151
|
Würf J, Pokorny T, Wittbrodt J, Millar JG, Ruther J. Cuticular Hydrocarbons as Contact Sex Pheromone in the Parasitoid Wasp Urolepis rufipes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
152
|
Ebina H, Mizunami M. Appetitive and aversive social learning with living and dead conspecifics in crickets. Sci Rep 2020; 10:9340. [PMID: 32518299 PMCID: PMC7283286 DOI: 10.1038/s41598-020-66399-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
Many animals acquire biologically important information from conspecifics. Social learning has been demonstrated in many animals, but there are few experimental paradigms that are suitable for detailed analysis of its associative processes. We established procedures for appetitive and aversive social learning with living and dead conspecifics in well-controlled stimulus arrangements in crickets, Gryllus bimaculatus. A thirsty demonstrator cricket was released in a demonstrator room and allowed to visit two drinking apparatuses that contained water or saltwater and emitted apple or banana odour, and a thirsty learner was allowed to observe the demonstrator room through a net. In the post-training test, the learner preferred the odour of the water-containing apparatus at which the demonstrator stayed. When a dead cricket was placed on one of the two apparatuses, the learner avoided the odour of that apparatus. Further experiments suggested that a living conspecific can be recognized by either visual or olfactory cues for appetitive social learning, whereas olfactory cues are needed to recognize a dead conspecific for aversive social learning, and that different associative processes underlie social learning with living and dead conspecifics. The experimental paradigms described here will pave the way for detailed research on the neural basis of social learning.
Collapse
Affiliation(s)
- Hiroki Ebina
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
153
|
Polidori C, Jorge A, Nieves-Aldrey JL. Comparative morphology of the antennal “release and spread structure” associated with sex pheromone-producing glands in male Cynipoidea. ZOOMORPHOLOGY 2020. [DOI: 10.1007/s00435-020-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
154
|
Mahadik GA, Hernandez-Sanchez JF, Arunachalam S, Gallo A, Cheng L, Farinha AS, Thoroddsen ST, Mishra H, Duarte CM. Superhydrophobicity and size reduction enabled Halobates (Insecta: Heteroptera, Gerridae) to colonize the open ocean. Sci Rep 2020; 10:7785. [PMID: 32385357 PMCID: PMC7210887 DOI: 10.1038/s41598-020-64563-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Despite the remarkable evolutionary success of insects at colonizing every conceivable terrestrial and aquatic habitat, only five Halobates (Heteroptera: Gerridae) species (~0.0001% of all known insect species) have succeeded at colonizing the open ocean - the largest biome on Earth. This remarkable evolutionary achievement likely required unique adaptations for them to survive and thrive in the challenging oceanic environment. For the first time, we explore the morphology and behavior of an open-ocean Halobates germanus and a related coastal species H. hayanus to understand mechanisms of these adaptations. We provide direct experimental evidence based on high-speed videos which reveal that Halobates exploit their specialized and self-groomed body hair to achieve extreme water repellence, which facilitates rapid skating and plastron respiration under water. Moreover, the grooming behavior and presence of cuticular wax aids in the maintenance of superhydrophobicity. Further, reductions of their body mass and size enable them to achieve impressive accelerations (~400 ms-2) and reaction times (~12 ms) to escape approaching predators or environmental threats and are crucial to their survival under harsh marine conditions. These findings might also inspire rational strategies for developing liquid-repellent surfaces for drag reduction, water desalination, and preventing bio-fouling.
Collapse
Affiliation(s)
- G A Mahadik
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| | - J F Hernandez-Sanchez
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - S Arunachalam
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - A Gallo
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - L Cheng
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - A S Farinha
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia
| | - S T Thoroddsen
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - H Mishra
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Water Desalination and Reuse Center (WDRC), Thuwal, 23955-6900, Saudi Arabia.
| | - Carlos M Duarte
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE) Division, Red Sea Research Center (RSRC), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
155
|
Firmino ELB, Mendonça A, Michelutti KB, Bernardi RC, Lima-Junior SE, Cardoso CAL, Antonialli-Junior WF. Intraspecific variation of cuticular hydrocarbons and apolar compounds in the venom of Ectatomma brunneum. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
156
|
Zhao X, Yang Y, Niu N, Zhao Y, Liu W, Ma E, Moussian B, Zhang J. The fatty acid elongase gene LmELO7 is required for hydrocarbon biosynthesis and cuticle permeability in the migratory locust, Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104052. [PMID: 32259526 DOI: 10.1016/j.jinsphys.2020.104052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Insect cuticular lipids are a complex cocktail of highly diverse cuticular hydrocarbons (CHCs), which form a hydrophobic surface coat to maintain water balance and to prevent desiccation and penetration of exogenous substances. Fatty acid elongases (ELOs) are key enzymes that participate in a common CHC synthesis pathway in insects. However, the importance of ELOs for CHC synthesis and function remains understudied. Using transcriptomic data, we have identified seven ELO genes (LmELO1-7) in the migratory locust Locusta migratoria. We determined their tissue-specific and temporal expression profiles in fifth instar nymphs. As we are interested in cuticle barrier formation, we performed RNA interference against LmELO7, which is mainly expressed in the integument. Suppression of LmELO7 significantly decreased its expression and caused lethality during or shortly after molting. CHC quantification by GC-MS analysis indicated that suppression of LmELO7 resulted in a decrease in total CHC amounts. By consequence, CHC deficiency reduced desiccation resistance and enhanced cuticle permeability in LmELO7-suppressed L. migratoria. Interestingly, LmELO7 expression is induced at low air humidity. Our results indicate that LmELO7 plays a vital role in the production of CHCs and, hence, cuticle permeability. Induction of LmELO7 expression in drought conditions suggests a key role of this gene in regulating desiccation resistance. This work is expected to help developing new strategies for insect pest management based on CHC function.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yang Yang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Niu Niu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yiyan Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China; College of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice CEDEX 2, France
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
157
|
Overlooked Scents: Chemical Profile of Soma, Volatile Emissions and Trails of the Green Tree Ant, Oecophylla smaragdina. Molecules 2020; 25:molecules25092112. [PMID: 32365972 PMCID: PMC7249187 DOI: 10.3390/molecules25092112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
The green tree ant, Oecophylla smaragdina, is one of only two recognized species of weaver ants. While the identity and functions of chemicals produced and emitted by its congener O. longinoda have been studied quite extensively and serve as a valuable model in chemical ecology research, little comparable information is available about O. smaragdina. Although some analyses of chemicals produced and emitted by O. smaragdina have been reported, the literature is fragmentary and incomplete for this species. To address this knowledge gap, and to enable comparisons in the chemical ecology of the two weaver ant species, we here describe diverse chemicals from the cuticle, Dufour's glands, poison glands, head, headspace volatiles, and trails of O. smaragdina.
Collapse
|
158
|
Moran PA, Hunt J, Mitchell C, Ritchie MG, Bailey NW. Sexual selection and population divergence III: Interspecific and intraspecific variation in mating signals. J Evol Biol 2020; 33:990-1005. [PMID: 32281707 DOI: 10.1111/jeb.13631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
A major challenge for studying the role of sexual selection in divergence and speciation is understanding the relative influence of different sexually selected signals on those processes in both intra- and interspecific contexts. Different signals may be more or less susceptible to co-option for species identification depending on the balance of sexual and ecological selection acting upon them. To examine this, we tested three predictions to explain geographic variation in long- versus short-range sexual signals across a 3,500 + km transect of two related Australian field cricket species (Teleogryllus spp.): (a) selection for species recognition, (b) environmental adaptation and (c) stochastic divergence. We measured male calling song and male and female cuticular hydrocarbons (CHCs) in offspring derived from wild populations, reared under common garden conditions. Song clearly differentiated the species, and no hybrids were observed suggesting that hybridization is rare or absent. Spatial variation in song was not predicted by geography, genetics or climatic factors in either species. In contrast, CHC divergence was strongly associated with an environmental gradient supporting the idea that the climatic environment selects more directly upon these chemical signals. In light of recently advocated models of diversification via ecological selection on secondary sexual traits, the different environmental associations we found for song and CHCs suggest that the impact of ecological selection on population divergence, and how that influences speciation, might be different for acoustic versus chemical signals.
