant controlled trials with a total of 2004 patients, 13 of which investigated patients undergoing elective cardiac surgery. We carried out the meta-analysis using the inverse variance, fixed effect options, using the ratio of means scale. In 12 trials with 1766 patients, vitamin C reduced the length of ICU stay on average by 7.8% (95% CI: 4.2% to 11.2%; p = 0.00003). In six trials, orally administered vitamin C in doses of 1⁻3 g/day (weighted mean 2.0 g/day) reduced the length of ICU stay by 8.6% (p = 0.003). In three trials in which patients needed mechanical ventilation for over 24 hours, vitamin C shortened the duration of mechanical ventilation by 18.2% (95% CI 7.7% to 27%; p = 0.001). Given the insignificant cost of vitamin C, even an 8% reduction in ICU stay is worth exploring. The effects of vitamin C on ICU patients should be investigated in more detail.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, POB 41, FI-00014 Helsinki, Finland.
| | - Elizabeth Chalker
- School of Public Health, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
155
|
Sant DW, Camarena V, Mustafi S, Li Y, Wilkes Z, Van Booven D, Wen R, Wang G. Ascorbate Suppresses VEGF Expression in Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 2019; 59:3608-3618. [PMID: 30025088 PMCID: PMC6049987 DOI: 10.1167/iovs.18-24101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the impact of ascorbate, via DNA hydroxymethylation, on VEGF expression in retinal pigment epithelial (RPE) cells. Methods Dot-blot and hydroxymethylated DNA immunoprecipitation sequencing were applied to evaluate the impact of ascorbate on DNA hydroxymethylation in ARPE-19 cells. RNA sequencing (RNA-seq) was carried out to analyze the transcriptome. Quantitative RT-PCR and ELISA were conducted to examine the transcription and secretion of VEGF from cultured cells. Primary human fetal RPE cells and RPE-J cells were used to verify the effect of ascorbate on VEGF expression. ELISA was used to measure VEGF in the vitreous humor of Gulo−/− mice, which, like humans, cannot synthesize ascorbate de novo. Results Treatment with ascorbate (50 μM) promoted 5-hydroxymethycytosine (5hmC) generation and changed the genome-wide profiles of 5hmC in ARPE-19 cells. Ascorbate also caused a dramatic shift in the transcriptome—3186 differential transcripts, of which 69.3% are correlated with altered 5hmC in promoters or gene bodies. One of the most downregulated genes was VEGFA, which encodes the VEGF protein. The suppression of VEGF by ascorbate is independent of hypoxia-inducible factor 1-alpha (HIF-1α) but correlates with increased 5hmC in the gene body. The decreased transcription and secretion of VEGF by ascorbate were verified in primary human fetal RPE cells. Furthermore, adding ascorbate in the diet for Gulo−/− mice resulted in decreased levels of VEGF in the RPE/choroid and vitreous humor. Conclusions Ascorbate inhibits VEGF expression in RPE cells likely via DNA hydroxymethylation. Thus, ascorbate could be implicated in the prevention or treatment of diseases such as age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- David W Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Yiwen Li
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Zachary Wilkes
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States.,Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, United States.,Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
156
|
Stefan-Lifshitz M, Karakose E, Cui L, Ettela A, Yi Z, Zhang W, Tomer Y. Epigenetic modulation of β cells by interferon-α via PNPT1/mir-26a/TET2 triggers autoimmune diabetes. JCI Insight 2019; 4:126663. [PMID: 30721151 DOI: 10.1172/jci.insight.126663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of pancreatic β cells. Mounting evidence supports a central role for β cell alterations in triggering the activation of self-reactive T cells in T1D. However, the early deleterious events that occur in β cells, underpinning islet autoimmunity, are not known. We hypothesized that epigenetic modifications induced in β cells by inflammatory mediators play a key role in initiating the autoimmune response. We analyzed DNA methylation (DNAm) patterns and gene expression in human islets exposed to IFN-α, a cytokine associated with T1D development. We found that IFN-α triggers DNA demethylation and increases expression of genes controlling inflammatory and immune pathways. We then demonstrated that DNA demethylation was caused by upregulation of the exoribonuclease, PNPase old-35 (PNPT1), which caused degradation of miR-26a. This in turn promoted the upregulation of ten-eleven translocation 2 (TET2) enzyme and increased 5-hydroxymethylcytosine levels in human islets and pancreatic β cells. Moreover, we showed that specific IFN-α expression in the β cells of IFNα-INS1CreERT2 transgenic mice led to development of T1D that was preceded by increased islet DNA hydroxymethylation through a PNPT1/TET2-dependent mechanism. Our results suggest a new mechanism through which IFN-α regulates DNAm in β cells, leading to changes in expression of genes in inflammatory and immune pathways that can initiate islet autoimmunity in T1D.
Collapse
Affiliation(s)
- Mihaela Stefan-Lifshitz
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Lingguang Cui
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Abora Ettela
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Zhengzi Yi
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yaron Tomer
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
157
|
Puccini A, Loupakis F, Stintzing S, Cao S, Battaglin F, Togunaka R, Naseem M, Berger MD, Soni S, Zhang W, Mancao C, Salhia B, Mumenthaler SM, Weisenberger DJ, Liang G, Cremolini C, Heinemann V, Falcone A, Millstein J, Lenz HJ. Impact of polymorphisms within genes involved in regulating DNA methylation in patients with metastatic colorectal cancer enrolled in three independent, randomised, open-label clinical trials: a meta-analysis from TRIBE, MAVERICC and FIRE-3. Eur J Cancer 2019; 111:138-147. [PMID: 30852420 DOI: 10.1016/j.ejca.2019.01.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG island DNA hypermethylation and global DNA hypomethylation are hallmark characteristics of colorectal cancer (CRC). Therefore, we aim to explore the effect of genetic variations within the genes that regulate the DNA methylation and demethylation pathways on outcomes in patients with metastatic CRC (mCRC) treated with first-line therapy and enrolled in three independent, randomised, open-label clinical trials. METHODS A total of 884 patients with mCRC enrolled in TRIBE, MAVERICC and FIRE-3 trials were included. Single-nucleotide polymorphisms (SNPs) within genes involved in DNA methylation and demethylation pathways were analysed. The prognostic value of each SNP across all treatment arms was quantified using the inverse-variance-weighted effect size, a meta-analysis approach implemented in the METASOFT software. RESULTS In the meta-analysis, DNMT3A rs11681717 was significantly associated with overall survival (hazard ratio = 1.26; 95% confidence interval [CI] 1.08-1.46; P = 0.002; false discovery rate [FDR] = 0.016), accounting for seven tests in the DNA methylation pathway. In addition, there was suggestive evidence of association for ten-eleven translocation (TET) genes variance with tumour response (TET1 rs3814177, odds ratio [OR] = 0.76, 95% CI 0.59-0.97, P = 0.025, FDR = 0.087; TET3 rs7560668, OR = 1.44; 95% CI 1.10-1.89; P = 0.009; FDR = 0.062). CONCLUSIONS We showed that polymorphisms within the genes responsible for the DNA methylation and demethylation machineries are correlated with outcomes in patients with mCRC who were enrolled in three independent, randomised, open-label, phase II/III clinical trials. In addition, we demonstrated the feasibility of a meta-analysis approach to identify stronger and more convincing association between gene polymorphisms and outcome, potentially leading the way to a new method of analysis for similar data set.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fotios Loupakis
- Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sebastian Stintzing
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Clinical and Experimental Oncology Department, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Ryuma Togunaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christoph Mancao
- Oncology Biomarker Development, Genentech Inc., Basel, Switzerland
| | - Bodour Salhia
- Department of Translational Genomics, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | | | - Volker Heinemann
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Medical Oncology, University of Pisa, Pisa, Italy
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
158
|
Baschieri A, Amorati R, Benelli T, Mazzocchetti L, D'Angelo E, Valgimigli L. Enhanced Antioxidant Activity under Biomimetic Settings of Ascorbic Acid Included in Halloysite Nanotubes. Antioxidants (Basel) 2019; 8:E30. [PMID: 30691231 PMCID: PMC6406349 DOI: 10.3390/antiox8020030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Antioxidant activity of native vitamin C (ascorbic acid, AH₂) is hampered by instability in solution. Selective loading of AH₂ into the inner lumen of natural halloysite nanotubes (HNT) yields a composite nanoantioxidant (HNT/AH₂), which was characterized and investigated for its reactivity with the persistent 1,1-diphenyl-2-picrylhydrazyl (DPPH•) radical and with transient peroxyl radicals in the inhibited autoxidation of organic substrates, both in organic solution (acetonitrile) and in buffered (pH 7.4) water in comparison with native AH₂. HNT/AH₂ showed excellent antioxidant performance being more effective than native ascorbic acid by 131% in acetonitrile and 290% (three-fold) in aqueous solution, under identical settings. Reaction with peroxyl radicals has a rate constant of 1.4 × 10⁶ M-1 s-1 and 5.1 × 10⁴ M-1 s-1, respectively, in buffered water (pH 7.4) and acetonitrile, at 30 °C. Results offer physical understanding of the factors governing HNT/AH₂ reactivity. Improved performance of HNT/AH₂ is unprecedented among forms of stabilized ascorbic acid and its relevance is discussed on kinetic grounds.
