151
|
Takaguri A, Kimura K, Hinoki A, Bourne AM, Autieri MV, Eguchi S. A disintegrin and metalloprotease 17 mediates neointimal hyperplasia in vasculature. Hypertension 2011; 57:841-5. [PMID: 21357274 DOI: 10.1161/hypertensionaha.110.166892] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The requirement of a metalloprotease, a disintegrin and metalloprotease 17 (ADAM17) for the growth of cultured vascular smooth muscle cells has been demonstrated in vitro. However, whether this metalloprotease is responsible for vascular remodeling in vivo remains unanswered. Rat carotid arteries were analyzed 2 weeks after a balloon angioplasty. The neointimal cells were strongly positive for ADAM17 immunostaining. Marked inhibition of intimal hyperplasia was observed in a dominant-negative ADAM17 adenovirus-treated carotid artery. Proliferating cell nuclear antigen-positive cells and phospho-epidermal growth factor receptor-positive cells in the neointima were reduced by dominant-negative ADAM17 as well. In contrast, the neointima formation, proliferating cell nuclear antigen-positive cells, and phospho-epidermal growth factor receptor-positive cells were markedly enhanced by wild-type ADAM17 adenovirus. In conclusion, ADAM17 activation is involved in epidermal growth factor receptor activation and subsequent neointimal hyperplasia after vascular injury. ADAM17 could be a novel therapeutic target for pathophysiological vascular remodeling.
Collapse
MESH Headings
- ADAM Proteins/metabolism
- ADAM17 Protein
- Angioplasty, Balloon
- Animals
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- ErbB Receptors/metabolism
- Hyperplasia/metabolism
- Immunohistochemistry
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neointima/metabolism
- Neointima/pathology
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Akira Takaguri
- Cardiovascular Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
152
|
Kim S, Lewis C, Nadel JA. CCL20/CCR6 feedback exaggerates epidermal growth factor receptor-dependent MUC5AC mucin production in human airway epithelial (NCI-H292) cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:3392-400. [PMID: 21300824 DOI: 10.4049/jimmunol.1003377] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mucous hypersecretion is an important feature of obstructive airway diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. Multiple stimuli induce mucin production via activation of an epidermal growth factor receptor (EGFR) cascade, but the mechanisms that exaggerate mucin production in obstructive airway diseases remain unknown. In this study, we show that binding of CCL20, a G protein-coupled receptor (GPCR) ligand that is upregulated in the airways of subjects with obstructive airway diseases, to its unique GPCR CCR6 induces MUC5AC mucin production in human airway epithelial (NCI-H292) cells via metalloprotease TNF-α-converting enzyme (TACE)-dependent EGFR activation. We also show that EGFR activation by its potent ligand TGF-α induces reactivation of EGFR via binding of endogenously produced CCL20 to its receptor CCR6 in NCI-H292 cells but not in normal human bronchial epithelial (NHBE) cells, exaggerating mucin production in the NCI-H292 cells. In NCI-H292 cells, TGF-α stimulation induced two phases of EGFR phosphorylation (EGFR-P). The second EGFR-P was TACE-dependent and was responsible for most of the total mucin induced by TGF-α. Binding of endogenously produced CCL20 to CCR6 increased the second EGFR-P and subsequent mucin production induced by TGF-α. In NHBE cells, TGF-α-induced EGFR activation did not lead to significant CCL20 production or to EGFR rephosphorylation, and less mucin was produced. We conclude that NCI-H292 cells but not NHBE cells produce CCL20 in response to EGFR activation, which leads to a second phase of EGFR-P and subsequent exaggerated mucin production. These findings have potentially important therapeutic implications in obstructive airway diseases.
Collapse
Affiliation(s)
- Suil Kim
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
153
|
Uttarwar L, Peng F, Wu D, Kumar S, Gao B, Ingram AJ, Krepinsky JC. HB-EGF release mediates glucose-induced activation of the epidermal growth factor receptor in mesangial cells. Am J Physiol Renal Physiol 2011; 300:F921-31. [PMID: 21289053 DOI: 10.1152/ajprenal.00436.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We showed that transactivation of the epidermal growth factor receptor (EGFR) is an important mediator of matrix upregulation in mesangial cells (MC) in response to high glucose (HG). Here, we study the mechanism of EGFR transactivation. In primary MC, EGFR transactivation by 1 h of HG (30 mM) was unaffected by inhibitors of protein kinase C, reactive oxygen species, or the angiotensin II AT1 receptor. However, general metalloprotease inhibition, as well as specific inhibitors of heparin-binding EGF-like growth factor (HB-EGF), prevented both EGFR and downstream Akt activation. HB-EGF was released into the medium by 30 min of HG, and this depended on metalloprotease activity. One of the metalloproteases shown to cleave proHB-EGF is ADAM17 (TACE). HG, but not an osmotic control, activated ADAM17, and its inhibition prevented EGFR and Akt activation and HB-EGF release into the medium. siRNA to either ADAM17 or HB-EGF prevented HG-induced EGFR transactivation. We previously showed that EGFR/Akt signaling increases transforming growth factor (TGF)-β1 transcription through the transcription factor activator protein (AP)-1. HG-induced AP-1 activation, as assessed by EMSA, was abrogated by inhibitors of metalloproteases, HB-EGF and ADAM17. HB-EGF and ADAM17 siRNA also prevented AP-1 activation. Finally, these inhibitors and siRNA prevented TGF-β1 upregulation by HG. Thus, HG-induced EGFR transactivation in MC is mediated by the release of HB-EGF, which requires activity of the metalloprotease ADAM17. The mechanism of ADAM17 activation awaits identification. Targeting upstream mediators of EGFR transactivation including HB-EGF or ADAM17 provides novel therapeutic targets for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- L Uttarwar
- Division of Nephrology, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | |
Collapse
|
154
|
Vornanen M, Asikainen J, Haverinen J. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp (Carassius carassius L.). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2011; 98:225-32. [PMID: 21279319 DOI: 10.1007/s00114-011-0764-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp (Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish (p < 0.05). In fin and skin, size dependence was evident in winter, but not in summer, while in other tissues (ventricle, atrium, intestine, liver, muscle, and spleen), no size dependence was found. The liver was much bigger in small than large fish (p < 0.001), and there was a prominent enlargement of the liver in winter irrespective of fish size. As a consequence, the whole body glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland.
| | | | | |
Collapse
|
155
|
Finigan JH, Faress JA, Wilkinson E, Mishra RS, Nethery DE, Wyler D, Shatat M, Ware LB, Matthay MA, Mason R, Silver RF, Kern JA. Neuregulin-1-human epidermal receptor-2 signaling is a central regulator of pulmonary epithelial permeability and acute lung injury. J Biol Chem 2011; 286:10660-70. [PMID: 21247898 DOI: 10.1074/jbc.m110.208041] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanisms behind the loss of epithelial barrier function leading to alveolar flooding in acute lung injury (ALI) are incompletely understood. We hypothesized that the tyrosine kinase receptor human epidermal growth factor receptor-2 (HER2) would be activated in an inflammatory setting and participate in ALI. Interleukin-1β (IL-1β) exposure resulted in HER2 activation in human epithelial cells and markedly increased conductance across a monolayer of airway epithelial cells. Upon HER2 blockade, conductance changes were significantly decreased. Mechanistic studies revealed that HER2 trans-activation by IL-1β required a disintegrin and metalloprotease 17 (ADAM17)-dependent shedding of the ligand neuregulin-1 (NRG-1). In murine models of ALI, NRG-1-HER2 signaling was activated, and ADAM17 blockade resulted in decreased NRG-1 shedding, HER2 activation, and lung injury in vivo. Finally, NRG-1 was detectable and elevated in pulmonary edema fluid from patients with ALI. These results suggest that the ADAM17-NRG-1-HER2 axis modulates the alveolar epithelial barrier and contributes to the pathophysiology of ALI.