Collapse
Affiliation(s)
- Peter A Moran
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, UK
| | - John Hunt
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Christopher Mitchell
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Michael G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, UK
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, UK
| |
Collapse
|
159
|
Courtship Behavior Confusion in Two Subterranean Termite Species that Evolved in Allopatry (Blattodea, Rhinotermitidae, Coptotermes). J Chem Ecol 2020; 46:461-474. [PMID: 32300913 DOI: 10.1007/s10886-020-01178-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Congeneric species that live in sympatry may have evolved various mechanisms that maintain reproductive isolation among species. However, with the spread of invasive organisms owing to increased global human activity, some species that evolved in allopatry can now be found outside their native range and may have the opportunity to interact, in the absence of mechanisms for reproductive isolation. In South Florida, where the Asian subterranean termite, Coptotermes gestroi (Wamann), and the Formosan subterranean termite, Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae) are invasive, the two species can engage in heterospecific mating behavior as their distribution range and their dispersal flight season both overlap. Termites rely on semiochemicals for many of their activities, including finding a mate after a dispersal flight. In this study, we showed that females of both species produce (3Z,6Z,8E)-dodeca-3,6,8-trien-1-ol (DTE) from their tergal glands as a shared sex pheromone. We suggest that both species primarily rely on an inundative dispersal flight strategy to find a mate, and that DTE is used as a short distance pheromone or contact pheromone to initiate and maintain the tandem between males and females. The preference of C. gestroi males for C. formosanus females during tandem resulted from the relatively high amount of DTE produced by tergal glands of C. formosanus females, when compared with those of C. gestroi females. This results in confusion of mating in the field during simultaneous dispersal flights, with a potential for hybridization. Such observations imply that no prezygotic barriers emerged while the two species evolved in allopatry for ~18 Ma.
Collapse
|
160
|
Gershman SN. Mating has opposite effects on male and female sexually selected cuticular hydrocarbons. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
161
|
Ala-Honkola O, Kauranen H, Tyukmaeva V, Boetzl FA, Hoikkala A, Schmitt T. Diapause affects cuticular hydrocarbon composition and mating behavior of both sexes in Drosophila montana. INSECT SCIENCE 2020; 27:304-316. [PMID: 30176124 DOI: 10.1111/1744-7917.12639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Environmental cues, mainly photoperiod and temperature, are known to control female adult reproductive diapause in several insect species. Diapause enhances female survival during adverse conditions and postpones progeny production to the favorable season. Male diapause (a reversible inability to inseminate receptive females) has been studied much less than female diapause. However, if the males maximized their chances to fertilize females while minimizing their energy expenditure, they would be expected to be in diapause at the same time as females. We investigated Drosophila montana male mating behavior under short-day conditions that induce diapause in females and found the males to be reproductively inactive. We also found that males reared under long-day conditions (reproducing individuals) court reproducing postdiapause females, but not diapausing ones. The diapausing flies of both sexes had more long-chain and less short-chain hydrocarbons on their cuticle than the reproducing ones, which presumably increase their survival under stressful conditions, but at the same time decrease their attractiveness. Our study shows that the mating behavior of females and males is well coordinated during and after overwintering and it also gives support to the dual role of insect cuticular hydrocarbons in adaptation and mate choice.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Fabian A Boetzl
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyvaskyla, Jyvaskyla, Finland
| | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
162
|
Adams RMM, Wells RL, Yanoviak SP, Frost CJ, Fox EGP. Interspecific Eavesdropping on Ant Chemical Communication. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
163
|
Hatano E, Wada-Katsumata A, Schal C. Environmental decomposition of olefinic cuticular hydrocarbons of Periplaneta americana generates a volatile pheromone that guides social behaviour. Proc Biol Sci 2020; 287:20192466. [PMID: 32097587 PMCID: PMC7062030 DOI: 10.1098/rspb.2019.2466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/05/2020] [Indexed: 12/29/2022] Open
Abstract
Once emitted, semiochemicals are exposed to reactive environmental factors that may alter them, thus disrupting chemical communication. Some species, however, might have adapted to detect environmentally mediated breakdown products of their natural chemicals as semiochemicals. We demonstrate that air, water vapour and ultraviolet (UV) radiation break down unsaturated cuticular hydrocarbons (CHCs) of Periplaneta americana (American cockroach), resulting in the emission of volatile organic compounds (VOCs). In behavioural assays, nymphs strongly avoided aggregating in shelters exposed to the breakdown VOCs from cuticular alkenes. The three treatments (air, water vapour, UV) produced the same VOCs, but at different time-courses and ratios. Fourteen VOCs from UV-exposed CHCs elicited electrophysiological responses in nymph antennae; 10 were identified as 2-nonanone, 1-pentanol, 1-octanol, 1-nonanol, tetradecanal, acetic acid, propanoic acid, butanoic acid, pentanoic acid and hexanoic acid. When short-chain fatty acids were tested as a mix and a blend of the alcohols and aldehyde was tested as a second mix, nymphs exhibited no preference for control or treated shelters. However, nymphs avoided shelters that were exposed to VOCs from the complete 10-compound mix. Conditioned shelters (occupied by cockroaches with faeces and CHCs deposited on the shelters), which are normally highly attractive to nymphs, were also avoided after UV exposure, confirming that breakdown products from deposited metabolites, including CHCs, mediate this behaviour. Our results demonstrate that common environmental agents degrade CHCs into behaviourally active volatile compounds that potentially may serve as necromones or epideictic pheromones, mediating group dissolution.
Collapse
Affiliation(s)
- Eduardo Hatano
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- W. M. Keck Center for Behavioural Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ayako Wada-Katsumata
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- W. M. Keck Center for Behavioural Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- W. M. Keck Center for Behavioural Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
164
|
Low Host Specialization in the Cuckoo Wasp, Parnopes grandior, Weakens Chemical Mimicry but Does Not Lead to Local Adaption. INSECTS 2020; 11:insects11020136. [PMID: 32093328 PMCID: PMC7073532 DOI: 10.3390/insects11020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/17/2022]
Abstract
Insect brood parasites have evolved a variety of strategies to avoid being detected by their hosts. Few previous studies on cuckoo wasps (Hymenoptera: Chrysididae), which are natural enemies of solitary wasps and bees, have shown that chemical mimicry, i.e., the biosynthesis of cuticular hydrocarbons (CHC) that match the host profile, evolved in several species. However, mimicry was not detected in all investigated host-parasite pairs. The effect of host range as a second factor that may play a role in evolution of mimicry has been neglected, since all previous studies were carried out on host specialists and at nesting sites where only one host species occurred. Here we studied the cuckoo wasp Parnopes grandior, which attacks many digger wasp species of the genus Bembix (Hymenoptera: Crabronidae). Given its weak host specialization, P. grandior may either locally adapt by increasing mimicry precision to only one of the sympatric hosts or it may evolve chemical insignificance by reducing the CHC profile complexity and/or CHCs amounts. At a study site harbouring three host species, we found evidence for a weak but appreciable chemical deception strategy in P. grandior. Indeed, the CHC profile of P. grandior was more similar to all sympatric Bembix species than to a non-host wasp species belonging to the same tribe as Bembix. Furthermore, P. grandior CHC profile was equally distant to all the hosts’ CHC profiles, thus not pointing towards local adaptation of the CHC profile to one of the hosts’ profile. We conducted behavioural assays suggesting that such weak mimicry is sufficient to reduce host aggression, even in absence of an insignificance strategy, which was not detected. Hence, we finally concluded that host range may indeed play a role in shaping the level of chemical mimicry in cuckoo wasps.
Collapse
|
165
|
Feyereisen R. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet Evol 2020; 143:106695. [DOI: 10.1016/j.ympev.2019.106695] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
|
166
|
Distinct Roles of Cuticular Aldehydes as Pheromonal Cues in Two Cotesia Parasitoids. J Chem Ecol 2020; 46:128-137. [PMID: 31907752 DOI: 10.1007/s10886-019-01142-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
Abstract
Cuticular compounds (CCs) that cover the surface of insects primarily serve as protection against entomopathogens, harmful substances, and desiccation. However, CCs may also have secondary signaling functions. By studying the role of CCs in intraspecific interactions, we may advance our understanding of the evolution of pheromonal communication in insects. We previously found that the gregarious parasitoid, Cotesia glomerata (L.), uses heptanal as a repellent pheromone to help avoid mate competition among sibling males, whereas another cuticular aldehyde, nonanal, is part of the female-produced attractive sex pheromone. Here, we show that the same aldehydes have different pheromonal functions in a related solitary parasitoid, Cotesia marginiventris (Cresson). Heptanal enhances the attractiveness of the female's sex pheromone, whereas nonanal does not affect a female's attractiveness. Hence, these common aldehydes are differentially used by the two Cotesia species to mediate, synergistically, the attractiveness of the main constituents of their respective sex pheromones. The specificity of the complete sex pheromone blend is apparently regulated by two specific, less volatile compounds, which evoke strong electroantennographic (EAG) responses. This is the first demonstration that volatile CCs have evolved distinct pheromonal functions to aid divergent mating strategies in closely related species. We discuss the possibility that additional compounds are involved in attraction and that, like the aldehydes, they are likely oxidative products of unsaturated cuticular hydrocarbons.