Collapse
Affiliation(s)
- Andrea Baschieri
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy.
| | - Riccardo Amorati
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy.
| | - Tiziana Benelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Laura Mazzocchetti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Emanuele D'Angelo
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Luca Valgimigli
- Department of Chemistry "G. Ciamician", University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy.
| |
Collapse
|
159
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
160
|
Decreased Nuclear Ascorbate Accumulation Accompanied with Altered Genomic Methylation Pattern in Fibroblasts from Arterial Tortuosity Syndrome Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8156592. [PMID: 30800210 PMCID: PMC6360052 DOI: 10.1155/2019/8156592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
Abstract
Ascorbate requiring Fe2+/2-oxoglutarate-dependent dioxygenases located in the nucleoplasm have been shown to participate in epigenetic regulation of gene expression via histone and DNA demethylation. Transport of dehydroascorbic acid is impaired in the endomembranes of fibroblasts from arterial tortuosity syndrome (ATS) patients, due to the mutation in the gene coding for glucose transporter GLUT10. We hypothesized that altered nuclear ascorbate concentration might be present in ATS fibroblasts, affecting dioxygenase activity and DNA demethylation. Therefore, our aim was to characterize the subcellular distribution of vitamin C, the global and site-specific changes in 5-methylcytosine and 5-hydroxymethylcytosine levels, and the effect of ascorbate supplementation in control and ATS fibroblast cultures. Diminished nuclear accumulation of ascorbate was found in ATS fibroblasts upon ascorbate or dehydroascorbic acid addition. Analyzing DNA samples of cultured fibroblasts from controls and ATS patients, a lower global 5-hydroxymethylcytosine level was found in ATS fibroblasts, which could not be significantly modified by ascorbate addition. Investigation of the (hydroxy)methylation status of specific regions in six candidate genes related to ascorbate metabolism and function showed that ascorbate addition could stimulate hydroxymethylation and active DNA demethylation at the PPAR-γ gene region in control fibroblasts only. The altered DNA hydroxymethylation patterns in patient cells both at the global level and at specific gene regions accompanied with decreased nuclear accumulation of ascorbate suggests the epigenetic role of vitamin C in the pathomechanism of ATS. The present findings represent the first example for the role of vitamin C transport in epigenetic regulation suggesting that ATS is a compartmentalization disease.
Collapse
|
161
|
Effect of in ovo feeding of vitamin C on antioxidation and immune function of broiler chickens. Animal 2019; 13:1927-1933. [DOI: 10.1017/s1751731118003531] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
162
|
Ashor AW, Brown R, Keenan PD, Willis ND, Siervo M, Mathers JC. Limited evidence for a beneficial effect of vitamin C supplementation on biomarkers of cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. Nutr Res 2019; 61:1-12. [DOI: 10.1016/j.nutres.2018.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
|
163
|
James P, Sajjadi S, Tomar AS, Saffari A, Fall CHD, Prentice AM, Shrestha S, Issarapu P, Yadav DK, Kaur L, Lillycrop K, Silver M, Chandak GR. Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism. Int J Epidemiol 2018; 47:1910-1937. [PMID: 30137462 PMCID: PMC6280938 DOI: 10.1093/ije/dyy153] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background Mounting evidence suggests that nutritional exposures during pregnancy influence the fetal epigenome, and that these epigenetic changes can persist postnatally, with implications for disease risk across the life course. Methods We review human intergenerational studies using a three-part search strategy. Search 1 investigates associations between preconceptional or pregnancy nutritional exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search 2 considers associations between offspring DNA methylation at genes found in the first search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Finally, we compile all candidate genes and regions of interest identified in the searches and describe their genomic locations, annotations and coverage on the Illumina Infinium Methylation beadchip arrays. Results We summarize findings from the 34 studies found in the first search, the 31 studies found in the second search and the eight studies found in the third search. We provide details of all regions of interest within 45 genes captured by this review. Conclusions Many studies have investigated imprinted genes as priority loci, but with the adoption of microarray-based platforms other candidate genes and gene classes are now emerging. Despite a wealth of information, the current literature is characterized by heterogeneous exposures and outcomes, and mostly comprise observational associations that are frequently underpowered. The synthesis of current knowledge provided by this review identifies research needs on the pathway to developing possible early life interventions to optimize lifelong health.
Collapse
Affiliation(s)
- Philip James
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Sara Sajjadi
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ashutosh Singh Tomar
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ayden Saffari
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Caroline H D Fall
- MRC Life course Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Smeeta Shrestha
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Prachand Issarapu
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Dilip Kumar Yadav
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Lovejeet Kaur
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Karen Lillycrop
- Research Centre for Biological Sciences, Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Matt Silver
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
164
|
Abstract
Epigenetics is the study of heritable mechanisms that can modify gene activity and phenotype without modifying the genetic code. The basis for the concept of epigenetics originated more than 2,000 yr ago as a theory to explain organismal development. However, the definition of epigenetics continues to evolve as we identify more of the components that make up the epigenome and dissect the complex manner by which they regulate and are regulated by cellular functions. A substantial and growing body of research shows that nutrition plays a significant role in regulating the epigenome. Here, we critically assess this diverse body of evidence elucidating the role of nutrition in modulating the epigenome and summarize the impact such changes have on molecular and physiological outcomes with regards to human health.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Departments of Genetics and Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina; and Departments of Nutrition and Pediatrics, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Steven H Zeisel
- Departments of Genetics and Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina; and Departments of Nutrition and Pediatrics, Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| |
Collapse
|
165
|
Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans 2018; 46:1147-1159. [PMID: 30301842 PMCID: PMC6195639 DOI: 10.1042/bst20180169] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Vitamin C (ascorbate) is maintained at high levels in most immune cells and can affect many aspects of the immune response. Intracellular levels generally respond to variations in plasma ascorbate availability, and a combination of inadequate intake and increased turnover during severe stress can result in low plasma ascorbate status. Intracellular ascorbate supports essential functions and, in particular, acts as an enzyme cofactor for Fe- or Cu-containing oxygenases. Newly discovered enzymes in this family regulate cell metabolism and epigenetics, and dysregulation of their activity can affect cell phenotype, growth and survival pathways, and stem cell phenotype. This brief overview details some of the recent advances in our understanding of how ascorbate availability can affect the hydroxylases controlling the hypoxic response and the DNA and histone demethylases. These processes play important roles in the regulation of the immune system, altering cell survival pathways, metabolism and functions.
Collapse
|
166
|
Gan L, Fan H, Nie W, Guo Y. Ascorbic acid synthesis and transportation capacity in old laying hens and the effects of dietary supplementation with ascorbic acid. J Anim Sci Biotechnol 2018; 9:71. [PMID: 30305897 PMCID: PMC6166276 DOI: 10.1186/s40104-018-0284-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background Laying hens over 75 weeks of age commonly show great declines in immunity and production performance. It is unclear whether these declines can be relieved by supplementing with ascorbic acid (AA) in feed. Two trials were conducted to investigate the synthesis and metabolism of AA in layers of different ages and the effects of dietary supplemental AA on the performance and the immune and antioxidant statuses of 78 weeks old hens. Methods In Exp. 1, equal numbers (24 hens) of 35 weeks old (Young) and 75 weeks old (Old) layers were fed the same diet without AA supplementation for 4 weeks. In Exp. 2, 360 healthy 78 weeks old laying hens were randomly assigned to 4 treatments (basal diet supplemented with 0, 0.25, 0.5, or 1 g AA/kg diet) in an 8-week feeding trial. Results The old hens tended to have decreased L-gulonolactone oxidase (GLO) synthase activity in the kidney and liver than that of the young hens (P = 0.07 and P = 0.05, respectively). Compared with the young hens, the old hens had lower hepatic antioxidant capacity allowing for the lower thioredoxin (TXN), thioredoxin reductase (TXNR) and cytochrome b5 reductase (CYB5R) gene expression (P < 0.05), whereas increased sodium-dependent vitamin C transporter (SVCT) 1 expression levels in the ileum and kidney and enhanced splenic and hepatic AA concentrations (P < 0.05). Dietary supplementation with AA significantly decreased GLO enzyme activity but increased splenic AA concentration and anti-bovine serum albumin IgG levels (P < 0.05) and tended to increase CD4+ T lymphocyte numbers (P = 0.06) in serum. Supplementation of 0.25 g AA/kg diet significantly increased hepatic total antioxidant capacity (T-AOC, P < 0.05) relative to the control group. Conclusions Laying hens could synthesize AA in both the kidney and the liver, though the GLO enzyme activities were 100 times greater in kidneys than in livers. The old laying hens had greater absorption and reabsorption capacity and higher AA retention in some tissues that did the young hens. Dietary supplementation of AA can improve the health of old layers by enhancing immunity and antioxidant capacity.