Collapse
Affiliation(s)
- James H Finigan
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Narita D, Seclaman E, Ilina R, Cireap N, Ursoniu S, Anghel A. ADAM12 and ADAM17 Gene Expression in Laser-capture Microdissected and Non-microdissected Breast Tumors. Pathol Oncol Res 2011; 17:375-85. [DOI: 10.1007/s12253-010-9336-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/04/2010] [Indexed: 01/18/2023]
|
157
|
Liebmann C. EGF receptor activation by GPCRs: an universal pathway reveals different versions. Mol Cell Endocrinol 2011; 331:222-31. [PMID: 20398727 DOI: 10.1016/j.mce.2010.04.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/01/2010] [Indexed: 11/20/2022]
Abstract
About one decade ago has been demonstrated that G protein-coupled receptors (GPCRs) are able to utilize the epidermal growth factor (EGF) receptor (EGFR) as signalling intermediate. Thereby GPCRs are enabled to regulate cell growth, differentiation, and migration. A molecular mechanism for this process has been proposed that involves the activation of a distinct set of metalloproteases and the subsequent generation and release of particular members of the EGF peptide family which in turn activate the EGFR in an autocrine/paracrine manner. This model that allows GPCRs direct access to the signalling network of the EGFR family has emerged as a valid concept in a variety of cell types including cancer cells. The present review briefly summarizes the current knowledge but will be focussed on the ligand-dependency of EGFR transactivation. Several alternative mechanisms and novel aspects will be introduced. Using the example of head and neck squamous carcinoma, the potency of EGFR transactivation as a therapeutical target will be discussed.
Collapse
Affiliation(s)
- Claus Liebmann
- Center of Molecular Biomedicine (CMB), Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| |
Collapse
|
158
|
Abstract
Airway epithelia are continuously damaged by airborne pollutants, pathogens and allergens, and they rely on intrinsic mechanisms to restore barrier integrity. Epithelial repair is a multi-step process including cell migration into the wounded area, proliferation, differentiation and matrix deposition. Each step requires the secretion of various molecules, including growth factors, integrins and matrix metalloproteinases. Evidence is emerging that purinergic signaling promotes repair in human airway epithelia. An injury induces ATP release, which binds P2Y(2) receptors (P2Y(2)Rs) to initiate protein kinase C (PKC)-dependent oxidative activation of TNFα-converting enzyme (TACE), which then releases the membrane-bound ligands of the epidermal growth factor receptor (EGFR). The P2Y(2)R- and EGFR-dependent signaling cascades converge to induce mediator release, whereas the latter also induces cytoskeletal rearrangement for cell migration and proliferation. Similar roles for purinergic signaling are reported in pulmonary endothelial cells, smooth muscle cells and fibroblasts. In chronic airway diseases, the aberrant regulation of extracellular purines is implicated in the development of airway remodeling by mucus cell metaplasia and hypersecretion, excess collagen deposition, fibrosis and neovascularization. This chapter describes the crosstalk between these signaling cascades and discusses the impact of deregulated purinergic signaling in chronic lung diseases.
Collapse
|
159
|
Takaguri A, Shirai H, Kimura K, Hinoki A, Eguchi K, Carlile-Klusacek M, Yang B, Rizzo V, Eguchi S. Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II. J Mol Cell Cardiol 2010; 50:545-51. [PMID: 21172357 DOI: 10.1016/j.yjmcc.2010.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/22/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
A metalloprotease, ADAM17, mediates the generation of mature ligands for the epidermal growth factor receptor (EGFR). This is the key signaling step by which angiotensin II (AngII) induces EGFR transactivation leading to hypertrophy and migration of vascular smooth muscle cells (VSMCs). However, the regulatory mechanism of ADAM17 activity remains largely unclear. Here we hypothesized that caveolin-1 (Cav1), the major structural protein of a caveolae, a membrane microdomain, is involved in the regulation of ADAM17. In cultured VSMCs, infection of adenovirus encoding Cav1 markedly inhibited AngII-induced EGFR ligand shedding, EGFR transactivation, ERK activation, hypertrophy and migration, but not intracellular Ca(2+) elevation. Methyl-β-cyclodextrin and filipin, reagents that disrupt raft structure, both stimulated an EGFR ligand shedding and EGFR transactivation in VSMCs. In addition, non-detergent sucrose gradient membrane fractionations revealed that ADAM17 cofractionated with Cav1 in lipid rafts. These results suggest that lipid rafts and perhaps caveolae provide a negative regulatory environment for EGFR transactivation linked to vascular remodeling induced by AngII. These novel findings may provide important information to target cardiovascular diseases under the enhanced renin angiotensin system.
Collapse
Affiliation(s)
- Akira Takaguri
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Tamaishi N, Tsukimoto M, Kitami A, Kojima S. P2Y6 receptors and ADAM17 mediate low-dose gamma-ray-induced focus formation (activation) of EGF receptor. Radiat Res 2010; 175:193-200. [PMID: 21268712 DOI: 10.1667/rr2191.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The EGF receptor (EGFR) is frequently expressed in tumors of epithelial origin. Although it is well known that ionizing radiation induces activation of EGFR, the mechanism remains unknown. Recently, we reported that activation of P2Y receptors is involved in γ-radiation-induced activation of extracellular signal-regulated kinase1/2 (ERK1/2), which is dependent on activation of EGFR. Here we focused on the mechanism of activation of EGFR in response to low-dose γ radiation, mainly in terms of the activation-associated formation of EGFR foci in A549 cells. Irradiation of cells with 0.1 Gy γ rays induced biphasic phosphorylation of EGFR and ERK1/2 as well as biphasic formation of EGFR foci. The radiation-induced focus formation of EGFR was abolished by ecto-nucleotidase, P2Y receptor antagonists and knockdown of P2Y6 receptor, suggesting the involvement of extracellular nucleotides and activation of P2Y6 receptors in this process. Further, a disintegrin and metalloprotease 17 (ADAM17) is expressed in A549 cells and an ADAM17 inhibitor significantly blocked the radiation-induced focus formation of EGFR. We conclude that activation of both P2Y6 receptors and ADAM17 mediates the low-dose γ-radiation-induced activation of EGFR, as evaluated in terms of focus formation, in A549 cells.
Collapse
Affiliation(s)
- Nana Tamaishi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | | | | | | |
Collapse
|
161
|
Eisinger DA, Ammer H. Epidermal growth factor treatment switches δ-opioid receptor-stimulated extracellular signal-regulated kinases 1 and 2 signaling from an epidermal growth factor to an insulin-like growth factor-1 receptor-dependent mechanism. Mol Pharmacol 2010; 79:326-35. [PMID: 21078885 DOI: 10.1124/mol.110.064956] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
δ-Opioid receptor (DOR)-induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) is mediated by the transactivation of epidermal growth factor (EGF) receptors. Here we demonstrate that in stably DOR-expressing human embryonic kidney (HEK) 293 (HEK/DOR) cells, down-regulation of EGF receptors by long-term EGF (0.1 μg for 18 h) treatment, but not by small interfering RNA, results in functional desensitization of EGF (10 ng/ml)-stimulated ERK1/2 signaling. In EGF receptor-desensitized (HEK/DOR(-EGFR)) cells, however, [d-Ala²,d-Leu⁵]enkephalin (1 μM) and etorphine (0.1 μM) retained their ability to stimulate ERK1/2 activation. The newly acquired signal transduction mechanism is insensitive to the EGF receptor blockers 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) and N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (CL-387,785), does not involve DOR internalization and activation of the focal adhesion kinase pp125FAK, but requires matrix metalloproteinase-dependent release of soluble growth factors. A supernatant transfer assay in which conditioned growth media of opioid-treated HEK/DOR and HEK/DOR(-EGFR) "donor" cells are used to stimulate ERK1/2 activity in DOR-lacking HEK293 wild type and HEK293(-EGFR) "acceptor" cells revealed that long-term EGF treatment produces a switch in the receptor tyrosine kinase (RTK) system transactivated by opioids. Using microfluidic electrophoresis, chemical inhibitors, phosphorylation-specific antibodies, and EGF receptor-deficient Chinese hamster ovary-K1 cells, we identified the release of an insulin-like growth factor-1 (IGF-1)-like peptide and activation of IGF-1 receptors in HEK/DOR(-EGFR) cells after DOR activation. A similar switch from a neurotrophic tyrosine kinase receptor type 1 to an IGF-1 receptor-dependent ERK1/2 signaling was observed for chronically nerve growth factor-treated neuroblastoma × glioma (NG108-15) cells. These results indicate that transactivation of the dominant RTK system in a given cellular setting may represent a general feature of opioids to maintain mitogenic signaling.
