151
|
Freel KC, Friedrich A, Schacherer J. Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Res 2015; 15:fov023. [PMID: 25969454 DOI: 10.1093/femsyr/fov023] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are important organelles that harbor their own genomes encoding a key set of proteins that ensure respiration and provide the eukaryotic cell with energy. Recent advances in high-throughput sequencing technologies present a unique opportunity to explore mitochondrial (mt) genome evolution. The Saccharomycotina yeasts have proven to be the leading organisms for mt comparative and population genomics. In fact, the explosion of complete yeast mt genome sequences has allowed for a broader view of the mt diversity across this incredibly diverse subphylum, both within and between closely related species. Here, we summarize the present state of yeast mitogenomics, including the currently available data and what it reveals concerning the diversity of content, organization, structure and evolution of mt genomes.
Collapse
Affiliation(s)
- Kelle C Freel
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| | - Anne Friedrich
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg/CNRS, UMR7156 Strasbourg 67083, France
| |
Collapse
|
152
|
The role of symbiosis in the transition of some eukaryotes from aquatic to terrestrial environments. Symbiosis 2015. [DOI: 10.1007/s13199-015-0321-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
153
|
van der Sluis EO, Bauerschmitt H, Becker T, Mielke T, Frauenfeld J, Berninghausen O, Neupert W, Herrmann JM, Beckmann R. Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes. Genome Biol Evol 2015; 7:1235-51. [PMID: 25861818 PMCID: PMC4453056 DOI: 10.1093/gbe/evv061] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 01/06/2023] Open
Abstract
The five macromolecular complexes that jointly mediate oxidative phosphorylation (OXPHOS) in mitochondria consist of many more subunits than those of bacteria, yet, it remains unclear by which evolutionary mechanism(s) these novel subunits were recruited. Even less well understood is the structural evolution of mitochondrial ribosomes (mitoribosomes): while it was long thought that their exceptionally high protein content would physically compensate for their uniquely low amount of ribosomal RNA (rRNA), this hypothesis has been refuted by structural studies. Here, we present a cryo-electron microscopy structure of the 73S mitoribosome from Neurospora crassa, together with genomic and proteomic analyses of mitoribosome composition across the eukaryotic domain. Surprisingly, our findings reveal that both structurally and compositionally, mitoribosomes have evolved very similarly to mitochondrial OXPHOS complexes via two distinct phases: A constructive phase that mainly acted early in eukaryote evolution, resulting in the recruitment of altogether approximately 75 novel subunits, and a reductive phase that acted during metazoan evolution, resulting in gradual length-reduction of mitochondrially encoded rRNAs and OXPHOS proteins. Both phases can be well explained by the accumulation of (slightly) deleterious mutations and deletions, respectively, in mitochondrially encoded rRNAs and OXPHOS proteins. We argue that the main role of the newly recruited (nuclear encoded) ribosomal- and OXPHOS proteins is to provide structural compensation to the mutationally destabilized mitochondrially encoded components. While the newly recruited proteins probably provide a selective advantage owing to their compensatory nature, and while their presence may have opened evolutionary pathways toward novel mitochondrion-specific functions, we emphasize that the initial events that resulted in their recruitment was nonadaptive in nature. Our framework is supported by population genetic studies, and it can explain the complete structural evolution of mitochondrial ribosomes and OXPHOS complexes, as well as many observed functions of individual proteins.
Collapse
Affiliation(s)
- Eli O van der Sluis
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany
| | | | - Thomas Becker
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, UltraStrukturNetzwerk, Berlin, Germany Institut für Medizinische Physik und Biophysik, Charité, Berlin, Germany
| | - Jens Frauenfeld
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany Present address: Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Otto Berninghausen
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany
| | - Walter Neupert
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Roland Beckmann
- Gene Center and Center for integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Germany
| |
Collapse
|
154
|
Wesołowski W, Szklarczyk M, Szalonek M, Słowińska J. Analysis of the mitochondrial proteome in cytoplasmic male-sterile and male-fertile beets. J Proteomics 2015; 119:61-74. [DOI: 10.1016/j.jprot.2014.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/10/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
|
155
|
A census of nuclear cyanobacterial recruits in the plant kingdom. PLoS One 2015; 10:e0120527. [PMID: 25794152 PMCID: PMC4368824 DOI: 10.1371/journal.pone.0120527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/01/2015] [Indexed: 11/19/2022] Open
Abstract
The plastids and mitochondria of the eukaryotic cell are of endosymbiotic origin. These events occurred ~2 billion years ago and produced significant changes in the genomes of the host and the endosymbiont. Previous studies demonstrated that the invasion of land affected plastids and mitochondria differently and that the paths of mitochondrial integration differed between animals and plants. Other studies examined the reasons why a set of proteins remained encoded in the organelles and were not transferred to the nuclear genome. However, our understanding of the functional relations of the transferred genes is insufficient. In this paper, we report a high-throughput phylogenetic analysis to identify genes of cyanobacterial origin for plants of different levels of complexity: Arabidopsis thaliana, Chlamydomonas reinhardtii, Physcomitrella patens, Populus trichocarpa, Selaginella moellendorffii, Sorghum bicolor, Oryza sativa, and Ostreococcus tauri. Thus, a census of cyanobacterial gene recruits and a study of their function are presented to better understand the functional aspects of plastid symbiogenesis. From algae to angiosperms, the GO terms demonstrated a gradual expansion over functionally related genes in the nuclear genome, beginning with genes related to thylakoids and photosynthesis, followed by genes involved in metabolism, and finally with regulation-related genes, primarily in angiosperms. The results demonstrate that DNA is supplied to the nuclear genome on a permanent basis with no regard to function, and only what is needed is kept, which thereby expands on the GO space along the related genes.
Collapse
|
156
|
Shen XY, Li T, Chen S, Fan L, Gao J, Hou CL. Characterization and phylogenetic analysis of the mitochondrial genome of Shiraia bambusicola reveals special features in the order of pleosporales. PLoS One 2015; 10:e0116466. [PMID: 25790308 PMCID: PMC4366305 DOI: 10.1371/journal.pone.0116466] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022] Open
Abstract
Shiraia bambusicola P. Henn. is a pathogenic fungus of bamboo, and its fruiting bodies are regarded as folk medicine. We determined and analyzed its complete mitochondrial DNA sequence (circular DNA molecule of 39,030 bp, G + C content of 25.19%). It contains the typical genes encoding proteins involved in electron transport and coupled oxidative phosphorylation (nad1-6 and nad4L, cob and cox1-3), one ATP synthase subunit (atp6), 4 hypothetical proteins, and two genes for large and small rRNAs (rnl and rns). There is a set of 32 tRNA genes comprising all 20 amino acids, and these genes are evenly distributed on the two strands. Phylogenetic analyses based on concatenated mitochondrial proteins indicated that S. bambusicola clustered with members of the order Pleosporales, which is in agreement with previous results. The gene arrangements of Dothideomycetes species contained three regions of gene orders partitioned in their mitochondrial genomes, including block 1 (nad6-atp6), block 2 (nad1-cox3) and block 3 (genes around rns). S. bambusicola displayed unique special features that differed from the other Pleosporales species, especially in the coding regions around rns (trnR-trnY). Moreover, a comparison of gene orders in mitochondrial genomes from Pezizomycotina revealed that although all encoded regions are located on the same strand in most Pezizomycotina mtDNAs, genes from Dothideomycetes species had different orientations, as well as diverse positions and colocalization of genes (such as cox3, cox1-cox2 and nad2-nad3); these distinctions were regarded as class-specific features. Interestingly, two incomplete copies of the atp6 gene were found on different strands of the mitogenomic DNA, a finding that has not been observed in the other analyzed fungal species. In our study, mitochondrial genomes from Dothideomycetes species were comprehensively analyzed for the first time, including many species that have not appeared in previous reports.