Collapse
|
167
|
Chen N, Pei XJ, Li S, Fan YL, Liu TX. Involvement of integument-rich CYP4G19 in hydrocarbon biosynthesis and cuticular penetration resistance in Blattella germanica (L.). PEST MANAGEMENT SCIENCE 2020; 76:215-226. [PMID: 31149772 DOI: 10.1002/ps.5499] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cuticle penetration plays an important role as a mechanism of insecticide resistance, but the underlying molecular mechanism remains poorly understood. In Blattella germanica, the cytochrome P450 gene, CYP4G19, is overexpressed in a pyrethroid-resistant strain. Here, we investigated whether CYP4G19 is involved in the biosynthesis of hydrocarbons and further contributes to cuticular penetration resistance in B. germanica. RESULTS Compared with the susceptible strain, pyrethroid-resistant cockroaches showed lower cuticular permeability with Eosin Y staining. Removal of epicuticular lipids, mainly nonpolar hydrocarbons, with a hexane wash intensified the cuticular permeability and decreased the resistance index of the resistant strain. CYP4G19 was predominately expressed in the abdominal integument and could be upregulated by desiccation stress or short exposure to beta-cypermethrin. Overexpression of CYP4G19 in the resistant strain was positively correlated with a higher level of cuticular hydrocarbons (CHCs). RNAi-mediated knockdown of CYP4G19 significantly decreased its expression and caused a reduction in CHCs. Meanwhile, CYP4G19 suppression resulted in a non-uniform array of the lipid layer, enhanced cuticle permeability, and compromised insecticide tolerance. CONCLUSION Our findings confirm that CYP4G19 is involved in hydrocarbon production and appears to contribute to hydrocarbon-based penetration resistance in B. germanica. This study highlights the lipid-based penetration resistance, advancing our understanding of the molecular mechanism underlying P450-mediated cuticular penetration resistance in insects. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
168
|
Ngumbi EN, Hanks LM, Suarez AV, Millar JG, Berenbaum MR. Factors Associated with Variation in Cuticular Hydrocarbon Profiles in the Navel Orangeworm, Amyelois transitella (Lepidoptera: Pyralidae). J Chem Ecol 2019; 46:40-47. [PMID: 31808076 DOI: 10.1007/s10886-019-01129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 02/03/2023]
Abstract
Cuticular hydrocarbons (CHCs) are the main components of the epicuticular wax layer that in many insects functions as a barrier against desiccation. CHCs also play many other roles, including serving as sex pheromones, kairomones, primer pheromones, and colony-, caste-, species- and sex-recognition signals. In insects, CHC profiles can vary depending upon age, species, sex, and strain. Understanding factors associated with variation in hydrocarbon profiles is important for identifying potential vulnerabilities relating to pest ecology and life histories and for developing tools for pest monitoring and management strategies. In this study, we assessed potential sources of variation in CHC profiles in the navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae), an economically important pest of nut crops in California. Using coupled gas chromatography-mass spectrometry, we characterized and compared CHC profiles between adults of pyrethroid-resistant (R347) and susceptible (ALMOND) strains. We further compared CHC profiles from adults differing in age (1, 3, 5, and 7 d post-eclosion) and sex. Hydrocarbon profiles comprised 47 different CHCs in detectable quantities that ranged from C17 to C43 in chain length and included straight-chain alkanes and a variety of mono-, di-, and tri-methylalkanes. Adults from resistant populations had greater quantities of CHCs in total than those from susceptible strains, but relative quantities of individual components were similar. The six most abundant compounds were n-pentacosane, n-heptacosane, n-nonacosane, n-hentriacontane, 11,25 + 13,23 + 15,21-dimethylpentatriacontane, and 13,23 + 11,25 + 9,17-dimethylheptatriacontane. Post-eclosion, total CHCs increased with adult age, with males producing greater quantities than females at all ages. Our results show that CHC profiles vary depending on age, sex, and strain and suggest that CHC profiles may be useful as biomarkers to differentiate between insecticide- resistant and susceptible populations.
Collapse
Affiliation(s)
- Esther N Ngumbi
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew V Suarez
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
169
|
Neves EF, Lima LD, Sguarizi-Antonio D, Andrade LHC, Lima SM, Lima-Junior SE, Antonialli-Junior WF. Intraspecific Cuticular Chemical Profile Variation in the Social Wasp Mischocyttarus consimilis (Hymenoptera, Vespidae). NEOTROPICAL ENTOMOLOGY 2019; 48:1030-1038. [PMID: 31456168 DOI: 10.1007/s13744-019-00711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Chemical compounds present on the cuticle of social insects are important in communication, as they are used in recognition of nestmates and sexual partners as well as in caste distinction, varying according to several factors, such as genetic and environmental. In this context, some studies have explored the cuticular chemical profile as a tool for assessing intra- and interspecific differences in social insects, although few studies have investigated this in social wasps. This study aimed to assess the differences in cuticular chemical profiles among different geographic samples of the wasp Mischocyttarus consimilis Zikán. Our hypothesis was that environmental factors are decisive to compose the cuticular chemical profiles of colonies of these social wasps and that there are differences regarding the geographic distribution among colonies. We used Fourier Transform Infrared-Photoacoustic Spectroscopy (FTIR-PAS) to assess the chemical profiles of samples. Our results show that despite there are differences between the cuticular chemical composition of the wasps' samples from different populations, there is no significant correlation compared to the spatial distribution of the colonies nor with the environment. Thus, our hypothesis was refuted, and we can infer that in this species neither exogenous nor genetic factors stand out to differentiate the chemical signature of their colonies, but a combination of both.
Collapse
Affiliation(s)
- E F Neves
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Univ Federal da Grande Dourados, Dourados, MS, Brasil.
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil.
| | - L D Lima
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
| | - D Sguarizi-Antonio
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
| | - L H C Andrade
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - S M Lima
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - S E Lima-Junior
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| | - W F Antonialli-Junior
- Laboratório de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Rodovia Dourados/ Itahum, Km 12, 79804-970, Dourados, MS, Brasil
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brasil
| |
Collapse
|
170
|
Luo Y, Zhang Y, Farine J, Ferveur J, Ramírez S, Kopp A. Evolution of sexually dimorphic pheromone profiles coincides with increased number of male-specific chemosensory organs in Drosophila prolongata. Ecol Evol 2019; 9:13608-13618. [PMID: 31871670 PMCID: PMC6912897 DOI: 10.1002/ece3.5819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/14/2019] [Indexed: 11/24/2022] Open
Abstract
Binary communication systems that involve sex-specific signaling and sex-specific signal perception play a key role in sexual selection and in the evolution of sexually dimorphic traits. The driving forces and genetic changes underlying such traits can be investigated in systems where sex-specific signaling and perception have emerged recently and show evidence of potential coevolution. A promising model is found in Drosophila prolongata, which exhibits a species-specific increase in the number of male chemosensory bristles. We show that this transition coincides with recent evolutionary changes in cuticular hydrocarbon (CHC) profiles. Long-chain CHCs that are sexually monomorphic in the closest relatives of D. prolongata (D. rhopaloa, D. carrolli, D. kurseongensis, and D. fuyamai) are strongly male-biased in this species. We also identify an intraspecific female-limited polymorphism, where some females have male-like CHC profiles. Both the origin of sexually dimorphic CHC profiles and the female-limited polymorphism in D. prolongata involve changes in the relative amounts of three mono-alkene homologs, 9-tricosene, 9-pentacosene, and 9-heptacosene, all of which share a common biosynthetic origin and point to a potentially simple genetic change underlying these traits. Our results suggest that pheromone synthesis may have coevolved with chemosensory perception and open the way for reconstructing the origin of sexual dimorphism in this communication system.
Collapse
Affiliation(s)
- Yige Luo
- Department of Evolution and EcologyUniversity of California‐DavisDavisCAUSA
| | - Yunwei Zhang
- Department of StatisticsUniversity of California‐DavisDavisCAUSA
- Present address:
School of Mathematics and StatisticsUniversity of SydneySydneyNSWAustralia
| | - Jean‐Pierre Farine
- Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne‐DijonDijonFrance
| | - Jean‐François Ferveur
- Centre des Sciences du Goût et de l'AlimentationUniversité de Bourgogne‐DijonDijonFrance
| | - Santiago Ramírez
- Department of Evolution and EcologyUniversity of California‐DavisDavisCAUSA
| | - Artyom Kopp
- Department of Evolution and EcologyUniversity of California‐DavisDavisCAUSA
| |
Collapse
|
171
|
Cini A, Cappa F, Pepiciello I, Platania L, Dapporto L, Cervo R. Sight in a Clique, Scent in Society: Plasticity in the Use of Nestmate Recognition Cues Along Colony Development in the Social Wasp Polistes dominula. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
172
|
Identification and Expression Profiling of Peripheral Olfactory Genes in the Parasitoid Wasp Aphidius ervi (Hymenoptera: Braconidae) Reared on Different Aphid Hosts. INSECTS 2019; 10:insects10110397. [PMID: 31717299 PMCID: PMC6920860 DOI: 10.3390/insects10110397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022]
Abstract
Generalist parasitoids of aphids, such as the wasp Aphidius ervi, display significant differences in terms of host preference and host acceptance, depending on the host on which they developed (natal host), which is preferred over a non-natal host, a trait known as host fidelity. This trait allows females to quickly find hosts in heterogeneous environments, a process mediated by chemosensory/olfactory mechanisms, as parasitoids rely on olfaction and chemical cues during host selection. Thus, it is expected that proteins participating in chemosensory recognition, such as odorant-binding proteins (OBPs) and odorant receptors (ORs) would play a key role in host preference. In this study, we addressed the effect of parasitoid reciprocal host switching between two aphid hosts (Sitobion avenae and Acyrthosiphon pisum) on the expression patterns of chemosensory genes in the wasp A. ervi. First, by using a transcriptomic approach based on RNAseq of A. ervi females reared on S. avenae and A. pisum, we were able to annotate a total of 91 transcripts related to chemoperception. We also performed an in-silico expression analysis and found three OBPs and five ORs displaying different expression levels. Then, by using qRT-PCR amplification, we found significant differences in the expression levels of these eight genes when the parasitoids were reciprocally transplanted from S. avenae onto A. pisum and vice versa. This suggests that the expression levels of genes coding for odorant receptors and odorant-binding proteins would be regulated by the specific plant–aphid host complex where the parasitoids develop (maternal previous experience) and that chemosensory genes coding for olfactory mechanisms would play a crucial role on host preference and host acceptance, ultimately leading to the establishment of host fidelity in A. ervi parasitoids.