Collapse
Affiliation(s)
- Daniela A Eisinger
- Institute of Pharmacology, Toxicology and Pharmacy, University of Munich, Koeniginstrasse 16, 80539 Muenchen, Federal Republic of Germany.
| | | |
Collapse
|
162
|
Spotlight on Human LL-37, an Immunomodulatory Peptide with Promising Cell-Penetrating Properties. Pharmaceuticals (Basel) 2010. [PMCID: PMC4034075 DOI: 10.3390/ph3113435] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cationic antimicrobial peptides are major components of innate immunity and help control the initial steps of the infectious process. They are expressed not only by immunocytes, but also by epithelial cells. They share an amphipathic secondary structure with a polar cationic site, which explains their tropism for prokaryote membranes and their hydrophobic site contributing to the destructuration of these membranes. LL-37 is the only cationic antimicrobial peptide derived from human cathelicidin. LL-37 can also cross the plasma membrane of eukaryotic cells, probably through special domains of this membrane called lipid rafts. This transfer could be beneficial in the context of vaccination: the activation of intracellular toll-like receptors by a complex formed between CpG oligonucleotides and LL-37 could conceivably play a major role in the building of a cellular immunity involving NK cells.
Collapse
|
163
|
Abstract
For cancers to develop, sustain and spread, the appropriation of key homeostatic physiological systems that influence cell growth, migration and death, as well as inflammation and the expansion of vascular networks are required. There is accumulating molecular and in vivo evidence to indicate that the expression and actions of the renin-angiotensin system (RAS) influence malignancy and also predict that RAS inhibitors, which are currently used to treat hypertension and cardiovascular disease, might augment cancer therapies. To appreciate this potential hegemony of the RAS in cancer, an expanded comprehension of the cellular actions of this system is needed, as well as a greater focus on translational and in vivo research.
Collapse
Affiliation(s)
- Amee J George
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | |
Collapse
|
164
|
Guardiola-Serrano F, Rossin A, Cahuzac N, Lückerath K, Melzer I, Mailfert S, Marguet D, Zörnig M, Hueber AO. Palmitoylation of human FasL modulates its cell death-inducing function. Cell Death Dis 2010; 1:e88. [PMID: 21368861 PMCID: PMC3035908 DOI: 10.1038/cddis.2010.62] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fas ligand (FasL) is a transmembrane protein that regulates cell death in Fas-bearing cells. FasL-mediated cell death is essential for immune system homeostasis and the elimination of viral or transformed cells. Because of its potent cytotoxic activity, FasL expression at the cell surface is tightly regulated, for example, via processing by ADAM10 and SPPL2a generating soluble FasL and the intracellular fragments APL (ADAM10-processed FasL form) and SPA (SPPL2a-processed APL). In this study, we report that FasL processing by ADAM10 counteracts Fas-mediated cell death and is strictly regulated by membrane localization, interactions and modifications of FasL. According to our observations, FasL processing occurs preferentially within cholesterol and sphingolipid-rich nanodomains (rafts) where efficient Fas–FasL contact occurs, Fas receptor and FasL interaction is also required for efficient FasL processing, and FasL palmitoylation, which occurs within its transmembrane domain, is critical for efficient FasL-mediated killing and FasL processing.
Collapse
Affiliation(s)
- F Guardiola-Serrano
- University of Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, Equipe labelisée La Ligue, Institute of Developmental Biology and Cancer, UMR, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1301-13. [PMID: 20959142 DOI: 10.1016/j.bbadis.2010.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/30/2010] [Accepted: 10/11/2010] [Indexed: 02/07/2023]
Abstract
Members of the epidermal growth factor (EGF) family bind to ErbB (EGFR) family receptors which play an important role in the regulation of various fundamental cell processes including cell proliferation and differentiation. The normal rodent kidney has been shown to express at least three members of the ErbB receptor family and is a major site of EGF ligand synthesis. Polycystic kidney disease (PKD) is a group of diseases caused by mutations in single genes and is characterized by enlarged kidneys due to the formation of multiple cysts in both kidneys. Tubule cells proliferate, causing segmental dilation, in association with the abnormal deposition of several proteins. One of the first abnormalities described in cell biological studies of PKD pathogenesis was the abnormal mislocalization of the EGFR in cyst lining epithelial cells. The kidney collecting duct (CD) is predominantly an absorptive epithelium where electrogenic Na(+) entry is mediated by the epithelial Na(+) channel (ENaC). ENaC-mediated sodium absorption represents an important ion transport pathway in the CD that might be involved in the development of PKD. A role for EGF in the regulation of ENaC-mediated sodium absorption has been proposed. However, several investigations have reported contradictory results indicating opposite effects of EGF and its related factors on ENaC activity and sodium transport. Recent advances in understanding how proteins in the EGF family regulate the proliferation and sodium transport in normal and PKD epithelial cells are discussed here. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
|
166
|
EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 2010; 21:951-60. [PMID: 20813200 DOI: 10.1016/j.semcdb.2010.08.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/23/2010] [Indexed: 01/16/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.
Collapse
|
167
|
Foley J, Nickerson NK, Nam S, Allen KT, Gilmore JL, Nephew KP, Riese DJ. EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 2010. [PMID: 20813200 DOI: 10.1016/j.semcdb.2010.08.009s1084-9521(10)00146-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.
Collapse
Affiliation(s)
- John Foley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | |
Collapse
|
168
|
Stanic B, Katsuyama M, Miller FJ. An oxidized extracellular oxidation-reduction state increases Nox1 expression and proliferation in vascular smooth muscle cells via epidermal growth factor receptor activation. Arterioscler Thromb Vasc Biol 2010; 30:2234-41. [PMID: 20814013 DOI: 10.1161/atvbaha.110.207639] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To examine the effect of an oxidized extracellular oxidation-reduction (redox) state (E(h)) on the expression of NADPH oxidases in vascular cells. METHODS AND RESULTS The generation of reactive oxygen species by NADPH oxidase (Nox)-based NADPH oxidases activates redox-dependent signaling pathways and contributes to the development of "oxidative stress" in vascular disease. An oxidized plasma redox state is associated with cardiovascular disease in humans; however, the cellular mechanisms by which the extracellular redox state may cause disease are not known. Aortic segments and cultured aortic smooth muscle cells were exposed to E(h) between -150 mV (reduced) and 0 mV (oxidized) by altering the concentration of cysteine and its disulfide, cystine, the predominant redox couple in plasma. A more oxidized E(h) increased the expression of Nox1 and resulted in Nox1-dependent proliferation of smooth muscle cells. Oxidized E(h) rapidly induced epidermal growth factor receptor phosphorylation via shedding of epidermal growth factor-like ligands from the plasma membrane and caused extracellular signal-regulated kinase 1/2-dependent phosphorylation of the transcription factors activating transcription factor-1 and cAMP-response element-binding protein. Inhibition of epidermal growth factor receptor or extracellular signal-regulated kinase 1/2 activation, or addition of small interference RNA to activating transcription factor-1, prevented the increase in Nox1 expression. CONCLUSIONS Our results identify a novel mechanism by which extracellular oxidative stress increases expression and activity of Nox1 NADPH oxidase and contributes to vascular disease.
Collapse
Affiliation(s)
- Bojana Stanic
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
169
|
Ji H. Mechanistic insights into acquired drug resistance in epidermal growth factor receptor mutation-targeted lung cancer therapy. Cancer Sci 2010; 101:1933-8. [PMID: 20560975 PMCID: PMC11158733 DOI: 10.1111/j.1349-7006.2010.01629.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oncogenic mutation of epidermal growth factor receptor kinase domain is strongly associated with clinical response to tyrosine kinase inhibitors in non-small-cell lung carcinoma. Despite an initial encouraging response, patients eventually develop drug resistance and relapse. Great efforts have been made to identify the molecular mechanisms of drug resistance. With the recognition of cancer as a whole complex system, here it is proposed that cancer may evolve drug resistance in a cancer-cell-autonomous manner as well as a non-cancer-cell-autonomous manner. The former mainly arises at three levels: the robustness of the epidermal growth factor receptor signaling network; cancer epigenetic changes; or cancer genetic alteration, which may be dependent on the therapeutics methods and treatment duration. As cancer stroma plays an essential role in lung cancerigenesis, we further discuss the potential mechanisms for drug resistance development in a non-cancer-cell-autonomous manner, which may arise from the interaction between cancer cells and cancer stroma, including stromal cells and extracellular matrix.