Collapse
Affiliation(s)
- Liping Gan
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Hao Fan
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Wei Nie
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yuming Guo
- The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
167
|
Ramezankhani B, Taha MF, Javeri A. Vitamin C counteracts miR-302/367-induced reprogramming of human breast cancer cells and restores their invasive and proliferative capacity. J Cell Physiol 2018; 234:2672-2682. [PMID: 30191953 DOI: 10.1002/jcp.27081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Epigenetic reprogramming by embryonic stem cell-specific miR-302/367 cluster has shown some tumor suppressive effects in cancer cells of different tissues such as skin, colon, and cervix. Vitamin C has been known as a reprogramming enhancer of human and mouse somatic cells. In this study, first we aimed to investigate whether exogenous induction of miR-302/367 in breast cancer cells shows the same tumor suppressive effects previously observed in other cancer cells lines, and whether vitamin C can enhance reprogramming of breast cancer cells and also improve the tumor suppressive function of miR-302/367 cluster. Overexpression of miR-302/367 cluster in MDA-MB-231 and SK-BR-3 breast cancer cells upregulated expression of miR-302/367 members and also some core pluripotency factors including OCT4A, SOX2 and NANOG, induced mesenchymal to epithelial transition, suppressed invasion, proliferation, and induced apoptosis in the both cell lines. However, treatment of the miR-302/367 transfected cells with vitamin C suppressed the expression of pluripotency factors and augmented the tumorigenicity of the breast cancer cells by restoring their proliferative and invasive capacity and compromising the apoptotic effect of miR-302/367. Supplementing the culture medium with vitamin C downregulated expression of TET1 gene which seems to be the reason behind the negative impact of vitamin C on the reprogramming efficiency of miR-302/367 cluster and its anti-tumor effects. Therefore application of vitamin C may not always serve as a reprogramming enhancer depending on its switching function on TET1. This phenomenon should be carefully considered when considering a reprogramming strategy for tumor suppression.
Collapse
Affiliation(s)
- Bahareh Ramezankhani
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Masoumeh F Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
168
|
Peedicayil J. An epigenetic role for ascorbic acid in neurodegenerative diseases. CNS Neurosci Ther 2018; 24:841. [DOI: 10.1111/cns.12982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology; Christian Medical College; Vellore India
| |
Collapse
|
169
|
Cimmino L, Neel BG, Aifantis I. Vitamin C in Stem Cell Reprogramming and Cancer. Trends Cell Biol 2018; 28:698-708. [PMID: 29724526 PMCID: PMC6102081 DOI: 10.1016/j.tcb.2018.04.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Vitamin C is an essential dietary requirement for humans. In addition to its known role as an antioxidant, vitamin C is a cofactor for Fe2+- and α-ketoglutarate-dependent dioxygenases (Fe2+/α-KGDDs) which comprise a large number of diverse enzymes, including collagen prolyl hydroxylases and epigenetic regulators of histone and DNA methylation. Vitamin C can modulate embryonic stem cell (ESC) function, enhance reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs), and hinder the aberrant self-renewal of hematopoietic stem cells (HSCs) through its ability to enhance the activity of either Jumonji C (JmjC) domain-containing histone demethylases or ten-eleven translocation (TET) DNA hydroxylases. Given that epigenetic dysregulation is a known driver of malignancy, vitamin C may play a novel role as an epigenetic anticancer agent.
Collapse
Affiliation(s)
- Luisa Cimmino
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,To Whom Correspondence Should Be Addressed: Luisa Cimmino, Ph.D. or Iannis Aifantis, Ph.D. Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine 521 First Avenue, Smilow 1303 New York, NY 10016 or
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,To Whom Correspondence Should Be Addressed: Luisa Cimmino, Ph.D. or Iannis Aifantis, Ph.D. Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine 521 First Avenue, Smilow 1303 New York, NY 10016 or
| |
Collapse
|
170
|
Vitamin C promotes decitabine or azacytidine induced DNA hydroxymethylation and subsequent reactivation of the epigenetically silenced tumour suppressor CDKN1A in colon cancer cells. Oncotarget 2018; 9:32822-32840. [PMID: 30214687 PMCID: PMC6132357 DOI: 10.18632/oncotarget.25999] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic silencing of tumour suppressor genes is a key hallmark of colorectal carcinogenesis. Despite this, the therapeutic potential of epigenetic agents capable of reactivating these silenced genes remains relatively unexplored. Evidence has shown the dietary antioxidant vitamin C (ascorbate) acts as an inducer of the ten-eleven translocation (TET) dioxygenases, an enzyme family that catalyses a recently described mechanism of DNA demethylation linked to gene re-expression. In this study, we set out to determine whether vitamin C can enhance the known anti-neoplastic actions of the DNA-demethylating agents decitabine (DAC) and azacytidine (AZA) in colorectal cancer cells. Administration of vitamin C alone significantly enhanced global levels of 5-hydroxymethyl-2’-deoxycytidine (5-hmdC), without altering 5-methyl-2’-deoxycytidine (5-mdC), as would be expected upon the activation of TET dioxygenases. Concomitant treatment of vitamin C with either AZA or DAC resulted in an unexpectedly high increase of global 5-hmdC levels, one that administration of any these compounds alone could not achieve. Notably, this was also accompanied by increased expression of the tumour suppressor p21 (CDKN1A), and a significant increase in apoptotic cell induction. Our in vitro data leads us to hypothesize that the reactivation of genes in colorectal cancer cells by AZA or DAC can be improved when the 5-hmdC levels are simultaneously increased by the TET activator vitamin C. The dual administration of demethylating agents and vitamin C to colorectal cancer patients, a demographic in which vitamin C deficiencies are common, may improve responses to epigenetic therapies.
Collapse
|
171
|
Dynamic redox balance directs the oocyte-to-embryo transition via developmentally controlled reactive cysteine changes. Proc Natl Acad Sci U S A 2018; 115:E7978-E7986. [PMID: 30082411 PMCID: PMC6112717 DOI: 10.1073/pnas.1807918115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The metabolic and redox state changes during the transition from an arrested oocyte to a totipotent embryo remain uncharacterized. Here, we applied state-of-the-art, integrated methodologies to dissect these changes in Drosophila We demonstrate that early embryos have a more oxidized state than mature oocytes. We identified specific alterations in reactive cysteines at a proteome-wide scale as a result of this metabolic and developmental transition. Consistent with a requirement for redox change, we demonstrate a role for the ovary-specific thioredoxin Deadhead (DHD). dhd-mutant oocytes are prematurely oxidized and exhibit meiotic defects. Epistatic analyses with redox regulators link dhd function to the distinctive redox-state balance set at the oocyte-to-embryo transition. Crucially, global thiol-redox profiling identified proteins whose cysteines became differentially modified in the absence of DHD. We validated these potential DHD substrates by recovering DHD-interaction partners using multiple approaches. One such target, NO66, is a conserved protein that genetically interacts with DHD, revealing parallel functions. As redox changes also have been observed in mammalian oocytes, we hypothesize a link between developmental control of this cell-cycle transition and regulation by metabolic cues. This link likely operates both by general redox state and by changes in the redox state of specific proteins. The redox proteome defined here is a valuable resource for future investigation of the mechanisms of redox-modulated control at the oocyte-to-embryo transition.