Collapse
Affiliation(s)
- Xiao-Ye Shen
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| | - Tong Li
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| | - Shuang Chen
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology of the SFA, International Centre for Bamboo and Rattan, Beijing, People’s Republic of China
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| |
Collapse
|
157
|
Pontieri P, De Stefano M, Massardo DR, Gunge N, Miyakawa I, Sando N, Pignone D, Pizzolante G, Romano R, Alifano P, Del Giudice L. Tellurium as a valuable tool for studying the prokaryotic origins of mitochondria. Gene 2015; 559:177-83. [PMID: 25644076 DOI: 10.1016/j.gene.2015.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 02/05/2023]
Abstract
Mitochondria are eukaryotic organelles which contain the own genetic material and evolved from free-living Eubacteria, namely hydrogen-producing Alphaproteobacteria. Since 1965, biologists provided, by research at molecular level, evidence for the prokaryotic origins of mitochondria. However, determining the precise origins of mitochondria is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. The use of new tools to evidence the prokaryotic origin of mitochondria could be useful to gain an insight into the bacterial endosymbiotic event that resulted in the permanent acquisition of bacteria, from the ancestral cell, that through time were transformed into mitochondria. Electron microscopy has shown that both proteobacterial and yeast cells during their growth in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture due to elemental tellurium (Te(0)) that formed large deposits either along the proteobacterial membrane or along the yeast cell wall and mitochondria. Since the mitochondrial inner membrane composition is similar to that of proteobacterial membrane, in the present work we evidenced the black tellurium deposits on both, cell wall and mitochondria of ρ(+) and respiratory deficient ρ(-) mutants of yeast. A possible role of tellurite in studying the evolutionary origins of mitochondria will be discussed.
Collapse
Affiliation(s)
- Paola Pontieri
- Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| | - Mario De Stefano
- Department of Environmental Sciences, Second University of Naples, via A. Vivaldi 43, 81100 Caserta, Italy
| | - Domenica Rita Massardo
- Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy
| | - Norio Gunge
- Sojo-University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Isamu Miyakawa
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Nobundo Sando
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Domenico Pignone
- Institute of Biosciences and Bioresources (IBBR), CNR, 70126 Bari, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technology, University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Luigi Del Giudice
- Institute of Biosciences and Bioresources-UOS Portici (IBBR-UOS Portici), CNR, Portici (NA) c/o Dipartimento di Biologia, Sezione di Igiene, Napoli 80134, Italy.
| |
Collapse
|
158
|
Emerging functions of mammalian and plant mTERFs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:786-97. [PMID: 25582570 DOI: 10.1016/j.bbabio.2014.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/21/2014] [Indexed: 11/24/2022]
Abstract
Organellar gene expression (OGE) is crucial for plant development, respiration and photosynthesis, but the mechanisms that control it are still largely unclear. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming and editing of organellar RNAs, and regulate their translation. In mammals, members of the mitochondrial transcription termination factor (mTERF) family play important roles in OGE. Intriguingly, three of the four mammalian mTERFs do not actually terminate transcription, as their designation suggests, but appear to function in antisense transcription termination and ribosome biogenesis. During the evolution of land plants, the mTERF family has expanded to approximately 30 members, but knowledge of their function in photosynthetic organisms remains sparse. Here, we review recent advances in the characterization of mterf mutants in mammals and photosynthetic organisms, focusing particularly on the progress made in elucidating their molecular functions in the last two years. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
|
159
|
Kamikawa R, Kolisko M, Nishimura Y, Yabuki A, Brown MW, Ishikawa SA, Ishida KI, Roger AJ, Hashimoto T, Inagaki Y. Gene content evolution in Discobid mitochondria deduced from the phylogenetic position and complete mitochondrial genome of Tsukubamonas globosa. Genome Biol Evol 2015; 6:306-15. [PMID: 24448982 PMCID: PMC3942025 DOI: 10.1093/gbe/evu015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The unicellular eukaryotic assemblage Discoba (Excavata) comprises four lineages: the Heterolobosea, Euglenozoa, Jakobida, and Tsukubamonadida. Discoba has been considered as a key assemblage for understanding the early evolution of mitochondrial (mt) genomes, as jakobids retain the most gene-rich (i.e., primitive) genomes compared with any other eukaryotes determined to date. However, to date, mt genome sequences have been completed for only a few groups within Discoba, including jakobids, two closely related heteroloboseans, and kinetoplastid euglenozoans. The Tsukubamonadida is the least studied lineage, as the order was only recently established with the description of a sole representative species, Tsukubamonas globosa. The evolutionary relationship between T. globosa and other discobids has yet to be resolved, and no mt genome data are available for this particular organism. Here, we use a “phylogenomic” approach to resolve the relationship between T. globosa, heteroloboseans, euglenozoans, and jakobids. In addition, we have characterized the mt genome of T. globosa (48,463 bp in length), which encodes 52 putative protein-coding and 29 RNA genes. By mapping the gene repertoires of discobid mt genomes onto the well-resolved Discoba tree, we model gene loss events during the evolution of discobid mt genomes.
Collapse
Affiliation(s)
- Ryoma Kamikawa
- Graduate School of Global Environmental Studies and Graduate School of Human and Environmental Studies, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 2014; 16:98-112. [DOI: 10.1038/nrg3861] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
161
|
Nadimi M, Stefani FOP, Hijri M. The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. Genome Biol Evol 2014; 7:96-105. [PMID: 25527840 PMCID: PMC4316621 DOI: 10.1093/gbe/evu268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2014] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial (mt) genomes are intensively studied in Ascomycota and Basidiomycota, but they are poorly documented in basal fungal lineages. In this study, we sequenced the complete mtDNA of Rhizophagus sp. DAOM 213198, a close relative to Rhizophagus irregularis, a widespread, ecologically and economical relevant species belonging to Glomeromycota. Unlike all other known taxonomically close relatives harboring a full-length circular chromosome, mtDNA of Rhizophagus sp. reveals an unusual organization with two circular chromosomes of 61,964 and 29,078 bp. The large chromosome contained nine protein-coding genes (atp9, nad5, cob, nad4, nad1, nad4L, cox1, cox2, and atp8), small subunit rRNA gene (rns), and harbored 20 tRNA-coding genes and 10 orfs, while the small chromosome contained five protein-coding genes (atp6, nad2, nad3, nad6, and cox3), large subunit rRNA gene (rnl) in addition to 5 tRNA-coding genes, and 8 plasmid-related DNA polymerases (dpo). Although structural variation of plant mt genomes is well documented, this study is the first report of the presence of two circular mt genomes in arbuscular mycorrhizal fungi. Interestingly, the presence of dpo at the breakage point in intergenes cox1-cox2 and rnl-atp6 for large and small mtDNAs, respectively, could be responsible for the conversion of Rhizophagus sp. mtDNA into two chromosomes. Using quantitative real-time polymerase chain reaction, we found that both mtDNAs have an equal abundance. This study reports a novel mtDNA organization in Glomeromycota and highlights the importance of studying early divergent fungal lineages to describe novel evolutionary pathways in the fungal kingdom.
