151
|
Lu HM, Liang J. Perturbation-based Markovian Transmission Model for macromolecular machinery in cell. ACTA ACUST UNITED AC 2008; 2007:5029-34. [PMID: 18003136 DOI: 10.1109/iembs.2007.4353470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of the dynamics of a complex system is an important problem that includes large macromolecular complexes, molecular interaction networks, and cell functional modules. Large macromolecular complexes in cellular machinery can be modeled as a connected network, as in the elastic or Gaussian network models as demonstrated by Bahar and colleagues. Here we propose the Perturbation-based Markovian Transmission Model for studying the dynamics of signal transmission in macromolecular machinery. The initial perturbation is transmitted by a Markovian processes, and the dynamics of the probability flow is analytically solved using the master equation. Due to the large size of macromolecular complexes, it is very difficult to obtain analytical time-dependent Markovian dynamics of all atoms from the first perturbation until stationary state. To overcome it, we decrease the level of complexity of the transition matrix using a Krylov subspace method. This method is equivalent to integrating all eigen modes, and we show it can provide a globally accurate solution to the dynamics problem of signal transmission for very large macromolecular complexes with reasonable computational time. We give results of the dynamics of the GroEL-GroES chaperone system by applying uniform perturbation to all residues. We are able to identify experimentally found important residues and provide a set of predicted pivot, messenger, and effector residues, each with distinct dynamic behavior. Further results of selective perturbation on the surface of ATP binding pocket identifies the path of maximal probability flow of signal.
Collapse
Affiliation(s)
- Hsiao-Mei Lu
- Department of Bioengineering, SEO, MC-063 University of Illinois at Chicago 851 S. Morgan Street, Room 218 Chicago, IL 60607-7052, U.S.A
| | | |
Collapse
|
152
|
Comparison of refolding activities between nanogel artificial chaperone and GroEL systems. Int J Biol Macromol 2008; 42:241-6. [DOI: 10.1016/j.ijbiomac.2007.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/14/2007] [Accepted: 11/16/2007] [Indexed: 11/18/2022]
|
153
|
Abstract
Currently, one of the most serious problems in protein-folding simulations for de novo structure prediction is conformational sampling of medium-to-large proteins. In vivo, folding of these proteins is mediated by molecular chaperones. Inspired by the functions of chaperonins, we designed a simple chaperonin-like simulation protocol within the framework of the standard fragment assembly method: in our protocol, the strength of the hydrophobic interaction is periodically modulated to help the protein escape from misfolded structures. We tested this protocol for 38 proteins and found that, using a certain defined criterion of success, our method could successfully predict the native structures of 14 targets, whereas only those of 10 targets were successfully predicted using the standard protocol. In particular, for non-alpha-helical proteins, our method yielded significantly better predictions than the standard approach. This chaperonin-inspired protocol that enhanced de novo structure prediction using folding simulations may, in turn, provide new insights into the working principles underlying the chaperonin system.
Collapse
|
154
|
Clare DK, Stagg S, Quispe J, Farr GW, Horwich AL, Saibil HR. Multiple states of a nucleotide-bound group 2 chaperonin. Structure 2008; 16:528-34. [PMID: 18400175 PMCID: PMC2719814 DOI: 10.1016/j.str.2008.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 01/09/2008] [Accepted: 01/09/2008] [Indexed: 11/18/2022]
Abstract
Chaperonin action is controlled by cycles of nucleotide binding and hydrolysis. Here, we examine the effects of nucleotide binding on an archaeal group 2 chaperonin. In contrast to the ordered apo state of the group 1 chaperonin GroEL, the unliganded form of the homo-16-mer Methanococcus maripaludis group 2 chaperonin is very open and flexible, with intersubunit contacts only in the central double belt of equatorial domains. The intermediate and apical domains are free of contacts and deviate significantly from the overall 8-fold symmetry. Nucleotide binding results in three distinct, ordered 8-fold symmetric conformations--open, partially closed, and fully closed. The partially closed ring encloses a 40% larger volume than does the GroEL-GroES folding chamber, enabling it to encapsulate proteins up to 80 kDa, in contrast to the fully closed form, whose cavities are 20% smaller than those of the GroEL-GroES chamber.
Collapse
Affiliation(s)
- Daniel K. Clare
- Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Scott Stagg
- The National Resource for Automated Molecular Microscopy, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joel Quispe
- The National Resource for Automated Molecular Microscopy, Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - George W. Farr
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510
| | - Arthur L. Horwich
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510
- Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, Connecticut 06510
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Helen R. Saibil
- Department of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
155
|
Coluzza I, De Simone A, Fraternali F, Frenkel D. Multi-scale simulations provide supporting evidence for the hypothesis of intramolecular protein translocation in GroEL/GroES complexes. PLoS Comput Biol 2008; 4:e1000006. [PMID: 18463703 PMCID: PMC2265519 DOI: 10.1371/journal.pcbi.1000006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 01/16/2008] [Indexed: 11/20/2022] Open
Abstract
The biological function of chaperone complexes is to assist the folding of non-native proteins. The widely studied GroEL chaperonin is a double-barreled complex that can trap non-native proteins in one of its two barrels. The ATP-driven binding of a GroES cap then results in a major structural change of the chamber where the substrate is trapped and initiates a refolding attempt. The two barrels operate anti-synchronously. The central region between the two barrels contains a high concentration of disordered protein chains, the role of which was thus far unclear. In this work we report a combination of atomistic and coarse-grained simulations that probe the structure and dynamics of the equatorial region of the GroEL/GroES chaperonin complex. Surprisingly, our simulations show that the equatorial region provides a translocation channel that will block the passage of folded proteins but allows the passage of secondary units with the diameter of an alpha-helix. We compute the free-energy barrier that has to be overcome during translocation and find that it can easily be crossed under the influence of thermal fluctuations. Hence, strongly non-native proteins can be squeezed like toothpaste from one barrel to the next where they will refold. Proteins that are already fairly close to the native state will not translocate but can refold in the chamber where they were trapped. Several experimental results are compatible with this scenario, and in the case of the experiments of Martin and Hartl, intra chaperonin translocation could explain why under physiological crowding conditions the chaperonin does not release the substrate protein.
Collapse
Affiliation(s)
- Ivan Coluzza
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
156
|
Claxton DP, Zou P, Mchaourab HS. Structure and orientation of T4 lysozyme bound to the small heat shock protein alpha-crystallin. J Mol Biol 2008; 375:1026-39. [PMID: 18062989 PMCID: PMC2276617 DOI: 10.1016/j.jmb.2007.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/17/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
Abstract
We have determined the structural changes that accompany the formation of a stable complex between a destabilized mutant of T4 lysozyme (T4L) and the small heat shock protein alpha-crystallin. Using pairs of fluorescence or spin label probes to fingerprint the T4L tertiary fold, we demonstrate that binding disrupts tertiary packing in the two domains as well as across the active-site cleft. Furthermore, increased distances between i and i+4 residues of helices support a model in which the bound structure is not native-like but significantly unfolded. In the confines of the oligomer, T4L has a preferential orientation with residues in the more hydrophobic C-terminal domain sequestered in a buried environment, while residues in the N-terminal domain are exposed to the aqueous solvent. Furthermore, electron paramagnetic resonance spectral line shapes of sites in the N-terminal domain are narrower than in the folded, unbound T4L reflecting an unstructured backbone and an asymmetric pattern of contacts between T4L and alpha-crystallin. The net orientation is not affected by the location of the destabilizing mutation consistent with the notion that binding is not triggered by recognition of localized unfolding. Together, the structural and thermodynamic data indicate that the stably bound conformation of T4L is unfolded and support a model in which the two modes of substrate binding originate from two discrete binding sites on the chaperone.
Collapse
Affiliation(s)
- Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 741 Light Hall, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | | | |
Collapse
|
157
|
Chennubhotla C, Yang Z, Bahar I. Coupling between global dynamics and signal transduction pathways: a mechanism of allostery for chaperonin GroEL. MOLECULAR BIOSYSTEMS 2008; 4:287-92. [DOI: 10.1039/b717819k] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
158
|
Ramirez-Alvarado M. Principles of protein misfolding. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:115-60. [PMID: 19121701 DOI: 10.1016/s0079-6603(08)00404-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marina Ramirez-Alvarado
- Department of Biochemistry, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
159
|
Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering. Biophys J 2007; 94:1392-402. [PMID: 17981896 DOI: 10.1529/biophysj.107.114710] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the well-known functional importance of GroEL-GroES complex formation during the chaperonin cycle, the stoichiometry of the complex has not been clarified. The complex can occur either as an asymmetric 1:1 GroEL-GroES complex or as a symmetric 1:2 GroEL-GroES complex, although it remains uncertain which type is predominant under physiological conditions. To resolve this question, we studied the structure of the GroEL-GroES complex under physiological conditions by small-angle x-ray scattering, which is a powerful technique to directly observe the structure of the protein complex in solution. We evaluated molecular structural parameters, the radius of gyration and the maximum dimension of the complex, from the x-ray scattering patterns under various nucleotide conditions (3 mM ADP, 3 mM ATP gamma S, and 3 mM ATP in 10 mM MgCl(2) and 100 mM KCl) at three different temperatures (10 degrees C, 25 degrees C, and 37 degrees C). We then compared the experimentally observed scattering patterns with those calculated from the known x-ray crystallographic structures of the GroEL-GroES complex. The results clearly demonstrated that the asymmetric complex must be the major species stably present in solution under physiological conditions. On the other hand, in the presence of ATP (3 mM) and beryllium fluoride (10 mM NaF and 300 microM BeCl(2)), we observed the formation of a stable symmetric complex, suggesting the existence of a transiently formed symmetric complex during the chaperonin cycle.