Collapse
|
172
|
Ascorbic acid co-administered with rosuvastatin reduces reproductive impairment in the male offspring from male rats exposed to the statin at pre-puberty. Food Chem Toxicol 2018; 118:416-429. [DOI: 10.1016/j.fct.2018.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/24/2022]
|
173
|
BRAGA VB, VIEIRA MDM, BARROS IBID. Nutritional potential of leaves and tubers of crem (Tropaeolum pentaphyllum Lam.). REV NUTR 2018. [DOI: 10.1590/1678-98652018000400007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Objective To determine the centesimal composition of minerals, fatty acids and vitamin C of leaves and tubers of crem, and to discuss the nutritional potential of the T. pentaphyllum species. Methods The centesimal composition of protein, lipid, fiber, ash and carbohydrate was determined by gravimetric analysis. Mineral composition was determined by optical emission spectrometry. Vitamin C was determined by dinitrophenylhydrazine method. Fatty acids were determined by gas chromatography. The percentage of recommended dietary intake of leaves and tubers of crem was calculated for each nutrient. Results A high content of fibrous fraction (63.07g/100g), potassium (4.55g/100g), magnesium (553.64mg/100g) and sulfur (480.79mg/100g) was observed in the chemical composition of leaves. In tubers, a high carbohydrate content was observed, with 62.60g/100g of starch and 3.43g/100g of fiber, as well as high potassium (0.58g/100g), sulfur (447.14g/100), calcium (205.54g/100g) and phosphorus (530.07g/100g) levels. The vitamin C content of tubers was 78.43mg/100g and the linoleic acid content was 0.455g/100g. The intake of 100g of crem leaves may contribute with 65% of the recommended dietary intake of sulfur. The intake of 100g of crem tuber may contribute with 106% of the recommended dietary intake of sulfur and 21% of the recommended dietary intake of Vitamin C. Conclusion The chemical composition of crem (Tropaeolum pentaphyllum Lam.) tubers and leaves demonstrated an important contribution of nutrients, mainly sulfur, vitamin C and linoleic acid in its tubers, indicating a high nutritional potential of this species.
Collapse
|
174
|
Vissers MCM, Das AB. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018; 9:809. [PMID: 30018566 PMCID: PMC6037948 DOI: 10.3389/fphys.2018.00809] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Whether vitamin C (ascorbate) has a role to play as an anti-cancer agent has been debated for decades. Ascorbate has been used by cancer patients in an unregulated environment, either as a dietary supplement or in pharmacological doses administered by infusion, with numerous reports of clinical benefit, but in the absence of rigorous clinical trial data. The design of appropriate clinical trials has been hindered by a lack of understanding of the mechanism(s) of action that would inform the choice of effective dose, timing of administration and likely responsive cancer models. More recently, expanded understanding of the biological activities of ascorbate has led to a number of plausible hypotheses for mechanisms of anti-cancer activity. Prominent among these are the generation of significant quantities of hydrogen peroxide by the autoxidation of supra-physiological concentrations of ascorbate and stimulation of the 2-oxoglutarate-dependent dioxygenase family of enzymes (2-OGDDs) that have a cofactor requirement for ascorbate. Hydrogen peroxide generation is postulated to generate oxidative stress that preferentially targets cancer cells. The 2-OGDDs include the hydroxylases that regulate the hypoxic response, a major driver of tumor survival, angiogenesis, stem cell phenotype and metastasis, and the epigenetic histone and DNA demethylases. The latter are of particular interest, with recent studies suggesting a promising role for ascorbate in the regulation of the ten-eleven translocase (TET) DNA demethylases in hematological cancers. Support for these proposed mechanisms has come from many in vitro studies, and xenograft animal models have consistently shown an anti-cancer effect of ascorbate administration. However, decisive evidence for any particular mechanism(s) of action is not yet available from an in vivo setting. With a number of early phase clinical trials currently underway, evidence for potential mechanism(s) of action is required to inform the most appropriate study design and choice of cancer model. Hopefully such information will result in sound clinical data that will avert adding any further controversy to this already contentious debate.
Collapse
Affiliation(s)
- Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
175
|
Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med 2018; 122:116-129. [PMID: 29567393 PMCID: PMC6191929 DOI: 10.1016/j.freeradbiomed.2018.03.033] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H2O2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
176
|
Ge G, Peng D, Xu Z, Guan B, Xin Z, He Q, Zhou Y, Li X, Zhou L, Ci W. Restoration of 5-hydroxymethylcytosine by ascorbate blocks kidney tumour growth. EMBO Rep 2018; 19:embr.201745401. [PMID: 29959161 DOI: 10.15252/embr.201745401] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 05/20/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Loss of 5-hydroxymethylcytosine (5hmC) occurs frequently in a wide variety of tumours, including clear-cell renal cell carcinoma (ccRCC). It remains unknown, however, whether the restoration of 5hmC patterns in tumours could have therapeutic efficacy. Here, we used sodium L-ascorbate (vitamin C, AsANa) and the oxidation-resistant form L-ascorbic acid 2-phosphate sesquimagnesium (APM) for the restoration of 5hmC patterns in ccRCC cells. At physiological concentrations, both show anti-tumour efficacy during long-term treatment in vitro and in vivo Strikingly, global 5hmC patterns in ccRCC cells after treatment resemble those of normal kidney tissue, which is observed also in treated xenograft tumours, and in primary cells from a ccRCC patient. Further, RNA-seq data show that long-term treatment with vitamin C changes the transcriptome of ccRCC cells. Finally, APM treatment induces less non-specific cell damage and shows increased stability in mouse plasma compared to AsANa. Taken together, our study provides proof of concept for an epigenetic differentiation therapy of ccRCC with vitamin C, especially APM, at low doses by 5hmC reprogramming.
Collapse
Affiliation(s)
- Guangzhe Ge
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ding Peng
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Ziying Xu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Zijuan Xin
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qun He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Yuanyuan Zhou
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing, China .,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China .,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center, Beijing, China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
177
|
Ascorbic acid induces global epigenetic reprogramming to promote meiotic maturation and developmental competence of porcine oocytes. Sci Rep 2018; 8:6132. [PMID: 29666467 PMCID: PMC5904140 DOI: 10.1038/s41598-018-24395-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
L-ascorbic acid (Vitamin C) can enhance the meiotic maturation and developmental competence of porcine oocytes, but the underlying molecular mechanism remains obscure. Here we show the role of ascorbic acid in regulating epigenetic status of both nucleic acids and chromatin to promote oocyte maturation and development in pigs. Supplementation of 250 μM L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AA2P) during in vitro maturation significantly enhanced the nuclear maturation (as indicated by higher rate of first polar body extrusion and increased Bmp15 mRNA level), reduced level of reactive oxygen species, and promoted developmental potency (higher cleavage and blastocyst rates of parthenotes, and decreased Bax and Caspase3 mRNA levels in blastocysts) of pig oocytes. AA2P treatment caused methylation erasure in mature oocytes on nucleic acids (5-methylcytosine (5 mC) and N 6 -methyladenosine (m6A)) and histones (Histone H3 trimethylations at lysines 27, H3K27me3), but establishment of histone H3 trimethylations at lysines 4 (H3K4me3) and 36 (H3K36me3). During the global methylation reprogramming process, levels of TET2 (mRNA and protein) and Dnmt3b (mRNA) were significantly elevated, but simultaneously DNMT3A (mRNA and protein), and also Hif-1α, Hif-2α, Tet3, Mettl14, Kdm5b and Eed (mRNA) were significantly inhibited. Our findings support that ascorbic acid can reprogram the methylation status of not only DNA and histone, but also RNA, to improve pig oocyte maturation and developmental competence.
Collapse
|
178
|
Arsenic-containing hydrocarbons: effects on gene expression, epigenetics, and biotransformation in HepG2 cells. Arch Toxicol 2018; 92:1751-1765. [PMID: 29602950 DOI: 10.1007/s00204-018-2194-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids found in fish and algae, elicit substantial toxic effects in various human cell lines and have a considerable impact on cellular energy levels. The underlying mode of action, however, is still unknown. The present study analyzes the effects of two AsHCs (AsHC 332 and AsHC 360) on the expression of 44 genes covering DNA repair, stress response, cell death, autophagy, and epigenetics via RT-qPCR in human liver (HepG2) cells. Both AsHCs affected the gene expression, but to different extents. After treatment with AsHC 360, flap structure-specific endonuclease 1 (FEN1) as well as xeroderma pigmentosum group A complementing protein (XPA) and (cytosine-5)-methyltransferase 3A (DNMT3A) showed time- and concentration-dependent alterations in gene expression, thereby indicating an impact on genomic stability. In the subsequent analysis of epigenetic markers, within 72 h, neither AsHC 332 nor AsHC 360 showed an impact on the global DNA methylation level, whereas incubation with AsHC 360 increased the global DNA hydroxymethylation level. Analysis of cell extracts and cell media by HPLC-mass spectrometry revealed that both AsHCs were considerably biotransformed. The identified metabolites include not only the respective thioxo-analogs of the two AsHCs, but also several arsenic-containing fatty acids and fatty alcohols, contributing to our knowledge of biotransformation mechanisms of arsenolipids.