Collapse
Affiliation(s)
- Maryam Nadimi
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Franck O P Stefani
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Université de Montréal, Institut de Recherche en Biologie Végétale (IRBV), Quebec, Canada
| |
Collapse
|
162
|
Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa. Mol Biol Rep 2014; 42:1081-9. [DOI: 10.1007/s11033-014-3847-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
163
|
Kannan S, Rogozin IB, Koonin EV. MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes. BMC Evol Biol 2014; 14:237. [PMID: 25421434 PMCID: PMC4256733 DOI: 10.1186/s12862-014-0237-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/07/2014] [Indexed: 01/19/2023] Open
Abstract
Background Mitochondria are ubiquitous membranous organelles of eukaryotic cells that evolved from an alpha-proteobacterial endosymbiont and possess a small genome that encompasses from 3 to 106 genes. Accumulation of thousands of mitochondrial genomes from diverse groups of eukaryotes provides an opportunity for a comprehensive reconstruction of the evolution of the mitochondrial gene repertoire. Results Clusters of orthologous mitochondrial protein-coding genes (MitoCOGs) were constructed from all available mitochondrial genomes and complemented with nuclear orthologs of mitochondrial genes. With minimal exceptions, the mitochondrial gene complements of eukaryotes are subsets of the superset of 66 genes found in jakobids. Reconstruction of the evolution of mitochondrial genomes indicates that the mitochondrial gene set of the last common ancestor of the extant eukaryotes was slightly larger than that of jakobids. This superset of mitochondrial genes likely represents an intermediate stage following the loss and transfer to the nucleus of most of the endosymbiont genes early in eukaryote evolution. Subsequent evolution in different lineages involved largely parallel transfer of ancestral endosymbiont genes to the nuclear genome. The intron density in nuclear orthologs of mitochondrial genes typically is nearly the same as in the rest of the genes in the respective genomes. However, in land plants, the intron density in nuclear orthologs of mitochondrial genes is almost 1.5-fold lower than the genomic mean, suggestive of ongoing transfer of functional genes from mitochondria to the nucleus. Conclusions The MitoCOGs are expected to become an important resource for the study of mitochondrial evolution. The nearly complete superset of mitochondrial genes in jakobids likely represents an intermediate stage in the evolution of eukaryotes after the initial, extensive loss and transfer of the endosymbiont genes. In addition, the bacterial multi-subunit RNA polymerase that is encoded in the jakobid mitochondrial genomes was replaced by a single-subunit phage-type RNA polymerase in the rest of the eukaryotes. These results are best compatible with the rooting of the eukaryotic tree between jakobids and the rest of the eukaryotes. The land plants are the only eukaryotic branch in which the gene transfer from the mitochondrial to the nuclear genome appears to be an active, ongoing process. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0237-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sivakumar Kannan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
164
|
Characterization of the complete mitochondrial genome of flower-breeding Drosophila incompta (Diptera, Drosophilidae). Genetica 2014; 142:525-35. [DOI: 10.1007/s10709-014-9799-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
165
|
Wang Z, Wu M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS One 2014; 9:e110685. [PMID: 25333787 PMCID: PMC4198247 DOI: 10.1371/journal.pone.0110685] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Reconstruction of mitochondrial ancestor has great impact on our understanding of the origin of mitochondria. Previous studies have largely focused on reconstructing the last common ancestor of all contemporary mitochondria (proto-mitochondria), but not on the more informative pre-mitochondria (the last common ancestor of mitochondria and their alphaproteobacterial sister clade). Using a phylogenomic approach and leveraging on the increased taxonomic sampling of alphaproteobacterial and eukaryotic genomes, we reconstructed the metabolisms of both proto-mitochondria and pre-mitochondria. Our reconstruction depicts a more streamlined proto-mitochondrion than these predicted by previous studies, and revealed several novel insights into the mitochondria-derived eukaryotic metabolisms including the lipid metabolism. Most strikingly, pre-mitochondrion was predicted to possess a plastid/parasite type of ATP/ADP translocase that imports ATP from the host, which posits pre-mitochondrion as an energy parasite that directly contrasts with the current role of mitochondria as the cell's energy producer. In addition, pre-mitochondrion was predicted to encode a large number of flagellar genes and several cytochrome oxidases functioning under low oxygen level, strongly supporting the previous finding that the mitochondrial ancestor was likely motile and capable of oxidative phosphorylation under microoxic condition.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
166
|
Chi S, Wu S, Yu J, Wang X, Tang X, Liu T. Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes. PLoS One 2014; 9:e110154. [PMID: 25313828 PMCID: PMC4196954 DOI: 10.1371/journal.pone.0110154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/15/2014] [Indexed: 12/02/2022] Open
Abstract
Both Calvin-Benson-Bassham (C3) and Hatch-Slack (C4) cycles are most important autotrophic CO2 fixation pathways on today’s Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK) and aspartate aminotransferase (AST) with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK) genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme) and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme) subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes.
Collapse
Affiliation(s)
- Shan Chi
- Ocean University of China, Qingdao, Shandong Province, People’s Republic of China
| | - Shuangxiu Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xumin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
- Beijing Key Laboratory of Functional Genomics for Dao-di Herbs, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (XW); (TL)
| | - Xuexi Tang
- Ocean University of China, Qingdao, Shandong Province, People’s Republic of China
| | - Tao Liu
- Ocean University of China, Qingdao, Shandong Province, People’s Republic of China
- * E-mail: (XW); (TL)
| |
Collapse
|
167
|
Liu J, Bu C, Wipfler B, Liang A. Comparative analysis of the mitochondrial genomes of Callitettixini Spittlebugs (Hemiptera: Cercopidae) confirms the overall high evolutionary speed of the AT-rich region but reveals the presence of short conservative elements at the tribal level. PLoS One 2014; 9:e109140. [PMID: 25285442 PMCID: PMC4186805 DOI: 10.1371/journal.pone.0109140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 09/09/2014] [Indexed: 11/30/2022] Open
Abstract
The present study compares the mitochondrial genomes of five species of the spittlebug tribe Callitettixini (Hemiptera: Cercopoidea: Cercopidae) from eastern Asia. All genomes of the five species sequenced are circular double-stranded DNA molecules and range from 15,222 to 15,637 bp in length. They contain 22 tRNA genes, 13 protein coding genes (PCGs) and 2 rRNA genes and share the putative ancestral gene arrangement of insects. The PCGs show an extreme bias of nucleotide and amino acid composition. Significant differences of the substitution rates among the different genes as well as the different codon position of each PCG are revealed by the comparative evolutionary analyses. The substitution speeds of the first and second codon position of different PCGs are negatively correlated with their GC content. Among the five species, the AT-rich region features great differences in length and pattern and generally shows a 2–5 times higher substitution rate than the fastest PCG in the mitochondrial genome, atp8. Despite the significant variability in length, short conservative segments were identified in the AT-rich region within Callitettixini, although absent from the other groups of the spittlebug superfamily Cercopoidea.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
- Graduate University of the Chinese Academy of Sciences, Shijingshan District, Beijing, P. R. China
| | - Cuiping Bu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Jiangsu Province, P. R. China
| | - Benjamin Wipfler
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
168
|
Fu CJ, Sheikh S, Miao W, Andersson SGE, Baldauf SL. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA. Genome Biol Evol 2014; 6:2240-57. [PMID: 25146648 PMCID: PMC4202320 DOI: 10.1093/gbe/evu180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida.