Collapse
|
160
|
Villebeck L, Moparthi SB, Lindgren M, Hammarström P, Jonsson BH. Domain-Specific Chaperone-Induced Expansion Is Required for β-Actin Folding: A Comparison of β-Actin Conformations upon Interactions with GroEL and Tail-less Complex Polypeptide 1 Ring Complex (TRiC). Biochemistry 2007; 46:12639-47. [DOI: 10.1021/bi700658n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laila Villebeck
- Divisions of Molecular Biotechnology and of Chemistry, IFM, Linköping University, 581 83 Linköping, Sweden, and Department of Physics, The Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Satish Babu Moparthi
- Divisions of Molecular Biotechnology and of Chemistry, IFM, Linköping University, 581 83 Linköping, Sweden, and Department of Physics, The Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Mikael Lindgren
- Divisions of Molecular Biotechnology and of Chemistry, IFM, Linköping University, 581 83 Linköping, Sweden, and Department of Physics, The Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per Hammarström
- Divisions of Molecular Biotechnology and of Chemistry, IFM, Linköping University, 581 83 Linköping, Sweden, and Department of Physics, The Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bengt-Harald Jonsson
- Divisions of Molecular Biotechnology and of Chemistry, IFM, Linköping University, 581 83 Linköping, Sweden, and Department of Physics, The Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
161
|
van Duijn E, Simmons DA, van den Heuvel RHH, Bakkes PJ, van Heerikhuizen H, Heeren RMA, Robinson CV, van der Vies SM, Heck AJR. Tandem mass spectrometry of intact GroEL-substrate complexes reveals substrate-specific conformational changes in the trans ring. J Am Chem Soc 2007; 128:4694-702. [PMID: 16594706 DOI: 10.1021/ja056756l] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been suggested that the bacterial GroEL chaperonin accommodates only one substrate at any given time, due to conformational changes to both the cis and trans ring that are induced upon substrate binding. Using electrospray ionization mass spectrometry, we show that indeed GroEL binds only one molecule of the model substrate Rubisco. In contrast, the capsid protein of bacteriophage T4, a natural GroEL substrate, can occupy both rings simultaneously. As these substrates are of similar size, the data indicate that each substrate induces distinct conformational changes in the GroEL chaperonin. The distinctive binding behavior of Rubisco and the capsid protein was further investigated using tandem mass spectrometry on the intact 800-914 kDa GroEL-substrate complexes. Our data suggest that even in the gas phase the substrates remain bound inside the GroEL cavity. The analysis revealed further that binding of Rubisco to the GroEL oligomer stabilizes the chaperonin complex significantly, whereas binding of one capsid protein did not have the same effect. However, addition of a second capsid protein molecule to GroEL resulted in a similar stabilizing effect to that obtained after the binding of a single Rubisco. On the basis of the stoichiometry of the GroEL chaperonin-substrate complex and the dissociation behavior of the two different substrates, we hypothesize that the binding of a single capsid polypeptide does not induce significant conformational changes in the GroEL trans ring, and hence the unoccupied GroEL ring remains accessible for a second capsid molecule.
Collapse
Affiliation(s)
- Esther van Duijn
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Gould PS, Burgar HR, Lund PA. Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperones 2007; 12:123-31. [PMID: 17688191 PMCID: PMC1949324 DOI: 10.1379/csc-227r.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Many bacteria possess 2 or more genes for the chaperonin GroEL and the cochaperonin GroES. In particular, rhizobial species often have multiple groEL and groES genes, with a high degree of amino-acid similarity, in their genomes. The Rhizobium leguminosarum strain A34 has 3 complete groE operons, which we have named cpn.1, cpn.2 and cpn.3. Previously we have shown the cpn. 1 operon to be essential for growth, but the two other cpn operons to be dispensable. Here, we have investigated the extent to which loss of the essential GroEL homologue Cpn60.1 can be compensated for by expression of the other two GroEL homologues (Cnp60.2 and Cpn60.3). Cpn60.2 could not be overexpressed to high levels in R. leguminosarum, and was unable to replace Cpn60.1. A strain that overexpressed Cpn60.3 grew in the absence of Cpn60.1, but the complemented strain displayed a temperature-sensitive phenotype. Cpn60.1 and Cpn60.3, when coexpressed in Escherichia coli, preferentially selfassembled rather than forming mixed heteroligomers. We conclude that, despite their high amino acid similarity, the GroEL homologues of R. leguminosarum are not functionally equivalent in vivo.
Collapse
Affiliation(s)
- Phillip S Gould
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
163
|
Ge R, Sun X, Gu Q, Watt RM, Tanner JA, Wong BCY, Xia HH, Huang JD, He QY, Sun H. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J Biol Inorg Chem 2007; 12:831-842. [PMID: 17503094 DOI: 10.1007/s00775-007-0237-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/02/2007] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a major human pathogen that can cause peptic ulcers and chronic gastritis. Bismuth-based triple or quadruple therapies are commonly recommended for the treatment of H. pylori infections. However, the molecular mechanisms underlying treatment with bismuth are currently not fully understood. We have conducted a detailed comparative proteomic analysis of H. pylori cells both before and after treatment with colloidal bismuth subcitrate (CBS). Eight proteins were found to be significantly upregulated or downregulated in the presence of CBS (20 microg mL(-1)). Bismuth-induced oxidative stress was confirmed by detecting higher levels of lipid hydroperoxide (approximately 1.8 times) and hemin (approximately 3.4 times), in whole cell extracts of bismuth-treated H. pylori cells, compared with those from untreated cells. The presence of bismuth also led to an approximately eightfold decrease in cellular protease activities. Using immobilized-bismuth affinity chromatography, we isolated and subsequently identified seven bismuth-binding proteins from H. pylori cell extracts. The intracellular levels of four of these proteins (HspA, HspB, NapA and TsaA) were influenced by the addition of CBS, which strongly suggests that they interact directly with bismuth. The other bismuth-interacting proteins identified were two enzymes (fumarase and the urease subunit UreB), and a translational factor (Ef-Tu). Our data suggest that the inhibition of proteases, modulation of cellular oxidative stress and interference with nickel homeostasis may be key processes underlying the molecular mechanism of bismuth's actions against H. pylori.
Collapse
Affiliation(s)
- Ruiguang Ge
- Department of Chemistry and Open Laboratory of Chemical Biology, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Elad N, Farr GW, Clare DK, Orlova EV, Horwich AL, Saibil HR. Topologies of a substrate protein bound to the chaperonin GroEL. Mol Cell 2007; 26:415-26. [PMID: 17499047 PMCID: PMC1885994 DOI: 10.1016/j.molcel.2007.04.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 03/19/2007] [Accepted: 04/04/2007] [Indexed: 12/22/2022]
Abstract
The chaperonin GroEL assists polypeptide folding through sequential steps of binding nonnative protein in the central cavity of an open ring, via hydrophobic surfaces of its apical domains, followed by encapsulation in a hydrophilic cavity. To examine the binding state, we have classified a large data set of GroEL binary complexes with nonnative malate dehydrogenase (MDH), imaged by cryo-electron microscopy, to sort them into homogeneous subsets. The resulting electron density maps show MDH associated in several characteristic binding topologies either deep inside the cavity or at its inlet, contacting three to four consecutive GroEL apical domains. Consistent with visualization of bound polypeptide distributed over many parts of the central cavity, disulfide crosslinking could be carried out between a cysteine in a bound substrate protein and cysteines substituted anywhere inside GroEL. Finally, substrate binding induced adjustments in GroEL itself, observed mainly as clustering together of apical domains around sites of substrate binding.