Collapse
Affiliation(s)
- Hongbin Ji
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
170
|
Shinkuma S, Akiyama M, Inoue A, Aoki J, Natsuga K, Nomura T, Arita K, Abe R, Ito K, Nakamura H, Ujiie H, Shibaki A, Suga H, Tsunemi Y, Nishie W, Shimizu H. Prevalent LIPH founder mutations lead to loss of P2Y5 activation ability of PA-PLA1alpha in autosomal recessive hypotrichosis. Hum Mutat 2010; 31:602-10. [PMID: 20213768 DOI: 10.1002/humu.21235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autosomal recessive hypotrichosis (ARH) is characterized by sparse hair on the scalp without other abnormalities. Three genes, DSG4, LIPH, and LPAR6 (P2RY5), have been reported to underlie ARH. We performed a mutation search for the three candidate genes in five independent Japanese ARH families and identified two LIPH mutations: c.736T>A (p.Cys246Ser) in all five families, and c.742C>A (p.His248Asn) in four of the five families. Out of 200 unrelated control alleles, we detected c.736T>A in three alleles and c.742C>A in one allele. Haplotype analysis revealed each of the two mutant alleles is derived from a respective founder. These results suggest the LIPH mutations are prevalent founder mutations for ARH in the Japanese population. LIPH encodes PA-PLA(1)alpha (LIPH), a membrane-associated phosphatidic acid-preferring phospholipase A(1)alpha. Two residues, altered by these mutations, are conserved among PA-PLA(1)alpha of diverse species. Cys(246) forms intramolecular disulfide bonds on the lid domain, a crucial structure for substrate recognition, and His(248) is one amino acid of the catalytic triad. Both p.Cys246Ser- and p.His248Asn-PA-PLA(1)alpha mutants showed complete abolition of hydrolytic activity and had no P2Y5 activation ability. These results suggest defective activation of P2Y5 due to reduced 2-acyl lysophosphatidic acid production by the mutant PA-PLA(1)alpha is involved in the pathogenesis of ARH.
Collapse
Affiliation(s)
- Satoru Shinkuma
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Takaguri A, Eguchi S. Tumor necrosis factor-{alpha}: a reno-protective cytokine? Focus on "Tumor necrosis factor-{alpha} suppresses angiotensinogen expression through formation of a p50/p50 homodimer in human renal proximal tubular cells". Am J Physiol Cell Physiol 2010; 299:C729-30. [PMID: 20660163 DOI: 10.1152/ajpcell.00275.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Akira Takaguri
- Cardiovascular Research Center, Temple Univ. School of Medicine, 3500 N. Broad St., MERB Rm. 1051, Philadelphia, PA 19140, USA
| | | |
Collapse
|
172
|
Stoeck A, Shang L, Dempsey PJ. Sequential and gamma-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth. J Cell Sci 2010; 123:2319-31. [PMID: 20530572 PMCID: PMC2886747 DOI: 10.1242/jcs.060830] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2010] [Indexed: 12/20/2022] Open
Abstract
Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic beta-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent gamma-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and gamma-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro.
Collapse
Affiliation(s)
- Alexander Stoeck
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Shang
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J. Dempsey
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
173
|
Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol 2010; 31:322-40. [PMID: 20451543 PMCID: PMC2923852 DOI: 10.1016/j.yfrne.2010.04.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 04/26/2010] [Accepted: 04/30/2010] [Indexed: 11/28/2022]
Abstract
Mammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility. Recently, new mouse models making use of conditional gene deletion have shed new light on the relationships between GnRH signaling and fertility in both male and female mice. Within the reproductive axis, GnRH signaling is initiated through discrete membrane compartments in which the receptor resides leading to the activation of the extracellular signal-regulated kinases (ERKs 1/2). As defined by gonadotrope-derived cellular models, the ERKs appear to play a central role in the regulation of a cohort of immediate early genes that regulate the expression of late genes that, in part, define the differentiated character of the gonadotrope. Recent data would suggest that in vivo, conditional, pituitary-specific disruption of ERK signaling by GnRH leads to a gender-specific perturbation of fertility. Double ERK knockout in the anterior pituitary leads to female infertility due to LH biosynthesis deficiency and a failure in ovulation. In contrast, male mice are modestly LH deficient; however, this does not have an appreciable impact on fertility.
Collapse
Affiliation(s)
- Stuart P Bliss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
174
|
Tung WH, Lee IT, Hsieh HL, Yang CM. EV71 induces COX-2 expression via c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK/AP-1 and NF-kappaB in rat brain astrocytes. J Cell Physiol 2010; 224:376-86. [PMID: 20333648 DOI: 10.1002/jcp.22133] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Enterovirus 71 (EV71) induces the expression of cyclooxgenase (COX)-2 served as a major neurotoxic factor in CNS injury. However, the mechanisms underlying EV71-initiated intracellular signaling pathways leading to COX-2 expression remain unknown. Therefore, we investigated the mechanisms underlying EV71-induced COX-2 expression and prostaglandin E(2) (PGE(2)) production in rat brain astrocytes (RBA)-1, determined by Western blotting, RT-PCR, and promoter assay. Here, we reported that EV71-induced COX-2 expression and PGE(2) production were attenuated by pretreatment with the inhibitors of c-Src (PP1), PDGFR (AG1296), PI3K (Wortmannin), MEK1/2 (PD98059), NF-kappaB (helenalin), and AP-1 (Tanshinone) and transfection with shRNA or siRNA of c-Src, PDGFR, p85, c-Jun, c-Fos, ERK1, or ERK2. We further observed that EV71-induced activation of Akt and p42/p44 MAPK were mediated via c-Src and PDGFR. Pretreatment with PP1 attenuated EV71-stimulated phosphorylation of Src, PDGFR, Akt, and p42/p44 MAPK. Inhibition of PI3K by Wortmannin attenuated EV71-induced Akt and p42/p44 MAPK phosphorylation, but had no effect on PDGFR phosphorylation, suggesting that PDGFR is an upstream and p42/p44 MAPK is a downstream component of PI3K/Akt in these responses. EV71-stimulated NF-kappaB translocation from the cytoplasm to the nucleus, IkappaBalpha degradation and NF-kappaB promoter activity were attenuated by pretreatment with helenalin, but not AG1296, Wortmannin, and PD98059. EV71-induced c-Jun mRNA expression was attenuated by pretreatment with PD98059, AG1296, or Wortmannin. These results demonstrate that in RBA-1 cells, EV71-induced COX-2 expression associated with PGE(2) production is mediated through activation of c-Src/PDGFR/PI3K/Akt/p42/p44 MAPK to initiate the expression of AP-1.
Collapse
Affiliation(s)
- Wei-Hsuan Tung
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
175
|
Hernández I, Moreno JL, Zandueta C, Montuenga L, Lecanda F. Novel alternatively spliced ADAM8 isoforms contribute to the aggressive bone metastatic phenotype of lung cancer. Oncogene 2010; 29:3758-69. [PMID: 20453887 DOI: 10.1038/onc.2010.130] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ADAMs (a disintegrin and metalloprotease) are transmembrane proteins involved in a variety of physiological processes and tumorigenesis. Recently, ADAM8 has been associated with poor prognosis of lung cancer. However, its contribution to tumorigenesis in the context of lung cancer metastasis remains unknown. Native ADAM8 expression levels were lower in lung cancer cell lines. In contrast, we identified and characterized two novel spliced isoforms encoding truncated proteins, Delta18a and Delta14', which were present in several tumor cell lines and not in normal cells. Overexpression of Delta18a protein resulted in enhanced invasive activity in vitro. ADAM8 and its Delta14' isoform expression levels were markedly increased in lung cancer cells, in conditions mimicking tumor microenvironment. Moreover, addition of supernatants from Delta14'-overexpressing cells resulted in a significant increase in tartrate-resistant acid phosphatase+ cells in osteoclast cultures in vitro. These findings were associated with increased pro-osteoclastogenic cytokines interleukin (IL)-8 and IL-6 protein levels. Furthermore, lung cancer cells overexpressing Delta14' increased prometastatic activity with a high tumor burden and increased osteolysis in a murine model of bone metastasis. Thus, the expression of truncated forms of ADAM8 by the lung cancer cells may result in the specific upregulation of their invasive and osteoclastogenic activities in the bone microenvironment. These findings suggest a novel mechanism of tumor-induced osteolysis in metastatic bone colonization.