Collapse
Affiliation(s)
- Cheng-Jie Fu
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Sanea Sheikh
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Sandra L Baldauf
- Program in Systematic Biology, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| |
Collapse
|
169
|
Abstract
All life on earth can be naturally classified into cellular life forms and virus-like selfish elements, the latter being fully dependent on the former for their reproduction. Cells are reproducers that not only replicate their genome but also reproduce the cellular organization that depends on semipermeable, energy-transforming membranes and cannot be recovered from the genome alone, under the famous dictum of Rudolf Virchow, Omnis cellula e cellula. In contrast, simple selfish elements are replicators that can complete their life cycles within the host cell starting from genomic RNA or DNA alone. The origin of the cellular organization is the central and perhaps the hardest problem of evolutionary biology. I argue that the origin of cells can be understood only in conjunction with the origin and evolution of selfish genetic elements. A scenario of precellular evolution is presented that involves cohesion of the genomes of the emerging cellular life forms from primordial pools of small genetic elements that eventually segregated into hosts and parasites. I further present a model of the coevolution of primordial membranes and membrane proteins, discuss protocellular and non-cellular models of early evolution, and examine the habitats on the primordial earth that could have been conducive to precellular evolution and the origin of cells.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, 20894, USA,
| |
Collapse
|
170
|
Yin LF, Wang F, Zhang Y, Kuang H, Schnabel G, Li GQ, Luo CX. Evolutionary analysis revealed the horizontal transfer of the Cyt b gene from Fungi to Chromista. Mol Phylogenet Evol 2014; 76:155-61. [DOI: 10.1016/j.ympev.2014.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/06/2014] [Accepted: 03/15/2014] [Indexed: 01/21/2023]
|
171
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
172
|
Salavirta H, Oksanen I, Kuuskeri J, Mäkelä M, Laine P, Paulin L, Lundell T. Mitochondrial genome of Phlebia radiata is the second largest (156 kbp) among fungi and features signs of genome flexibility and recent recombination events. PLoS One 2014; 9:e97141. [PMID: 24824642 PMCID: PMC4019555 DOI: 10.1371/journal.pone.0097141] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/15/2014] [Indexed: 01/28/2023] Open
Abstract
Mitochondria are eukaryotic organelles supporting individual life-style via generation of proton motive force and cellular energy, and indispensable metabolic pathways. As part of genome sequencing of the white rot Basidiomycota species Phlebia radiata, we first assembled its mitochondrial genome (mtDNA). So far, the 156 348 bp mtDNA is the second largest described for fungi, and of considerable size among eukaryotes. The P. radiata mtDNA assembled as single circular dsDNA molecule containing genes for the large and small ribosomal RNAs, 28 transfer RNAs, and over 100 open reading frames encoding the 14 fungal conserved protein subunits of the mitochondrial complexes I, III, IV, and V. Two genes (atp6 and tRNA-IleGAU) were duplicated within 6.1 kbp inverted region, which is a unique feature of the genome. The large mtDNA size, however, is explained by the dominance of intronic and intergenic regions (sum 80% of mtDNA sequence). The intergenic DNA stretches harness short (≤ 200 nt) repetitive, dispersed and overlapping sequence elements in abundance. Long self-splicing introns of types I and II interrupt eleven of the conserved genes (cox1,2,3; cob; nad1,2,4,4L,5; rnl; rns). The introns embrace a total of 57 homing endonucleases with LAGLIDADGD and GYI-YIG core motifs, which makes P. radiata mtDNA to one of the largest known reservoirs of intron-homing endonucleases. The inverted duplication, intergenic stretches, and intronic features are indications of dynamics and genetic flexibility of the mtDNA, not fully recognized to this extent in fungal mitochondrial genomes previously, thus giving new insights for the evolution of organelle genomes in eukaryotes.
Collapse
Affiliation(s)
- Heikki Salavirta
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ilona Oksanen
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jaana Kuuskeri
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Miia Mäkelä
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Taina Lundell
- Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
173
|
Brazier MW, Wedd AG, Collins SJ. Antioxidant and Metal Chelation-Based Therapies in the Treatment of Prion Disease. Antioxidants (Basel) 2014; 3:288-308. [PMID: 26784872 PMCID: PMC4665489 DOI: 10.3390/antiox3020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/13/2014] [Accepted: 02/28/2014] [Indexed: 12/31/2022] Open
Abstract
Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well as disturbances to transition metal homeostasis. Utilising a variety of disease model paradigms, many laboratories have demonstrated that copper can act as a cofactor in the antioxidant activity displayed by the prion protein while manganese has been implicated in the generation and stabilisation of disease-associated conformers. This and other evidence has led several groups to test dietary and chelation therapy-based regimens to manipulate brain metal concentrations in attempts to influence the progression of prion disease in experimental mice. Results have been inconsistent. This review examines published data on transition metal dyshomeostasis, free radical generation and subsequent oxidative damage in the pathogenesis of prion disease. It also comments on the efficacy of trialed therapeutics chosen to combat such deleterious changes.
Collapse
Affiliation(s)
- Marcus W Brazier
- Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Anthony G Wedd
- The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.
| | - Steven J Collins
- Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
174
|
Ramulu HG, Groussin M, Talla E, Planel R, Daubin V, Brochier-Armanet C. Ribosomal proteins: toward a next generation standard for prokaryotic systematics? Mol Phylogenet Evol 2014; 75:103-17. [PMID: 24583288 DOI: 10.1016/j.ympev.2014.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/23/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
The seminal work of Carl Woese and co-workers has contributed to promote the RNA component of the small subunit of the ribosome (SSU rRNA) as a "gold standard" of modern prokaryotic taxonomy and systematics, and an essential tool to explore microbial diversity. Yet, this marker has a limited resolving power, especially at deep phylogenetic depth and can lead to strongly biased trees. The ever-larger number of available complete genomes now calls for a novel standard dataset of robust protein markers that may complement SSU rRNA. In this respect, concatenation of ribosomal proteins (r-proteins) is being growingly used to reconstruct large-scale prokaryotic phylogenies, but their suitability for systematic and/or taxonomic purposes has not been specifically addressed. Using Proteobacteria as a case study, we show that amino acid and nucleic acid r-protein sequences contain a reliable phylogenetic signal at a wide range of taxonomic depths, which has not been totally blurred by mutational saturation or horizontal gene transfer. The use of accurate evolutionary models and reconstruction methods allows overcoming most tree reconstruction artefacts resulting from compositional biases and/or fast evolutionary rates. The inferred phylogenies allow clarifying the relationships among most proteobacterial orders and families, along with the position of several unclassified lineages, suggesting some possible revisions of the current classification. In addition, we investigate the root of the Proteobacteria by considering the time-variation of nucleic acid composition of r-protein sequences and the information carried by horizontal gene transfers, two approaches that do not require the use of an outgroup and limit tree reconstruction artefacts. Altogether, our analyses indicate that r-proteins may represent a promising standard for prokaryotic taxonomy and systematics.
Collapse
Affiliation(s)
- Hemalatha Golaconda Ramulu
- Aix-Marseille Université, CNRS, UMR 7283, Laboratoire de Chimie Bactérienne, IMM, 31 chemin Joseph Aiguier, F-13402 Marseille, France
| | - Mathieu Groussin
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Emmanuel Talla
- Aix-Marseille Université, CNRS, UMR 7283, Laboratoire de Chimie Bactérienne, IMM, 31 chemin Joseph Aiguier, F-13402 Marseille, France
| | - Remi Planel
- Aix-Marseille Université, CNRS, UMR 7283, Laboratoire de Chimie Bactérienne, IMM, 31 chemin Joseph Aiguier, F-13402 Marseille, France
| | - Vincent Daubin
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne, France.
| |
Collapse
|
175
|
Mot AI, Wedd AG, Sinclair L, Brown DR, Collins SJ, Brazier MW. Metal attenuating therapies in neurodegenerative disease. Expert Rev Neurother 2014; 11:1717-45. [DOI: 10.1586/ern.11.170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
176
|
Torriani SF, Penselin D, Knogge W, Felder M, Taudien S, Platzer M, McDonald BA, Brunner PC. Comparative analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion. Fungal Genet Biol 2014; 62:34-42. [DOI: 10.1016/j.fgb.2013.11.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 01/07/2023]
|
177
|
Uhrig RG, Kerk D, Moorhead GB. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer. PLANT PHYSIOLOGY 2013; 163:1829-43. [PMID: 24108212 PMCID: PMC3850205 DOI: 10.1104/pp.113.224378] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.
