151
|
Khamdang S, Takeda M, Shimoda M, Noshiro R, Narikawa S, Huang XL, Enomoto A, Piyachaturawat P, Endou H. Interactions of Human- and Rat-Organic Anion Transporters With Pravastatin and Cimetidine. J Pharmacol Sci 2004; 94:197-202. [PMID: 14978359 DOI: 10.1254/jphs.94.197] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We have elucidated the interactions of human and rat organic anion transporters (hOATs and rOATs) with pravastatin and cimetidine. Pravastatin inhibited hOAT1/rOAT1, hOAT2/rOAT2, hOAT3/rOAT3, and hOAT4. The mode of inhibition was noncompetitive for hOAT1 and hOAT2, whereas it was competitive for hOAT3 and hOAT4. Cimetidine also inhibited hOAT1/rOAT1, hOAT3/rOAT3, and hOAT4. The mode of inhibition was a combination of competitive and noncompetitive manners for hOAT1, whereas it was competitive for hOAT3. The effects of OAT inhibitors on OAT1, OAT2, and OAT3 exhibited some but not so remarkable interspecies differences between humans and rats. In conclusion, we have characterized pravastatin and cimetidine as OAT inhibitors.
Collapse
Affiliation(s)
- Suparat Khamdang
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Sykes D, Sweet DH, Lowes S, Nigam SK, Pritchard JB, Miller DS. Organic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice. Am J Physiol Renal Physiol 2003; 286:F972-8. [PMID: 15075193 DOI: 10.1152/ajprenal.00356.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The choroid plexus actively transports endogenous, xenobiotic, and therapeutic compounds from cerebrospinal fluid to blood, thereby limiting their exposure to the central nervous system (CNS). Establishing the mechanisms responsible for this transport is critical to our understanding of basic choroid plexus physiology and will likely impact drug targeting to the CNS. We recently generated an organic anion transporter 3- (Oat3)-null mouse, which exhibited loss of PAH, estrone sulfate, and taurocholate transport in kidney and of fluorescein (FL) transport in choroid plexus. Here, we measured the uptake of four Oat3 substrates by choroid plexus from wild-type and Oat3-null mice to establish 1) the contribution of Oat3 to the apical uptake of each substrate and 2) the Na dependence of transport by Oat3 in the intact tissue. Mediated transport of PAH and FL was essentially abolished in tissue from Oat3-null mice. In contrast, only a 33% reduction in estrone sulfate uptake was observed in tissue from Oat3-null mice and, surprisingly, no reduction in taurocholate uptake could be detected. For PAH, FL, and estrone sulfate, all Oat3-mediated transport was Na dependent. However, estrone sulfate and taurocholate also exhibited additional mediated and Na-dependent components of uptake that were not attributed to Oat3, demonstrating the complexity of organic anion transport in this tissue and the need for further examination of expressed transporters and their energetics.
Collapse
Affiliation(s)
- Destiny Sykes
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
153
|
Abstract
The antifolates were the first class of antimetabolites to enter the clinics more than 50 years ago. Over the following decades, a full understanding of their mechanisms of action and chemotherapeutic potential evolved along with the mechanisms by which cells develop resistance to these drugs. These principals served as a basis for the subsequent exploration and understanding of the mechanisms of resistance to a variety of diverse antineoplastics with different cellular targets. This section describes the bases for intrinsic and acquired antifolate resistance within the context of the current understanding of the mechanisms of actions and cytotoxic determinants of these agents. This encompasses impaired drug transport into cells, augmented drug export, impaired activation of antifolates through polyglutamylation, augmented hydrolysis of antifolate polyglutamates, increased expression and mutation of target enzymes, and the augmentation of cellular tetrahydrofolate-cofactor pools in cells. This chapter also describes how these insights are being utilized to develop gene therapy approaches to protect normal bone marrow progenitor cells as a strategy to improve the efficacy of bone marrow transplantation. Finally, clinical studies are reviewed that correlate the cellular pharmacology of methotrexate with the clinical outcome in children with neoplastic diseases treated with this antifolate.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
154
|
Rollot F, Nazal EM, Chauvelot-Moachon L, Kélaïdi C, Daniel N, Saba M, Abad S, Blanche P. Tenofovir-related Fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-didanosine. Clin Infect Dis 2003; 37:e174-6. [PMID: 14689363 DOI: 10.1086/379829] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Accepted: 08/21/2003] [Indexed: 11/04/2022] Open
Abstract
Tenofovir-related tubular damage, like all other recently reported cases, occurred in patients receiving the protease inhibitor (PI) ritonavir, often with lopinavir. Increased plasma concentrations of didanosine were also observed after the addition of tenofovir. It was suspected that tenofovir with PIs interacted with renal organic anion transporters, leading to nephrotoxic tubular concentrations of tenofovir and systemic accumulation of didanosine. Until there is a better understanding of these interactions, close monitoring is recommended for patients receiving tenofovir, PIs, and didanosine.