Collapse
|
179
|
Preservation of renal function in chronic diabetes by enhancing glomerular glucose metabolism. J Mol Med (Berl) 2018; 96:373-381. [PMID: 29574544 DOI: 10.1007/s00109-018-1630-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 12/24/2022]
Abstract
Diabetic nephropathy (DN) affects approximately 30-40% of patients with type 1 (T1DM) and type 2 diabetes (T2DM). It is a major cause of end-stage renal disease (ESRD) for the developed world. Hyperglycemia and genetics are major causal factors for the initiation and progression of DN. Multiple abnormalities in glucose and mitochondrial metabolism induced by diabetes likely contribute to the severity of DN. Recent clinical studies in people with extreme duration of T1DM (> 50 years, Joslin Medalist Study) have supported the importance of endogenous protective factors to neutralize the toxic effects of hyperglycemia on renal and other vascular tissues. Using renal glomeruli from these patients (namely Medalists) with and without DN, we have shown the importance of increased glycolytic flux in decreasing the accumulation of glucose toxic metabolites, improving mitochondrial function, survival of glomerular podocytes, and reducing glomerular pathology. Activation of a key glycolytic enzyme, pyruvate kinase M2 (PKM2), resulted in the normalization of renal hemodynamics and mitochondrial and glomerular dysfunction, leading to the mitigation of glomerular pathologies in several mouse models of DN.
Collapse
|
180
|
Abstract
Vitamin C or ascorbic acid (AA) is implicated in many biological processes and has been proposed as a supplement for various conditions, including cancer. In this review, we discuss the effects of AA on the development and function of lymphocytes. This is important in the light of cancer treatment, as the immune system needs to regenerate following chemotherapy or stem cell transplantation, while cancer patients are often AA-deficient. We focus on lymphocytes, as these white blood cells are the slowest to restore, rendering patients susceptible to often lethal infections. T lymphocytes mediate cellular immunity and have been most extensively studied in the context of AA biology. In vitro studies demonstrate that T cell development requires AA, while AA also enhances T cell proliferation and may influence T cell function. There are limited and opposing data on the effects of AA on B lymphocytes that mediate humoral immunity. However, AA enhances the proliferation of NK cells, a group of cytotoxic innate lymphocytes. The influence of AA on natural killer (NK) cell function is less clear. In summary, an increasing body of evidence indicates that AA positively influences lymphocyte development and function. Since AA is a safe and cheap nutritional supplement, it is worthwhile to further explore its potential benefits for immune reconstitution of cancer patients treated with immunotoxic drugs.
Collapse
|
181
|
Appropriate Handling, Processing and Analysis of Blood Samples Is Essential to Avoid Oxidation of Vitamin C to Dehydroascorbic Acid. Antioxidants (Basel) 2018; 7:antiox7020029. [PMID: 29439480 PMCID: PMC5836019 DOI: 10.3390/antiox7020029] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Vitamin C (ascorbate) is the major water-soluble antioxidant in plasma and its oxidation to dehydroascorbic acid (DHA) has been proposed as a marker of oxidative stress in vivo. However, controversy exists in the literature around the amount of DHA detected in blood samples collected from various patient cohorts. In this study, we report on DHA concentrations in a selection of different clinical cohorts (diabetes, pneumonia, cancer, and critically ill). All clinical samples were collected into EDTA anticoagulant tubes and processed at 4 °C prior to storage at −80 °C for subsequent analysis by HPLC with electrochemical detection. We also investigated the effects of different handling and processing conditions on short-term and long-term ascorbate and DHA stability in vitro and in whole blood and plasma samples. These conditions included metal chelation, anticoagulants (EDTA and heparin), and processing temperatures (ice, 4 °C and room temperature). Analysis of our clinical cohorts indicated very low to negligible DHA concentrations. Samples exhibiting haemolysis contained significantly higher concentrations of DHA. Metal chelation inhibited oxidation of vitamin C in vitro, confirming the involvement of contaminating metal ions. Although EDTA is an effective metal chelator, complexes with transition metal ions are still redox active, thus its use as an anticoagulant can facilitate metal ion-dependent oxidation of vitamin C in whole blood and plasma. Handling and processing blood samples on ice (or at 4 °C) delayed oxidation of vitamin C by a number of hours. A review of the literature regarding DHA concentrations in clinical cohorts highlighted the fact that studies using colourimetric or fluorometric assays reported significantly higher concentrations of DHA compared to those using HPLC with electrochemical detection. In conclusion, careful handling and processing of samples, combined with appropriate analysis, is crucial for accurate determination of ascorbate and DHA in clinical samples.
Collapse
|
182
|
Modulation of miRNAs by Vitamin C in Human Bone Marrow Stromal Cells. Nutrients 2018; 10:nu10020186. [PMID: 29419776 PMCID: PMC5852762 DOI: 10.3390/nu10020186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small (18–25 nucleotides), noncoding RNAs that have been identified as potential regulators of bone marrow stromal cell (BMSC) proliferation, differentiation, and musculoskeletal development. Vitamin C is known to play a vital role in such types of biological processes through various different mechanisms by altering mRNA expression. We hypothesized that vitamin C mediates these biological processes partially through miRNA regulation. We performed global miRNA expression analysis on human BMSCs following vitamin C treatment using microarrays containing human precursor and mature miRNA probes. Bioinformatics analyses were performed on differentially expressed miRNAs to identify novel target genes and signaling pathways. Our bioinformatics analysis suggested that the miRNAs may regulate multiple stem cell-specific signaling pathways such as cell adhesion molecules (CAMs), fatty acid biosynthesis and hormone signaling pathways. Furthermore, our analysis predicted novel stem cell proliferation and differentiation gene targets. The findings of the present study demonstrate that vitamin C can have positive effects on BMSCs in part by regulating miRNA expression.
Collapse
|
183
|
Abstract
The ageing trajectory is plastic and can be slowed down by lifestyle factors, including good nutrition, adequate physical activity and avoidance of smoking. In humans, plant-based diets such as the Mediterranean dietary pattern are associated with healthier ageing and lower risk of age-related disease, whereas obesity accelerates ageing and increases the likelihood of most common complex diseases including CVD, T2D, dementia, musculoskeletal diseases and several cancers. As yet, there is only weak evidence in humans about the molecular mechanisms through which dietary factors modulate ageing but evidence from cell systems and animal models suggest that it is probable that better dietary choices influence all 9 hallmarks of ageing. It seems likely that better eating patterns retard ageing in at least two ways including (i) by reducing pervasive damaging processes such as inflammation, oxidative stress/redox changes and metabolic stress and (ii) by enhancing cellular capacities for damage management and repair. From a societal perspective, there is an urgent imperative to discover, and to implement, cost-effective lifestyle (especially dietary) interventions which enable each of us to age well, i.e. to remain physically and socially active and independent and to minimise the period towards the end of life when individuals suffer from frailty and multi-morbidity.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
184
|
Leveraging Epigenetics to Enhance the Cellular Response to Chemotherapies and Improve Tumor Immunogenicity. Adv Cancer Res 2018; 138:1-39. [PMID: 29551125 DOI: 10.1016/bs.acr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.
Collapse
|
185
|
Leite GAA, Figueiredo TM, Pacheco TL, Guerra MT, Anselmo-Franci JA, Kempinas WDG. Reproductive outcomes in rat female offspring from male rats co-exposed to rosuvastatin and ascorbic acid during pre-puberty. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:873-892. [PMID: 30081759 DOI: 10.1080/15287394.2018.1504702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/23/2018] [Indexed: 05/23/2023]
Abstract
Dyslipidemias are occurring earlier in different countries due to the increase of obesity, bad eating habits, and sedentary lifestyle. Rosuvastatin reduces serum cholesterol; however, several studies associated statin exposure with male reproduction impairment. Ascorbic acid (AA) is an antioxidant substance that plays a protective role in the male reproductive system. Male rats were randomly divided into 6 experimental groups (n = 10), which received saline solution 0.9%, 3 or 10 mg/kg/day of rosuvastatin, 150 mg/day of AA or 3 or 10 mg/kg/day of rosuvastatin associated with 150 mg/day of AA from post-natal day (PND) 23 until PND 53. On PND 100, males were mated with non-treated female rats to obtain the female pups. The day of vaginal opening and the first estrus were assessed in the offspring. Two sets of females were euthanized on the first estrus after PND 42 and PND 75 to evaluate the histology of reproductive organs and hormone levels. A third set was used for sexual behavior and fertility test around PND 75. Female offspring from males exposed or co-exposed to the higher dose of statin exhibited a lower number of corpora lutea during puberty. On sexual maturity, the experimental group from males that were exposed to 3 mg displayed lower uterine luminal epithelium area. Paternal exposure to rosuvastatin at pre-puberty diminished uterine luminal epithelium in female offspring suggesting epigenetic changes were initiated by statin. Ascorbic acid co-administered to pre-pubertal males was able to ameliorate the reproductive damage in rat female offspring in adulthood.