Collapse
|
178
|
Burton RS, Pereira RJ, Barreto FS. Cytonuclear Genomic Interactions and Hybrid Breakdown. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2013. [DOI: 10.1146/annurev-ecolsys-110512-135758] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| | - Ricardo J. Pereira
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| | - Felipe S. Barreto
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202; , ,
| |
Collapse
|
179
|
Nicolson GL, Ash ME. Lipid Replacement Therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1657-79. [PMID: 24269541 DOI: 10.1016/j.bbamem.2013.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 12/14/2022]
Abstract
Lipid Replacement Therapy, the use of functional oral supplements containing cell membrane phospholipids and antioxidants, has been used to replace damaged, usually oxidized, membrane glycerophospholipids that accumulate during aging and in various clinical conditions in order to restore cellular function. This approach differs from other dietary and intravenous phospholipid interventions in the composition of phospholipids and their defense against oxidation during storage, ingestion, digestion and uptake as well as the use of protective molecules that noncovalently complex with phospholipid micelles and prevent their enzymatic and bile disruption. Once the phospholipids have been taken in by transport processes, they are protected by several natural mechanisms involving lipid receptors, transport and carrier molecules and circulating cells and lipoproteins until their delivery to tissues and cells where they can again be transferred to intracellular membranes by specific and nonspecific transport systems. Once delivered to membrane sites, they naturally replace and stimulate removal of damaged membrane lipids. Various chronic clinical conditions are characterized by membrane damage, mainly oxidative but also enzymatic, resulting in loss of cellular function. This is readily apparent in mitochondrial inner membranes where oxidative damage to phospholipids like cardiolipin and other molecules results in loss of trans-membrane potential, electron transport function and generation of high-energy molecules. Recent clinical trials have shown the benefits of Lipid Replacement Therapy in restoring mitochondrial function and reducing fatigue in aged subjects and patients with a variety of clinical diagnoses that are characterized by loss of mitochondrial function and include fatigue as a major symptom. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK
| |
Collapse
|
180
|
Eight new mtDNA sequences of glass sponges reveal an extensive usage of +1 frameshifting in mitochondrial translation. Gene 2013; 535:336-44. [PMID: 24177232 DOI: 10.1016/j.gene.2013.10.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/22/2022]
Abstract
Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of +1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically. The base insertions appear to have been gained and lost repeatedly in hexactinellid mt protein genes, suggesting no functional significance for the frameshifting sites. A high degree of sequence conservation, the presence of unusual tRNAs, and a distinct pattern of codon usage suggest the "out-of-frame pairing" model of translational frameshifting. Additionally, we provide evidence that relaxed selection pressure on glass sponge mtDNA - possibly a result of their low growth rates and deep-water lifestyle - has allowed frameshift insertions to be tolerated for hundreds of millions of years. Our study provides the first example of a phylogenetically diverse and extensive usage of translational frameshifting in animal mitochondrial coding sequences.
Collapse
|
181
|
Fourie G, van der Merwe NA, Wingfield BD, Bogale M, Tudzynski B, Wingfield MJ, Steenkamp ET. Evidence for inter-specific recombination among the mitochondrial genomes of Fusarium species in the Gibberella fujikuroi complex. BMC Genomics 2013; 14:605. [PMID: 24010864 PMCID: PMC3847072 DOI: 10.1186/1471-2164-14-605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Background The availability of mitochondrial genomes has allowed for the resolution of numerous questions regarding the evolutionary history of fungi and other eukaryotes. In the Gibberella fujikuroi species complex, the exact relationships among the so-called “African”, “Asian” and “American” Clades remain largely unresolved, irrespective of the markers employed. In this study, we considered the feasibility of using mitochondrial genes to infer the phylogenetic relationships among Fusarium species in this complex. The mitochondrial genomes of representatives of the three Clades (Fusarium circinatum, F. verticillioides and F. fujikuroi) were characterized and we determined whether or not the mitochondrial genomes of these fungi have value in resolving the higher level evolutionary relationships in the complex. Results Overall, the mitochondrial genomes of the three species displayed a high degree of synteny, with all the genes (protein coding genes, unique ORFs, ribosomal RNA and tRNA genes) in identical order and orientation, as well as introns that share similar positions within genes. The intergenic regions and introns generally contributed significantly to the size differences and diversity observed among these genomes. Phylogenetic analysis of the concatenated protein-coding dataset separated members of the Gibberella fujikuroi complex from other Fusarium species and suggested that F. fujikuroi (“Asian” Clade) is basal in the complex. However, individual mitochondrial gene trees were largely incongruent with one another and with the concatenated gene tree, because six distinct phylogenetic trees were recovered from the various single gene datasets. Conclusion The mitochondrial genomes of Fusarium species in the Gibberella fujikuroi complex are remarkably similar to those of the previously characterized Fusarium species and Sordariomycetes. Despite apparently representing a single replicative unit, all of the genes encoded on the mitochondrial genomes of these fungi do not share the same evolutionary history. This incongruence could be due to biased selection on some genes or recombination among mitochondrial genomes. The results thus suggest that the use of individual mitochondrial genes for phylogenetic inference could mask the true relationships between species in this complex.
Collapse
Affiliation(s)
- Gerda Fourie
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | | | | | | | | | | | | |
Collapse
|
182
|
Juránek I, Nikitovic D, Kouretas D, Hayes AW, Tsatsakis AM. Biological importance of reactive oxygen species in relation to difficulties of treating pathologies involving oxidative stress by exogenous antioxidants. Food Chem Toxicol 2013; 61:240-7. [PMID: 24025685 DOI: 10.1016/j.fct.2013.08.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023]
Abstract
Findings about involvement of reactive oxygen species (ROS) not only in defense processes, but also in a number of pathologies, stimulated discussion about their role in etiopathogenesis of various diseases. Yet questions regarding the role of ROS in tissue injury, whether ROS may serve as a common cause of different disorders or whether their uncontrolled production is just a manifestation of the processes involved, remain unexplained. Dogmatically, increased ROS formation is considered to be responsible for development of the so-called free-radical diseases. The present review discusses importance of ROS in various biological processes, including origin of life, evolution, genome plasticity, maintaining homeostasis and organism protection. This may be a reason why no significant benefit was found when exogenous antioxidants were used to treat free-radical diseases, even though their causality was primarily attributed to ROS. Here, we postulate that ROS unlikely play a causal role in tissue damage, but may readily be involved in signaling processes and as such in mediating tissue healing rather than injuring. This concept is thus in a contradiction to traditional understanding of ROS as deleterious agents. Nonetheless, under conditions of failing autoregulation, ROS may attack integral cellular components, cause cell death and deteriorate the evolving injury.