Collapse
Affiliation(s)
- Florence Rollot
- Internal Medicine, Cochin and Saint Vincent de Paul Hospital, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Masereeuw R, Notenboom S, Smeets PHE, Wouterse AC, Russel FGM. Impaired Renal Secretion of Substrates for the Multidrug Resistance Protein 2 in Mutant Transport–Deficient (TR−) Rats. J Am Soc Nephrol 2003; 14:2741-9. [PMID: 14569083 DOI: 10.1097/01.asn.0000094083.82845.fa] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT. Previous studies with mutant transport–deficient rats (TR−), in which the multidrug resistance protein 2 (Mrp2) is lacking, have emphasized the importance of this transport protein in the biliary excretion of a wide variety of glutathione conjugates, glucuronides, and other organic anions. Mrp2 is also present in the luminal membrane of proximal tubule cells of the kidney, but little information is available on its role in the renal excretion of xenobiotics. The authors compared renal transport of the fluorescent Mrp2 substrates calcein, fluo-3, and lucifer yellow (LY) between perfused kidneys isolated from Wistar Hannover (WH) and TR− rats. Isolated rat kidneys were perfused with 100 nM of the nonfluorescent calcein-AM or 500 nM fluo3-AM, which enter the tubular cells by diffusion and are hydrolyzed intracellularly into the fluorescent anion. The urinary excretion rates of calcein and fluo-3 were 3 to 4 times lower in perfused kidneys from TR− rats compared with WH rats. In contrast, the renal excretion of LY (10 μM, free anion) was somewhat delayed but appeared unimpaired in TR− rats. Membrane vesicles from Sf9 cells expressing human MRP2 or human MRP4 indicated that MRP2 exhibits a preferential affinity for calcein and fluo-3, whereas LY is a better substrate for MRP4. We conclude that the renal clearance of the Mrp2 substrates calcein and fluo-3 is significantly reduced in TR− rat; for LY, the absence of the transporter may be compensated for by (an)other organic anion transporter(s). E-mail: R.Masereeuw@ncmls.kun.nl
Collapse
Affiliation(s)
- Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, University Medical Center Nijmegen, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
156
|
Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 2003; 55:425-61. [PMID: 12869659 DOI: 10.1124/pr.55.3.1] [Citation(s) in RCA: 344] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Drug transporters are expressed in many tissues such as the intestine, liver, kidney, and brain, and play key roles in drug absorption, distribution, and excretion. The information on the functional characteristics of drug transporters provides important information to allow improvements in drug delivery or drug design by targeting specific transporter proteins. In this article we summarize the significant role played by drug transporters in drug disposition, focusing particularly on their potential use during the drug discovery and development process. The use of transporter function offers the possibility of delivering a drug to the target organ, avoiding distribution to other organs (thereby reducing the chance of toxic side effects), controlling the elimination process, and/or improving oral bioavailability. It is useful to select a lead compound that may or may not interact with transporters, depending on whether such an interaction is desirable. The expression system of transporters is an efficient tool for screening the activity of individual transport processes. The changes in pharmacokinetics due to genetic polymorphisms and drug-drug interactions involving transporters can often have a direct and adverse effect on the therapeutic safety and efficacy of many important drugs. To obtain detailed information about these interindividual differences, the contribution made by transporters to drug absorption, distribution, and excretion needs to be taken into account throughout the drug discovery and development process.