Collapse
Affiliation(s)
- Gabriel Adan Araujo Leite
- a Graduate Program in Cell and Structural Biology, Institute of Biology , State University of Campinas - UNICAMP , Campinas , Brazil
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| | - Thamiris Moreira Figueiredo
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| | - Tainá Louise Pacheco
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| | - Marina Trevizan Guerra
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| | - Janete Aparecida Anselmo-Franci
- c Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto , USP - University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Wilma De Grava Kempinas
- b Department of Morphology , São Paulo State University (Unesp), Institute of Biosciences , Botucatu , Brazil
| |
Collapse
|
186
|
Osipyants AI, Poloznikov AA, Smirnova NA, Hushpulian DM, Khristichenko AY, Chubar TA, Zakhariants AA, Ahuja M, Gaisina IN, Thomas B, Brown AM, Gazaryan IG, Tishkov VI. L-ascorbic acid: A true substrate for HIF prolyl hydroxylase? Biochimie 2017; 147:46-54. [PMID: 29289682 DOI: 10.1016/j.biochi.2017.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
L-Ascorbate (L-Asc), but not D-isoascorbate (D-Asc) and N-acetylcysteine (NAC) suppress HIF1 ODD-luc reporter activation induced by various inhibitors of HIF prolyl hydroxylase (PHD). The efficiency of suppression by L-Asc was sensitive to the nature of HIF PHD inhibitor chosen for reporter activation. In particular, the inhibitors developed to compete with alpha-ketoglutarate (αKG), were less sensitive to suppression by the physiological range of L-Asc (40-100 μM) than those having a strong iron chelation motif. Challenging those HIF activators in the reporter system with D-Asc demonstrated that the D-isomer, despite exhibiting the same reducing potency with respect to ferric iron, had almost no effect compared to L-Asc. Similarly, no effect on reporter activation was observed with cell-permeable reducing agent NAC up to 1 mM. Docking of L-Asc and D-Asc acid into the HIF PHD2 crystal structure showed interference of Tyr310 with respect to D-Asc. This suggests that L-Asc is not merely a reducing agent preventing enzyme inactivation. Rather, the overall results identify L-Asc as a co-substrate of HIF PHD that may compete for the binding site of αKG in the enzyme active center. This conclusion is in agreement with the results obtained recently in cell-based systems for TET enzymes and jumonji histone demethylases, where L-Asc has been proposed to act as a co-substrate and not as a reducing agent preventing enzyme inactivation.
Collapse
Affiliation(s)
- Andrey I Osipyants
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation
| | - Andrey A Poloznikov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation.
| | - Natalya A Smirnova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation
| | - Dmitry M Hushpulian
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation
| | - Anna Yu Khristichenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation
| | - Tatiana A Chubar
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation
| | - Arpenik A Zakhariants
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation
| | - Manuj Ahuja
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Irina N Gaisina
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Bobby Thomas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Abe M Brown
- Department of Anatomy and Cell Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Irina G Gazaryan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997, Moscow, Russian Federation; Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation; Department of Anatomy and Cell Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA
| | - Vladimir I Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russian Federation; Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences. 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation; Innovations and High Technologies MSU Ltd, Tsymlyanskaya, 16, of 96, Moscow, 109599, Russian Federation
| |
Collapse
|
187
|
Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:300. [PMID: 29228951 PMCID: PMC5725835 DOI: 10.1186/s13054-017-1891-y] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023]
Abstract
Background Vitamin C is an essential water-soluble nutrient which cannot be synthesised or stored by humans. It is a potent antioxidant with anti-inflammatory and immune-supportive roles. Previous research has indicated that vitamin C levels are depleted in critically ill patients. In this study we have assessed plasma vitamin C concentrations in critically ill patients relative to infection status (septic shock or non-septic) and level of inflammation (C-reactive protein concentrations). Vitamin C status was also assessed relative to daily enteral and parenteral intakes to determine if standard intensive care unit (ICU) nutritional support is adequate to meet the vitamin C needs of critically ill patients. Methods Forty-four critically ill patients (24 with septic shock, 17 non-septic, 3 uncategorised) were recruited from the Christchurch Hospital Intensive Care Unit. We measured concentrations of plasma vitamin C and a pro-inflammatory biomarker (C-reactive protein) daily over 4 days and calculated patients’ daily vitamin C intake from the enteral or total parenteral nutrition they received. We compared plasma vitamin C and C-reactive protein concentrations between septic shock and non-septic patients over 4 days using a mixed effects statistical model, and we compared the vitamin C status of the critically ill patients with known vitamin C bioavailability data using a four-parameter log-logistic response model. Results Overall, the critically ill patients exhibited hypovitaminosis C (i.e., < 23 μmol/L), with a mean plasma vitamin C concentration of 17.8 ± 8.7 μmol/L; of these, one-third had vitamin C deficiency (i.e., < 11 μmol/L). Patients with hypovitaminosis C had elevated inflammation (C-reactive protein levels; P < 0.05). The patients with septic shock had lower vitamin C concentrations and higher C-reactive protein concentrations than the non-septic patients (P < 0.05). Nearly 40% of the septic shock patients were deficient in vitamin C, compared with 25% of the non-septic patients. These low vitamin C levels were apparent despite receiving recommended intakes via enteral and/or parenteral nutritional therapy (mean 125 mg/d). Conclusions Critically ill patients have low vitamin C concentrations despite receiving standard ICU nutrition. Septic shock patients have significantly depleted vitamin C levels compared with non-septic patients, likely resulting from increased metabolism due to the enhanced inflammatory response observed in septic shock.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Patrice C Rosengrave
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Simone Bayer
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Steve Chambers
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Jan Mehrtens
- Department of Intensive Care Medicine, Christchurch Hospital, Private Bag 4710, Christchurch, 8140, New Zealand
| | - Geoff M Shaw
- Department of Intensive Care Medicine, Christchurch Hospital, Private Bag 4710, Christchurch, 8140, New Zealand
| |
Collapse
|
188
|
Abstract
Vitamin C is an essential micronutrient for humans, with pleiotropic functions related to its ability to donate electrons. It is a potent antioxidant and a cofactor for a family of biosynthetic and gene regulatory enzymes. Vitamin C contributes to immune defense by supporting various cellular functions of both the innate and adaptive immune system. Vitamin C supports epithelial barrier function against pathogens and promotes the oxidant scavenging activity of the skin, thereby potentially protecting against environmental oxidative stress. Vitamin C accumulates in phagocytic cells, such as neutrophils, and can enhance chemotaxis, phagocytosis, generation of reactive oxygen species, and ultimately microbial killing. It is also needed for apoptosis and clearance of the spent neutrophils from sites of infection by macrophages, thereby decreasing necrosis/NETosis and potential tissue damage. The role of vitamin C in lymphocytes is less clear, but it has been shown to enhance differentiation and proliferation of B- and T-cells, likely due to its gene regulating effects. Vitamin C deficiency results in impaired immunity and higher susceptibility to infections. In turn, infections significantly impact on vitamin C levels due to enhanced inflammation and metabolic requirements. Furthermore, supplementation with vitamin C appears to be able to both prevent and treat respiratory and systemic infections. Prophylactic prevention of infection requires dietary vitamin C intakes that provide at least adequate, if not saturating plasma levels (i.e., 100–200 mg/day), which optimize cell and tissue levels. In contrast, treatment of established infections requires significantly higher (gram) doses of the vitamin to compensate for the increased inflammatory response and metabolic demand.