Collapse
Affiliation(s)
- Ivo Juránek
- Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
183
|
Whole genome mapping and re-organization of the nuclear and mitochondrial genomes of Babesia microti isolates. PLoS One 2013; 8:e72657. [PMID: 24023759 PMCID: PMC3762879 DOI: 10.1371/journal.pone.0072657] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Babesia microti is the primary causative agent of human babesiosis, an emerging pathogen that causes a malaria-like illness with possible fatal outcome in immunocompromised patients. The genome sequence of the B. microti R1 strain was reported in 2012 and revealed a distinct evolutionary path for this pathogen relative to that of other apicomplexa. Lacking from the first genome assembly and initial molecular analyses was information about the terminal ends of each chromosome, and both the exact number of chromosomes in the nuclear genome and the organization of the mitochondrial genome remained ambiguous. We have now performed various molecular analyses to characterize the nuclear and mitochondrial genomes of the B. microti R1 and Gray strains and generated high-resolution Whole Genome maps. These analyses show that the genome of B. microti consists of four nuclear chromosomes and a linear mitochondrial genome present in four different structural types. Furthermore, Whole Genome mapping allowed resolution of the chromosomal ends, identification of areas of misassembly in the R1 genome, and genomic differences between the R1 and Gray strains, which occur primarily in the telomeric regions. These studies set the stage for a better understanding of the evolution and diversity of this important human pathogen.
Collapse
|
184
|
Mitochondrial DNA instability in cells lacking aconitase correlates with iron citrate toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:493536. [PMID: 24066190 PMCID: PMC3770056 DOI: 10.1155/2013/493536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/12/2013] [Accepted: 07/24/2013] [Indexed: 02/06/2023]
Abstract
Aconitase, the second enzyme of the tricarboxylic acid cycle encoded by ACO1 in the budding yeast Saccharomyces cerevisiae, catalyzes the conversion of citrate to isocitrate. aco1Δ results in mitochondrial DNA (mtDNA) instability. It has been proposed that Aco1 binds to mtDNA and mediates its maintenance. Here we propose an alternative mechanism to account for mtDNA loss in aco1Δ mutant cells. We found that aco1Δ activated the RTG pathway, resulting in increased expression of genes encoding citrate synthase. By deleting RTG1, RTG3, or genes encoding citrate synthase, mtDNA instability was prevented in aco1Δ mutant cells. Increased activity of citrate synthase leads to iron accumulation in the mitochondria. Mutations in MRS3 and MRS4, encoding two mitochondrial iron transporters, also prevented mtDNA loss due to aco1Δ. Mitochondria are the main source of superoxide radicals, which are converted to H2O2 through two superoxide dismutases, Sod1 and Sod2. H2O2 in turn reacts with Fe2+ to generate very active hydroxyl radicals. We found that loss of Sod1, but not Sod2, prevents mtDNA loss in aco1Δ mutant cells. We propose that mtDNA loss in aco1Δ mutant cells is caused by the activation of the RTG pathway and subsequent iron citrate accumulation and toxicity.
Collapse
|
185
|
Chen X, Shen YY, Zhang YP. [Review of mtDNA in molecular evolution studies]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:566-73. [PMID: 23266975 DOI: 10.3724/sp.j.1141.2012.06566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondria are old organelles found in most eukaryotic cells. Due to its rapid mutation ratio, mitochondrial DNA (mtDNA) has been widely used as a DNA marker in molecular studies and has long been suggested to undergo neutral evolution or purifying selection. Mitochondria produces 95% of the adenosine triphosphate (ATP) needed for locomotion, and heat for thermoregulation. Recent studies had found that mitochondria play critical roles in energy metabolism, and proved that functional constraints acting on mitochondria, due to energy metabolism and/or thermoregulation, influence the evolution of mtDNA. This review summarizes mitochondrial genome composition, evolution, and its applications in molecular evolution studies (reconstruction of species phylogenesis, the relationship between biological energy metabolism and mtDNA evolution, and the mtDNA codon reassignment influences the adaptation in different creatures).
Collapse
Affiliation(s)
- Xing Chen
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| | | | | |
Collapse
|
186
|
Krimitzas A, Pyrri I, Kouvelis VN, Kapsanaki-Gotsi E, Typas MA. A phylogenetic analysis of Greek isolates of Aspergillus species based on morphology and nuclear and mitochondrial gene sequences. BIOMED RESEARCH INTERNATIONAL 2013; 2013:260395. [PMID: 23762830 PMCID: PMC3665174 DOI: 10.1155/2013/260395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/09/2013] [Indexed: 12/13/2022]
Abstract
Aspergillus species originating from Greece were examined by morphological and molecular criteria to explore the diversity of this genus. The phylogenetic relationships of these species were determined using sequences from the ITS and IGS region of the nuclear rRNA gene complex, two nuclear genes ( β -tubulin (benA) and RNA polymerase II second largest subunit (rpb2)) and two mitochondrial genes (small rRNA subunit (rns) and cytochrome oxidase subunit I (cox1)) and, where available, related sequences from databases. The morphological characters of the anamorphs and teleomorphs, and the single gene phylogenetic trees, differentiated and placed the species examined in the well-supported sections of Aenei, Aspergillus, Bispori, Candidi, Circumdati, Clavati, Cremei, Flavi, Flavipedes, Fumigati, Nidulantes, Nigri, Restricti, Terrei, Usti, and Zonati, with few uncertainties. The combined use of the three commonly employed nuclear genes (benA, rpb2, and ITS), the IGS region, and two less often used mitochondrial gene sequences (rns and cox1) as a single unit resolved several taxonomic ambiguities. A phylogenetic tree was inferred using Neighbour-Joining, Maximum Parsimony, and Bayesian methods. The strains examined formed seven well-supported clades within the genus Aspergillus. Altogether, the concatenated nuclear and mitochondrial sequences offer additional tools for an improved understanding of phylogenetic relationships within this genus.
Collapse
Affiliation(s)
- Antonios Krimitzas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| | - Ioanna Pyrri
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15784 Athens, Greece
| | - Vassili N. Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| | - Evangelia Kapsanaki-Gotsi
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15784 Athens, Greece
| | - Milton A. Typas
- Department of Genetics and Biotechnology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistemiopolis, 15701 Athens, Greece
| |
Collapse
|
187
|
Horan MP, Gemmell NJ, Wolff JN. From evolutionary bystander to master manipulator: the emerging roles for the mitochondrial genome as a modulator of nuclear gene expression. Eur J Hum Genet 2013; 21:1335-7. [PMID: 23612574 DOI: 10.1038/ejhg.2013.75] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Martin P Horan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
188
|
Burak E, Yogev O, Sheffer S, Schueler-Furman O, Pines O. Evolving dual targeting of a prokaryotic protein in yeast. Mol Biol Evol 2013; 30:1563-73. [PMID: 23462316 DOI: 10.1093/molbev/mst039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dual targeting is an important and abundant phenomenon. Indeed, we estimate that more than a third of the yeast mitochondrial proteome is dual localized. The enzyme fumarase is a highly conserved protein in all organisms with respect to its sequence, structure, and enzymatic activity. In eukaryotes, it is dual localized to the cytosol and mitochondria. In Saccharomyces cerevisiae, the dual localization of fumarase is achieved by the reverse translocation mechanism; all fumarase molecules harbor a mitochondrial targeting sequence (MTS), are targeted to mitochondria, begin their translocation, and are processed by mitochondrial processing peptidase in the matrix. A subset of these processed fumarase molecules in transit is then fully imported into the matrix, whereas the majority moves back into the cytosol by reverse translocation. The proposed driving force for fumarase distribution is protein folding during import. Here, we asked how reverse translocation could have evolved on a prokaryotic protein that had already acquired expression from the nuclear genome and a targeting sequence. To address this question, we used, as a model, the Escherichia coli FumC Class II fumarase, which is homologous to eukaryotic fumarases (∼58% identity and ∼74% similarity to the yeast Fum1). Starting with an exclusively mitochondrial targeted FumC (attached to a strong MTS), we show that two randomly acquired mutations within the prokaryotic FumC sequence are sufficient to cause substantial dual targeting by reverse translocation. In fact, the unmutated MTS-FumC also has some ability to be dual targeted but only at low temperatures. Our results suggest that in this case, evolution of dual targeting by reverse translocation is based on naturally occurring and fortuitously conserved features of fumarase folding.