Collapse
|
173
|
Finet C, Slavik K, Pu J, Carroll SB, Chung H. Birth-and-Death Evolution of the Fatty Acyl-CoA Reductase (FAR) Gene Family and Diversification of Cuticular Hydrocarbon Synthesis in Drosophila. Genome Biol Evol 2019; 11:1541-1551. [PMID: 31076758 PMCID: PMC6546124 DOI: 10.1093/gbe/evz094] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
The birth-and-death evolutionary model proposes that some members of a multigene family are phylogenetically stable and persist as a single copy over time, whereas other members are phylogenetically unstable and undergo frequent duplication and loss. Functional studies suggest that stable genes are likely to encode essential functions, whereas rapidly evolving genes reflect phenotypic differences in traits that diverge rapidly among species. One such class of rapidly diverging traits are insect cuticular hydrocarbons (CHCs), which play dual roles in chemical communications as short-range recognition pheromones as well as protecting the insect from desiccation. Insect CHCs diverge rapidly between related species leading to ecological adaptation and/or reproductive isolation. Because the CHC and essential fatty acid biosynthetic pathways share common genes, we hypothesized that genes involved in the synthesis of CHCs would be evolutionary unstable, whereas those involved in fatty acid-associated essential functions would be evolutionary stable. To test this hypothesis, we investigated the evolutionary history of the fatty acyl-CoA reductases (FARs) gene family that encodes enzymes in CHC synthesis. We compiled a unique data set of 200 FAR proteins across 12 Drosophila species. We uncovered a broad diversity in FAR content which is generated by gene duplications, subsequent gene losses, and alternative splicing. We also show that FARs expressed in oenocytes and presumably involved in CHC synthesis are more unstable than FARs from other tissues. Taken together, our study provides empirical evidence that a comparative approach investigating the birth-and-death evolution of gene families can identify candidate genes involved in rapidly diverging traits between species.
Collapse
Affiliation(s)
- Cédric Finet
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, France
| | - Kailey Slavik
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison.,PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Jian Pu
- Department of Entomology, Michigan State University
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison.,Department of Biology, University of Maryland, College Park, MD
| | - Henry Chung
- Department of Entomology, Michigan State University.,Ecology, Evolutionary Biology and Behavior, Michigan State University
| |
Collapse
|
174
|
Lovegrove MR, Dearden PK, Duncan EJ. Ancestral hymenopteran queen pheromones do not share the broad phylogenetic repressive effects of honeybee queen mandibular pheromone. JOURNAL OF INSECT PHYSIOLOGY 2019; 119:103968. [PMID: 31669583 DOI: 10.1016/j.jinsphys.2019.103968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Queen pheromones effect the reproductive division of labour, a defining feature of eusociality. Reproductive division of labour ensures that one, or a small number of, females are responsible for the majority of reproduction within a colony. Much work on the evolution and function of these pheromones has focussed on Queen Mandibular Pheromone (QMP) which is produced by the Western or European honeybee (Apis mellifera). QMP has phylogenetically broad effects, repressing reproduction in a variety of arthropods, including those distantly related to the honeybee such as the fruit fly Drosophila melanogaster. QMP is highly derived and has little chemical similarity to the majority of hymenopteran queen pheromones which are derived from cuticular hydrocarbons. This raises the question of whether the phylogenetically widespread repression of reproduction by QMP also occurs with more basal saturated hydrocarbon-based queen-pheromones. Using D. melanogaster we show that saturated hydrocarbons are incapable of repressing reproduction, unlike QMP. We also show no interaction between the four saturated hydrocarbons tested or between the saturated hydrocarbons and QMP, implying that there is no conservation in the mechanism of detection or action between these compounds. We propose that the phylogenetically broad reproductive repression seen in response to QMP is not a feature of all queen pheromones, but unique to QMP itself, which has implications for our understanding of how queen pheromones act and evolve.
Collapse
Affiliation(s)
- Mackenzie R Lovegrove
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand; School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, P.O. Box 56, Dunedin, Aotearoa, New Zealand
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
175
|
Berdan E, Enge S, Nylund GM, Wellenreuther M, Martens GA, Pavia H. Genetic divergence and phenotypic plasticity contribute to variation in cuticular hydrocarbons in the seaweed fly Coelopa frigida. Ecol Evol 2019; 9:12156-12170. [PMID: 31832150 PMCID: PMC6854331 DOI: 10.1002/ece3.5690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) form the boundary between insects and their environments and often act as essential cues for species, mate, and kin recognition. This complex polygenic trait can be highly variable both among and within species, but the causes of this variation, especially the genetic basis, are largely unknown. In this study, we investigated phenotypic and genetic variation of CHCs in the seaweed fly, Coelopa frigida, and found that composition was affected by both genetic (sex and population) and environmental (larval diet) factors. We subsequently conducted behavioral trials that show CHCs are likely used as a sexual signal. We identified general shifts in CHC chemistry as well as individual compounds and found that the methylated compounds, mean chain length, proportion of alkenes, and normalized total CHCs differed between sexes and populations. We combined these data with whole genome resequencing data to examine the genetic underpinnings of these differences. We identified 11 genes related to CHC synthesis and found population-level outlier SNPs in 5 that are concordant with phenotypic differences. Together these results reveal that the CHC composition of C. frigida is dynamic, strongly affected by the larval environment, and likely under natural and sexual selection.
Collapse
Affiliation(s)
- Emma Berdan
- Department of Marine SciencesUniversity of GothenburgGöteborgSweden
| | - Swantje Enge
- Institute for Chemistry and Biology of the Marine EnvironmentCarl‐von‐Ossietzky University OldenburgWilhelmshavenGermany
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Göran M. Nylund
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Maren Wellenreuther
- Plant & Food Research LimitedNelsonNew Zealand
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
| | | | - Henrik Pavia
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| |
Collapse
|
176
|
Stamps GF, Shaw KL. Male use of chemical signals in sex discrimination of Hawaiian swordtail crickets (genus Laupala). Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
177
|
Wang SY, Hackney Price J, Zhang D. Hydrocarbons catalysed by TmCYP4G122 and TmCYP4G123 in Tenebrio molitor modulate the olfactory response of the parasitoid Scleroderma guani. INSECT MOLECULAR BIOLOGY 2019; 28:637-648. [PMID: 30843299 DOI: 10.1111/imb.12581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrocarbons (HCs) present on the epicuticle of terrestrial insects are not only used to reduce water loss but are also used as chemical signals. The cytochrome p450 CYP4G gene is essential for HC biosynthesis in some insects. However, its function in Tenebrio molitor is unknown. Moreover, it is not yet known whether CYP4G of a host can modulate the searching behaviours of its parasitoid. Here, we explore the function of the TmCYP4G122 and CYP4G123 genes in T. molitor. The TmCYP4G122 and CYP4G123 transcripts could be detected in all developmental stages. Their expression was higher in the fat body and abdominal cuticle than in the gut. Their transcript levels in mature larvae under desiccation stress [relative humidity (RH) < 5%] was significantly higher than that in the control (RH = 70%). Injection of dsCYP4G122 and dsCYP4G123 caused a reduction in HC biosynthesis and was associated with increased susceptibility to desiccation. Individuals of the parasitoid Scleroderma guani that emerged from mealworm pupae showed host preference for normal pupae whereas S. guani that emerged from pupae lacking CYP4G122 or/and CYP4G123 lost this searching preference. The current results confirm that CYP4G122 and CYP4G123 regulate the biosynthesis of HCs and modulate the olfactory response of its parasitoid S. guani.