Collapse
Affiliation(s)
- I Hernández
- Adhesion and Metastasis Laboratory, Division of Oncology, Center for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
176
|
Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC, Sunnarborg SW. Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 2010; 20:5236-49. [PMID: 19846666 DOI: 10.1091/mbc.e08-12-1256] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by GPCRs regulates many important biological processes. ADAM metalloprotease activity has been implicated as a key step in transactivation, yet the regulatory mechanisms are not fully understood. Here, we investigate the regulation of transforming growth factor-alpha (TGF-alpha) shedding by reactive oxygen species (ROS) through the ATP-dependent activation of the P2Y family of GPCRs. We report that ATP stimulates TGF-alpha proteolysis with concomitant EGFR activation and that this process requires TACE/ADAM17 activity in both murine fibroblasts and CHO cells. ATP-induced TGF-alpha shedding required calcium and was independent of Src family kinases and PKC and MAPK signaling. Moreover, ATP-induced TGF-alpha shedding was completely inhibited by scavengers of ROS, whereas calcium-stimulated shedding was partially inhibited by ROS scavenging. Hydrogen peroxide restored TGF-alpha shedding after calcium chelation. Importantly, we also found that ATP-induced shedding was independent of the cytoplasmic NADPH oxidase complex. Instead, mitochondrial ROS production increased in response to ATP and mitochondrial oxidative complex activity was required to activate TACE-dependent shedding. These results reveal an essential role for mitochondrial ROS in regulating GPCR-induced growth factor shedding.
Collapse
Affiliation(s)
- Timothy J Myers
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Block ER, Tolino MA, Klarlund JK. Pyk2 activation triggers epidermal growth factor receptor signaling and cell motility after wounding sheets of epithelial cells. J Biol Chem 2010; 285:13372-9. [PMID: 20215112 DOI: 10.1074/jbc.m109.083089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activation of the epidermal growth factor receptor (EGFR) is a key signaling event that promotes cells to move and cover wounds in many epithelia. We have previously shown that wounding activates the EGFR through activation of the Src family kinases (SFKs), which induce proteolytic shedding of epidermal growth factor-like ligands from the cell surface. A major goal in wound healing research is to identify early signals that promote motility, and here we examined the hypothesis that members of the focal adhesion kinase family are upstream activators of the SFKs after wounding. We found that focal adhesion kinase is not activated by wounding but that a different family member, Pyk2 (PTK2B/RAFTK/CAKbeta), is activated rapidly and potently. Pyk2 interaction with c-Src is increased after wounding, as determined by co-immunoprecipitation experiments. Disruption of Pyk2 signaling either by small interfering RNA or by expression of a dominant negative mutant led to inhibition of wound-induced activation of the SFKs and the EGFR, and conversely, overexpression of wild-type Pyk2 stimulated SFK and EGFR kinase activities in cells. In wound healing studies, Pyk2 small interfering RNA or dominant negative inhibited cell migration. These results show that activation of Pyk2 is an early signal that promotes wound healing by stimulating the SFK/EGFR signaling pathway.
Collapse
Affiliation(s)
- Ethan R Block
- Ophthalmology and Visual Sciences Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
178
|
Krishnaswamy N, Lacroix-Pepin N, Chapdelaine P, Taniguchi H, Kauffenstein G, Chakravarti A, Danyod G, Fortier MA. Epidermal growth factor receptor is an obligatory intermediate for oxytocin-induced cyclooxygenase 2 expression and prostaglandin F2 alpha production in bovine endometrial epithelial cells. Endocrinology 2010; 151:1367-74. [PMID: 20080869 DOI: 10.1210/en.2009-1304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin (OT) triggers the luteolytic pulses of prostaglandin F(2 alpha) (PGF(2 alpha)) from the endometrial epithelial cells in ruminants. We have proposed that the embryonic signal interferon-tau exerts its antiluteolytic effect by disrupting the OT signaling axis. Accordingly, we have attempted to define the signaling pathway of OT-induced PGF(2 alpha) production in the bovine endometrium using our newly characterized epithelial cell line (bEEL). OT receptor was coupled to the classical G alpha(q) pathway as evidenced by calcium release and activation of phospholipase C. Similarly, OT-induced PGF(2 alpha) production was mediated through the canonical ERK1/2 pathway. Because of the importance of receptor and nonreceptor tyrosine kinases in G protein-coupled receptor signaling, we studied the role of epidermal growth factor receptor (EGFR), c-Src, and phosphoinositide 3-kinase (PI3K) on OT-induced PGF(2 alpha) production in association with cyclooxygenase 2 (COX2) expression and ERK1/2 and Akt phosphorylation. The EGFR inhibitor AG1478 (10 microm) nearly abolished basal and OT-induced PGF(2 alpha) production and down-regulated COX2 expression and ERK1/2 phosphorylation. Because the transactivated EGFR can serve as a ligand for the signaling proteins with Src homology 2 (SH2) domain, we hypothesized a role for c-Src and PI3K in OT-induced PGF(2 alpha) production. Inhibitors of c-Src (PP2, 10 microm) and PI3K (LY294002, 25 microm) produced a significant decrease in OT-induced PGF(2 alpha) production and reduced COX2 expression. Also, PP2, but not LY294002, decreased OT-induced ERK1/2 phosphorylation. Because LY294002 did not affect ERK1/2 phosphorylation, but inhibited PGF(2 alpha) production and down-regulated COX2 expression, it is likely that the Akt pathway is also involved in PGF(2 alpha) production. Thus, EGFR may simultaneously activate c-Src and PI3K to amplify the OT signaling to increase the output of PGF(2 alpha) in bEEL cells.
Collapse
Affiliation(s)
- Narayanan Krishnaswamy
- Unité d'Ontogénie et Reproduction, Centre Hospitalier Universitaire de Québec, Centre Hospitalier de l'Université Laval, Université Laval, Québec QC G1V 4G2 Canada
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Greene CM, McElvaney NG. Proteases and antiproteases in chronic neutrophilic lung disease - relevance to drug discovery. Br J Pharmacol 2010; 158:1048-58. [PMID: 19845686 DOI: 10.1111/j.1476-5381.2009.00448.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammatory lung diseases such as cystic fibrosis and emphysema are characterized by higher-than-normal levels of pulmonary proteases. While these enzymes play important roles such as bacterial killing, their dysregulated expression or activity can adversely impact on the inflammatory process. The existence of efficient endogenous control mechanisms that can dampen or halt this overexuberant protease activity in vivo is essential for the effective resolution of inflammatory lung disease. The function of pulmonary antiproteases is to fulfil this role. Interestingly, in addition to their antiprotease activity, protease inhibitors in the lung also often possess other intrinsic properties that contribute to microbial killing or termination of the inflammatory process. This review will outline important features of chronic inflammation that are regulated by pulmonary proteases and will describe the various mechanisms by which antiproteases attempt to counterbalance exaggerated protease-mediated inflammatory events. These proteases, antiproteases and their modifiers represent interesting targets for therapeutic intervention.
Collapse
Affiliation(s)
- Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland.
| | | |
Collapse
|
180
|
Ratchford AM, Baker OJ, Camden JM, Rikka S, Petris MJ, Seye CI, Erb L, Weisman GA. P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 2010; 285:7545-55. [PMID: 20064929 DOI: 10.1074/jbc.m109.078170] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The G protein-coupled receptor P2Y(2) nucleotide receptor (P2Y(2)R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y(2)Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y(2)R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-alpha protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y(2)R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y(2)R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.
Collapse
Affiliation(s)
- Ann M Ratchford
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
Metalloproteases comprise a heterogeneous group of proteolytic enzymes whose main characteristic is the utilization of a metal ion to polarize a water molecule and perform hydrolytic reactions. These enzymes represent the most densely populated catalytic class of proteases in many organisms and play essential roles in multiple biological processes. In this chapter, we will first present a general description of the complexity of metalloproteases in the context of the degradome, which is defined as the complete set of protease genes encoded by the genome of a certain organism. We will also discuss the functional relevance of these enzymes in a large variety of biological and pathological conditions. Finally, we will analyze in more detail three families of metalloproteases: ADAMs (a disintegrin and metalloproteinase), ADAMTSs (ADAMs with thrombospondin domains), and MMPs (matrix metalloproteinases) which have a growing relevance in a number of human pathologies including cancer, arthritis, neurodegenerative disorders, and cardiovascular diseases.