Collapse
Affiliation(s)
- Efrat Burak
- Department of Microbiology Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
189
|
Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS One 2013; 8:e56502. [PMID: 23431381 PMCID: PMC3576410 DOI: 10.1371/journal.pone.0056502] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.
Collapse
Affiliation(s)
- Shengxin Chang
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yankun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiangjie Lu
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jijie Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pu Chu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongzhan Guan
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
190
|
Functional relevance of dynamic properties of Dimeric NADP-dependent Isocitrate Dehydrogenases. BMC Bioinformatics 2012; 13 Suppl 17:S2. [PMID: 23281650 PMCID: PMC3521221 DOI: 10.1186/1471-2105-13-s17-s2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Isocitrate Dehydrogenases (IDHs) are important enzymes present in all living cells. Three subfamilies of functionally dimeric IDHs (subfamilies I, II, III) are known. Subfamily I are well-studied bacterial IDHs, like that of Escherischia coli. Subfamily II has predominantly eukaryotic members, but it also has several bacterial members, many being pathogens or endosymbionts. subfamily III IDHs are NAD-dependent. The eukaryotic-like subfamily II IDH from pathogenic bacteria such as Mycobacterium tuberculosis IDH1 are expected to have regulation similar to that of bacteria which use the glyoxylate bypass to survive starvation. Yet they are structurally different from IDHs of subfamily I, such as the E. coli IDH. Results We have used phylogeny, structural comparisons and molecular dynamics simulations to highlight the similarity and differences between NADP-dependent dimeric IDHs with an emphasis on regulation. Our phylogenetic study indicates that an additional subfamily (IV) may also be present. Variation in sequence and structure in an aligned region may indicate functional importance concerning regulation in bacterial subfamily I IDHs. Correlation in movement of prominent loops seen from molecular dynamics may explain the adaptability and diversity of the predominantly eukaryotic subfamily II IDHs. Conclusion This study discusses possible regulatory mechanisms operating in various IDHs and implications for regulation of eukaryotic-like bacterial IDHs such as that of M. tuberculosis, which may provide avenues for intervention in disease.
Collapse
|
191
|
Lavrov DV, Pett W, Voigt O, Wörheide G, Forget L, Lang BF, Kayal E. Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. Mol Biol Evol 2012; 30:865-80. [PMID: 23223758 DOI: 10.1093/molbev/mss274] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sponges (phylum Porifera) are a large and ancient group of morphologically simple but ecologically important aquatic animals. Although their body plan and lifestyle are relatively uniform, sponges show extensive molecular and genetic diversity. In particular, mitochondrial genomes from three of the four previously studied classes of Porifera (Demospongiae, Hexactinellida, and Homoscleromorpha) have distinct gene contents, genome organizations, and evolutionary rates. Here, we report the mitochondrial genome of Clathrina clathrus (Calcinea, Clathrinidae), a representative of the fourth poriferan class, the Calcarea, which proves to be the most unusual. Clathrina clathrus mitochondrial DNA (mtDNA) consists of six linear chromosomes 7.6-9.4 kb in size and encodes at least 37 genes: 13 protein codings, 2 ribosomal RNAs (rRNAs), and 24 transfer RNAs (tRNAs). Protein genes include atp9, which has now been found in all major sponge lineages, but no atp8. Our analyses further reveal the presence of a novel genetic code that involves unique reassignments of the UAG codons from termination to tyrosine and of the CGN codons from arginine to glycine. Clathrina clathrus mitochondrial rRNAs are encoded in three (srRNA) and ≥6 (lrRNA) fragments distributed out of order and on several chromosomes. The encoded tRNAs contain multiple mismatches in the aminoacyl acceptor stems that are repaired posttranscriptionally by 3'-end RNA editing. Although our analysis does not resolve the phylogenetic position of calcareous sponges, likely due to their high rates of mitochondrial sequence evolution, it confirms mtDNA as a promising marker for population studies in this group. The combination of unusual mitochondrial features in C. clathrus redefines the extremes of mtDNA evolution in animals and further argues against the idea of a "typical animal mtDNA."
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Iowa, USA.
| | | | | | | | | | | | | |
Collapse
|
192
|
Boschetti C, Carr A, Crisp A, Eyres I, Wang-Koh Y, Lubzens E, Barraclough TG, Micklem G, Tunnacliffe A. Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet 2012; 8:e1003035. [PMID: 23166508 PMCID: PMC3499245 DOI: 10.1371/journal.pgen.1003035] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Bdelloid rotifers are microinvertebrates with unique characteristics: they have survived tens of millions of years without sexual reproduction; they withstand extreme desiccation by undergoing anhydrobiosis; and they tolerate very high levels of ionizing radiation. Recent evidence suggests that subtelomeric regions of the bdelloid genome contain sequences originating from other organisms by horizontal gene transfer (HGT), of which some are known to be transcribed. However, the extent to which foreign gene expression plays a role in bdelloid physiology is unknown. We address this in the first large scale analysis of the transcriptome of the bdelloid Adineta ricciae: cDNA libraries from hydrated and desiccated bdelloids were subjected to massively parallel sequencing and assembled transcripts compared against the UniProtKB database by blastx to identify their putative products. Of ~29,000 matched transcripts, ~10% were inferred from blastx matches to be horizontally acquired, mainly from eubacteria but also from fungi, protists, and algae. After allowing for possible sources of error, the rate of HGT is at least 8%-9%, a level significantly higher than other invertebrates. We verified their foreign nature by phylogenetic analysis and by demonstrating linkage of foreign genes with metazoan genes in the bdelloid genome. Approximately 80% of horizontally acquired genes expressed in bdelloids code for enzymes, and these represent 39% of enzymes in identified pathways. Many enzymes encoded by foreign genes enhance biochemistry in bdelloids compared to other metazoans, for example, by potentiating toxin degradation or generation of antioxidants and key metabolites. They also supplement, and occasionally potentially replace, existing metazoan functions. Bdelloid rotifers therefore express horizontally acquired genes on a scale unprecedented in animals, and foreign genes make a profound contribution to their metabolism. This represents a potential mechanism for ancient asexuals to adapt rapidly to changing environments and thereby persist over long evolutionary time periods in the absence of sex.
Collapse
Affiliation(s)
- Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Adrian Carr
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, Cambridge, United Kingdom
| | - Alastair Crisp
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Isobel Eyres
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yuan Wang-Koh
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Esther Lubzens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- National Institute of Oceanography, Haifa, Israel
| | | | - Gos Micklem
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, Cambridge, United Kingdom
- * E-mail: (G Micklem); (A Tunnacliffe)
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (G Micklem); (A Tunnacliffe)
| |
Collapse
|
193
|
Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 2012; 49:115-78. [PMID: 23085100 DOI: 10.1016/j.ejop.2012.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.