Collapse
Affiliation(s)
- S Y Wang
- College of Agricultural and Food Science, Zhejiang A&F University at Hangzhou, Zhejiang, China
| | - J Hackney Price
- School of Mathematical & Natural Sciences, New College of Interdisciplinary Arts & Sciences, Arizona State University, Phoenix, AZ, USA
| | - D Zhang
- College of Agricultural and Food Science, Zhejiang A&F University at Hangzhou, Zhejiang, China
| |
Collapse
|
178
|
Gao M, Li Y, Zhang W, Wei P, Wang X, Feng Y, Zhang X. Bx-daf-22 Contributes to Mate Attraction in the Gonochoristic Nematode Bursaphelenchus xylophilus. Int J Mol Sci 2019; 20:E4316. [PMID: 31484427 PMCID: PMC6747337 DOI: 10.3390/ijms20174316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022] Open
Abstract
Studying sex communication is necessary to develop new methods to control the population expansion of gonochoristic species Bursaphelenchus xylophilus, the pathogen of pine wilt disease (PWD). Small chemical signals called ascarosides have been reported to attract potential mates. However, they have not been studied in the sex attraction of B. xylophilus. Here, we confirmed the sex attraction of B. xylophilus using a chemotaxis assay. Then, we cloned the downstream ascaroside biosynthetic gene Bx-daf-22 and explored its function in the sex attraction of B. xylophilus through bioinformatics analysis and RNA interference. The secretions of females and males were the sources of sex attraction in B. xylophilus, and the attractiveness of females to males was stronger than that of males to females. Compared with daf-22 of Caenorhabditis elegans, Bx-daf-22 underwent gene duplication events, resulting in Bx-daf-22.1, Bx-daf-22.2, and Bx-daf-22.3. RNA interference revealed that the attractiveness of female secretions to males increased after all three Bx-daf-22 genes or Bx-daf-22.3 had been interfered. However, the reciprocal experiments had no effect on the attractiveness of male secretions to females. Thus, Bx-daf-22 genes, especially Bx-daf-22.3, may be crucial for the effectiveness of female sex attractants. Our studies provide fundamental information to help identify the specific components and signal pathways of sex attractants in B. xylophilus.
Collapse
Affiliation(s)
- Mengge Gao
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yongxia Li
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Wei Zhang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Pengfei Wei
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Laboratory of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
179
|
Pei XJ, Chen N, Bai Y, Qiao JW, Li S, Fan YL, Liu TX. BgFas1: A fatty acid synthase gene required for both hydrocarbon and cuticular fatty acid biosynthesis in the German cockroach, Blattella germanica (L.). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103203. [PMID: 31425851 DOI: 10.1016/j.ibmb.2019.103203] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Insect cuticular hydrocarbons (CHCs), the evolutionary products of aquatic hexapod ancestors expanding to terrestrial environment, are deposited on the surface of insect integument and originally functioned primarily as waterproofing agents. CHCs are derived from the conserved fatty acid synthesis pathway in insects. However, the pivotal fatty acid synthase (FAS) involved in hydrocarbon (HC) biosynthesis remains unknown in many insect orders including the primitive Blattodea. Here, we investigated functional FAS genes that modulate cuticular lipid biogenesis in the German cockroach, Blattella germanica (L.). Based on our full-length transcriptomic data and the available genomic data, seven FAS genes (BgFas1-7) were identified from B. germanica. Tissue-specific expression analysis revealed that BgFas1, BgFas3, BgFas4 and BgFas7 were highly expressed in the integument, whereas BgFas2 was dominantly expressed in the fat body. BgFas5/6 mRNA was almost negligible in the tested tissues. Systemic RNAi screen was performed against BgFas1-7, we found that only RNAi knockdown of BgFas1 caused a dramatic reduction of methyl-branched HCs (mbHCs) and a slight decrease of straight-chain HCs (scHCs) for both internal and external HCs. Significant reduction of cuticular free fatty acids (cFFAs) was also detected within BgFas1-repressed cockroaches, while repression of CYP4G19 resulted in dramatic increase of cFFAs. Moreover, we found that BgFas1 mRNA levels were correlated with insect molting cycles, and could be induced by long-term mild dryness treatment. Furthermore, desiccation assay revealed that BgFas1 suppression accelerated water loss and led to early death of cockroaches under desiccation. Our results indicate that BgFas1 is necessary for both HC and cFFA biosynthesis in B. germanica. In addition, our study also confirms that cuticular lipids, particularly mbCHCs, are critical for desiccation resistance in B. germanica.
Collapse
Affiliation(s)
- Xiao-Jin Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Yu Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology and Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
180
|
Effect of temperature on the chemical profiles of nest materials of social wasps. J Therm Biol 2019; 84:214-220. [PMID: 31466756 DOI: 10.1016/j.jtherbio.2019.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
Social insects depend on their nests for protection against predation and abiotic threats. Accordingly, the chemical compounds present in the material wasps use to build their nests can both facilitate communication and repel predators. It is herein hypothesized that different wasp species build their nests with different structure and substrate materials and that such materials consist of chemical compounds related to unique wasp behavior and outside temperature variation. To test this hypothesis, nests were collected from three species of social wasps, the samples of which were subjected to temperature variation under laboratory conditions. The compounds present in the substrate were analyzed by gas chromatography coupled to mass spectrometry. Chemical compounds identified in the nest material of the three species responded differently to temperature variation. Chemical compounds from Polybia nests were altered significantly when subjected to temperature variation, whereas the nests of Polistes versicolor did not significantly change in relation to the control. The differences found between Polistes and Polybia nests may be related to genetic factors, but also to the type of nest they construct. It is possible that divergent evolutionary strategies for maintaining colony temperature, as a function of the chemical composition of the nests, may have appeared between wasps that have open and closed nests. In relatively small colonies, nest substrate is more resistant to temperature variation because it is composed of a greater diversity of elements and thus capable of holding heavier, longer carbon chains. Our results suggest that chemical compounds in the nest material of the three wasp species analysed responded differently to fluctuating ambient temperatures and that such variation could result from the biochemical differences of unique wasp species or from thermoregulation strategies of colonies.
Collapse
|
181
|
Experimental Introgression To Evaluate the Impact of Sex Specific Traits on Drosophila melanogaster Incipient Speciation. G3-GENES GENOMES GENETICS 2019; 9:2561-2572. [PMID: 31167833 PMCID: PMC6686937 DOI: 10.1534/g3.119.400385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex specific traits are involved in speciation but it is difficult to determine whether their variation initiates or reinforces sexual isolation. In some insects, speciation depends of the rapid change of expression in desaturase genes coding for sex pheromones. Two closely related desaturase genes are involved in Drosophila melanogaster pheromonal communication: desat1 affects both the production and the reception of sex pheromones while desat2 is involved in their production in flies of Zimbabwe populations. There is a strong asymmetric sexual isolation between Zimbabwe populations and all other "Cosmopolitan" populations: Zimbabwe females rarely copulate with Cosmopolitan males whereas Zimbabwe males readily copulate with all females. All populations express desat1 but only Zimbabwe strains show high desat2 expression. To evaluate the impact of sex pheromones, female receptivity and desat expression on the incipient speciation process between Zimbabwe and Cosmopolitan populations, we introgressed the Zimbabwe genome into a Cosmopolitan genome labeled with the white mutation, using a multi-generation procedure. The association between these sex-specific traits was determined during the procedure. The production of pheromones was largely dissociated between the sexes. The copulation frequency (but not latency) was highly correlated with the female-but not with the male-principal pheromones. We finally obtained two stable white lines showing Zimbabwe-like sex pheromones, copulation discrimination and desat expression. Our study indicates that the variation of sex pheromones and mating discrimination depend of distinct-yet overlapping-sets of genes in each sex suggesting that their cumulated effects participate to reinforce the speciation process.
Collapse
|
182
|
Balabanidou V, Kefi M, Aivaliotis M, Koidou V, Girotti JR, Mijailovsky SJ, Juárez MP, Papadogiorgaki E, Chalepakis G, Kampouraki A, Nikolaou C, Ranson H, Vontas J. Mosquitoes cloak their legs to resist insecticides. Proc Biol Sci 2019; 286:20191091. [PMID: 31311476 PMCID: PMC6661348 DOI: 10.1098/rspb.2019.1091] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Malaria incidence has halved since the year 2000, with 80% of the reduction attributable to the use of insecticides. However, insecticide resistance is now widespread, is rapidly increasing in spectrum and intensity across Africa, and may be contributing to the increase of malaria incidence in 2018. The role of detoxification enzymes and target site mutations has been documented in the major malaria vector Anopheles gambiae; however, the emergence of striking resistant phenotypes suggests the occurrence of additional mechanisms. By comparing legs, the most relevant insect tissue for insecticide uptake, we show that resistant mosquitoes largely remodel their leg cuticles via enhanced deposition of cuticular proteins and chitin, corroborating a leg-thickening phenotype. Moreover, we show that resistant female mosquitoes seal their leg cuticles with higher total and different relative amounts of cuticular hydrocarbons, compared with susceptible ones. The structural and functional alterations in Anopheles female mosquito legs are associated with a reduced uptake of insecticides, substantially contributing to the resistance phenotype.