Collapse
Affiliation(s)
- Naomi Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
157
|
Eraly SA, Blantz RC, Bhatnagar V, Nigam SK. Novel aspects of renal organic anion transporters. Curr Opin Nephrol Hypertens 2003; 12:551-8. [PMID: 12920404 DOI: 10.1097/00041552-200309000-00011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Organic anion transporters, transmembrane proteins present in the renal proximal tubule, are a critical component of the human drug excretion machinery. Recent advances have clarified the function of these transporters, with broad clinical implications for pharmacogenetics, drug interactions and adverse reactions. Here, we discuss these issues in the context of the basic biology of the transporters. RECENT FINDINGS Understanding of organic anion transporter function has proceeded on several fronts. The continued cataloging of organic anion transporter substrates has revealed that the transporters' activity likely underlies many common drug interactions and nephrotoxic adverse reactions. Meanwhile, immunohistochemical and physiological studies suggest their potential involvement in the apical as well as basolateral steps of renal organic anion secretion. In addition, studies of the genomic organization of these transporters reveal that they are found in pairs of similar and similarly expressed genes, suggesting that pair members are coordinately regulated. Finally, we hypothesize here that organic anion transporters might impact renal susceptibility to ischemia and toxic injury, because their uptake of substrates can result in the efflux of Krebs cycle intermediates, an important nutrient source for the proximal tubule. SUMMARY The study of these transporters will likely have a significant impact on renal pharmacology and pharmacogenetics. In this regard, the generation of organic anion transporter gene knockout mice could provide invaluable models for defects in renal drug-handling. Ultimately, detailed knowledge of organic anion transporter function will assist in the choice of optimum pharmacological therapies.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine1, University of California, San Diego, 9500 Gilman Drive, La Jolla, Californian 92093-0693, USA.
| | | | | | | |
Collapse
|
158
|
Itagaki S, Sugawara M, Kobayashi M, Nishimura S, Fujimoto M, Miyazaki K, Iseki K. Major role of organic anion transporters in the uptake of phenolsulfonphthalein in the kidney. Eur J Pharmacol 2003; 475:85-92. [PMID: 12954363 DOI: 10.1016/s0014-2999(03)02111-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenolsulfonphthalein is used for testing renal function. However, its excretion mechanism has not been elucidated. The purpose of this study was therefore to elucidate the transporter-mediated excretion system for phenolsulfonphthalein. p-Aminohippuric acid, a substrate of rat organic anion transporter1 (rOat1), and cimetidine, a substrate of rOat3, reduced the urinary excretion of phenolsulfonphthalein. The uptake of phenolsulfonphthalein by kidney slices was found to consist of two components. The IC50 values of rOat1 substrates were higher than those of rOat3 substrates. In the presence of cimetidine, the Eadie-Hofstee plot gave a single straight line. The profile of the phenolsulfonphthalein uptake component in the presence of cimetidine was similar to that of the low-affinity component in the absence of cimetidine. We conclude that rOat1 and rOat3 are involved in the renal uptake of phenolsulfonphthalein and that phenolsulfonphthalein is a high-affinity substrate for rOat3 but is a relatively low-affinity substrate for rOat1.
Collapse
Affiliation(s)
- Shirou Itagaki
- Department of Clinical Pharmaceutics and Therapeutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
The chapter reviews the current understanding of the transport mechanisms for folates in mammalian cells--their molecular identities and organization, tissue expression, regulation, structures, and their kinetic and thermodynamic properties. This encompasses a variety of diverse processes. Best characterized is the reduced folate carrier, a member of the SLC19 family of facilitative carriers. But other facilitative organic anion carriers (SLC21), largely expressed in epithelial tissues, transport folates as well. In addition to these bi-directional carrier systems are the membrane-localized folate receptors alpha and beta, that mediate folate uptake unidirectionally into cells via an endocytotic process. There are also several transporters, typified by the family of multidrug resistance-associated proteins, that unidirectionally export folates from cells. There are transport activities for folates, that function optimally at low pH, related in part to the reduced folate carrier, with at least one activity that is independent of this carrier. The reduced folate carrier-associated low-pH route mediates intestinal folate transport. This review considers how these different transport processes contribute to the generation of transmembrane folate gradients and to vectorial flows of folates across epithelia. The role of folate transporters in mouse development, as assessed by homologous deletion of folate receptors and the reduced folate carrier, is described. Much of the focus is on antifolate cancer chemotherapeutic agents that are often model surrogates for natural folates in transport studies. In particular, antifolate transport mediated by the reduced folate carrier is a major determinant of the activity of, and resistance to, these agents. Finally, many of the key in vitro findings on the properties of antifolate transporters are now beginning to be extended to patient specimens, thus setting the stage for understanding response to these drugs in the clinical setting at the molecular level.