Collapse
Affiliation(s)
- Alejandro P Ugalde
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|
182
|
Cheng H, Yan R, Li S, Yuan Y, Liu J, Ruan C, Dai K. Shear-induced interaction of platelets with von Willebrand factor results in glycoprotein Ibα shedding. Am J Physiol Heart Circ Physiol 2009; 297:H2128-35. [DOI: 10.1152/ajpheart.00107.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shear-induced platelet adhesion through the interaction of glycoprotein (GP) Ibα with von Willebrand factor (VWF) exposed at the injured vessel wall or atherosclerotic plaque rupture is a prerequisite for the physiological hemostatic process or pathological thrombus formation in stenosed arteries. Here we show that shear-induced interaction of platelets with immobilized VWF results in GPIbα ectodomain shedding. Washed platelets were exposed to VWF-coated glass capillary or cone-and-plate viscometer at different shear rates, and GPIbα ectodomain was shed from platelets, while a small mass of GPIbα COOH-terminal peptide, ∼17 kDa, was increased correspondingly. The extent of GPIbα shedding was enhanced with the concentration of immobilized VWF and the time duration of constant shear stress, whereas it was obviously reduced with the decreased number of adherent platelets. Pretreatment of platelets with membrane-permeable calpain inhibitors and metalloproteinase inhibitor abolished shear-induced GPIbα shedding. Furthermore, GPIbα shedding was obviously diminished by anti-integrin-αIIbβ3monoclonal antibody SZ21, phosphatidylinositol 3-kinase inhibitor wortmannin, and cell-permeable calcium chelator 1,2-bis( o-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid. These results indicate that shear-induced platelet-VWF interaction results in calpain and metalloproteinase-dependent GPIbα ectodomain shedding. These findings not only have a physiological implication in understanding the presence of glycocalicin in normal circulation, but also suggest a novel mechanism for the negative regulation of platelet function and the limitation of platelet thrombus infinite formation under pathophysiological flow conditions.
Collapse
Affiliation(s)
- Hong Cheng
- School of Biological Science and Medical Engineering, Beihang University, Beijing; and
| | - Rong Yan
- School of Biological Science and Medical Engineering, Beihang University, Beijing; and
| | - Suping Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing; and
| | - Yanhong Yuan
- School of Biological Science and Medical Engineering, Beihang University, Beijing; and
| | - Jun Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing; and
| | - Changgeng Ruan
- Thrombosis and Hemostasis Research Unit, Jiangsu Institute of Hematology, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Kesheng Dai
- School of Biological Science and Medical Engineering, Beihang University, Beijing; and
| |
Collapse
|
183
|
Kataoka H. EGFR ligands and their signaling scissors, ADAMs, as new molecular targets for anticancer treatments. J Dermatol Sci 2009; 56:148-53. [PMID: 19896805 DOI: 10.1016/j.jdermsci.2009.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/01/2009] [Indexed: 12/17/2022]
Abstract
Members of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and their ligands (EGFR ligands) are known to play crucial roles in the regulation of cell proliferation and differentiation, and in the survival of many types of cancer. HER family members are activated in cancer cells and are now considered to be useful molecular targets for cancer therapy. Recently, several new drugs, including monoclonal antibodies and small-molecule inhibitors that target HER members, have been developed and clinically used to treat solid tumors. Members of a disintegrin and metalloproteinase (ADAM) family are thought to mediate the shedding of EGFR ligands and this event is critical for the production of soluble functional EGFR ligands. In melanoma cells, UV irradiation activates some ADAM members and induces melanoma cell growth through EGFR ligand shedding by activated ADAMs. These findings suggest that ADAM inhibitors are also candidate anticancer drugs acting via the blockade of HER family signaling pathways. After shedding of EGFR ligands by ADAMs, the carboxy-terminal fragments (CTFs) of EGFR ligands in the cytoplasm are translocated to the nucleus and induce cell proliferation by binding and exporting repressors and activating cyclin A and c-Myc. Based on these findings, the present molecular targeting therapy against HER members, EGFR and HER2, may not be sufficient, while ADAMs and nuclear translocation of the CTF of EGFR ligands are potential targets for the treatment of cancer, particularly malignancies that are dependent on the EGF family.
Collapse
Affiliation(s)
- Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
184
|
Pazos Y, Alvarez CJP, Camiña JP, Al-Massadi O, Seoane LM, Casanueva FF. Role of obestatin on growth hormone secretion: An in vitro approach. Biochem Biophys Res Commun 2009; 390:1377-81. [PMID: 19895783 DOI: 10.1016/j.bbrc.2009.10.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 02/01/2023]
Abstract
Obestatin, the ghrelin-associated peptide, showed to activate MAPK signaling with no effect on Akt nor cell proliferating activity in rat tumor somatotroph cells (growth cells, GC). A sequential analysis of the obestatin transmembrane signaling pathway indicated a route involving the consecutive activation of G(i), PI3k, novel PKCepsilon, and Src for ERK1/2 activation. Furthermore, obestatin treatment triggers growth hormone (GH) release in the first 30min, being more acute at 15min. At 1h, obestatin treated cells showed the same levels in GH secretion than controls. Added to this functionality, obestatin was secreted by GC cells. Based on the capacity to stimulate GH release from somatotroph cells, obestatin may act directly in the pituitary through an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- Yolanda Pazos
- Area de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela, Spain.
| | | | | | | | | | | |
Collapse
|
185
|
Musnier A, Blanchot B, Reiter E, Crépieux P. GPCR signalling to the translation machinery. Cell Signal 2009; 22:707-16. [PMID: 19887105 DOI: 10.1016/j.cellsig.2009.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 10/23/2009] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) are involved in most physiological processes, many of them being engaged in fully differentiated cells. These receptors couple to transducers of their own, primarily G proteins and beta-arrestins, which launch intracellular signalling cascades. Some of these signalling events regulate the translational machinery to fine-tune general cell metabolism or to alter protein expression pattern. Though extensively documented for tyrosine kinase receptors, translational regulation by GPCRs is still poorly appreciated. The objective of this review paper is to address the following questions: i) is there a "GPCR signature" impacting on the translational machinery, and ultimately on the type of mRNA translated? ii) are the regulatory networks involved similar as those utilized by tyrosine kinase receptors? In particular, we will discuss the specific features of translational control mediated by GPCRs and highlight the intrinsic properties of GPCRs these mechanisms could rely on.
Collapse
Affiliation(s)
- Astrid Musnier
- BIOS group, INRA, UMR, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | |
Collapse
|
186
|
Mill CP, Chester JA, Riese DJ. EGFR may couple moderate alcohol consumption to increased breast cancer risk. BREAST CANCER-TARGETS AND THERAPY 2009; 1:31-8. [PMID: 24367161 DOI: 10.2147/bctt.s6254] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alcohol consumption is an established risk factor for breast cancer. Nonetheless, the mechanism by which alcohol contributes to breast tumor initiation or progression has yet to be definitively established. Studies using cultured human tumor cell lines have identified signaling molecules that may contribute to the effects of alcohol, including reactive oxygen species and other ethanol metabolites, matrix metalloproteases, the ErbB2/Her2/Neu receptor tyrosine kinase, cytoplasmic protein kinases, adenylate cyclase, E-cadherins, estrogen receptor, and a variety of transcription factors. Emerging data suggest that the epidermal growth factor receptor (EGFR) tyrosine kinase may contribute to breast cancer genesis and progression. Here we integrate these findings and propose three mechanisms by which alcohol contributes to breast cancer. A common feature of these mechanisms is increased EGFR signaling. Finally, we discuss how these mechanisms suggest strategies for addressing the risks associated with alcohol consumption.