Collapse
Affiliation(s)
- Nadav Elad
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, UK
| | - George W. Farr
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Daniel K. Clare
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, UK
| | - Elena V. Orlova
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, UK
| | - Arthur L. Horwich
- Department of Genetics, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510, USA
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Helen R. Saibil
- Department of Crystallography, Birkbeck College London, Malet Street, London WC1E 7HX, UK
- Corresponding author
| |
Collapse
|
165
|
van Duijn E, Heck AJR, van der Vies SM. Inter-ring communication allows the GroEL chaperonin complex to distinguish between different substrates. Protein Sci 2007; 16:956-65. [PMID: 17456746 PMCID: PMC2206630 DOI: 10.1110/ps.062713607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The productive folding of substrate proteins by the GroEL complex of Escherichia coli requires the activity of both the chaperonin rings. These heptameric rings were shown to regulate the chaperonins' affinity for substrates and co-chaperonin via inter-ring communications; however, the molecular details of the interactions are not well understood. We have investigated the effect of substrate binding on inter-ring communications of the chaperonin complex, both the double-ring GroEL as well as the single-ring SR1 chaperonin in complex with four different substrates by using mass spectrometry. This approach shows that whereas SR1 is unable to distinguish between Rubisco, gp23, gp5, and MDH, GroEL shows clear differences upon binding these substrates. The most distinctive binding behavior is observed for Rubisco, which only occupies one GroEL ring. Both bacteriophage capsid proteins (gp23 and gp5) as well as MDH are able to bind to the two GroEL rings simultaneously. Our data suggest that inter-ring communication allows the chaperonin complex to differentiate between substrates. Using collision induced dissociation in the gas phase, differences between the chaperonin(substrate) complexes are observed only when both rings are present. The data indicate that the size of the substrate is an important factor that determines the degree of stabilization of the chaperonin complex.
Collapse
Affiliation(s)
- Esther van Duijn
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Free University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
166
|
Zheng W, Brooks BR, Thirumalai D. Allosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most robust to sequence variations. Biophys J 2007; 93:2289-99. [PMID: 17557788 PMCID: PMC1965427 DOI: 10.1529/biophysj.107.105270] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Escherichia coli chaperonin GroEL, which helps proteins to fold, consists of two heptameric rings stacked back-to-back. During the reaction cycle GroEL undergoes a series of allosteric transitions triggered by ligand (substrate protein, ATP, and the cochaperonin GroES) binding. Based on an elastic network model of the bullet-shaped double-ring chaperonin GroEL-(ADP)(7)-GroES structure (R''T state), we perform a normal mode analysis to explore the energetically favorable collective motions encoded in the R''T structure. By comparing each normal mode with the observed conformational changes in the R''T --> TR'' transition, a single dominant normal mode provides a simple description of this highly intricate allosteric transition. A detailed analysis of this relatively high-frequency mode describes the structural and dynamic changes that underlie the positive intra-ring and negative inter-ring cooperativity. The dynamics embedded in the dominant mode entails highly concerted structural motions with approximate preservation of sevenfold symmetry within each ring and negatively correlated ones between the two rings. The dominant normal mode (in comparison with the other modes) is robust to parametric perturbations caused by sequence variations, which validates its functional importance. Response of the dominant mode to local changes that mimic mutations using the structural perturbation method technique leads to a wiring diagram that identifies a network of key residues that regulate the allosteric transitions. Many of these residues are located in intersubunit interfaces, and may therefore play a critical role in transmitting allosteric signals between subunits.
Collapse
Affiliation(s)
- Wenjun Zheng
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
167
|
Sliozberg Y, Abrams CF. Spontaneous conformational changes in the E. coli GroEL subunit from all-atom molecular dynamics simulations. Biophys J 2007; 93:1906-16. [PMID: 17513353 PMCID: PMC1959553 DOI: 10.1529/biophysj.107.108043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli chaperonin GroEL is a complex of identical subunit proteins (57 kDa each) arranged in a back-to-back stacking of two heptameric rings. Its hallmarks include nested positive intra-ring and negative inter-ring cooperativity in adenosine trisphosphate (ATP) binding and the ability to mediate the folding of newly transcribed and/or denatured substrate proteins. We performed unbiased molecular dynamics simulations of the GroEL subunit protein in explicit water both with and without the nucleotide KMgATP to understand better the details of the structural transitions that enable these behaviors. Placing KMgATP in the equatorial domain binding pocket of a t state subunit, which corresponds to a low ATP-affinity state, produced a short-lived (6 ns) state that spontaneously transitioned to the high ATP-affinity r state. The important feature of this transition is a large-scale rotation of the intermediate domain's helix M to close the ATP binding pocket. Pivoting of helix M is accompanied by counterclockwise rotation and slight deformation of the apical domain, important for lowering the affinity for substrate protein. Aligning simulation conformations into model heptamer rings demonstrates that the t-->r transition in one subunit is not sterically hindered by t state neighbors, but requires breakage of Arg(197)-Glu(386) intersubunit salt bridges, which are important for inter-ring positive cooperativity. Lowest-frequency quasi-harmonic modes of vibration computed pre- and post-transition clearly show that natural vibrations facilitate the transition. Finally, we propose a novel mechanism for inter-ring cooperativity in ATP binding inspired by the observation of spontaneous insertion of the side chain of Ala(480) into the empty nucleotide pocket.
Collapse
Affiliation(s)
- Yelena Sliozberg
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | | |
Collapse
|
168
|
Paul S, Singh C, Mishra S, Chaudhuri TK. The 69 kDaEscherichia colimaltodextrin glucosidase does not get encapsulated underneath GroES and folds throughtransmechanism during GroEL/ GroES‐assisted folding. FASEB J 2007; 21:2874-85. [PMID: 17494995 DOI: 10.1096/fj.06-7958com] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli chaperonin GroEL and GroES assist in folding of a wide variety of substrate proteins in the molecular mass range of approximately 50 kDa, using cis mechanism, but limited information is available on how they assist in folding of larger proteins. Considering that the central cavity of GroEL can accommodate a non-native protein of approximately 60 kDa, it is important to study the GroEL-GroES-assisted folding of substrate proteins that are large enough for cis encapsulation. In this study, we have reported the mechanism of GroEL/GroES-assisted in vivo and in vitro folding of a 69 kDa monomeric E. coli protein maltodextrin glucosidase (MalZ). Coexpression of GroEL and GroES in E. coli causes a 2-fold enhancement of exogenous MalZ activity in vivo. In vitro, GroEL and GroES in the presence of ATP give rise to a 7-fold enhancement in MalZ refolding. Neither GroEL nor single ring GroEL (SR1) in the presence or absence of ATP could enhance the in vitro folding of MalZ. GroES could not encapsulate GroEL-bound MalZ. All these experimental findings suggested that GroEL/GroES-assisted folding of MalZ followed trans mechanism, whereas denatured MalZ and GroES bound to the opposite rings of a GroEL molecule.
Collapse
Affiliation(s)
- Subhankar Paul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
169
|
Reissmann S, Parnot C, Booth CR, Chiu W, Frydman J. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 2007; 14:432-40. [PMID: 17460696 PMCID: PMC3339572 DOI: 10.1038/nsmb1236] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 03/20/2007] [Indexed: 11/09/2022]
Abstract
Chaperonins are allosteric double-ring ATPases that mediate cellular protein folding. ATP binding and hydrolysis control opening and closing of the central chaperonin chamber, which transiently provides a protected environment for protein folding. During evolution, two strategies to close the chaperonin chamber have emerged. Archaeal and eukaryotic group II chaperonins contain a built-in lid, whereas bacterial chaperonins use a ring-shaped cofactor as a detachable lid. Here we show that the built-in lid is an allosteric regulator of group II chaperonins, which helps synchronize the subunits within one ring and, to our surprise, also influences inter-ring communication. The lid is dispensable for substrate binding and ATP hydrolysis, but is required for productive substrate folding. These regulatory functions of the lid may serve to allow the symmetrical chaperonins to function as 'two-stroke' motors and may also provide a timer for substrate encapsulation within the closed chamber.
Collapse
Affiliation(s)
- Stefanie Reissmann
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
170
|
Geels RBJ, van der Vies SM, Heck AJR, Heeren RMA. Electron capture dissociation as structural probe for noncovalent gas-phase protein assemblies. Anal Chem 2007; 78:7191-6. [PMID: 17037920 DOI: 10.1021/ac060960p] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron capture dissociation (ECD) of proteins in Fourier transform ion cyclotron resonance mass spectrometry usually leads to charge reduction and backbone-bond cleavage, thereby mostly retaining labile, intramolecular noncovalent interactions. In this report, we evaluate ECD of the 84-kDa noncovalent heptameric gp31 complex and compare this with sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD) of the same protein. Unexpectedly, the 21+ charge state of the gp31 oligomer exhibits a main ECD pathway resulting in a hexamer and monomer, disrupting labile, intermolecular noncovalent bonds and leaving the backbone intact. Unexpectedly, the charge separation over the two products is highly proportional to molecular weight. This indicates that a major charge redistribution over the subunits of the complex does not take place during ECD, in contrast to the behavior observed when using SORI-CAD. We speculate that the ejected monomer retains more of its original structure in ECD, when compared to SORI-CAD. ECD of lower charge states of gp31 does not lead to dissociation of noncovalent bonds. We hypothesize that the initial gas-phase structure of the 21+ charge state is significantly different from the lower charge states. These structural differences result in the different reaction pathways when using ECD.