Collapse
Affiliation(s)
- Larry H Matherly
- Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
160
|
Hasegawa M, Kusuhara H, Endou H, Sugiyama Y. Contribution of organic anion transporters to the renal uptake of anionic compounds and nucleoside derivatives in rat. J Pharmacol Exp Ther 2003; 305:1087-97. [PMID: 12660303 DOI: 10.1124/jpet.102.046847] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous kinetic analyses have shown that rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8) are responsible for the renal uptake of p-aminohippurate and pravastatin, respectively. In this study, their contribution to the renal uptake of organic anions and nucleoside derivatives was examined by investigating the uptake by rOat1- and rOat3-expressing cells and kidney slices. Transfection of rOat1 resulted in an increase of the uptake of temocaprilat (Km = 0.56 microM), 2,4-dichlorophenoxyacetate (2,4-D; Km = 10 microM), and 3'-azido-3'-deoxythymidine (AZT; Km = 43 microM). rOat3-expressing cells showed significant uptake of temocaprilat (Km = 1.4 microM), estrone sulfate (Km = 5.3 microM), dehydroepiandrosterone sulfate (DHEAS; Km = 12 microM), and benzylpenicillin (PCG; Km = 85 microM). All the test compounds were accumulated in kidney slices in a carrier-mediated manner, although the saturable components of AZT and acyclovir were small. The Km of 2,4-D uptake by kidney slices was comparable with that of rOat1, and the corresponding values of DHEAS and PCG were similar to those of rOat3. The uptake of estrone sulfate and temocaprilat by kidney slices consisted of two saturable components, with the Km values of their high-affinity components being similar to those for rOat3 (estrone sulfate), and rOat1 and rOat3 (temocaprilat), respectively. These results suggest that the renal uptake of 2,4-D is mainly accounted for by rOat1 and the uptake of PCG and DHEAS by rOat3, and rOat3 is partly involved in the renal uptake of temocaprilat and estrone sulfate.
Collapse
Affiliation(s)
- Maki Hasegawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
161
|
Terlouw SA, Masereeuw R, Russel FGM. Modulatory effects of hormones, drugs, and toxic events on renal organic anion transport. Biochem Pharmacol 2003; 65:1393-405. [PMID: 12732351 DOI: 10.1016/s0006-2952(03)00036-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human body is exposed continuously to a wide variety of exogenous compounds, many of which are anionic compounds. In addition, products of phase II biotransformation reactions are negatively charged, viz. glucuronides, sulfate esters, or glutathiones. Renal transport of organic anions is an important defense mechanism of the organism against foreign substances. The combination of the rate of uptake and efflux and the intracellular disposition of organic anions in the proximal tubule determines the intracellular concentration and the nephrotoxic potential of a compound. Modulation of organic anion secretion is observed after exposure of proximal tubules to various hormones, and the subsequent receptor-mediated response is signaled by protein kinases. Transport of anionic compounds across the basolateral as well as the luminal membrane is modified by activation or inhibition of protein kinases. Protein kinase C activation reduces the uptake of organic anions mediated by the organic anion transporter 1 (OAT1/Oat1) and Oat3 and reduces Mrp2-mediated efflux. In addition, activation of protein kinase C has been shown to inhibit transport by the organic anion transporting polypeptide 1 (Oatp1) across the luminal membrane. Additional protein kinases have been implicated in the regulation of organic anion transport, and the role of nuclear factors in xenobiotic excretion is an emerging field. The physiological regulation of organic anion transporters may also be influenced by exogenous factors, such as exposure to xenobiotics and cellular stress. This commentary discusses the current knowledge of endogenous and exogenous influences on renal anionic xenobiotic excretion.