Collapse
Affiliation(s)
- Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - Mary Kefi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Michalis Aivaliotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Functional Proteomics and Systems Biology (FunPATh), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, Greece
| | - Venetia Koidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Sergio J Mijailovsky
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata, Centro Científico Tecnológico La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas-Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Eva Papadogiorgaki
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - George Chalepakis
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Anastasia Kampouraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Christoforos Nikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion 70013, Greece
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece.,Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
183
|
Schnorr SL, Hofman CA, Netshifhefhe SR, Duncan FD, Honap TP, Lesnik J, Lewis CM. Taxonomic features and comparisons of the gut microbiome from two edible fungus-farming termites (Macrotermes falciger; M. natalensis) harvested in the Vhembe district of Limpopo, South Africa. BMC Microbiol 2019; 19:164. [PMID: 31315576 PMCID: PMC6637627 DOI: 10.1186/s12866-019-1540-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Termites are an important food resource for many human populations around the world, and are a good supply of nutrients. The fungus-farming ‘higher’ termite members of Macrotermitinae are also consumed by modern great apes and are implicated as critical dietary resources for early hominins. While the chemical nutritional composition of edible termites is well known, their microbiomes are unexplored in the context of human health. Here we sequenced the V4 region of the 16S rRNA gene of gut microbiota extracted from the whole intestinal tract of two Macrotermes sp. soldiers collected from the Limpopo region of South Africa. Results Major and minor soldier subcastes of M. falciger exhibit consistent differences in taxonomic representation, and are variable in microbial presence and abundance patterns when compared to another edible but less preferred species, M. natalensis. Subcaste differences include alternate patterns in sulfate-reducing bacteria and methanogenic Euryarchaeota abundance, and differences in abundance between Alistipes and Ruminococcaceae. M. falciger minor soldiers and M. natalensis soldiers have similar microbial profiles, likely from close proximity to the termite worker castes, particularly during foraging and fungus garden cultivation. Compared with previously published termite and cockroach gut microbiome data, the taxonomic representation was generally split between termites that directly digest lignocellulose and humic substrates and those that consume a more distilled form of nutrition as with the omnivorous cockroaches and fungus-farming termites. Lastly, to determine if edible termites may point to a shared reservoir for rare bacterial taxa found in the gut microbiome of humans, we focused on the genus Treponema. The majority of Treponema sequences from edible termite gut microbiota most closely relate to species recovered from other termites or from environmental samples, except for one novel OTU strain, which clustered separately with Treponema found in hunter-gatherer human groups. Conclusions Macrotermes consumed by humans display special gut microbial arrangements that are atypical for a lignocellulose digesting invertebrate, but are instead suited to the simplified nutrition in the fungus-farmer diet. Our work brings to light the particular termite microbiome features that should be explored further as avenues in human health, agricultural sustainability, and evolutionary research. Electronic supplementary material The online version of this article (10.1186/s12866-019-1540-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie L Schnorr
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria. .,Department of Anthropology, University of Oklahoma, Norman, OK, USA. .,Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA. .,Department of Anthropology, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Courtney A Hofman
- Department of Anthropology, University of Oklahoma, Norman, OK, USA.,Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Shandukani R Netshifhefhe
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Gauteng Department of Agriculture and Rural Development, Johannesburg, South Africa
| | - Frances D Duncan
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanvi P Honap
- Department of Anthropology, University of Oklahoma, Norman, OK, USA.,Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Julie Lesnik
- Department of Anthropology, Wayne State University, Detroit, MI, USA
| | - Cecil M Lewis
- Department of Anthropology, University of Oklahoma, Norman, OK, USA. .,Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
184
|
Kefi M, Balabanidou V, Douris V, Lycett G, Feyereisen R, Vontas J. Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:52-59. [PMID: 31051237 DOI: 10.1016/j.ibmb.2019.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Cuticular hydrocarbon (CHC) biosynthesis is a major pathway of insect physiology. In Drosophila melanogaster the cytochrome P450 CYP4G1 catalyses the insect-specific oxidative decarbonylation step, while in the malaria vector Anopheles gambiae, two CYP4G paralogues, CYP4G16 and CYP4G17 are present. Analysis of the subcellular localization of CYP4G17 and CYP4G16 in larval and pupal stages revealed that CYP4G16 preserves its PM localization across developmental stages analyzed; however CYPG17 is differentially localized in two distinct types of pupal oenocytes, presumably oenocytes of larval and adult developmental specificity. Western blot analysis showed the presence of two CYP4G17 forms, potentially associated with each oenocyte type. Both An. gambiae CYP4Gs were expressed in D. melanogaster flies in a Cyp4g1 silenced background in order to functionally characterize them in vivo. CYP4G16, CYP4G17 or their combination rescued the lethal phenotype of Cyp4g1-knock down flies, demonstrating that CYP4G17 is also a functional decarbonylase, albeit of somewhat lower efficiency than CYP4G16 in Drosophila. Flies expressing mosquito CYP4G16 and/or CYP4G17 produced similar CHC profiles to 'wild-type' flies expressing the endogenous CYP4G1, but they also produce very long-chain dimethyl-branched CHCs not detectable in wild type flies, suggesting that the specificity of the CYP4G enzymes contributes to determine the complexity of the CHC blend. In conclusion, both An. gambiae CYP4G enzymes contribute to the unique Anopheles CHC profile, which has been associated to defense, adult desiccation tolerance, insecticide penetration rate and chemical communication.
Collapse
Affiliation(s)
- Mary Kefi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Biology, University of Crete, VassilikaVouton, 71409, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, 1017, Denmark
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
185
|
Tomilova OG, Yaroslavtseva ON, Ganina MD, Tyurin MV, Chernyak EI, Senderskiy IV, Noskov YA, Polenogova OV, Akhanaev YB, Kryukov VY, Glupov VV, Morozov SV. Changes in antifungal defence systems during the intermoult period in the Colorado potato beetle. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:106-117. [PMID: 31077710 DOI: 10.1016/j.jinsphys.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Susceptibility to the fungus Metarhizium robertsii and changes in host defences were evaluated in different stages of the intermoult period (4-6 h, 34-36 h and 84-86 h post moult in IV larval instars) of the Colorado potato beetle. A significant thickening of the cuticle during larval growth was accompanied by decreases in cuticle melanization, phenoloxidase activity and epicuticular hydrocarbon contents (C28-C32). At the same time, a decrease in the conidial adhesion rate and an increase in resistance to the fungus were observed. In addition, we recorded significant elevation of the encapsulation rate and total haemocyte counts in the haemolymph during the specified period. The activity of detoxification enzymes decreased in the haemolymph but increased in the fat body during larval growth. No significant differences in the fatty acid content in the epicuticle were observed. The role of developmental disorders in susceptibility to entomopathogenic fungi is also discussed.
Collapse
Affiliation(s)
- Oksana G Tomilova
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Olga N Yaroslavtseva
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Mariya D Ganina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| | - Maksim V Tyurin
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Elena I Chernyak
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| | - Igor V Senderskiy
- All-Russia Institute of Plant Protection, sh. Podbel'skogo, 3, St. Petersburg - Pushkin, 196608, Russia
| | - Yury A Noskov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia; Tomsk State University, st. Lenin, 36, Tomsk 634050, Russia
| | - Olga V Polenogova
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Yuriy B Akhanaev
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Vadim Yu Kryukov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia.
| | - Viktor V Glupov
- Institute of Systematics and Ecology of Animals Siberian Branch of the Russian Academy of Sciences, st. Frunze 11, Novosibirsk 630091, Russia
| | - Sergey V Morozov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Academician Lavrentyev Ave., 9, 630090, Russia
| |
Collapse
|
186
|
Wagoner K, Spivak M, Hefetz A, Reams T, Rueppell O. Stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. Sci Rep 2019; 9:8753. [PMID: 31217481 PMCID: PMC6584651 DOI: 10.1038/s41598-019-45008-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
The health of the honey bee Apis mellifera is challenged by the ectoparasitic mite Varroa destructor, and the numerous harmful pathogens it vectors. Existing pesticide-based Varroa controls are not sustainable. In contrast, one promising approach for improved honey bee health is the breeding of hygienic bees, capable of detecting and removing brood that is parasitized or diseased. In three experiments we find evidence to support the hypothesis that stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. By collecting, analyzing, and running bioassays involving mite-infested and control brood extracts from three honey bee breeding stocks we: 1) found evidence that a transferrable chemical signal for hygienic behavior is present in Varroa-infested brood extracts, 2) identified ten stock-specific hydrocarbons as candidates of hygienic signaling, and 3) found that two of these hydrocarbons linked to Varroa and DWV were also elevated in brood targeted for hygienic behavior. These findings expand our understanding of honey bee chemical communication, and facilitate the development of improved hygienic selection tools to breed honey bees with greater resistance to Varroa and associated pathogens.