Collapse
Affiliation(s)
- Rimco B J Geels
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
171
|
Ruano-Rubio V, Fares MA. Testing the Neutral Fixation of Hetero-Oligomerism in the Archaeal Chaperonin CCT. Mol Biol Evol 2007; 24:1384-96. [PMID: 17406022 DOI: 10.1093/molbev/msm065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolutionary transition from homo-oligomerism to hetero-oligomerism in multimeric proteins and its contribution to function innovation and organism complexity remain to be investigated. Here, we undertake the challenge of contributing to this theoretical ground by investigating the hetero-oligomerism in the molecular chaperonin cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) from archaea. CCT is amenable to this study because, in contrast to eukaryotic CCTs where sub-functionalization after gene duplication has been taken to completion, archaeal CCTs present no evidence for subunit functional specialization. Our analyses yield additional information to previous reports on archaeal CCT paralogy by identifying new duplication events. Analyses of selective constraints show that amino acid sites from 1 subunit have fixed slightly deleterious mutations at inter-subunit interfaces after gene duplication. These mutations have been followed by compensatory mutations in nearby regions of the same subunit and in the interface contact regions of its paralogous subunit. The strong selective constraints in these regions after speciation support the evolutionary entrapment of CCTs as hetero-oligomers. In addition, our results unveil different evolutionary dynamics depending on the degree of CCT hetero-oligomerism. Archaeal CCT protein complexes comprising 3 distinct classes of subunits present 2 evolutionary processes. First, slightly deleterious and compensatory mutations were fixed neutrally at inter-subunit regions. Second, sub-functionalization may have occurred at substrate-binding and adenosine triphosphate-binding regions after the 2nd gene duplication event took place. CCTs with 2 distinct types of subunits did not present evidence of sub-functionalization. Our results provide the 1st in silico evidence for the neutral fixation of hetero-oligomerism in archaeal CCTs and provide information on the evolution of hetero-oligomerism toward sub-functionalization in archaeal CCTs.
Collapse
Affiliation(s)
- Valentin Ruano-Rubio
- Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | |
Collapse
|
172
|
Chen HY, Chu ZM, Ma YH, Zhang Y, Yang SL. Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeonPyrococcus furiosus. J Basic Microbiol 2007; 47:132-7. [PMID: 17440915 DOI: 10.1002/jobm.200610215] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The chaperonin molecular machine from hyperthermophilic archaeon Pyrococcus furiosus was studied in this paper. The Pyrococcus furiosus chaperonin gene (PfCPN) was amplified by PCR from the Pyrococcus furiosus genomic DNA, and expressed in Escherichia coli BL21-Codonplus(DE)(3)-RIL. The recombinant PfCPN was purified to homogeneity by using ion-exchange and size-exclusion chromatography. It was found that the ATPase activity of the PfCPN was highest at 88 degrees C, and there existed a nested cooperativity of the ATPase activity of the PfCPN. This result suggested that nested allosteric behavior may be common to chaperonin molecular machines from archaea. The half-life (t(1/2)) of the ATPase activity of the PfCPN at 100 degrees C was about 60 min. The PfCPN displayed chaperone activity in preventing lysozyme from thermal inactivation. This chaperone activity was in an ATP-dependent manner.
Collapse
Affiliation(s)
- Hua-You Chen
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
173
|
Chen DH, Song JL, Chuang DT, Chiu W, Ludtke SJ. An expanded conformation of single-ring GroEL-GroES complex encapsulates an 86 kDa substrate. Structure 2007; 14:1711-22. [PMID: 17098196 DOI: 10.1016/j.str.2006.09.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 09/14/2006] [Accepted: 09/19/2006] [Indexed: 11/26/2022]
Abstract
Electron cryomicroscopy reveals an unprecedented conformation of the single-ring mutant of GroEL (SR398) bound to GroES in the presence of Mg-ATP. This conformation exhibits a considerable expansion of the folding cavity, with approximately 80% more volume than the X-ray structure of the equivalent cis cavity in the GroEL-GroES-(ADP)(7) complex. This expanded conformation can encapsulate an 86 kDa heterodimeric (alphabeta) assembly intermediate of mitochondrial branched-chain alpha-ketoacid dehydrogenase, the largest substrate ever observed to be cis encapsulated. The SR398-GroES-Mg-ATP complex is found to exist as a mixture of standard and expanded conformations, regardless of the absence or presence of the substrate. However, the presence of even a small substrate causes a pronounced bias toward the expanded conformation. Encapsulation of the large assembly intermediate is supported by a series of electron cryomicroscopy studies as well as the protection of both alpha and beta subunits of the substrate from tryptic digestion.
Collapse
Affiliation(s)
- Dong-Hua Chen
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
174
|
Lee HY, Nam SR, Hong JI. Microtubule Formation Using Two-Component Gel System. J Am Chem Soc 2007; 129:1040-1. [PMID: 17263379 DOI: 10.1021/ja0676197] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ho Yong Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | | | | |
Collapse
|
175
|
Bonshtien AL, Weiss C, Vitlin A, Niv A, Lorimer GH, Azem A. Significance of the N-terminal domain for the function of chloroplast cpn20 chaperonin. J Biol Chem 2006; 282:4463-4469. [PMID: 17178727 DOI: 10.1074/jbc.m606433200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chaperonins cpn60 and cpn10 are essential proteins involved in cellular protein folding. Plant chloroplasts contain a unique version of the cpn10 co-chaperonin, cpn20, which consists of two homologous cpn10-like domains (N-cpn20 and C-cpn20) that are connected by a short linker region. Although cpn20 seems to function like other single domain cpn10 oligomers, the structure and specific functions of the domains are not understood. We mutated amino acids in the "mobile loop" regions of N-cpn20, C-cpn20 or both: a highly conserved glycine, which was shown to be important for flexibility of the mobile loop, and a leucine residue shown to be involved in binding of co-chaperonin to chaperonin. The mutant proteins were purified and their oligomeric structure validated by gel filtration, native gel electrophoresis, and circular dichroism. Functional assays of protein refolding and inhibition of GroEL ATPase both showed (i) mutation of the conserved glycine reduced the activity of cpn20, whether in N-cpn20 (G32A) or C-cpn20 (G130A). The same mutation in the bacterial cpn10 (GroES G24A) had no effect on activity. (ii) Mutations in the highly conserved leucine of N-cpn20 (L35A) and in the corresponding L27A of GroES resulted in inactive protein. (iii) In contrast, mutant L133A, in which the conserved leucine of C-cpn20 was altered, retained 55% activity. We conclude that the structure of cpn20 is much more sensitive to alterations in the mobile loop than is the structure of GroES. Moreover, only N-cpn20 is necessary for activity of cpn20. However, full and efficient functioning requires both domains.
Collapse
Affiliation(s)
- Anat L Bonshtien
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and the
| | - Celeste Weiss
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and the.
| | - Anna Vitlin
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and the
| | - Adina Niv
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and the
| | - George H Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Abdussalam Azem
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel and the.
| |
Collapse
|
176
|
Kapatai G, Large A, Benesch JLP, Robinson CV, Carrascosa JL, Valpuesta JM, Gowrinathan P, Lund PA. All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable. Mol Microbiol 2006; 61:1583-97. [PMID: 16968228 DOI: 10.1111/j.1365-2958.2006.05324.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Hsp60 or chaperonin class of molecular chaperones is divided into two phylogenetic groups: group I, found in bacteria, mitochondria and chloroplasts, and group II, found in eukaryotic cytosol and archaea. Group I chaperonins are generally essential in bacteria, although when multiple copies are found one or more of these are dispensable. Eukaryotes contain eight genes for group II chaperonins, all of which are essential, and it has been shown that these proteins assemble into double-ring complexes with eightfold symmetry where all proteins occupy specific positions in the ring. In archaea, there are one, two or three genes for the group II chaperonins, but whether they are essential for growth is unknown. Here we describe a detailed genetic, structural and biochemical analysis of these proteins in the halophilic archaeon, Haloferax volcanii. This organism contains three genes for group II chaperonins, and we show that all are individually dispensable but at least one must be present for growth. Two of the three possible double mutants can be constructed, but only one of the three genes is capable of fully complementing the stress-dependent phenotypes that these double mutants show. The chaperonin complexes are made up of hetero-oligomers with eightfold symmetry, and the properties of the different combinations of subunits derived from the mutants are distinct. We conclude that, although they are more homologous to eukaryotic than prokaryotic chaperonins, archaeal chaperonins have some redundancy of function.