Collapse
Affiliation(s)
- Sylvie A Terlouw
- Department of Pharmacology and Toxicology 233, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | | |
Collapse
|
162
|
Abstract
BACKGROUND Transfected Madin-Darby canine kidney (MDCK) cells (of distal tubular origin) have been used to study transport of organic anions. These cells have not been shown to possess sulfate-conjugating activity. Neither has transport activity been demonstrated in nontransfected MDCK cells. METHODS Polarized and monolayers of nontransfected MDCK type II cells were incubated with prototype substrates of phenolsulfotransferase (PST) and sodium sulfate in the absence or presence of known inhibitors of multidrug resistance protein (MRP): (3-3-(2-(7-chloro-2-quinionlinyl) ethenyl)phenyl)(3-dimethylamino-3-oxopropyl)thio)methyl)thio) propanoic acid (MK571), cyclosporin A (CsA), and probenecid. Effects of glutathione (GSH) and buthionine sulfoximine (BSO), potential modulators of the organic anion transporting protein/polypeptide (OATP) isoform, OATP1 were also examined. Sulfated conjugates were identified by high-performance liquid chromatography (HPLC)-radiometry or HPLC-fluorimetry. RESULTS Uptake, sulfate conjugation, and efflux of the sulfated conjugates of harmol, p-nitrophenol, N-acetyldopamine and acetaminophen were demonstrated. Activities in MDCK type II cells were higher than those in HepG2, human fetal liver, and Chang liver cells. A significant decrease in extracellular with a reciprocal increase in intracellular harmol sulfate was observed with MK571, CsA, and probenecid and with preloading of glutathione. Depletion of intracellular glutathione by BSO had the opposite effects. CONCLUSIONS Normal (nontransfected) MDCK type II cells provide a suitable system for the study of the physiologic processes of uptake, sulfate conjugation, and transport of sulfated conjugates in kidney cells. Based on the action of specific inhibitors and modulators of MRP2 and OATP1, it was concluded that MRP2-like and OATP1-like transporters are possibly responsible for the transport of sulfated conjugates.
Collapse
Affiliation(s)
- Kian Hong Ng
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Kent Ridge, Singapore, Singapore
| | | | | |
Collapse
|
163
|
Fei YJ, Inoue K, Ganapathy V. Structural and functional characteristics of two sodium-coupled dicarboxylate transporters (ceNaDC1 and ceNaDC2) from Caenorhabditis elegans and their relevance to life span. J Biol Chem 2003; 278:6136-44. [PMID: 12480943 DOI: 10.1074/jbc.m208763200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and functionally characterized two Na(+)-coupled dicarboxylate transporters, namely ceNaDC1 and ceNaDC2, from Caenorhabditis elegans. These two transporters show significant sequence homology with the product of the Indy gene identified in Drosophila melanogaster and with the Na(+)-coupled dicarboxylate transporters NaDC1 and NaDC3 identified in mammals. In a mammalian cell heterologous expression system, the cloned ceNaDC1 and ceNaDC2 mediate Na(+)-coupled transport of various dicarboxylates. With succinate as the substrate, ceNaDC1 exhibits much lower affinity compared with ceNaDC2. Thus, ceNaDC1 and ceNaDC2 correspond at the functional level to the mammalian NaDC1 and NaDC3, respectively. The nadc1 and nadc2 genes are not expressed at the embryonic stage, but the expression is detectable all through the early larva stage to the adult stage. Tissue-specific expression pattern studies using a reporter gene fusion approach in transgenic C. elegans show that both genes are coexpressed in the intestinal tract, an organ responsible for not only the digestion and absorption of nutrients but also for the storage of energy in this organism. Independent knockdown of the function of these two transporters in C. elegans using the strategy of RNA interference suggests that NaDC1 is not associated with the regulation of average life span in this organism, whereas the knockdown of NaDC2 function leads to a significant increase in the average life span. Disruption of the function of the high affinity Na(+)-coupled dicarboxylate transporter NaDC2 in C. elegans may lead to decreased availability of dicarboxylates for cellular production of metabolic energy, thus creating a biological state similar to that of caloric restriction, and consequently leading to life span extension.