Collapse
Affiliation(s)
- K Wagoner
- Biology Department, University of North Carolina at Greensboro, Greensboro, USA.
| | - M Spivak
- Department of Entomology, University of Minnesota, Minneapolis, USA
| | - A Hefetz
- George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - T Reams
- Department of Entomology, Texas A&M University, College Station, USA
| | - O Rueppell
- Biology Department, University of North Carolina at Greensboro, Greensboro, USA
| |
Collapse
|
187
|
Hamilton JA, Wada-Katsumata A, Schal C. Role of Cuticular Hydrocarbons in German Cockroach (Blattodea: Ectobiidae) Aggregation Behavior. ENVIRONMENTAL ENTOMOLOGY 2019; 48:546-553. [PMID: 31034573 DOI: 10.1093/ee/nvz044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Aggregation can be adaptive by providing protection from predators, facilitating thermoregulation, and expediting the location of food, shelter, and mates. German cockroaches Blattella germanica L. (Blattodea: Ectobiidae), are obligatory commensals in human-built structures, where they aggregate in crevices during the day. The source of the aggregation pheromone that drives this behavior and its chemical identity remain unclear. Cuticular hydrocarbons (CHCs) in feces have been proposed to serve as aggregation pheromone, but this function has not been investigated in relation to visual and tactile cues that mediate aggregation. Our objective was to delineate how CHCs in the feces and on the cockroach body operate in conditions that reflect the German cockroach's ecology-either applied to shelters, representing fecal deposition, or to previously extracted cockroaches, representing shelter co-habitation with other cockroaches. Cockroaches and feces-conditioned filter papers were extracted, CHCs were purified by flash chromatography, and two-choice behavior assays were performed with first instar nymphs. Our results confirmed that nymphs preferred to rest within feces-conditioned shelters. However, purified CHCs did not elicit more aggregation than solvent-treated control shelters. Nymphs significantly preferred to rest in shelters that contained a CHC-free dead female, but the addition of CHCs to the female did not enhance aggregation. Nymphs preferred to aggregate with the CHC-free female over CHC-treated shelters. Finally, a methanol extract of feces was highly effective at eliciting aggregation, contesting previous reports that fecal CHCs serve as aggregation pheromone. We assert that CHCs play a minor, if any, role in the aggregation behavior of German cockroaches.
Collapse
Affiliation(s)
- Jamora A Hamilton
- Department of Entomology and Plant Pathology, and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - Ayako Wada-Katsumata
- Department of Entomology and Plant Pathology, and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| | - Coby Schal
- Department of Entomology and Plant Pathology, and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC
| |
Collapse
|
188
|
Zhang XG, Li X, Gao YL, Liu Y, Dong WX, Xiao C. Oviposition Deterrents in Larval Frass of Potato Tuberworm Moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). NEOTROPICAL ENTOMOLOGY 2019; 48:496-502. [PMID: 30539388 DOI: 10.1007/s13744-018-0655-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
The potato tuberworm moth (PTM) Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) is one of the most damaging pests of potato Solanum tuberosum L. in warm temperate and subtropical areas. Our previous experiment showed that extracts of larval frass of PTM deterred oviposition of conspecific females. In this study, we investigated the identification of chemicals in larval frass that were influencing the oviposition of PTM by behavioral bioassays and electroantennography analysis in the laboratory. Frass was collected from third and fourth instar larvae and combined analysis of gas chromatography coupled with electroantennography (GC-EAD) of dichloromethane extracts showed that eight compounds from larval frass extracts elicited repeatable antennal responses from mated females. Seven EAD-active compounds in frass volatile extract were identified by gas chromatography-mass spectrometry (GC-MS) as linoleic acid, octadecanoic acid, tricosane, pentacosane, heptacosane, nonacosane, and cholesterol. Oviposition bioassays indicated that frass extracts had a deterrent effect on egg laying, the deterrent activity increased with the concentration of frass extracts, and the threshold value for statistical significance in oviposition deterrence was in the range of 20-200 mg frass per cage. Linoleic acid, pentacosane, heptacosane, nonacosane, and cholesterol in larval frass volatiles were found to play a key role in repelling oviposition in a dose-dependent manner. We suggest that the bioactive compounds in larval frass are responsible for repelling oviposition of PTM, and n-alkanes, especially pentacosane, strongly deter oviposition and may be considered as a potential oviposition deterrent for potential applications.
Collapse
Affiliation(s)
- X G Zhang
- State Key Lab for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural Univ, Kunming, 650201, China
| | - X Li
- State Key Lab for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural Univ, Kunming, 650201, China
| | - Y L Gao
- State Key Lab for Biology of Plant Diseases and Insect Pests, Institute of Plant protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Liu
- State Key Lab for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural Univ, Kunming, 650201, China
| | - W X Dong
- State Key Lab for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural Univ, Kunming, 650201, China.
| | - C Xiao
- State Key Lab for Conservation and Utilization of Biological Resources in Yunnan, College of Plant Protection, Yunnan Agricultural Univ, Kunming, 650201, China
| |
Collapse
|
189
|
Mair MM, Ruther J. Chemical Ecology of the Parasitoid Wasp Genus Nasonia (Hymenoptera, Pteromalidae). Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
190
|
Müller T, Römer CI, Müller C. Parental sublethal insecticide exposure prolongs mating response and decreases reproductive output in offspring. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| | - Clara Isis Römer
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| |
Collapse
|
191
|
Richardson J, Smiseth PT. Nutrition during sexual maturation and at the time of mating affects mating behaviour in both sexes of a burying beetle. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
192
|
Liu ZX, Yang P, Zhang Y, Li ZB, Kjellberg F. Antennae and the role of olfaction and contact stimulation in mate recognition by males of the pollinating fig wasp Ceratosolen gravelyi (Hymenoptera: Agaonidae). J NAT HIST 2019. [DOI: 10.1080/00222933.2019.1609112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zhi-Xiang Liu
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming, PR, China
| | - Pei Yang
- Library of TCM, Yunnan University of Traditional Chinese Medicine, Kunming, PR, China
| | - Yuan Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming, PR, China
| | - Zong-Bo Li
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Southwest Forestry University, Kunming, PR, China
| | - Finn Kjellberg
- CEFE UMR 5175, CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE, IRD, Montpellier, France
| |
Collapse
|
193
|
Cini A, Sumner S, Cervo R. Inquiline social parasites as tools to unlock the secrets of insect sociality. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180193. [PMID: 30967091 PMCID: PMC6388031 DOI: 10.1098/rstb.2018.0193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Insect societies play a crucial role in the functioning of most ecosystems and have fascinated both scientists and the lay public for centuries. Despite the long history of study, we are still far from understanding how insect societies have evolved and how social cohesion in their colonies is maintained. Here we suggest inquiline social parasites of insect societies as an under-exploited experimental tool for understanding sociality. We draw on examples from obligate inquiline (permanent) social parasites in wasps, ants and bees to illustrate how these parasites may allow us to better understand societies and learn more about the evolution and functioning of insect societies. We highlight three main features of these social parasite-host systems-namely, close phylogenetic relationships, strong selective pressures arising from coevolution and multiple independent origins-that make inquiline social parasites particularly suited for this aim; we propose a conceptual comparative framework that considers trait losses, gains and modifications in social parasite-host systems. We give examples of how this framework can reveal the more elusive secrets of sociality by focusing on two cornerstones of sociality: communication and reproductive division of labour. Together with social parasites in other taxonomic groups, such as cuckoos in birds, social parasitism has a great potential to reveal the mechanisms and evolution of complex social groups. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Alessandro Cini
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Seirian Sumner
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Rita Cervo
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
194
|
Müller T, Gesing MA, Segeler M, Müller C. Sublethal insecticide exposure of an herbivore alters the response of its predator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:39-45. [PMID: 30654252 DOI: 10.1016/j.envpol.2018.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Sublethal insecticide exposure poses risks for many non-target organisms and is a challenge for successful implementation of integrated pest management (IPM) programs. Next to detrimental effects of short-term insecticide exposure on fitness-related traits of organisms, also properties such as chemical signaling traits can be altered, which mediate intra- and interspecific communication. We investigated the effects of different durations of larval sublethal exposure to the pyrethroid lambda-cyhalothrin on performance traits of larvae and adults of the herbivorous mustard leaf beetle, Phaedon cochleariae. Moreover, by applying a direct contact and olfactometer bioassays, we determined the reaction of a generalist predator, the ant Myrmica rubra, towards insecticide-exposed and unexposed herbivore larvae and their secretions. Already short-term sublethal insecticide exposure of a few days caused a prolonged larval development and a reduced adult body mass of males. These effects may result from an insecticide-induced reduction in energy reserves. Furthermore, ants responded more frequently to insecticide-exposed than to unexposed larvae of P. cochleariae and their secretions. This increased responsiveness of ants towards insecticide-exposed larvae may be due to an insecticide-induced change in synthesis of chrysomelidial and epichrysomelidial, the dominant compounds of the larval secretion, which act defensive against various generalist predators. In conclusion, the results highlight that short-term insecticide exposure can impair the fitness of an herbivorous species due to both direct toxic effects and an increased responsiveness of predators. Consequently, exposure of single non-target species can have consequences for ecological communities in both natural habitats and IPM programs.