Collapse
|
189
|
García-Giménez JL, Romá-Mateo C, Pérez-Machado G, Peiró-Chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med 2017; 112:36-48. [PMID: 28705657 DOI: 10.1016/j.freeradbiomed.2017.07.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022]
Abstract
Epigenetics is a rapidly growing field that studies gene expression modifications not involving changes in the DNA sequence. Histone H3, one of the basic proteins in the nucleosomes that make up chromatin, is S-glutathionylated in mammalian cells and tissues, making Gamma-L-glutamyl-L-cysteinylglycine, glutathione (GSH), a physiological antioxidant and second messenger in cells, a new post-translational modifier of the histone code that alters the structure of the nucleosome. However, the role of GSH in the epigenetic mechanisms likely goes beyond a mere structural function. Evidence supports the hypothesis that there is a link between GSH metabolism and the control of epigenetic mechanisms at different levels (i.e., substrate availability, enzymatic activity for DNA methylation, changes in the expression of microRNAs, and participation in the histone code). However, little is known about the molecular pathways by which GSH can control epigenetic events. Studying mutations in enzymes involved in GSH metabolism and the alterations of the levels of cofactors affecting epigenetic mechanisms appears challenging. However, the number of diseases induced by aberrant epigenetic regulation is growing, so elucidating the intricate network between GSH metabolism, oxidative stress and epigenetics could shed light on how their deregulation contributes to the development of neurodegeneration, cancer, metabolic pathologies and many other types of diseases.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain; Faculty of Biomedicine and Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Gisselle Pérez-Machado
- Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain
| | | | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| |
Collapse
|
190
|
Heinonen HR, Mehine M, Mäkinen N, Pasanen A, Pitkänen E, Karhu A, Sarvilinna NS, Sjöberg J, Heikinheimo O, Bützow R, Aaltonen LA, Kaasinen E. Global metabolomic profiling of uterine leiomyomas. Br J Cancer 2017; 117:1855-1864. [PMID: 29073636 PMCID: PMC5729474 DOI: 10.1038/bjc.2017.361] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/18/2017] [Accepted: 09/21/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Uterine leiomyomas can be classified into molecularly distinct subtypes according to their genetic triggers: MED12 mutations, HMGA2 upregulation, or inactivation of FH. The aim of this study was to identify metabolites and metabolic pathways that are dysregulated in different subtypes of leiomyomas. METHODS We performed global metabolomic profiling of 25 uterine leiomyomas and 17 corresponding myometrium specimens using liquid chromatography-tandem mass spectroscopy. RESULTS A total of 641 metabolites were detected. All leiomyomas displayed reduced homocarnosine and haeme metabolite levels. We identified a clearly distinct metabolomic profile for leiomyomas of the FH subtype, characterised by metabolic alterations in the tricarboxylic acid cycle and pentose phosphate pathways, and increased levels of multiple lipids and amino acids. Several metabolites were uniquely elevated in leiomyomas of the FH subtype, including N6-succinyladenosine and argininosuccinate, serving as potential biomarkers for FH deficiency. In contrast, leiomyomas of the MED12 subtype displayed reduced levels of vitamin A, multiple membrane lipids and amino acids, and dysregulation of vitamin C metabolism, a finding which was also compatible with gene expression data. CONCLUSIONS The study reveals the metabolomic heterogeneity of leiomyomas and provides the requisite framework for strategies designed to target metabolic alterations promoting the growth of these prevalent tumours.
Collapse
Affiliation(s)
- Hanna-Riikka Heinonen
- Department of Medical and Clinical Genetics and Genome-Scale Biology Research Program, University of Helsinki, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Miika Mehine
- Department of Medical and Clinical Genetics and Genome-Scale Biology Research Program, University of Helsinki, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Netta Mäkinen
- Department of Medical and Clinical Genetics and Genome-Scale Biology Research Program, University of Helsinki, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Esa Pitkänen
- Department of Medical and Clinical Genetics and Genome-Scale Biology Research Program, University of Helsinki, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics and Genome-Scale Biology Research Program, University of Helsinki, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Nanna S Sarvilinna
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, P.O. Box 140, Helsinki FIN-00029, Finland
| | - Jari Sjöberg
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, P.O. Box 140, Helsinki FIN-00029, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynaecology, University of Helsinki and Helsinki University Hospital, P.O. Box 140, Helsinki FIN-00029, Finland
| | - Ralf Bützow
- Department of Pathology, University of Helsinki and Helsinki University Hospital, P.O. Box 21, Helsinki FIN-00014, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics and Genome-Scale Biology Research Program, University of Helsinki, P.O. Box 63, Helsinki FIN-00014, Finland
| | - Eevi Kaasinen
- Division of Functional Genomics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm SE-17177, Sweden
| |
Collapse
|
191
|
Gödecke N, Zha L, Spencer S, Behme S, Riemer P, Rehli M, Hauser H, Wirth D. Controlled re-activation of epigenetically silenced Tet promoter-driven transgene expression by targeted demethylation. Nucleic Acids Res 2017; 45:e147. [PMID: 28934472 PMCID: PMC5766184 DOI: 10.1093/nar/gkx601] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Faithful expression of transgenes in cell cultures and mice is often challenged by locus dependent epigenetic silencing. We investigated silencing of Tet-controlled expression cassettes within the mouse ROSA26 locus. We observed pronounced DNA methylation of the Tet promoter concomitant with loss of expression in mES cells as well as in differentiated cells and transgenic animals. Strikingly, the ROSA26 promoter remains active and methylation free indicating that this silencing mechanism specifically affects the transgene, but does not spread to the host's chromosomal neighborhood. To reactivate Tet cassettes a synthetic fusion protein was constructed and expressed in silenced cells. This protein includes the enzymatic domains of ten eleven translocation methylcytosine dioxygenase 1 (TET-1) as well as the Tet repressor DNA binding domain. Expression of the synthetic fusion protein and Doxycycline treatment allowed targeted demethylation of the Tet promoter in the ROSA26 locus and in another genomic site, rescuing transgene expression in cells and transgenic mice. Thus, inducible, reversible and site-specific epigenetic modulation is a promising strategy for reactivation of silenced transgene expression, independent of the integration site.
Collapse
Affiliation(s)
- Natascha Gödecke
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Lisha Zha
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Shawal Spencer
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Sara Behme
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Pamela Riemer
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Michael Rehli
- University Hospital, Dept. Internal Medicine III, Regensburg, Germany
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research, Dept. of Scientific Strategy, Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Centre for Infection Research, RG Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany.,Hannover Medical School, Experimental Hematology, Hannover, Germany
| |
Collapse
|
192
|
Mastrangelo D, Pelosi E, Castelli G, Lo-Coco F, Testa U. Mechanisms of anti-cancer effects of ascorbate: Cytotoxic activity and epigenetic modulation. Blood Cells Mol Dis 2017; 69:57-64. [PMID: 28954710 DOI: 10.1016/j.bcmd.2017.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 12/16/2022]
Abstract
Vitamin C (Vit C or Ascorbate) is essential for many fundamental biochemical processes. Vit C is an essential nutrient with redox functions at normal physiologic concentrations. The main physiologic function of this vitamin is related to its capacity to act as a co-factor for a large family of enzymes, collectively known as Fe and 2-oxoglutarate-dependent dioxygenases. It also modulates epigenetic gene expression through the control of TET enzymes activity. Vit C also has several biological properties allowing to restore the deregulated epigenetic response observed in many tumors. High-dose Vit C has been investigated as a treatment for cancer patients since the 1969. Pharmacologic ascorbate acts as a pro-drug for hydrogen peroxide formation (H2O2) and, through this mechanism, kills cancer cells. To achieve high in vivo concentrations, Ascorbate must be injected by i.v. route. Initial clinical studies of Ascorbate cancer treatment have provided encouraging results, not confirmed in subsequent studies. Recent clinical studies using i.v. injection of high-dose Ascorbate have renewed the interest in the field, showing that significant anti-tumor activity. Pre-clinical studies have led to identify tumors sensitive to Ascorbate that could potentially benefit from this treatment either through an epigenetic modulator effect or through tumor killing by oxidative stress.
Collapse
Affiliation(s)
- Domenico Mastrangelo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Polo Scientifico San Miniato, Siena, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Santa Lucia Foundation, I.R.C.C.S., Via del Fosso di Fiorano, Rome, Italy
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
193
|
Abstract
Stem cell aging and exhaustion are considered important drivers of organismal aging. Age-associated declines in stem cell function are characterized by metabolic and epigenetic changes. Understanding the mechanisms underlying these changes will likely reveal novel therapeutic targets for ameliorating age-associated phenotypes and for prolonging human healthspan. Recent studies have shown that metabolism plays an important role in regulating epigenetic modifications and that this regulation dramatically affects the aging process. This review focuses on current knowledge regarding the mechanisms of stem cell aging, and the links between cellular metabolism and epigenetic regulation. In addition, we discuss how these interactions sense and respond to environmental stress in order to maintain stem cell homeostasis, and how environmental stimuli regulate stem cell function. Additionally, we highlight recent advances in the development of therapeutic strategies to rejuvenate dysfunctional aged stem cells.
Collapse
Affiliation(s)
- Ruotong Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro Ocampo
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guang-Hui Liu
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Beijing 100069, China.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
194
|
Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 2017; 549:476-481. [PMID: 28825709 PMCID: PMC5910063 DOI: 10.1038/nature23876] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
Stem cell fate can be influenced by metabolite levels in culture but it is unknown whether physiological variations in metabolite levels in normal tissues regulate stem cell function in vivo. We developed a metabolomics method for analysis of rare cell populations isolated directly from tissues and used it to compare haematopoietic stem cells (HSCs) to restricted haematopoietic progenitors. Each haematopoietic cell type had a distinct metabolic signature. Human and mouse HSCs had unusually high levels of ascorbate, which declined with differentiation. Systemic ascorbate depletion in mice increased HSC frequency and function, partly by reducing Tet2 function, a dioxygenase tumor suppressor. Ascorbate depletion cooperated with Flt3ITD leukaemic mutations to accelerate leukaemogenesis, though cell-autonomous and possibly non-cell-autonomous mechanisms, in a manner that was reversed by dietary ascorbate. Ascorbate acted cell-autonomously to negatively regulate HSC function and myelopoiesis through Tet2-dependent and Tet2-independent mechanisms. Ascorbate thus accumulates within HSCs to promote Tet function in vivo, limiting HSC frequency and suppressing leukaemogenesis.