Collapse
Affiliation(s)
- You-Jun Fei
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | |
Collapse
|
164
|
Vrtic F, Haefeli WE, Drewe J, Krähenbühl S, Wenk M. Interaction of ibuprofen and probenecid with drug metabolizing enzyme phenotyping procedures using caffeine as the probe drug. Br J Clin Pharmacol 2003; 55:191-8. [PMID: 12580991 PMCID: PMC1894741 DOI: 10.1046/j.1365-2125.2003.01725.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS To examine the suspected inhibitory potential of the over-the-counter (OTC) drug ibuprofen on N-acetyltransferase 2 (NAT2) in vitro and in vivo and the possible implications for phenotyping procedures using caffeine as probe drug. METHODS We first studied the inhibitory effect of ibuprofen on NAT2 in vitro, using human liver cytosol and sulfamethazine as substrate. In vivo 15 fast and 15 slow acetylating healthy volunteers were treated with a single dose of ibuprofen (800 mg) orally and phenotyped for NAT2, CYP1A2, and xanthine oxidase (XO) with caffeine as probe drug before and during drug treatment. Because of unexpected in vivo results with ibuprofen this study was repeated in 20 healthy volunteers with probenecid, a model substrate of renal organic anion transport (OAT). For phenotyping tests a urine sample was collected 6 h after caffeine (200 mg) intake. The caffeine metabolites acetyl-6-formylamino-3-methyluracil (AFMU), 1-methylxanthine (1MX), 1-methyluric acid (1MU), and 1,7-dimethyluric acid (17MU) were quantified by HPLC, and the corresponding metabolic ratios for CYP1A2, NAT2, and XO were then calculated. Genotyping for NAT2 was performed with standard PCR-RFLP methods. RESULTS In vitro, with human liver cytosol an inhibition by ibuprofen of the acetylation of sulfamethazine with Ki values between 2.2 and 3.1 mm was observed. Surprisingly, in vivo a significant (P < 0.001) increase of the acetyl-6-formylamino-3-methyluracil/1-methylxanthine (AFMU/1MX) urinary ratio from 0.97 +/- 0.16 to 1.08 +/- 0.18 (95% CI on the difference 0.049, 0.170) was found, indicating an apparent elevation of NAT2 activity. In contrast, no change was observed for the ratios used for XO and CYP1A2. Because an induction of NAT2 could be excluded, an interaction of ibuprofen with the tubular secretion of some of the caffeine metabolites was assumed. To prove this assumption, the in vivo study was repeated with probenecid, a model substrate of the renal OAT system. Again, a prominent elevation of the AFMU/1MX ratio from 0.97 +/- 0.21 to 1.53 +/- 0.35 was found (P < 0.002; 95% CI on the difference 0.237, 0.876), but also the XO ratio 1MU/1MX was significantly (P < 0.0001) increased from 1.34 +/- 0.09 to 2.24 +/- 0.14 (95% CI on difference 0.735, 1.059) due to a reduction of 1MX excretion. CONCLUSIONS Substrates of OAT interact with renal excretion of caffeine metabolites and may falsify NAT2 and XO phenotyping results. Other phenotyping procedures, which are based on urinary metabolic ratios, should also be validated in this respect, especially in patients under polymedication.