Collapse
Affiliation(s)
- Georgia Kapatai
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Velazquez-Muriel JA, Carazo JMA. Flexible fitting in 3D-EM with incomplete data on superfamily variability. J Struct Biol 2006; 158:165-81. [PMID: 17257856 DOI: 10.1016/j.jsb.2006.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/20/2006] [Accepted: 10/13/2006] [Indexed: 11/26/2022]
Abstract
We present a substantial improvement of S-flexfit, our recently proposed method for flexible fitting in three dimensional electron microscopy (3D-EM) at a resolution range of 8-12A, together with a comparison of the method capabilities with Normal Mode Analysis (NMA), application examples and a user's guide. S-flexfit uses the evolutionary information contained in protein domain databases like CATH, by means of the structural alignment of the elements of a protein superfamily. The added development is based on a recent extension of the Singular Value Decomposition (SVD) algorithm specifically designed for situations with missing data: Incremental Singular Value Decomposition (ISVD). ISVD can manage gaps and allows considering more aminoacids in the structural alignment of a superfamily, extending the range of application and producing better models for the fitting step of our methodology. Our previous SVD-based flexible fitting approach can only take into account positions with no gaps in the alignment, being appropriate when the superfamily members are relatively similar and there are few gaps. However, with new data coming from structural proteomics works, the later situation is becoming less likely, making ISVD the technique of choice for further works. We present the results of using ISVD in the process of flexible fitting with both simulated and experimental 3D-EM maps (GroEL and Poliovirus 135S cell entry intermediate).
Collapse
Affiliation(s)
- Javier A Velazquez-Muriel
- Biocomputing Unit, National Center for Biotechnology, Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | |
Collapse
|
178
|
Abstract
Protein folding is a spontaneous process that is essential for life, yet the concentrated and complex interior of a cell is an inherently hostile environment for the efficient folding of many proteins. Some proteins-constrained by sequence, topology, size, and function-simply cannot fold by themselves and are instead prone to misfolding and aggregation. This problem is so deeply entrenched that a specialized family of proteins, known as molecular chaperones, evolved to assist in protein folding. Here we examine one essential class of molecular chaperones, the large, oligomeric, and energy utilizing chaperonins or Hsp60s. The bacterial chaperonin GroEL, along with its co-chaperonin GroES, is probably the best-studied example of this family of protein-folding machine. In this review, we examine some of the general properties of proteins that do not fold well in the absence of GroEL and then consider how folding of these proteins is enhanced by GroEL and GroES. Recent experimental and theoretical studies suggest that chaperonins like GroEL and GroES employ a combination of protein isolation, unfolding, and conformational restriction to drive protein folding under conditions where it is otherwise not possible.
Collapse
Affiliation(s)
- Zong Lin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
179
|
Altenhofer P, Schierhorn A, Fricke B. Agarose isoelectric focusing can improve resolution of membrane proteins in the two-dimensional electrophoresis of bacterial proteins. Electrophoresis 2006; 27:4096-111. [PMID: 16983635 DOI: 10.1002/elps.200600051] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2-D separation of bacterial membrane proteins is still difficult despite using high-resolution IPG-IEF/SDS-PAGE. We were searching for alternative methods to avoid typical problems such as precipitation, low solubility, and aggregation of membrane proteins in the 1-D separation with IPG-IEF. Blue native electrophoresis (BNE) and agarose IEF (A-IEF) were tested for their separation capacity and their capability of replacing IPG-IEF in the first dimension. SDS-PAGE was chosen for the second dimension on account of its outstanding resolution. We could confirm that only A-IEF was a useful replacement for the IPG-IEF in the first dimension resulting in 2-D protein distributions with additional membrane protein spots not being found after IPG-IEF/SDS-PAGE. A second interesting result was that the agarose IEF mediates the possibility of separation of membrane proteins in a partially native state in the first dimension. This native A-IEF resulted in drastically changed spot patterns with an acidic shift of nearly all spots and divergent distribution of proteins compared to non-native A-IEF and IPG-IEF. We found out that native and non-native A-IEF are powerful tools to supplement IPG-IEF/SDS-PAGE.
Collapse
Affiliation(s)
- Pia Altenhofer
- Medical Faculty, Institute of Physiological Chemistry, Martin Luther University, Halle, Saale, Germany.
| | | | | |
Collapse
|
180
|
Fatima S, Ahmad B, Khan RH. Fluoroalcohols induced unfolding of Succinylated Con A: Native like β-structure in partially folded intermediate and α-helix in molten globule like state. Arch Biochem Biophys 2006; 454:170-80. [PMID: 16970906 DOI: 10.1016/j.abb.2006.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Concanavalin A (Con A) exists in dimeric state at pH 5. In concentration range 20-60% (v/v) 2,2,2-trifluoroethanol (TFE) and 2-40% (v/v) 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), Con A at pH 5.0 shows visible aggregation. However, when succinyl Con A was used, no aggregation was observed in the entire concentration range of fluoroalcohols (0-90% v/v TFE and HFIP) and resulted in stable alpha-helix formation. Temperature-induced concentration-dependent aggregation in Con A was also found to be prevented/reduced in succinylated form. Possible role of electrostatic repulsion among residues in the prevention of hydrophobically driven aggregation has been discussed. Results indicate that succinylation of a protein resulted in greater stability (in both beta-sheet and alpha-helical forms) against alcohol-induced and temperature-induced concentration-dependent aggregation and this observation may play significant role in amyloid-forming proteins. Effect of TFE and HFIP on the conformation of a dimeric protein, Succinylated Con A, has been investigated by circular dichroism (CD), fluorescence emission spectroscopy, binding of hydrophobic dye ANS (8-anilinonaphthalene-1-sulfonic acid). Far UV-CD, a probe for secondary structure shows loss of native secondary structure in the presence of low concentration of both the alcohols, TFE (10% v/v) and HFIP (4% v/v). Upon addition of higher concentration of these alcohols, Succinylated Con A exhibited transformation from beta-sheet to alpha-helical structure. Intrinsic tryptophan fluorescence studies, ANS binding and near UV-CD experiments indicate the protein is more expanded, have more exposed hydrophobic surfaces and highly disrupted tertiary structure at 60% (v/v) TFE and 30% (v/v) HFIP concentrations. Taken together, these results it might be concluded that TFE and HFIP induce two intermediate states at their low and high concentrations in Succinyl Con A.
Collapse
Affiliation(s)
- Sadaf Fatima
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | | |
Collapse
|
181
|
Kim SY, Semyonov AN, Twieg RJ, Horwich AL, Frydman J, Moerner WE. Probing the sequence of conformationally induced polarity changes in the molecular chaperonin GroEL with fluorescence spectroscopy. J Phys Chem B 2006; 109:24517-25. [PMID: 16375456 PMCID: PMC1414071 DOI: 10.1021/jp0534232] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrophobic interactions play a major role in binding non-native substrate proteins in the central cavity of the bacterial chaperonin GroEL. The sequence of local conformational changes by which GroEL and its cofactor GroES assist protein folding can be explored using the polarity-sensitive fluorescence probe Nile Red. A specific single-cysteine mutant of GroEL (Cys261), whose cysteine is located inside the central cavity at the apical region of the protein, was covalently labeled with synthetically prepared Nile Red maleimide (NR). Bulk fluorescence spectra of Cys261-NR were measured to examine the effects of binding of the stringent substrate, malate dehydrogenase (MDH), GroES, and nucleotide on the local environment of the probe. After binding denatured substrate, the fluorescence intensity increased by 32 +/- 7%, suggesting enhanced hydrophobicity at the position of the label. On the other hand, in the presence of ATP, the fluorescence intensity decreased by 13 +/- 3%, implying increased local polarity. To explore the sequence of local polarity changes, substrate, GroES, and various nucleotides were added in different orders; the resulting changes in emission intensity provide insight into the sequence of conformational changes occurring during GroEL-mediated protein folding.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
182
|
Deocaris CC, Kaul SC, Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 2006; 11:116-28. [PMID: 16817317 PMCID: PMC1484513 DOI: 10.1379/csc-144r.1] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The heat shock chaperones mortalin/mitochondrial heat shock protein 70 (mtHsp70) and Hsp60 are found in multiple subcellular sites and function in the folding and intracellular trafficking of many proteins. The chaperoning activity of these 2 proteins involves different structural and functional mechanisms. In spite of providing an excellent model for an evolutionarily conserved molecular "brotherhood", their individual functions, although overlapping, are nonredundant. As they travel to various locations, both chaperones acquire different binding partners and exert a more divergent involvement in tumorigenesis, cellular senescence, and immunology. An understanding of their functional biology may lead to novel designing and development of therapeutic strategies for cancer and aging.