Collapse
|
194
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
195
|
Smith DR. Updating our view of organelle genome nucleotide landscape. Front Genet 2012; 3:175. [PMID: 22973299 PMCID: PMC3438683 DOI: 10.3389/fgene.2012.00175] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/20/2012] [Indexed: 01/25/2023] Open
Abstract
Organelle genomes show remarkable variation in architecture and coding content, yet their nucleotide composition is relatively unvarying across the eukaryotic domain, with most having a high adenine and thymine (AT) content. Recent studies, however, have uncovered guanine and cytosine (GC)-rich mitochondrial and plastid genomes. These sequences come from a small but eclectic list of species, including certain green plants and animals. Here, I review GC-rich organelle DNAs and the insights they have provided into the evolution of nucleotide landscape. I emphasize that GC-biased mitochondrial and plastid DNAs are more widespread than once thought, sometimes occurring together in the same species, and suggest that the forces biasing their nucleotide content can differ both among and within lineages, and may be associated with specific genome architectural features and life history traits.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Botany, Canadian Institute for Advanced Research, University of British Columbia Vancouver, British Columbia, Canada
| |
Collapse
|
196
|
Nyfeler B, Hoepfner D, Palestrant D, Kirby CA, Whitehead L, Yu R, Deng G, Caughlan RE, Woods AL, Jones AK, Barnes SW, Walker JR, Gaulis S, Hauy E, Brachmann SM, Krastel P, Studer C, Riedl R, Estoppey D, Aust T, Movva NR, Wang Z, Salcius M, Michaud GA, McAllister G, Murphy LO, Tallarico JA, Wilson CJ, Dean CR. Identification of elongation factor G as the conserved cellular target of argyrin B. PLoS One 2012; 7:e42657. [PMID: 22970117 PMCID: PMC3438169 DOI: 10.1371/journal.pone.0042657] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/10/2012] [Indexed: 11/19/2022] Open
Abstract
Argyrins, produced by myxobacteria and actinomycetes, are cyclic octapeptides with antibacterial and antitumor activity. Here, we identify elongation factor G (EF-G) as the cellular target of argyrin B in bacteria, via resistant mutant selection and whole genome sequencing, biophysical binding studies and crystallography. Argyrin B binds a novel allosteric pocket in EF-G, distinct from the known EF-G inhibitor antibiotic fusidic acid, revealing a new mode of protein synthesis inhibition. In eukaryotic cells, argyrin B was found to target mitochondrial elongation factor G1 (EF-G1), the closest homologue of bacterial EF-G. By blocking mitochondrial translation, argyrin B depletes electron transport components and inhibits the growth of yeast and tumor cells. Further supporting direct inhibition of EF-G1, expression of an argyrin B-binding deficient EF-G1 L693Q variant partially rescued argyrin B-sensitivity in tumor cells. In summary, we show that argyrin B is an antibacterial and cytotoxic agent that inhibits the evolutionarily conserved target EF-G, blocking protein synthesis in bacteria and mitochondrial translation in yeast and mammalian cells.
Collapse
Affiliation(s)
- Beat Nyfeler
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Dominic Hoepfner
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Deborah Palestrant
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Christina A. Kirby
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Lewis Whitehead
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Cambridge, Massachussetts, United States of America
| | - Robert Yu
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Gejing Deng
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Ruth E. Caughlan
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Angela L. Woods
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - Adriana K. Jones
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
| | - S. Whitney Barnes
- Novartis Institute for Functional Genomics, Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - John R. Walker
- Novartis Institute for Functional Genomics, Novartis Institutes for Biomedical Research, San Diego, California, United States of America
| | - Swann Gaulis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ervan Hauy
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saskia M. Brachmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Philipp Krastel
- Center for Proteomic Chemistry, Natural Products Unit, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christian Studer
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ralph Riedl
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Estoppey
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Aust
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - N. Rao Movva
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zuncai Wang
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Michael Salcius
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Gregory A. Michaud
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Gregory McAllister
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Leon O. Murphy
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - John A. Tallarico
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Christopher J. Wilson
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachussetts, United States of America
| | - Charles R. Dean
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
197
|
Abstract
Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis--the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell--has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it.
Collapse
|
198
|
Bietenhader M, Martos A, Tetaud E, Aiyar RS, Sellem CH, Kucharczyk R, Clauder-Münster S, Giraud MF, Godard F, Salin B, Sagot I, Gagneur J, Déquard-Chablat M, Contamine V, Denmat SHL, Sainsard-Chanet A, Steinmetz LM, di Rago JP. Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genet 2012; 8:e1002876. [PMID: 22916027 PMCID: PMC3420929 DOI: 10.1371/journal.pgen.1002876] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/19/2012] [Indexed: 01/21/2023] Open
Abstract
Only a few genes remain in the mitochondrial genome retained by every eukaryotic organism that carry out essential functions and are implicated in severe diseases. Experimentally relocating these few genes to the nucleus therefore has both therapeutic and evolutionary implications. Numerous unproductive attempts have been made to do so, with a total of only 5 successes across all organisms. We have taken a novel approach to relocating mitochondrial genes that utilizes naturally nuclear versions from other organisms. We demonstrate this approach on subunit 9/c of ATP synthase, successfully relocating this gene for the first time in any organism by expressing the ATP9 genes from Podospora anserina in Saccharomyces cerevisiae. This study substantiates the role of protein structure in mitochondrial gene transfer: expression of chimeric constructs reveals that the P. anserina proteins can be correctly imported into mitochondria due to reduced hydrophobicity of the first transmembrane segment. Nuclear expression of ATP9, while permitting almost fully functional oxidative phosphorylation, perturbs many cellular properties, including cellular morphology, and activates the heat shock response. Altogether, our study establishes a novel strategy for allotopic expression of mitochondrial genes, demonstrates the complex adaptations required to relocate ATP9, and indicates a reason that this gene was only transferred to the nucleus during the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Maïlis Bietenhader
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Alexandre Martos
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Emmanuel Tetaud
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Raeka S. Aiyar
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carole H. Sellem
- Université Paris-Sud, Centre de Génétique Moléculaire, UPR3404, CNRS, Gif-sur-Yvette, France
| | - Roza Kucharczyk
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | | | - Marie-France Giraud
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - François Godard
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Bénédicte Salin
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Isabelle Sagot
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
| | - Julien Gagneur
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michelle Déquard-Chablat
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Véronique Contamine
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Sylvie Hermann-Le Denmat
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Ecole Normale Supérieure, Paris, France
| | - Annie Sainsard-Chanet
- Université Paris-Sud, Centre de Génétique Moléculaire, UPR3404, CNRS, Gif-sur-Yvette, France
| | - Lars M. Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- * E-mail: (J-PdR); (LMS)
| | - Jean-Paul di Rago
- Université Bordeaux, IBGC, UMR5095 CNRS, Bordeaux, France
- CNRS, IBGC, UMR5095 CNRS, Bordeaux, France
- * E-mail: (J-PdR); (LMS)
| |
Collapse
|
199
|
Schimmer AD, Skrtić M. Therapeutic potential of mitochondrial translation inhibition for treatment of acute myeloid leukemia. Expert Rev Hematol 2012; 5:117-9. [PMID: 22475277 DOI: 10.1586/ehm.12.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
200
|
For quite a few chromosomes more: the origin of eukaryotes…. J Mol Biol 2012; 423:135-42. [PMID: 22796299 DOI: 10.1016/j.jmb.2012.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/01/2012] [Accepted: 07/03/2012] [Indexed: 11/21/2022]
Abstract
The evolution of eukaryotes addresses an enigmatic question: what are the evolutionary advantages of having a nucleus? The nucleus is traditionally thought to act as protection for DNA, but eukaryotes are more fragile than bacteria. The compartmentalization of the eukaryotic cell might stem from invaginations of the plasma membrane, and I argue that this autogenous origin of the nucleus constituted a selective innovation caused by cellular constraints due to a large genome. The protoeukaryotic nucleus appears to be a physical and chemical solution to the problem of large amounts of DNA in the form of many linear chromosomes. The selective advantages of having a nuclear envelope are to house a large genome in a stabilized structure and to decouple gene translation from transcription. Supporting the karyogenic model, this new hypothesis opens an original perspective to help in understanding the very ancient origin of eukaryotes.
Collapse
|