Collapse
|
195
|
Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression. Cell 2017; 170:1079-1095.e20. [PMID: 28823558 DOI: 10.1016/j.cell.2017.07.032] [Citation(s) in RCA: 485] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/13/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Loss-of-function mutations in TET2 occur frequently in patients with clonal hematopoiesis, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML) and are associated with a DNA hypermethylation phenotype. To determine the role of TET2 deficiency in leukemia stem cell maintenance, we generated a reversible transgenic RNAi mouse to model restoration of endogenous Tet2 expression. Tet2 restoration reverses aberrant hematopoietic stem and progenitor cell (HSPC) self-renewal in vitro and in vivo. Treatment with vitamin C, a co-factor of Fe2+ and α-KG-dependent dioxygenases, mimics TET2 restoration by enhancing 5-hydroxymethylcytosine formation in Tet2-deficient mouse HSPCs and suppresses human leukemic colony formation and leukemia progression of primary human leukemia PDXs. Vitamin C also drives DNA hypomethylation and expression of a TET2-dependent gene signature in human leukemia cell lines. Furthermore, TET-mediated DNA oxidation induced by vitamin C treatment in leukemia cells enhances their sensitivity to PARP inhibition and could provide a safe and effective combination strategy to selectively target TET deficiency in cancer. PAPERCLIP.
Collapse
|
196
|
Abstract
The physiological identity of every cell is maintained by highly specific transcriptional networks that establish a coherent molecular program that is in tune with nutritional conditions. The regulation of cell-specific transcriptional networks is accomplished by an epigenetic program via chromatin-modifying enzymes, whose activity is directly dependent on metabolites such as acetyl-coenzyme A, S-adenosylmethionine, and NAD+, among others. Therefore, these nuclear activities are directly influenced by the nutritional status of the cell. In addition to nutritional availability, this highly collaborative program between epigenetic dynamics and metabolism is further interconnected with other environmental cues provided by the day-night cycles imposed by circadian rhythms. Herein, we review molecular pathways and their metabolites associated with epigenetic adaptations modulated by histone- and DNA-modifying enzymes and their responsiveness to the environment in the context of health and disease.
Collapse
|
197
|
Toyokuni S, Ito F, Yamashita K, Okazaki Y, Akatsuka S. Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radic Biol Med 2017; 108:610-626. [PMID: 28433662 DOI: 10.1016/j.freeradbiomed.2017.04.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Epidemiological data indicate a constant worldwide increase in cancer mortality, although the age of onset is increasing. Recent accumulation of genomic data on human cancer via next-generation sequencing confirmed that cancer is a disease of genome alteration. In many cancers, the Nrf2 transcription system is activated via mutations either in Nrf2 or Keap1 ubiquitin ligase, leading to persistent activation of the genes with antioxidative functions. Furthermore, deep sequencing of passenger mutations is clarifying responsible cancer causative agent(s) in each case, including aging, APOBEC activation, smoking and UV. Therefore, it is most likely that oxidative stress is the principal initiating factor in carcinogenesis, with the involvement of two essential molecules for life, iron and oxygen. There is evidence based on epidemiological and animal studies that excess iron is a major risk for carcinogenesis, suggesting the importance of ferroptosis-resistance. Microscopic visualization of catalytic Fe(II) has recently become available. Although catalytic Fe(II) is largely present in lysosomes, proliferating cells harbor catalytic Fe(II) also in the cytosol and mitochondria. Oxidative stress catalyzed by Fe(II) is counteracted by thiol systems at different functional levels. Nitric oxide, carbon monoxide and hydrogen (per)sulfide modulate these reactions. Mitochondria generate not only energy but also heme/iron sulfur cluster cofactors and remain mostly dysfunctional in cancer cells, leading to Warburg effects. Cancer cells are under persistent oxidative stress with a delicate balance between catalytic iron and thiols, thereby escaping ferroptosis. Thus, high-dose L-ascorbate and non-thermal plasma as well as glucose/glutamine deprivation may provide additional benefits as cancer therapies over preexisting therapeutics.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kyoko Yamashita
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
198
|
Yin X, Xu Y. Structure and Function of TET Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 945:275-302. [PMID: 27826843 DOI: 10.1007/978-3-319-43624-1_12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mammalian DNA methylation mainly occurs at the carbon-C5 position of cytosine (5mC). TET enzymes were discovered to successively oxidize 5mC to 5-hydromethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). TET enzymes and oxidized 5mC derivatives play important roles in various biological and pathological processes, including regulation of DNA demethylation, gene transcription, embryonic development, and oncogenesis. In this chapter, we will discuss the discovery of TET-mediated 5mC oxidation and the structure, function, and regulation of TET enzymes.
Collapse
Affiliation(s)
- Xiaotong Yin
- Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- Key Laboratory of Molecular Medicine, Ministry of Education, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
199
|
Vitamin C, Aging and Alzheimer's Disease. Nutrients 2017; 9:nu9070670. [PMID: 28654021 PMCID: PMC5537785 DOI: 10.3390/nu9070670] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence in mice models of accelerated senescence indicates a rescuing role of ascorbic acid in premature aging. Supplementation of ascorbic acid appeared to halt cell growth, oxidative stress, telomere attrition, disorganization of chromatin, and excessive secretion of inflammatory factors, and extend lifespan. Interestingly, ascorbic acid (AA) was also found to positively modulate inflamm-aging and immunosenescence, two hallmarks of biological aging. Moreover, ascorbic acid has been shown to epigenetically regulate genome integrity and stability, indicating a key role of targeted nutrition in healthy aging. Growing in vivo evidence supports the role of ascorbic acid in ameliorating factors linked to Alzheimer’s disease (AD) pathogenesis, although evidence in humans yielded equivocal results. The neuroprotective role of ascorbic acid not only relies on the general free radical trapping, but also on the suppression of pro-inflammatory genes, mitigating neuroinflammation, on the chelation of iron, copper, and zinc, and on the suppression of amyloid-beta peptide (Aβ) fibrillogenesis. Epidemiological evidence linking diet, one of the most important modifiable lifestyle factors, and risk of Alzheimer's disease is rapidly increasing. Thus, dietary interventions, as a way to epigenetically modulate the human genome, may play a role in the prevention of AD. The present review is aimed at providing an up to date overview of the main biological mechanisms that are associated with ascorbic acid supplementation/bioavailability in the process of aging and Alzheimer’s disease. In addition, we will address new fields of research and future directions.
Collapse
|
200
|
Mustafi S, Sant DW, Liu ZJ, Wang G. Ascorbate induces apoptosis in melanoma cells by suppressing Clusterin expression. Sci Rep 2017. [PMID: 28623268 PMCID: PMC5473908 DOI: 10.1038/s41598-017-03893-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pharmacological levels of ascorbate have long been suggested as a potential treatment of cancer. However, we observed that EC50 of ascorbate was at a similar level for cultured healthy melanocytes and melanoma cells, suggesting a limit of pharmacological ascorbate in treating cancer. Loss of 5-hydroxymethylcytosine (5 hmC) is an epigenetic hallmark of cancer and ascorbate promotes 5 hmC generation by serving as a cofactor for TET methylcytosine dioxygenases. Our previous work demonstrated that ascorbate treatment at physiological level (100 μM) increased 5 hmC content in melanoma cells toward the level of healthy melanocytes. Here we show that 100 µM of ascorbate induced apoptosis in A2058 melanoma cells. RNA-seq analysis revealed that expression of the Clusterin (CLU) gene, which is related to apoptosis, was downregulated by ascorbate. The suppression of CLU was verified at transcript level in different melanoma cell lines, and at protein level in A2058 cells. The anti-apoptotic cytoplasmic CLU was decreased, while the pro-apoptotic nuclear CLU was largely maintained, after ascorbate treatment. These changes in CLU subcellular localization were also associated with Bax and caspases activation, Bcl-xL sequestration, and cytochrome c release. Taken together, this study establishes an impending therapeutic role of physiological ascorbate to potentiate apoptosis in melanoma.
Collapse
Affiliation(s)
- Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David W Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhao-Jun Liu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|