Collapse
Affiliation(s)
- Custer C Deocaris
- National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | |
Collapse
|
183
|
Bigotti MG, Bellamy SRW, Clarke AR. The asymmetric ATPase cycle of the thermosome: elucidation of the binding, hydrolysis and product-release steps. J Mol Biol 2006; 362:835-43. [PMID: 16942780 DOI: 10.1016/j.jmb.2006.07.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/26/2006] [Accepted: 07/26/2006] [Indexed: 11/15/2022]
Abstract
Using a combination of intrinsic fluorescence to report ATP-induced rearrangements, quenched-flow to measure ATP hydrolysis "on-enzyme" and optical methods to probe the kinetics of product release, we have begun to dissect the process of energy transduction in the thermosome, a type II chaperonin from Thermoplasma acidophilum. Stoichiometric measurements of ATP binding reveal the tight association of eight nucleotide molecules per hexa-decamer, implying the filling of only one ring owing to strong negative cooperativity. After binding, we show that these eight ATP molecules are hydrolysed over the next 50 s, after which hydrolysis slows down markedly during the establishment of the steady state in the ATPase reaction, demonstrating that the kinetic system is off-rate limited. Looking in more detail, this rapid first-turnover can be dissected into two phases; the first occurring with a half-time of 0.8 s, the second with a half-time of 14 s, possibly reflecting the differential behaviour of the four alpha and four beta subunits in a single thermosome ring. To investigate the post-hydrolytic events, we used two heat-stable enzyme-linked optical assays to measure the rate of evolution of ADP and of phosphate from the thermosome active site. Neither product showed a rapid dissociation phase prior to the establishment of the steady state, showing that both are released slowly at a rate that limits the cycle. These data highlight the importance of the highly populated thermosome/ADP/Pi complex in the molecular mechanism.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
184
|
Cliff MJ, Limpkin C, Cameron A, Burston SG, Clarke AR. Elucidation of steps in the capture of a protein substrate for efficient encapsulation by GroE. J Biol Chem 2006; 281:21266-21275. [PMID: 16684774 DOI: 10.1074/jbc.m601605200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified five structural rearrangements in GroEL induced by the ordered binding of ATP and GroES. The first discernable rearrangement (designated T --> R(1)) is a rapid, cooperative transition that appears not to be functionally communicated to the apical domain. In the second (R(1) --> R(2)) step, a state is formed that binds GroES weakly in a rapid, diffusion-limited process. However, a second optical signal, carried by a protein substrate bound to GroEL, responds neither to formation of the R(2) state nor to the binding of GroES. This result strongly implies that the substrate protein remains bound to the inner walls of the initially formed GroEL.GroES cavity, and is not yet displaced from its sites of interaction with GroEL. In the next rearrangement (R(2).GroES --> R(3).GroES) the strength of interaction between GroEL and GroES is greatly enhanced, and there is a large and coincident loss of fluorescence-signal intensity in the labeled protein substrate, indicating that there is either a displacement from its binding sites on GroEL or at least a significant change of environment. These results are consistent with a mechanism in which the shift in orientation of GroEL apical domains between that seen in the apo-protein and stable GroEL.GroES complexes is highly ordered, and transient conformational intermediates permit the association of GroES before the displacement of bound polypeptide. This ensures efficient encapsulation of the polypeptide within the GroEL central cavity underneath GroES.
Collapse
Affiliation(s)
- Matthew J Cliff
- Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, United Kingdom
| | - Claire Limpkin
- Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, United Kingdom
| | - Angus Cameron
- Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, United Kingdom
| | - Steven G Burston
- Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, United Kingdom.
| | - Anthony R Clarke
- Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
185
|
Chennubhotla C, Bahar I. Markov propagation of allosteric effects in biomolecular systems: application to GroEL-GroES. Mol Syst Biol 2006; 2:36. [PMID: 16820777 PMCID: PMC1681507 DOI: 10.1038/msb4100075] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 05/11/2006] [Indexed: 01/16/2023] Open
Abstract
We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of 'information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex GroEL-GroES, an allostery-driven structure, identifies residues engaged in intra- and inter-subunit communication, including those acting as hubs and messengers. A number of residues are distinguished by their high potentials to transmit allosteric signals, including Pro33 and Thr90 at the nucleotide-binding site and Glu461 and Arg197 mediating inter- and intra-ring communication, respectively. We propose two most likely pathways of signal transmission, between nucleotide- and GroES-binding sites across the cis and trans rings, which involve several conserved residues. A striking observation is the opposite direction of information flow within cis and trans rings, consistent with negative inter-ring cooperativity. Comparison with collective modes deduced from normal mode analysis reveals the propensity of global hinge regions to act as messengers in the transmission of allosteric signals.
Collapse
Affiliation(s)
- Chakra Chennubhotla
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
186
|
Lee RC, Despa F, Guo L, Betala P, Kuo A, Thiyagarajan P. Surfactant copolymers prevent aggregation of heat denatured lysozyme. Ann Biomed Eng 2006; 34:1190-200. [PMID: 16786393 PMCID: PMC3027126 DOI: 10.1007/s10439-006-9139-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
We investigated the ability of certain triblock copolymer surfactant poloxamers of the form polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO), to prevent formation of stable aggregates of heat denatured hen egg lysozyme. Differential scanning calorimetry (DSC) and synchrotron small angle x-ray scattering (SAXS) experiments were performed to study the thermodynamics and solution structures of lysozyme at temperatures between 20 and 90 degrees C in the presence and absence of poloxamers with various molecular weights (8.4-14.3 kDa), but similar hydrophile/hydrophobe (PEO:PPO) ratio of 80%. Poloxmer 188 was found to be very effective in preventing aggregation of heat denatured lysozyme and those functioned as a synthetic surfactant, thus enabling them to refold when the conditions become optimal. For comparison, we measured the ability of 8 kDa polyethylene glycol (PEG) to prevent lysozyme aggregation under same conditions. The results of these studies suggest that poloxamers are more efficient than PEG in preventing aggregation of heat denaturated lysozyme. To achieve equivalence, more than an order of magnitude higher concentration of PEG concentration was needed. Apparently, the presence of a hydrophobic segment in the poloxamers increases their ability to target the hydrophobic region of the unfolded proteins and protect them from self association. Given their biocompatibility and the low concentrations at which they effectively facilitate refolding of denatured proteins, they may be useful in the treatment of burns and other conditions resulting in the denaturation of proteins.
Collapse
Affiliation(s)
- Raphael C Lee
- Department of Surgery, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Ying BW, Taguchi H, Ueda T. Co-translational binding of GroEL to nascent polypeptides is followed by post-translational encapsulation by GroES to mediate protein folding. J Biol Chem 2006; 281:21813-21819. [PMID: 16754671 DOI: 10.1074/jbc.m603091200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eubacterial chaperonins GroEL and GroES are essential chaperones and primarily assist protein folding in the cell. Although the molecular mechanism of the GroEL system has been examined previously, the mechanism by which GroEL and GroES assist folding of nascent polypeptides during translation is still poorly understood. We previously demonstrated a co-translational involvement of the Escherichia coli GroEL in folding of newly synthesized polypeptides using a reconstituted cell-free translation system (Ying, B. W., Taguchi, H., Kondo, M., and Ueda, T. (2005) J. Biol. Chem. 280, 12035-12040). Employing the same system here, we further characterized the mechanism by which GroEL assists folding of translated proteins via encapsulation into the GroEL-GroES cavity. The stable co-translational association between GroEL and the newly synthesized polypeptide is dependent on the length of the nascent chain. Furthermore, GroES is capable of interacting with the GroEL-nascent peptide-ribosome complex, and experiments using a single-ring variant of GroEL clearly indicate that GroES association occurs only at the trans-ring, not the cis-ring, of GroEL. GroEL holds the nascent chain on the ribosome in a polypeptide length-dependent manner and post-translationally encapsulates the polypeptide using the GroES cap to accomplish the chaperonin-mediated folding process.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562
| | - Hideki Taguchi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan.
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562.
| |
Collapse
|
188
|
de Marcos-Lousa C, Sideris DP, Tokatlidis K. Translocation of mitochondrial inner-membrane proteins: conformation matters. Trends Biochem Sci 2006; 31:259-67. [PMID: 16616497 DOI: 10.1016/j.tibs.2006.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/15/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Most of the mitochondrial inner-membrane proteins are generated without a presequence and their targeting depends on inadequately defined internal segments. Despite the numerous components of the import machinery identified by proteomics, the properties of hydrophobic import substrates remain poorly understood. Recent studies support several principles for these membrane proteins: first, they become organized into partially assembled forms within the translocon; second, they present noncontiguous targeting signals; and third, they induce conformational changes in translocase subunits, thereby mediating "assembly on demand" of the import machinery. It is possible that the energy needed for these proteins to pass across the outer membrane, to travel through the intermembrane space and to target the inner-membrane surface is provided by conformational changes involving import components that seem to have natively unfolded structures. Such structural malleability might render some of the translocase subunits more adept at driving the protein import process.