Collapse
Affiliation(s)
- Fatima Vrtic
- Division of Clinical Pharmacology and Toxicology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | | | | | | | | |
Collapse
|
165
|
Tett SE, Kirkpatrick CMJ, Gross AS, McLachlan AJ. Principles and Clinical Application of Assessing Alterations in Renal Elimination Pathways. Clin Pharmacokinet 2003; 42:1193-211. [PMID: 14606929 DOI: 10.2165/00003088-200342140-00002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drugs and metabolites are eliminated from the body by metabolism and excretion. The kidney makes the major contribution to excretion of unchanged drug and also to excretion of metabolites. Net renal excretion is a combination of three processes - glomerular filtration, tubular secretion and tubular reabsorption. Renal function has traditionally been determined by measuring plasma creatinine and estimating creatinine clearance. However, estimated creatinine clearance measures only glomerular filtration with a small contribution from active secretion. There is accumulating evidence of poor correlation between estimated creatinine clearance and renal drug clearance in different clinical settings, challenging the 'intact nephron hypothesis' and suggesting that renal drug handling pathways may not decline in parallel. Furthermore, it is evident that renal drug handling is altered to a clinically significant extent in a number of disease states, necessitating dosage adjustment not just based on filtration. These observations suggest that a re-evaluation of markers of renal function is required. Methods that measure all renal handling pathways would allow informed dosage individualisation using an understanding of renal excretion pathways and patient characteristics. Methodologies have been described to determine individually each of the renal elimination pathways. However, their simultaneous assessment has only recently been investigated. A cocktail of markers to measure simultaneously the individual renal handling pathways have now been developed, and evaluated in healthy volunteers. This review outlines the different renal elimination pathways and the possible markers that can be used for their measurement. Diseases and other physiological conditions causing altered renal drug elimination are presented, and the potential application of a cocktail of markers for the simultaneous measurement of drug handling is evaluated. Further investigation of the effects of disease processes on renal drug handling should include people with HIV infection, transplant recipients (renal and liver) and people with rheumatoid arthritis. Furthermore, changes in renal function in the elderly, the effect of sex on renal function, assessment of living kidney donors prior to transplantation and the investigation of renal drug interactions would also be potential applications. Once renal drug handling pathways are characterised in a patient population, the implications for accurate dosage individualisation can be assessed. The simultaneous measurement of renal function elimination pathways of drugs and metabolites has the potential to assist in understanding how renal function changes with different disease states or physiological conditions. In addition, it will further our understanding of fundamental aspects of the renal elimination of drugs.
Collapse
Affiliation(s)
- Susan E Tett
- School of Pharmacy, University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
166
|
Suzuki H, Sugiyama Y. Single nucleotide polymorphisms in multidrug resistance associated protein 2 (MRP2/ABCC2): its impact on drug disposition. Adv Drug Deliv Rev 2002; 54:1311-31. [PMID: 12406647 DOI: 10.1016/s0169-409x(02)00075-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multidrug resistance associated protein 2 (MRP2/ABCC2), expressed on the bile canalicular membrane, plays an important role in the biliary excretion of various kinds of substrates. In addition, MRP2 is also expressed on the apical membrane of epithelial cells such as enterocytes. It is possible that the inter-individual difference in the function of MRP2 affects the drug disposition. In the present article, we will summarize the physiological and pharmacological role of MRP2, particularly focusing on the factors affecting its transport function such as single nucleotide polymorphisms and/or the induction/down regulation of this transporter. Mutations found in patients suffering from the Dubin-Johnson syndrome, along with the amino acid residues which are involved in supporting the transport activity of MRP2, are also summarized.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
167
|
Yamashita F, Wanchana S, Hashida M. Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method. J Pharm Sci 2002; 91:2230-9. [PMID: 12226850 DOI: 10.1002/jps.10214] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caco-2 cell monolayers are widely used systems for predicting human intestinal absorption. This study was carried out to develop a quantitative structure-property relationship (QSPR) model of Caco-2 permeability using a novel genetic algorithm-based partial least squares (GA-PLS) method. The Caco-2 permeability data for 73 compounds were taken from the literature. Molconn-Z descriptors of these compounds were calculated as molecular descriptors, and the optimal subset of the descriptors was explored by GA-PLS analysis. A fitness function considering both goodness-of-fit to the training data and predictability of the testing data was adopted throughout the genetic algorithm-driven optimization procedure. The final PLS model consisting of 24 descriptors gave a correlation coefficient (r) of 0.886 for the entire dataset and a predictive correlation coefficient (r(pred)) of 0.825 that was evaluated by a leave-some-out cross-validation procedure. Thus, the GA-PLS analysis proved to be a reasonable QSPR modeling approach for predicting Caco-2 permeability.
Collapse
Affiliation(s)
- Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidashimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|