Collapse
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Matthias Alexander Gesing
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Markus Segeler
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
195
|
Spottiswoode CN, Busch R. Vive la difference! Self/non-self recognition and the evolution of signatures of identity in arms races with parasites. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180206. [PMID: 30967089 PMCID: PMC6388040 DOI: 10.1098/rstb.2018.0206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
In arms races with parasites, hosts can evolve defences exhibiting extensive variability within populations, which signals individual identity ('signatures'). However, few such systems have evolved, suggesting that the conditions for their evolution are uncommon. We review (a) polymorphic egg markings that allow hosts of brood-parasitic birds to recognize and reject parasitic eggs, and (b) polymorphic tissue antigens encoded in the major histocompatibility complex (MHC), which present self- and pathogen-derived peptides to T cells of the immune system. Despite the profound differences between these systems, they share analogous features: (i) self/non-self discrimination by a highly specific recognition system (bird eyes and T-cell antigen receptor, respectively), which antagonists may escape by evolving evasion or mimicry; (ii) a self substrate upon which diversifying selection can act (eggs, and MHC molecules); (iii) acquired knowledge of self (resulting in acceptance of own eggs, and immune tolerance); and (iv) fitness costs associated with attack on self or lack of parasite detection. We suggest that these features comprise a set of requirements for parasites to drive the evolution of identity signatures in hosts, which diminish the likelihood of recognition errors. This may help to explain the variety of trajectories arising from arms races in different antagonistic contexts. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Claire N. Spottiswoode
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Robert Busch
- Department of Life Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK
| |
Collapse
|
196
|
Falcon T, Pinheiro DG, Ferreira-Caliman MJ, Turatti ICC, de Abreu FCP, Galaschi-Teixeira JS, Martins JR, Elias-Neto M, Soares MPM, Laure MB, Figueiredo VLC, Lopes NP, Simões ZLP, Garófalo CA, Bitondi MMG. Exploring integument transcriptomes, cuticle ultrastructure, and cuticular hydrocarbons profiles in eusocial and solitary bee species displaying heterochronic adult cuticle maturation. PLoS One 2019; 14:e0213796. [PMID: 30870522 PMCID: PMC6417726 DOI: 10.1371/journal.pone.0213796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Differences in the timing of exoskeleton melanization and sclerotization are evident when comparing eusocial and solitary bees. This cuticular maturation heterochrony may be associated with life style, considering that eusocial bees remain protected inside the nest for many days after emergence, while the solitary bees immediately start outside activities. To address this issue, we characterized gene expression using large-scale RNA sequencing (RNA-seq), and quantified cuticular hydrocarbon (CHC) through gas chromatography-mass spectrometry in comparative studies of the integument (cuticle plus its underlying epidermis) of two eusocial and a solitary bee species. In addition, we used transmission electron microscopy (TEM) for studying the developing cuticle of these and other three bee species also differing in life style. We found 13,200, 55,209 and 30,161 transcript types in the integument of the eusocial Apis mellifera and Frieseomelitta varia, and the solitary Centris analis, respectively. In general, structural cuticle proteins and chitin-related genes were upregulated in pharate-adults and newly-emerged bees whereas transcripts for odorant binding proteins, cytochrome P450 and antioxidant proteins were overrepresented in foragers. Consistent with our hypothesis, a distance correlation analysis based on the differentially expressed genes suggested delayed cuticle maturation in A. mellifera in comparison to the solitary bee. However, this was not confirmed in the comparison with F. varia. The expression profiles of 27 of 119 genes displaying functional attributes related to cuticle formation/differentiation were positively correlated between A. mellifera and F. varia, and negatively or non-correlated with C. analis, suggesting roles in cuticular maturation heterochrony. However, we also found transcript profiles positively correlated between each one of the eusocial species and C. analis. Gene co-expression networks greatly differed between the bee species, but we identified common gene interactions exclusively between the eusocial species. Except for F. varia, the TEM analysis is consistent with cuticle development timing adapted to the social or solitary life style. In support to our hypothesis, the absolute quantities of n-alkanes and unsaturated CHCs were significantly higher in foragers than in the earlier developmental phases of the eusocial bees, but did not discriminate newly-emerged from foragers in C. analis. By highlighting differences in integument gene expression, cuticle ultrastructure, and CHC profiles between eusocial and solitary bees, our data provided insights into the process of heterochronic cuticle maturation associated to the way of life.
Collapse
Affiliation(s)
- Tiago Falcon
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Brazil
| | - Maria Juliana Ferreira-Caliman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Izabel C. C. Turatti
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fabiano C. Pinto de Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana S. Galaschi-Teixeira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana R. Martins
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Moysés Elias-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Michelle P. M. Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcela B. Laure
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vera L. C. Figueiredo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos A. Garófalo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
197
|
Preface: Pheromone-Mediation of Female Reproduction and Reproductive Dominance in Social Species. J Chem Ecol 2019; 44:747-749. [PMID: 30009328 DOI: 10.1007/s10886-018-0992-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
198
|
Bello JE, Stamm P, Leinaas HP, Schulz S. Viaticene A - An Unusual Tetraterpene Cuticular Lipid Isolated from the Springtail Hypogastrura viatica. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jan E. Bello
- Institute of Organic Chemistry; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Patrick Stamm
- Institute of Organic Chemistry; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Hans Petter Leinaas
- Department of Biosciences; University of Oslo; Postboks 1066, Blindern 0316 Oslo Norway
| | - Stefan Schulz
- Institute of Organic Chemistry; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
199
|
Morimoto J, Nguyen B, Dinh H, Than AT, Taylor PW, Ponton F. Crowded developmental environment promotes adult sex-specific nutrient consumption in a polyphagous fly. Front Zool 2019; 16:4. [PMID: 30820236 PMCID: PMC6379967 DOI: 10.1186/s12983-019-0302-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
Background The fitness of holometabolous insects depends largely on resources acquired at the larval stage. Larval density is an important factor modulating larval resource-acquisition, influencing adult survival, reproduction, and population maintenance. To date, however, our understanding of how larval crowding affects adult physiology and behaviour is limited, and little is known about how larval crowding affects adult non-reproductive ecological traits. Here, larval density in the rearing environment of the polyphagous fruit fly Bactrocera tryoni (‘Queensland fruit-fly’) was manipulated to generate crowded and uncrowded larval treatments. The effects of larval crowding on pupal weight, adult emergence, adult body weight, energetic reserves, fecundity, feeding patterns, flight ability, as well as adult predation risk were investigated. Results Adults from the crowded larval treatment had lower adult emergence, body weight, energetic reserves, flight ability and fecundity compared to adults from the uncrowded larval treatment. Adults from the crowded larval treatment had greater total food consumption (i.e., consumption of yeast plus sucrose) relative to body weight for both sexes compared to adults from the uncrowded treatment. Furthermore, males from the crowded treatment consumed more yeast relative to their body weight than males from the uncrowded treatment, while females from the crowded treatment consumed more sucrose relative to their body weight than females from the uncrowded treatment. Importantly, an interaction between the relative consumptions of sucrose and yeast and sex revealed that the density of conspecifics in the developmental environment differentially affects feeding of adult males and females. We found no effect of larval treatment on adult predation probability. However, males were significantly more likely to be captured by ants than females. Conclusion We show that larvae crowding can have important implications to ecological traits in a polyphagous fly, including traits such as adult energetic reserve, flight ability, and adult sex-specific nutrient intake. Our findings contextualise the effects of larval developmental conditions into a broad ecological framework, hence providing a better understanding of their significance to adult behaviour and fitness. Furthermore, the knowledge presented here can help us better understanding downstream density-dependent effects of mass rearing conditions of this species, with potential relevance to Sterile Insect Technique. Electronic supplementary material The online version of this article (10.1186/s12983-019-0302-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliano Morimoto
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| | - Binh Nguyen
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| | - Hue Dinh
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| | - Anh The Than
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia.,2Department of Entomology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Phillip W Taylor
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| | - Fleur Ponton
- 1Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109 Australia
| |
Collapse
|
200
|
Palma-Onetto V, Pflegerová J, Plarre R, Synek J, Cvačka J, Sillam-Dussès D, Šobotník J. The labral gland in termites: evolution and function. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Valeria Palma-Onetto
- University Paris 13 - Sorbonne Paris Cité, Laboratory of Experimental and Comparative Ethology, Villetaneuse, France
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Jitka Pflegerová
- Institute of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Rudy Plarre
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Sillam-Dussès
- University Paris 13 - Sorbonne Paris Cité, Laboratory of Experimental and Comparative Ethology, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|