Collapse
Affiliation(s)
- Carine de Marcos-Lousa
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology (IMBB-FORTH), PO Box 1385, Heraklion 71110, Crete, Greece
| | | | | |
Collapse
|
189
|
Kuwajima K, Inobe T, Arai M. The allosteric transition of the chaperonin groel fromescherichia coli as studied by solution X-ray scattering. Macromol Res 2006. [DOI: 10.1007/bf03218504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
190
|
Abstract
Chaperonin-mediated protein folding is complex. There have been diverse results on folding behavior, and the chaperonin molecules have been investigated as enhancing or retarding the folding rate. To understand the diversity of chaperonin-mediated protein folding, we report a study based on simulations using a simplified Gō-type model. By considering effects of affinity between the substrate protein and the chaperonin wall and spatial confinement of the chaperonin cavity, we study the thermodynamics and kinetics of folding of an unfrustrated substrate protein encapsulated in a chaperonin cavity. The affinity makes the hydrophobic residues of the protein bind to the chaperonin wall, and a strong (or weak) affinity results in a large (or small) effect of binding. Compared with the folding in bulk, the folding in chaperonin cavity with different strengths of affinity shows two kinds of behaviors: one with less dependence on the affinity but more reliance on the spatial confinement effect and the other relying strongly on the affinity. It is found that the enhancement or retardation of the folding rate depends on the competition between the spatial confinement and the affinity due to the chaperonin cavity, and a strong affinity produces a slow folding while a weak affinity induces a fast folding. The crossover between two kinds of folding behaviors happens in the case that the favorable effect of confinement is balanced by the unfavorable effect of the affinity, and a critical affinity strength is roughly defined. By analyzing the contacts formed between the residues of the protein and the chaperonin wall and between the residues of the protein themselves, the role of the affinity in the folding processes is studied. The binding of the residues with the chaperonin wall reduces the formation of both native contacts and nonnative contact or mis-contacts, providing a loose structure for further folding after allosteric change of the chaperonin cavity. In addition, 15 single-site-mutated mutants are simulated in order to test the validity of our model and to investigate the importance of affinity. Inspiringly, our results of the folding rates have a good correlation with those obtained from experiments. The folding rates are inversely correlated with the strength of the binding interactions, i.e., the weaker the binding, the faster the folding. We also find that the inner hydrophobic residues have larger effects on the folding kinetics than those of the exterior hydrophobic residues. We suggest that, besides the confinement effect, the affinity acts as another important factor to affect the folding of the substrate proteins in chaperonin systems, providing an understanding of the folding mechanism of the molecular chaperonin systems.
Collapse
Affiliation(s)
- Wei-Xin Xu
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, China
| | | | | |
Collapse
|
191
|
Coluzza I, van der Vies SM, Frenkel D. Translocation boost protein-folding efficiency of double-barreled chaperonins. Biophys J 2006; 90:3375-81. [PMID: 16473898 PMCID: PMC1440723 DOI: 10.1529/biophysj.105.074898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Incorrect folding of proteins in living cells may lead to malfunctioning of the cell machinery. To prevent such cellular disasters from happening, all cells contain molecular chaperones that assist nonnative proteins in folding into the correct native structure. One of the most studied chaperone complexes is the GroEL-GroES complex. The GroEL part has a "double-barrel" structure, which consists of two cylindrical chambers joined at the bottom in a symmetrical fashion. The hydrophobic rim of one of the GroEL chambers captures nonnative proteins. The GroES part acts as a lid that temporarily closes the filled chamber during the folding process. Several capture-folding-release cycles are required before the nonnative protein reaches its native state. Here we report molecular simulations that suggest that translocation of the nonnative protein through the equatorial plane of the complex boosts the efficiency of the chaperonin action. If the target protein is correctly folded after translocation, it is released. However, if it is still nonnative, it is likely to remain trapped in the second chamber, which then closes to start a reverse translocation process. This shuttling back and forth continues until the protein is correctly folded. Our model provides a natural explanation for the prevalence of double-barreled chaperonins. Moreover, we argue that internal folding is both more efficient and safer than a scenario where partially refolded proteins escape from the complex before being recaptured.
Collapse
Affiliation(s)
- Ivan Coluzza
- Cambridge University Centre for Computational Chemistry, Department of Chemistry, Cambridge, United Kingdom.
| | | | | |
Collapse
|
192
|
Wang J, Chen X, Clarke ML, Chen Z. Vibrational Spectroscopic Studies on Fibrinogen Adsorption at Polystyrene/Protein Solution Interfaces: Hydrophobic Side Chain and Secondary Structure Changes. J Phys Chem B 2006; 110:5017-24. [PMID: 16526745 DOI: 10.1021/jp0534683] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural changes of fibrinogen after adsorption to polystyrene (PS) were examined at the PS/protein solution interface in situ using sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Different behaviors of hydrophobic side chains and secondary structures of adsorbed fibrinogen molecules have been observed. Our results indicate that upon adsorption, the hydrophobic PS surface induces fast structural changes of fibrinogen molecules by aligning some hydrophobic side chains in fibrinogen so that they face to the surface. Such structural changes of fibrinogen hydrophobic side chains are local changes and do not immediately induce significant changes of the protein secondary structures. Our research also shows that the interactions between adsorbed fibrinogen and the PS surface can induce significant changes of protein secondary structures or global conformations which occur on a much longer time scale.
Collapse
Affiliation(s)
- Jie Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
193
|
Ranson NA, Clare DK, Farr GW, Houldershaw D, Horwich AL, Saibil HR. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes. Nat Struct Mol Biol 2006; 13:147-52. [PMID: 16429154 PMCID: PMC2871290 DOI: 10.1038/nsmb1046] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 12/06/2005] [Indexed: 11/08/2022]
Abstract
The double-ring chaperonin GroEL and its lid-like cochaperonin GroES form asymmetric complexes that, in the ATP-bound state, mediate productive folding in a hydrophilic, GroES-encapsulated chamber, the so-called cis cavity. Upon ATP hydrolysis within the cis ring, the asymmetric complex becomes able to accept non-native polypeptides and ATP in the open, trans ring. Here we have examined the structural basis for this allosteric switch in activity by cryo-EM and single-particle image processing. ATP hydrolysis does not change the conformation of the cis ring, but its effects are transmitted through an inter-ring contact and cause domain rotations in the mobile trans ring. These rigid-body movements in the trans ring lead to disruption of its intra-ring contacts, expansion of the entire ring and opening of both the nucleotide pocket and the substrate-binding domains, admitting ATP and new substrate protein.
Collapse
Affiliation(s)
- Neil A. Ranson
- Astbury Centre for Structural Molecular Biology and Institute of Molecular & Cellular Biology, University of Leeds, Leeds, LS2 9JT. UK
- School of Crystallography and Institute for Structural Molecular Biology, Birkbeck College London, Malet Street, London. WC1E 7HX, UK
| | - Daniel K. Clare
- School of Crystallography and Institute for Structural Molecular Biology, Birkbeck College London, Malet Street, London. WC1E 7HX, UK
| | - George W. Farr
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, CT 06510, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, CT 06510, USA
| | - David Houldershaw
- School of Crystallography and Institute for Structural Molecular Biology, Birkbeck College London, Malet Street, London. WC1E 7HX, UK
| | - Arthur L. Horwich
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, CT 06510, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, CT 06510, USA
| | - Helen R. Saibil
- School of Crystallography and Institute for Structural Molecular Biology, Birkbeck College London, Malet Street, London. WC1E 7HX, UK
| |
Collapse
|
194
|
Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR, Hatfull GF. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 2006; 123:861-73. [PMID: 16325580 DOI: 10.1016/j.cell.2005.09.012] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 07/27/2005] [Accepted: 09/07/2005] [Indexed: 11/20/2022]
Abstract
Mycobacteria are unusual in encoding two GroEL paralogs, GroEL1 and GroEL2. GroEL2 is essential--presumably providing the housekeeping chaperone functions--while groEL1 is nonessential, contains the attB site for phage Bxb1 integration, and encodes a putative chaperone with unusual structural features. Inactivation of the Mycobacterium smegmatis groEL1 gene by phage Bxb1 integration allows normal planktonic growth but prevents the formation of mature biofilms. GroEL1 modulates synthesis of mycolates--long-chain fatty acid components of the mycobacterial cell wall--specifically during biofilm formation and physically associates with KasA, a key component of the type II Fatty Acid Synthase involved in mycolic acid synthesis. Biofilm formation is associated with elevated synthesis of short-chain (C56-C68) fatty acids, and strains with altered mycolate profiles--including an InhA mutant resistant to the antituberculosis drug isoniazid and a strain overexpressing KasA--are defective in biofilm formation.
Collapse
Affiliation(s)
- Anil Ojha
- Pittsburgh Bacteriophage Institute, Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
195
|
Abstract
In this paper, we report a new method for coarse-grained elastic normal-mode analysis. The purpose is to overcome a long-standing problem in the conventional analysis called the tip effect that makes the motional patterns (eigenvectors) of some low-frequency modes irrational. The new method retains the merits of a conventional method such as not requiring lengthy initial energy minimization, which always distorts structures, and also delivers substantially more accurate low-frequency modes with no tip effect for proteins of any size. This improvement of modes is crucial for certain types of applications such as structural refinement or normal-mode-based sampling.