Collapse
Affiliation(s)
- Christopher P Mill
- Purdue University School of Pharmacy, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Julia A Chester
- Purdue University Department of Psychological Sciences, West Lafayette, IN, USA
| | - David J Riese
- Purdue University School of Pharmacy, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
187
|
Kasina S, Scherle PA, Hall CL, Macoska JA. ADAM-mediated amphiregulin shedding and EGFR transactivation. Cell Prolif 2009; 42:799-812. [PMID: 19735466 DOI: 10.1111/j.1365-2184.2009.00645.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The ectodomain shedding of epidermal growth factor receptor (EGFR) ligands, such as amphiregulin (AREG), by ADAMs (A Disintegrin And Metalloproteases) can be stimulated by G protein-coupled receptor (GPCR) agonists. Interactions between the CXCR4 GPCR and the CXCL12 chemokine have been shown to mediate gene transcription and cellular proliferation in non-transformed and transformed prostate epithelial cells, as well as motility/invasiveness in transformed cells. OBJECTIVES In this report, we investigated the ability of CXCL12 to stimulate amphiregulin ectodomain shedding in non-transformed and transformed prostate epithelial cells that respond proliferatively to sub-nanomolar levels of CXCL12 and amphiregulin. MATERIALS AND METHODS Non-transformed N15C6 and transformed PC3 prostate epithelial cells were assessed for amphiregulin shedding, ADAM activation, Src phosphorylation and EGFR activation using ELISA, immunoblot, and immunoprecipitation techniques, and for proliferation using cell counting after stimulation with CXCL12 or vehicle. RESULTS The results of these studies identify CXCL12 as a novel inducer of amphiregulin ectodomain shedding and show that both basal and CXCL12-mediated amphiregulin shedding are ADAM10- and Src kinase-dependent in non-transformed N15C6 cells. In contrast, amphiregulin shedding is not amplified subsequent to stimulation with exogenous CXCL12, and is not reduced subsequent to metalloprotease- or Src kinase-inhibition, in highly aggressive PC3 prostate cancer cells. These data also show that CXCL12-mediated cellular proliferation requires EGFR transactivation in a Src- and ADAM-dependent manner in non-transformed prostate epithelial cells. However, these same mechanisms are dysfunctional in highly transformed prostate cancer cells, which secrete amphiregulin in an autocrine manner that cannot be repressed through metalloprotease- or Src kinase inhibition. CONCLUSION These findings show that non-transformed and transformed prostate epithelial cells may employ different mechanisms to activate EGFR ligands and thereby utilize the EGFR axis to promote cellular proliferation.
Collapse
Affiliation(s)
- S Kasina
- Department of Urology, The University of Michigan, Ann Arbor, MI 41809-0944, USA
| | | | | | | |
Collapse
|
188
|
Dittmer A, Hohlfeld K, Lützkendorf J, Müller LP, Dittmer J. Human mesenchymal stem cells induce E-cadherin degradation in breast carcinoma spheroids by activating ADAM10. Cell Mol Life Sci 2009; 66:3053-65. [PMID: 19603142 PMCID: PMC11115486 DOI: 10.1007/s00018-009-0089-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) have been shown to communicate with tumor cells. We analyzed the effect of human MSCs (hMSCs) on breast cancer cells in three-dimensional cultures. By using GFP expression and immunohistochemistry, we show that hMSCs invade 3D breast cancer cell aggregates. hMSCs caused breast cancer spheroids to become disorganized which was accompanied by a disruption of cell-cell adhesion, E-cadherin cleavage, and nuclear translocation of E-cadherin, but not by epithelial/mesenchymal transition or by an increase in ERK1/2 activity. In addition, hMSCs enhanced the motility of breast cancer cells. Inhibition of ADAM10 (a disintegrin and metalloprotease 10), known to cleave E-cadherin, prevented both hMSC-mediated E-cadherin cleavage and enhanced migration. Our data suggest that hMSCs interfere with cell-cell adhesion and enhance migration of breast cancer cells by activating ADAM10.
Collapse
Affiliation(s)
- Angela Dittmer
- Klinik für Gynäkologie, Universität Halle, Halle (Saale), Germany
| | | | - Jana Lützkendorf
- Zentrum für Innere Medizin, Klinik für Innere Medizin IV, Universität Halle, Halle (Saale), Germany
| | - Lutz P. Müller
- Zentrum für Innere Medizin, Klinik für Innere Medizin IV, Universität Halle, Halle (Saale), Germany
| | - Jürgen Dittmer
- Klinik für Gynäkologie, Universität Halle, Halle (Saale), Germany
| |
Collapse
|
189
|
Savas S, Geraci J, Jurisica I, Liu G. A comprehensive catalogue of functional genetic variations in the EGFR pathway: protein-protein interaction analysis reveals novel genes and polymorphisms important for cancer research. Int J Cancer 2009; 125:1257-65. [PMID: 19499547 DOI: 10.1002/ijc.24535] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The EGFR pathway is a critical signaling pathway deregulated in many solid tumors. In addition to the initiation and progression of cancer, the EGFR pathway is also implicated in variable treatment responses and prognoses. Genetic variation in the form of Single Nucleotide Polymorphisms (SNPs) can affect the function/expression of the EGFR pathway genes. Here, we applied a systematic and comprehensive approach utilizing diverse public databases and in silico analysis tools to select putative functional genetic variations from 244 genes involved in the EGFR pathway. Our data comprises 649 SNPs. Three hundred sixty SNPs are predicted to have biological consequences (functional SNPs). These SNPs can be directly used in further studies to test their association with risk, treatment response and prognosis in cancer. To systematically cover the EGFR pathway, we also performed a network-based analysis to further select putative functional SNPs from the genes whose protein products physically interact with the EGFR pathway proteins. We utilized protein-protein interaction information and focused on 14 proteins that have a high degree of connectivity (interacting with > or = 10 proteins) with the EGFR pathway genes identified to have functional SNPs (f-EGFR genes). Two of these proteins (FYN and LCK) had interactions with 17 of the f-EGFR genes, yet both lacked any putative functional SNP. However, our analysis indicated the presence of potentially functional SNPs in 9 other highly interactive proteins. The genes and their SNPs identified in the network-based analysis represent potential candidates for gene-gene and SNP-SNP interaction studies in cancer research.
Collapse
Affiliation(s)
- Sevtap Savas
- Division of Applied Molecular Oncology, Department of Medical Biophysics, Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
190
|
Wu D, Peng F, Zhang B, Ingram AJ, Kelly DJ, Gilbert RE, Gao B, Kumar S, Krepinsky JC. EGFR-PLCgamma1 signaling mediates high glucose-induced PKCbeta1-Akt activation and collagen I upregulation in mesangial cells. Am J Physiol Renal Physiol 2009; 297:F822-34. [PMID: 19605547 DOI: 10.1152/ajprenal.00054.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We have recently shown that epidermal growth factor receptor (EGFR) transactivation mediates high glucose (HG)-induced collagen I upregulation through PI3K-PKCbeta1-Akt signaling in mesangial cells (MC). Phospholipase Cgamma1 (PLCgamma1) interacts with activated growth factor receptors and activates classic PKC isoforms. We thus studied its role in HG-induced collagen I upregulation in MC. Primary rat MC were treated with HG (30 mM) or mannitol as osmotic control. Protein kinase activation was assessed by Western blotting and collagen I upregulation by Northern blotting. Diabetes was induced in rats by streptozotocin. HG treatment for 1 h led to PLCgamma1 membrane translocation and Y783 phosphorylation, both indicative of its activation. Mannitol was without effect. PLCgamma1 Y783 phosphorylation was also seen in cortex and glomeruli of diabetic rats. HG induced a physical association between EGFR and PLCgamma1 as identified by coimmunoprecipitation. PLCgamma1 activation required EGFR kinase activity since it was prevented by the EGFR inhibitor AG1478 or overexpression of kinase-inactive EGFR (K721A). Phosphoinositide-3-OH kinase inhibition also prevented PLCgamma1 activation. HG-induced Akt S473 phosphorylation, effected by PKCbeta1, was inhibited by the PLCgamma inhibitor U73122. PLCgamma1 inhibition or downregulation by small interference RNA also prevented HG-induced collagen I upregulation. Our results indicate that EGFR-PLCgamma1 signaling mediates HG-induced PKCbeta1-Akt activation and subsequent collagen I upregulation in MC. Inhibition of EGFR or PLCgamma1 may provide attractive therapeutic targets for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- D Wu
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 2009; 21:1045-53. [DOI: 10.1016/j.cellsig.2009.02.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
|
192
|
Grimm I, Messemer N, Stanke M, Gachet C, Zimmermann H. Coordinate pathways for nucleotide and EGF signaling in cultured adult neural progenitor cells. J Cell Sci 2009; 122:2524-33. [PMID: 19549686 DOI: 10.1242/jcs.044891] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The adult subventricular zone (SVZ) contains astrocyte-like stem cells capable of generating new neurons for the olfactory bulb. Adult neurogenesis is driven by a variety of signal systems that can induce synergistic or opposing cellular responses. It is therefore important to gain insight into the underlying downstream signaling pathways. We have previously shown that the nucleotides ADPbetaS and UTP induce rapid Ca2+ transients in cultured SVZ-derived adult neural progenitors and augment growth-factor-mediated progenitor cell proliferation. Here, we investigated signaling pathways elicited by ADPbetaS, UTP and epidermal growth factor (EGF). All three agonists elicit ERK1/2 and CREB phosphorylation but the temporal characteristics differ between the nucleotides and EGF. Differentiation of the progenitors alters the receptor profile. Oligodendrocytes and young neurons, but not astrocytes, lose responsiveness to the agonists. Inhibition experiments are indicative of an ADPbetaS-elicited EGF receptor transactivation. Whereas UTP acts via the P2Y2 receptor, ADPbetaS exerts its function via the P2Y1 receptor and the P2Y13 receptor. Our data demonstrate that nucleotides and EGF induce converging, but also differential, intracellular signaling pathways and suggest that they carry the potential to act synergistically in the control of cell proliferation and cell survival in adult neurogenesis.