Collapse
Affiliation(s)
- Mingyang Lu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030
| | - Billy Poon
- Department of Bioengineering, Rice UniVersity, Houston, Texas 77005
| | - Jianpeng Ma
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, Texas 77030
- Department of Bioengineering, Rice UniVersity, Houston, Texas 77005
| |
Collapse
|
196
|
Vijayakrishnan S, Qamra R, Verma CS, Sen R, Mande SC. Cation-mediated interplay of loops in chaperonin-10. J Biomol Struct Dyn 2005; 23:365-76. [PMID: 16363873 DOI: 10.1080/07391102.2006.10531232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The ubiquitously occurring chaperonins consist of a large tetradecameric Chaperonin-60, forming a cylindrical assembly, and a smaller heptameric Chaperonin-10. For a functional protein folding cycle, Chaperonin-10 caps the cylindrical Chaperonin-60 from one end forming an asymmetric complex. The oligomeric assembly of Chaperonin-10 is known to be highly plastic in nature. In Mycobacterium tuberculosis, the plasticity has been shown to be modulated by reversible binding of divalent cations. Binding of cations confers rigidity to the metal binding loop, and also promotes stability of the oligomeric structure. We have probed the conformational effects of cation binding on the Chaperonin-10 structure through fluorescence studies and molecular dynamics simulations. Fluorescence studies show that cation binding induces reduced exposure and flexibility of the dome loop. The simulations corroborate these results and further indicate a complex landscape of correlated motions between different parts of the molecule. They also show a fascinating interplay between two distantly spaced loops, the metal binding "dome loop" and the GroEL-binding "mobile loop", suggesting an important cation-mediated role in the recognition of Chaperonin-60. In the presence of cations the mobile loop appears poised to dock onto the Chaperonin-60 structure. The divalent metal ions may thus act as key elements in the protein folding cycle, and trigger a conformational switch for molecular recognition.
Collapse
Affiliation(s)
- Swetha Vijayakrishnan
- Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad 500 076 India.
| | | | | | | | | |
Collapse
|
197
|
Zara V, Ferramosca A, Papatheodorou P, Palmieri F, Rassow J. Import of rat mitochondrial citrate carrier (CIC) at increasing salt concentrations promotes presequence binding to import receptor Tom20 and inhibits membrane translocation. J Cell Sci 2005; 118:3985-95. [PMID: 16129883 DOI: 10.1242/jcs.02526] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria contain a family of related carrier proteins that mediate transport of metabolites across the mitochondrial inner membrane. All members of this family are synthesized in the cytosol. We characterized the interactions of newly synthesized rat citrate carrier (CIC) precursor protein (pCIC) with the components of the mitochondrial protein import machinery. pCIC contains both a positively charged presequence of 13 amino acids and internal targeting sequences. We found that the pCIC presequence does not interfere with the import pathway and merely acts as an internal chaperone in the cytosol. Under conditions of increased ionic strength, the pCIC presequence binds to the import receptor Tom20 and accumulates at the mitochondrial surface, thereby delaying pCIC translocation across the mitochondrial outer membrane. Similarly, the presequence of the bovine phosphate carrier (PiC) precursor protein (pPiC) is arrested at the mitochondrial surface when salt concentrations are elevated. We conclude that presequences can only act as mediators of mitochondrial protein import if they allow rapid release from import receptor sites. Release from receptors sites may be rate-limiting in translocation.
Collapse
Affiliation(s)
- Vincenzo Zara
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, I-73100 Lecce, Italy.
| | | | | | | | | |
Collapse
|
198
|
Hongo K, Hirai H, Uemura C, Ono S, Tsunemi J, Higurashi T, Mizobata T, Kawata Y. A novel ATP/ADP hydrolysis activity of hyperthermostable group II chaperonin in the presence of cobalt or manganese ion. FEBS Lett 2005; 580:34-40. [PMID: 16343486 DOI: 10.1016/j.febslet.2005.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/27/2005] [Accepted: 11/17/2005] [Indexed: 11/25/2022]
Abstract
A novel ATPase activity that was strongly activated in the presence of either cobalt or manganese ion was discovered in the chaperonin from hyperthermophilic Pyrococcus furiosus (Pfu-cpn). Surprisingly, a significant ADPase activity was also detected under the same conditions. A more extensive search revealed similar nucleotide hydrolysis activities in other thermostable chaperonins. Chaperonin activity, i.e., thermal stabilization and refolding of malate dehydrogenase from the guanidine-hydrochloride unfolded state were also detected for Pfu-cpn under the same conditions. We propose that the novel cobalt/manganese-dependent ATP/ADPase activity may be a common trait of various thermostable chaperonins.
Collapse
Affiliation(s)
- Kunihiro Hongo
- Department of Biotechnology, Faculty of Engineering, Tottori University, Tottori 680-8552, Japan
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Callison JA, Battisti JM, Sappington KN, Smitherman LS, Minnick MF. Characterization and expression analysis of the groESL operon of Bartonella bacilliformis. Gene 2005; 359:53-62. [PMID: 16126349 PMCID: PMC1885459 DOI: 10.1016/j.gene.2005.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/12/2005] [Accepted: 06/02/2005] [Indexed: 11/27/2022]
Abstract
The groESL operon of Bartonella bacilliformis, a facultative intracellular, Gram-negative bacterium and etiologic agent of Oroya Fever, was characterized. Sequence analysis revealed an operon containing two genes of 294 (groES) and 1632 nucleotides (groEL) separated by a 55-nt intergenic spacer. The operon is preceded by a 72-nt ORF (ORF1) that encodes a hypothetical protein with homology to a portion of the HrcA repressor for groESL. A divergent fumarate hydratase C (fumC) gene lies further upstream. Deduced amino acid sequences for B. bacilliformis GroEL and GroES revealed a high degree of identity with homologues from other Bartonella and alpha-Protebacteria. A single transcriptional start site (TSS) was mapped 79 nucleotides upstream of the groES start codon, regardless of incubation temperature. The TSS was located immediately 5' to a potential controlling inverted repeat of chaperonin expression (CIRCE) element and is preceded by a sigma70-like promoter. The operon is followed by a predicted rho-independent transcriptional terminator. Northern blot analysis indicated that groES and groEL are co-transcribed as a single mRNA of approximately 2.4 kb. A 6-h time course analysis by qRT-PCR showed that groEL expression increases 1.3-fold within 30 min of a temperature upshift from 30 to 37 degrees C, with maximum transcription reached after 60 min (approximately 4.3-fold), followed by a steady decrease to background (30 degrees C) transcription levels by 6 h. Western blot analysis revealed a 1.4- and 1.5-fold increase in GroEL synthesis following a temperature upshift or by inhibiting DNA supercoiling with coumermycin A1, respectively. Functional expression and complementation of temperature-sensitive Escherichia coli groES or groEL mutants with the cloned operon allowed them to grow at otherwise restrictive temperatures.
Collapse
Affiliation(s)
- Julie A Callison
- Division of Biological Sciences, The University of Montana, Missoula, MT, 59812-4824, USA
| | | | | | | | | |
Collapse
|
200
|
Berezov A, McNeill MJ, Iriarte A, Martinez-Carrion M. Electron Paramagnetic Resonance and Fluorescence Studies of the Conformation of Aspartate Aminotransferase Bound to GroEL. Protein J 2005; 24:465-78. [PMID: 16328739 DOI: 10.1007/s10930-005-7642-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The interaction of the precursor to mitochondrial aspartate aminotransferase (pmAAT) with GroEL has been studied by electron paramagnetic resonance (EPR) and fluorescence spectroscopy. In the native protein, the spin probe was immobilized when attached to Cys166 at the domain interface, but was fully mobile when introduced at Cys(-19) in the N-terminal presequence peptide. Unfolding of the protein resulted in a highly mobile EPR spectrum for probes introduced at either site. However, the nitroxide group in GroEL-bound pmAAT showed either intermediate or high mobility depending on the spin probe used. Power saturation experiments indicated that the accessibility of the nitroxide side chain to Ni(EDDA) in the GroEL-pmAAT complex was higher than in the native state when in position 166 but lower when at position -19. Similar results were obtained in fluorescence quenching experiments. These data suggest that GroEL binds partly folded states of pmAAT with the presequence peptide probably in direct contact with GroEL. GroES and ATP, but not AMP-PNP or ADP, support refolding of pmAAT. During refolding, the rate of recovery of the native spectroscopic properties of labeled Cys166 is nearly identical to the rate-limiting reactivation step. Thus, correct docking of the large and small domains of pmAAT may be a key structural event in the regain of catalytic activity.
Collapse
Affiliation(s)
- Alan Berezov
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA
| | | | | | | |
Collapse
|