Collapse
Affiliation(s)
- Ivette Grimm
- Institute of Cell Biology and Neuroscience, Biocenter, J. W. Goethe-University, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
193
|
Berasain C, Perugorria MJ, Latasa MU, Castillo J, Goñi S, Santamaría M, Prieto J, Avila MA. The epidermal growth factor receptor: a link between inflammation and liver cancer. Exp Biol Med (Maywood) 2009; 234:713-25. [PMID: 19429859 DOI: 10.3181/0901-mr-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have established that many tumours occur in association with persistent inflammation. One clear example of inflammation-related cancer is hepatocellular carcinoma (HCC). HCC slowly unfolds on a background of chronic inflammation triggered by exposure to infectious agents (hepatotropic viruses), toxic compounds (ethanol), or metabolic impairment. The molecular links that connect inflammation and cancer are not completely known, but evidence gathered over the past few years is beginning to define the precise mechanisms. A central role for cytokines such as interleukin-6 (IL-6) and IL-1 (alpha and beta) in liver cancer has been established in experimental models. Besides these inflammatory mediators, mounting evidence points to the dysregulation of specific growth and survival-related pathways in HCC development. Among them is the pathway governed by the epidermal growth factor receptor (EGFR), which can be bound and activated by a broad family of ligands. Of special relevance is the fact that the EGFR engages in extensive crosstalk with other signaling pathways, serving as a "signaling hub" for an increasing list of growth factors, cytokines, and inflammatory mediators. In this review, we summarize the most recent evidences supporting a role for the EGFR system in inflammation-related cell signaling, with special emphasis in liver inflammation and HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will facilitate the development of novel and more effective antitumor strategies.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Huynh J, Thomas WG, Aguilar MI, Pattenden LK. Role of helix 8 in G protein-coupled receptors based on structure-function studies on the type 1 angiotensin receptor. Mol Cell Endocrinol 2009; 302:118-27. [PMID: 19418628 DOI: 10.1016/j.mce.2009.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptors that convert extracellular stimuli to intracellular signals. The type 1 angiotensin II receptor is a widely studied GPCR with roles in blood pressure regulation,water and salt balance and cell growth. The complex molecular and structural changes that underpin receptor activation and signaling are the focus of intense research. Increasingly, there is an appreciation that the plasma membrane participates in receptor function via direct, physical interactions that reciprocally modulate both lipid and receptor and provide microdomains for specialized activities. Reversible protein:lipid interactions are commonly mediated by amphipathic -helices in proteins and one such motif - a short helix, referred to as helix VIII/8 (H8), located at the start of the carboxyl (C)-terminus of GPCRs - is gaining recognition for its importance to GPCR function. Here, we review the identification of H8 in GPCRs and examine its capacity to sense and interact with diverse proteins and lipid environment, most notably with acidic lipids that include phosphatidylinositol phosphates.
Collapse
MESH Headings
- Binding Sites
- Humans
- Lipids/chemistry
- Protein Binding
- Protein Structure, Secondary
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction
Collapse
Affiliation(s)
- John Huynh
- School of Biomedical Sciences, The University of Queensland, Brisbane, St Lucia, Queensland, Australia
| | | | | | | |
Collapse
|
195
|
Lucas N, Day ML. The role of the disintegrin metalloproteinase ADAM15 in prostate cancer progression. J Cell Biochem 2009; 106:967-74. [DOI: 10.1002/jcb.22087] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
196
|
Murphy G. Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol 2009; 20:138-45. [DOI: 10.1016/j.semcdb.2008.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
197
|
Duffy MJ, McKiernan E, O'Donovan N, McGowan PM. Role of ADAMs in cancer formation and progression. Clin Cancer Res 2009; 15:1140-4. [PMID: 19228719 DOI: 10.1158/1078-0432.ccr-08-1585] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ADAMs (a disintegrin and metalloproteinase) comprise a family of multidomain transmembrane and secreted proteins. One of their best-established roles is the release of biologically important ligands, such as tumor necrosis factor-alpha, epidermal growth factor, transforming growth factor-alpha, and amphiregulin. Because these ligands have been implicated in the formation and progression of tumors, it might be expected that the specific ADAMs involved in their release would also be involved in malignancy. Consistent with this hypothesis, emerging data from model systems suggest that ADAMs, such as ADAM-9, ADAM-12, ADAM-15, and ADAM-17, are causally involved in tumor formation/progression. In human cancer, specific ADAMs are up-regulated, with levels generally correlating with parameters of tumor progression and poor outcome. In preclinical models, selective ADAM inhibitors against ADAM-10 and ADAM-17 have been shown to synergize with existing therapies in decreasing tumor growth. The ADAMs are thus a new family of potential targets for the treatment of cancer, especially malignancies that are dependent on human epidermal growth factor receptor ligands or tumor necrosis factor-alpha.
Collapse
Affiliation(s)
- Michael J Duffy
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | | | | | | |
Collapse
|
198
|
Koumbadinga GA, Petitclerc E, Bouthillier J, Adam A, Marceau F. Receptor tyrosine kinases as mediators of injury-induced bradykinin B1 receptor expression in rabbit aortic smooth muscle. Eur J Pharmacol 2009; 606:233-9. [DOI: 10.1016/j.ejphar.2008.12.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/11/2008] [Accepted: 12/23/2008] [Indexed: 11/30/2022]
|
199
|
Thrombin induces nestin expression via the transactivation of EGFR signalings in rat vascular smooth muscle cells. Cell Signal 2009; 21:954-68. [PMID: 19245830 DOI: 10.1016/j.cellsig.2009.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 11/20/2022]
Abstract
Regulation of nestin gene expression is largely unknown despite that it is widely used as a progenitor cell marker. In this study, we showed that nestin expression is regulated by the thrombin-mediated EGFR transactivation in serum-deprived primary cultures of rat vascular smooth muscle cells (VSMCs). This resulted from the direct binding of thrombin to PAR-1 rather than indirectly affecting through the binding to thrombomodulin, as demonstrated by thrombomodulin RNAi. In this process, the PAR-1-induced c-Src plays a critical role through two routes; one was the direct intracellular phosphorylation of EGFR and the other was the extracellular activation of the MMP-2-mediated shedding of HB-EGF. The transactivated EGFR then led to the downstream Ras-Raf-ERK signaling axis, but not the p38 or JNK pathways. In addition, the EMSA experiment showed that the transcriptional factor Sp1 is critical for the thrombin-induced nestin expression in rat VSMCs. Furthermore, RNAi of nestin attenuated the thrombin-induced cell proliferation, indicating that thrombin-induced nestin expression and cell proliferation share the same EGFR transactivation mechanism. This study also suggested that nestin may play an important role in cell proliferation induced by the thrombin-mediated EGFR transactivation.
Collapse
|
200
|
|